]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/clocksource/sh_cmt.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
1768aa2f 27#include <linux/of.h>
e7a9bcc2 28#include <linux/platform_device.h>
615a445f 29#include <linux/pm_domain.h>
bad81383 30#include <linux/pm_runtime.h>
e7a9bcc2
LP
31#include <linux/sh_timer.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
3fb1b6ad 34
2653caf4 35struct sh_cmt_device;
7269f933 36
2cda3ac4
LP
37/*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
42 * 16B 32B 32B-F 48B 48B-2
43 * -----------------------------------------------------------------------------
44 * Channels 2 1/4 1 6 2/8
45 * Control Width 16 16 16 16 32
46 * Counter Width 16 32 32 32/48 32/48
47 * Shared Start/Stop Y Y Y Y N
48 *
49 * The 48-bit gen2 version has a per-channel start/stop register located in the
50 * channel registers block. All other versions have a shared start/stop register
51 * located in the global space.
52 *
81b3b271
LP
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66enum sh_cmt_model {
67 SH_CMT_16BIT,
68 SH_CMT_32BIT,
69 SH_CMT_32BIT_FAST,
70 SH_CMT_48BIT,
71 SH_CMT_48BIT_GEN2,
72};
73
74struct sh_cmt_info {
75 enum sh_cmt_model model;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 unsigned long overflow_bit;
79 unsigned long clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 unsigned long value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs,
89 unsigned long value);
90};
91
7269f933 92struct sh_cmt_channel {
2653caf4 93 struct sh_cmt_device *cmt;
3fb1b6ad 94
81b3b271
LP
95 unsigned int index; /* Index in the documentation */
96 unsigned int hwidx; /* Real hardware index */
97
98 void __iomem *iostart;
99 void __iomem *ioctrl;
c924d2d2 100
81b3b271 101 unsigned int timer_bit;
3fb1b6ad
MD
102 unsigned long flags;
103 unsigned long match_value;
104 unsigned long next_match_value;
105 unsigned long max_match_value;
7d0c399f 106 raw_spinlock_t lock;
3fb1b6ad 107 struct clock_event_device ced;
19bdc9d0 108 struct clocksource cs;
3fb1b6ad 109 unsigned long total_cycles;
bad81383 110 bool cs_enabled;
7269f933
LP
111};
112
2653caf4 113struct sh_cmt_device {
7269f933
LP
114 struct platform_device *pdev;
115
2cda3ac4
LP
116 const struct sh_cmt_info *info;
117
7269f933 118 void __iomem *mapbase;
7269f933 119 struct clk *clk;
890f423b 120 unsigned long rate;
7269f933 121
de599c88
LP
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
f5ec9b19
LP
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
1768aa2f 126 unsigned int hw_channels;
81b3b271
LP
127
128 bool has_clockevent;
129 bool has_clocksource;
3fb1b6ad
MD
130};
131
d14be99b
LP
132#define SH_CMT16_CMCSR_CMF (1 << 7)
133#define SH_CMT16_CMCSR_CMIE (1 << 6)
134#define SH_CMT16_CMCSR_CKS8 (0 << 0)
135#define SH_CMT16_CMCSR_CKS32 (1 << 0)
136#define SH_CMT16_CMCSR_CKS128 (2 << 0)
137#define SH_CMT16_CMCSR_CKS512 (3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140#define SH_CMT32_CMCSR_CMF (1 << 15)
141#define SH_CMT32_CMCSR_OVF (1 << 14)
142#define SH_CMT32_CMCSR_WRFLG (1 << 13)
143#define SH_CMT32_CMCSR_STTF (1 << 12)
144#define SH_CMT32_CMCSR_STPF (1 << 11)
145#define SH_CMT32_CMCSR_SSIE (1 << 10)
146#define SH_CMT32_CMCSR_CMS (1 << 9)
147#define SH_CMT32_CMCSR_CMM (1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
a6a912ca 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
161{
162 return ioread16(base + (offs << 1));
163}
164
a6a912ca
MD
165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167 return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 unsigned long value)
587acb3d
MD
172{
173 iowrite16(value, base + (offs << 1));
174}
3fb1b6ad 175
a6a912ca
MD
176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 unsigned long value)
178{
179 iowrite32(value, base + (offs << 2));
180}
181
2cda3ac4
LP
182static const struct sh_cmt_info sh_cmt_info[] = {
183 [SH_CMT_16BIT] = {
184 .model = SH_CMT_16BIT,
185 .width = 16,
d14be99b
LP
186 .overflow_bit = SH_CMT16_CMCSR_CMF,
187 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
188 .read_control = sh_cmt_read16,
189 .write_control = sh_cmt_write16,
190 .read_count = sh_cmt_read16,
191 .write_count = sh_cmt_write16,
192 },
193 [SH_CMT_32BIT] = {
194 .model = SH_CMT_32BIT,
195 .width = 32,
d14be99b
LP
196 .overflow_bit = SH_CMT32_CMCSR_CMF,
197 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
198 .read_control = sh_cmt_read16,
199 .write_control = sh_cmt_write16,
200 .read_count = sh_cmt_read32,
201 .write_count = sh_cmt_write32,
202 },
203 [SH_CMT_32BIT_FAST] = {
204 .model = SH_CMT_32BIT_FAST,
205 .width = 32,
d14be99b
LP
206 .overflow_bit = SH_CMT32_CMCSR_CMF,
207 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
208 .read_control = sh_cmt_read16,
209 .write_control = sh_cmt_write16,
210 .read_count = sh_cmt_read32,
211 .write_count = sh_cmt_write32,
212 },
213 [SH_CMT_48BIT] = {
214 .model = SH_CMT_48BIT,
215 .width = 32,
d14be99b
LP
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT_48BIT_GEN2] = {
224 .model = SH_CMT_48BIT_GEN2,
225 .width = 32,
d14be99b
LP
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
232 },
233};
234
3fb1b6ad
MD
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
7269f933 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 240{
81b3b271
LP
241 if (ch->iostart)
242 return ch->cmt->info->read_control(ch->iostart, 0);
243 else
244 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
245}
246
81b3b271
LP
247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 unsigned long value)
1b56b96b 249{
81b3b271
LP
250 if (ch->iostart)
251 ch->cmt->info->write_control(ch->iostart, 0, value);
252 else
253 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
254}
255
81b3b271 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 257{
81b3b271 258 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
259}
260
81b3b271 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
262 unsigned long value)
263{
81b3b271 264 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
265}
266
81b3b271 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 268{
81b3b271 269 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
270}
271
7269f933 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
273 unsigned long value)
274{
81b3b271 275 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
276}
277
7269f933 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
279 unsigned long value)
280{
81b3b271 281 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
282}
283
7269f933 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
285 int *has_wrapped)
286{
287 unsigned long v1, v2, v3;
5b644c7a
MD
288 int o1, o2;
289
2cda3ac4 290 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
291
292 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 do {
5b644c7a 294 o2 = o1;
7269f933
LP
295 v1 = sh_cmt_read_cmcnt(ch);
296 v2 = sh_cmt_read_cmcnt(ch);
297 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 298 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
299 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 301
5b644c7a 302 *has_wrapped = o1;
3fb1b6ad
MD
303 return v2;
304}
305
7269f933 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 307{
3fb1b6ad
MD
308 unsigned long flags, value;
309
310 /* start stop register shared by multiple timer channels */
de599c88 311 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
7269f933 312 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
313
314 if (start)
81b3b271 315 value |= 1 << ch->timer_bit;
3fb1b6ad 316 else
81b3b271 317 value &= ~(1 << ch->timer_bit);
3fb1b6ad 318
7269f933 319 sh_cmt_write_cmstr(ch, value);
de599c88 320 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
3fb1b6ad
MD
321}
322
890f423b 323static int sh_cmt_enable(struct sh_cmt_channel *ch)
3fb1b6ad 324{
3f7e5e24 325 int k, ret;
3fb1b6ad 326
7269f933
LP
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 329
9436b4ab 330 /* enable clock */
7269f933 331 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 332 if (ret) {
740a9518
LP
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
3f7e5e24 335 goto err0;
3fb1b6ad 336 }
3fb1b6ad
MD
337
338 /* make sure channel is disabled */
7269f933 339 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
340
341 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 342 if (ch->cmt->info->width == 16) {
d14be99b
LP
343 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
344 SH_CMT16_CMCSR_CKS512);
3014f474 345 } else {
d14be99b
LP
346 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347 SH_CMT32_CMCSR_CMTOUT_IE |
348 SH_CMT32_CMCSR_CMR_IRQ |
349 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 350 }
3fb1b6ad 351
7269f933
LP
352 sh_cmt_write_cmcor(ch, 0xffffffff);
353 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 354
3f7e5e24
MD
355 /*
356 * According to the sh73a0 user's manual, as CMCNT can be operated
357 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358 * modifying CMCNT register; two RCLK cycles are necessary before
359 * this register is either read or any modification of the value
360 * it holds is reflected in the LSI's actual operation.
361 *
362 * While at it, we're supposed to clear out the CMCNT as of this
363 * moment, so make sure it's processed properly here. This will
364 * take RCLKx2 at maximum.
365 */
366 for (k = 0; k < 100; k++) {
7269f933 367 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
368 break;
369 udelay(1);
370 }
371
7269f933 372 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
373 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374 ch->index);
3f7e5e24
MD
375 ret = -ETIMEDOUT;
376 goto err1;
377 }
378
3fb1b6ad 379 /* enable channel */
7269f933 380 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 381 return 0;
3f7e5e24
MD
382 err1:
383 /* stop clock */
7269f933 384 clk_disable(ch->cmt->clk);
3f7e5e24
MD
385
386 err0:
387 return ret;
3fb1b6ad
MD
388}
389
7269f933 390static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
391{
392 /* disable channel */
7269f933 393 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 394
be890a1a 395 /* disable interrupts in CMT block */
7269f933 396 sh_cmt_write_cmcsr(ch, 0);
be890a1a 397
9436b4ab 398 /* stop clock */
7269f933 399 clk_disable(ch->cmt->clk);
bad81383 400
7269f933
LP
401 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
403}
404
405/* private flags */
406#define FLAG_CLOCKEVENT (1 << 0)
407#define FLAG_CLOCKSOURCE (1 << 1)
408#define FLAG_REPROGRAM (1 << 2)
409#define FLAG_SKIPEVENT (1 << 3)
410#define FLAG_IRQCONTEXT (1 << 4)
411
7269f933 412static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
413 int absolute)
414{
415 unsigned long new_match;
7269f933 416 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
417 unsigned long delay = 0;
418 unsigned long now = 0;
419 int has_wrapped;
420
7269f933
LP
421 now = sh_cmt_get_counter(ch, &has_wrapped);
422 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
423
424 if (has_wrapped) {
425 /* we're competing with the interrupt handler.
426 * -> let the interrupt handler reprogram the timer.
427 * -> interrupt number two handles the event.
428 */
7269f933 429 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
430 return;
431 }
432
433 if (absolute)
434 now = 0;
435
436 do {
437 /* reprogram the timer hardware,
438 * but don't save the new match value yet.
439 */
440 new_match = now + value + delay;
7269f933
LP
441 if (new_match > ch->max_match_value)
442 new_match = ch->max_match_value;
3fb1b6ad 443
7269f933 444 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 445
7269f933
LP
446 now = sh_cmt_get_counter(ch, &has_wrapped);
447 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
448 /* we are changing to a greater match value,
449 * so this wrap must be caused by the counter
450 * matching the old value.
451 * -> first interrupt reprograms the timer.
452 * -> interrupt number two handles the event.
453 */
7269f933 454 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
455 break;
456 }
457
458 if (has_wrapped) {
459 /* we are changing to a smaller match value,
460 * so the wrap must be caused by the counter
461 * matching the new value.
462 * -> save programmed match value.
463 * -> let isr handle the event.
464 */
7269f933 465 ch->match_value = new_match;
3fb1b6ad
MD
466 break;
467 }
468
469 /* be safe: verify hardware settings */
470 if (now < new_match) {
471 /* timer value is below match value, all good.
472 * this makes sure we won't miss any match events.
473 * -> save programmed match value.
474 * -> let isr handle the event.
475 */
7269f933 476 ch->match_value = new_match;
3fb1b6ad
MD
477 break;
478 }
479
480 /* the counter has reached a value greater
481 * than our new match value. and since the
482 * has_wrapped flag isn't set we must have
483 * programmed a too close event.
484 * -> increase delay and retry.
485 */
486 if (delay)
487 delay <<= 1;
488 else
489 delay = 1;
490
491 if (!delay)
740a9518
LP
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493 ch->index);
3fb1b6ad
MD
494
495 } while (delay);
496}
497
7269f933 498static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 499{
7269f933 500 if (delta > ch->max_match_value)
740a9518
LP
501 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502 ch->index);
3fb1b6ad 503
7269f933
LP
504 ch->next_match_value = delta;
505 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
506}
507
7269f933 508static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
509{
510 unsigned long flags;
511
7269f933
LP
512 raw_spin_lock_irqsave(&ch->lock, flags);
513 __sh_cmt_set_next(ch, delta);
514 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
515}
516
517static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518{
7269f933 519 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
520
521 /* clear flags */
2cda3ac4
LP
522 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523 ch->cmt->info->clear_bits);
3fb1b6ad
MD
524
525 /* update clock source counter to begin with if enabled
526 * the wrap flag should be cleared by the timer specific
527 * isr before we end up here.
528 */
7269f933
LP
529 if (ch->flags & FLAG_CLOCKSOURCE)
530 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 531
7269f933
LP
532 if (!(ch->flags & FLAG_REPROGRAM))
533 ch->next_match_value = ch->max_match_value;
3fb1b6ad 534
7269f933 535 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 536
7269f933
LP
537 if (ch->flags & FLAG_CLOCKEVENT) {
538 if (!(ch->flags & FLAG_SKIPEVENT)) {
051b782e 539 if (clockevent_state_oneshot(&ch->ced)) {
7269f933
LP
540 ch->next_match_value = ch->max_match_value;
541 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
542 }
543
7269f933 544 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
545 }
546 }
547
7269f933 548 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 549
7269f933
LP
550 if (ch->flags & FLAG_REPROGRAM) {
551 ch->flags &= ~FLAG_REPROGRAM;
552 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 553
7269f933 554 if (ch->flags & FLAG_CLOCKEVENT)
051b782e 555 if ((clockevent_state_shutdown(&ch->ced))
7269f933
LP
556 || (ch->match_value == ch->next_match_value))
557 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
558 }
559
7269f933 560 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
561
562 return IRQ_HANDLED;
563}
564
7269f933 565static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
566{
567 int ret = 0;
568 unsigned long flags;
569
7269f933 570 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 571
7269f933 572 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
890f423b 573 ret = sh_cmt_enable(ch);
3fb1b6ad
MD
574
575 if (ret)
576 goto out;
7269f933 577 ch->flags |= flag;
3fb1b6ad
MD
578
579 /* setup timeout if no clockevent */
7269f933
LP
580 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 582 out:
7269f933 583 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
584
585 return ret;
586}
587
7269f933 588static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
589{
590 unsigned long flags;
591 unsigned long f;
592
7269f933 593 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 594
7269f933
LP
595 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596 ch->flags &= ~flag;
3fb1b6ad 597
7269f933
LP
598 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599 sh_cmt_disable(ch);
3fb1b6ad
MD
600
601 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
602 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 604
7269f933 605 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
606}
607
7269f933 608static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 609{
7269f933 610 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
611}
612
a5a1d1c2 613static u64 sh_cmt_clocksource_read(struct clocksource *cs)
19bdc9d0 614{
7269f933 615 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
616 unsigned long flags, raw;
617 unsigned long value;
618 int has_wrapped;
619
7269f933
LP
620 raw_spin_lock_irqsave(&ch->lock, flags);
621 value = ch->total_cycles;
622 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
623
624 if (unlikely(has_wrapped))
7269f933
LP
625 raw += ch->match_value + 1;
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
627
628 return value + raw;
629}
630
631static int sh_cmt_clocksource_enable(struct clocksource *cs)
632{
3593f5fe 633 int ret;
7269f933 634 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 635
7269f933 636 WARN_ON(ch->cs_enabled);
bad81383 637
7269f933 638 ch->total_cycles = 0;
19bdc9d0 639
7269f933 640 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
890f423b 641 if (!ret)
7269f933 642 ch->cs_enabled = true;
890f423b 643
3593f5fe 644 return ret;
19bdc9d0
MD
645}
646
647static void sh_cmt_clocksource_disable(struct clocksource *cs)
648{
7269f933 649 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 650
7269f933 651 WARN_ON(!ch->cs_enabled);
bad81383 652
7269f933
LP
653 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654 ch->cs_enabled = false;
19bdc9d0
MD
655}
656
9bb5ec88
RW
657static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658{
7269f933 659 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 660
54d46b7f
GU
661 if (!ch->cs_enabled)
662 return;
663
7269f933
LP
664 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
666}
667
c8162884
MD
668static void sh_cmt_clocksource_resume(struct clocksource *cs)
669{
7269f933 670 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 671
54d46b7f
GU
672 if (!ch->cs_enabled)
673 return;
674
7269f933
LP
675 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
677}
678
7269f933 679static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 680 const char *name)
19bdc9d0 681{
7269f933 682 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
683
684 cs->name = name;
fb28a659 685 cs->rating = 125;
19bdc9d0
MD
686 cs->read = sh_cmt_clocksource_read;
687 cs->enable = sh_cmt_clocksource_enable;
688 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 689 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 690 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
691 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
692 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 693
740a9518
LP
694 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695 ch->index);
f4d7c356 696
890f423b 697 clocksource_register_hz(cs, ch->cmt->rate);
19bdc9d0
MD
698 return 0;
699}
700
7269f933 701static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 702{
7269f933 703 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
704}
705
7269f933 706static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 707{
7269f933 708 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad 709
3fb1b6ad 710 if (periodic)
890f423b 711 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
3fb1b6ad 712 else
7269f933 713 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
714}
715
051b782e
VK
716static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717{
718 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719
720 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721 return 0;
722}
723
724static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725 int periodic)
3fb1b6ad 726{
7269f933 727 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
728
729 /* deal with old setting first */
051b782e 730 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
7269f933 731 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad 732
051b782e
VK
733 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734 ch->index, periodic ? "periodic" : "oneshot");
735 sh_cmt_clock_event_start(ch, periodic);
736 return 0;
737}
738
739static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740{
741 return sh_cmt_clock_event_set_state(ced, 0);
742}
743
744static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745{
746 return sh_cmt_clock_event_set_state(ced, 1);
3fb1b6ad
MD
747}
748
749static int sh_cmt_clock_event_next(unsigned long delta,
750 struct clock_event_device *ced)
751{
7269f933 752 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad 753
051b782e 754 BUG_ON(!clockevent_state_oneshot(ced));
7269f933
LP
755 if (likely(ch->flags & FLAG_IRQCONTEXT))
756 ch->next_match_value = delta - 1;
3fb1b6ad 757 else
7269f933 758 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
759
760 return 0;
761}
762
9bb5ec88
RW
763static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764{
7269f933 765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 766
7269f933
LP
767 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
769}
770
771static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772{
7269f933 773 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 774
7269f933
LP
775 clk_prepare(ch->cmt->clk);
776 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
777}
778
bfa76bb1
LP
779static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780 const char *name)
3fb1b6ad 781{
7269f933 782 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
783 int irq;
784 int ret;
785
31e912f5 786 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
787 if (irq < 0) {
788 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789 ch->index);
790 return irq;
791 }
792
793 ret = request_irq(irq, sh_cmt_interrupt,
794 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795 dev_name(&ch->cmt->pdev->dev), ch);
796 if (ret) {
797 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798 ch->index, irq);
799 return ret;
800 }
3fb1b6ad 801
3fb1b6ad
MD
802 ced->name = name;
803 ced->features = CLOCK_EVT_FEAT_PERIODIC;
804 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 805 ced->rating = 125;
f1ebe1e4 806 ced->cpumask = cpu_possible_mask;
3fb1b6ad 807 ced->set_next_event = sh_cmt_clock_event_next;
051b782e
VK
808 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
9bb5ec88
RW
811 ced->suspend = sh_cmt_clock_event_suspend;
812 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 813
890f423b
NS
814 /* TODO: calculate good shift from rate and counter bit width */
815 ced->shift = 32;
816 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
bb2e94ac 818 ced->max_delta_ticks = ch->max_match_value;
890f423b 819 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
bb2e94ac 820 ced->min_delta_ticks = 0x1f;
890f423b 821
740a9518
LP
822 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823 ch->index);
3fb1b6ad 824 clockevents_register_device(ced);
bfa76bb1
LP
825
826 return 0;
3fb1b6ad
MD
827}
828
1d053e1d 829static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 830 bool clockevent, bool clocksource)
3fb1b6ad 831{
bfa76bb1
LP
832 int ret;
833
81b3b271
LP
834 if (clockevent) {
835 ch->cmt->has_clockevent = true;
bfa76bb1
LP
836 ret = sh_cmt_register_clockevent(ch, name);
837 if (ret < 0)
838 return ret;
81b3b271 839 }
3fb1b6ad 840
81b3b271
LP
841 if (clocksource) {
842 ch->cmt->has_clocksource = true;
fb28a659 843 sh_cmt_register_clocksource(ch, name);
81b3b271 844 }
19bdc9d0 845
3fb1b6ad
MD
846 return 0;
847}
848
740a9518 849static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
850 unsigned int hwidx, bool clockevent,
851 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 852{
b882e7b1
LP
853 int ret;
854
81b3b271
LP
855 /* Skip unused channels. */
856 if (!clockevent && !clocksource)
857 return 0;
858
b882e7b1 859 ch->cmt = cmt;
740a9518 860 ch->index = index;
81b3b271
LP
861 ch->hwidx = hwidx;
862
863 /*
864 * Compute the address of the channel control register block. For the
865 * timers with a per-channel start/stop register, compute its address
866 * as well.
81b3b271 867 */
31e912f5
LP
868 switch (cmt->info->model) {
869 case SH_CMT_16BIT:
870 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871 break;
872 case SH_CMT_32BIT:
873 case SH_CMT_48BIT:
874 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875 break;
876 case SH_CMT_32BIT_FAST:
877 /*
878 * The 32-bit "fast" timer has a single channel at hwidx 5 but
879 * is located at offset 0x40 instead of 0x60 for some reason.
880 */
881 ch->ioctrl = cmt->mapbase + 0x40;
882 break;
883 case SH_CMT_48BIT_GEN2:
884 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
885 ch->ioctrl = ch->iostart + 0x10;
886 break;
81b3b271
LP
887 }
888
2cda3ac4 889 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
890 ch->max_match_value = ~0;
891 else
2cda3ac4 892 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
893
894 ch->match_value = ch->max_match_value;
895 raw_spin_lock_init(&ch->lock);
896
31e912f5 897 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
81b3b271 898
1d053e1d 899 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 900 clockevent, clocksource);
b882e7b1 901 if (ret) {
740a9518
LP
902 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903 ch->index);
b882e7b1
LP
904 return ret;
905 }
906 ch->cs_enabled = false;
907
b882e7b1
LP
908 return 0;
909}
910
81b3b271 911static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 912{
81b3b271 913 struct resource *mem;
3fb1b6ad 914
81b3b271
LP
915 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916 if (!mem) {
917 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918 return -ENXIO;
919 }
3fb1b6ad 920
81b3b271
LP
921 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922 if (cmt->mapbase == NULL) {
923 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924 return -ENXIO;
3fb1b6ad
MD
925 }
926
81b3b271
LP
927 return 0;
928}
929
1768aa2f
LP
930static const struct platform_device_id sh_cmt_id_table[] = {
931 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1768aa2f
LP
933 { }
934};
935MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936
937static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938 { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
939 { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
940 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
941 { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
942 { }
943};
944MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
945
946static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
947{
948 struct device_node *np = cmt->pdev->dev.of_node;
949
950 return of_property_read_u32(np, "renesas,channels-mask",
951 &cmt->hw_channels);
952}
953
81b3b271
LP
954static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
955{
31e912f5
LP
956 unsigned int mask;
957 unsigned int i;
81b3b271
LP
958 int ret;
959
81b3b271 960 cmt->pdev = pdev;
de599c88 961 raw_spin_lock_init(&cmt->lock);
81b3b271 962
1768aa2f
LP
963 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
964 const struct of_device_id *id;
965
966 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
967 cmt->info = id->data;
968
969 ret = sh_cmt_parse_dt(cmt);
970 if (ret < 0)
971 return ret;
972 } else if (pdev->dev.platform_data) {
973 struct sh_timer_config *cfg = pdev->dev.platform_data;
974 const struct platform_device_id *id = pdev->id_entry;
975
976 cmt->info = (const struct sh_cmt_info *)id->driver_data;
977 cmt->hw_channels = cfg->channels_mask;
978 } else {
81b3b271
LP
979 dev_err(&cmt->pdev->dev, "missing platform data\n");
980 return -ENXIO;
981 }
982
81b3b271 983 /* Get hold of clock. */
31e912f5 984 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
985 if (IS_ERR(cmt->clk)) {
986 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 987 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
988 }
989
2653caf4 990 ret = clk_prepare(cmt->clk);
57dee992 991 if (ret < 0)
81b3b271 992 goto err_clk_put;
57dee992 993
890f423b
NS
994 /* Determine clock rate. */
995 ret = clk_enable(cmt->clk);
996 if (ret < 0)
997 goto err_clk_unprepare;
998
999 if (cmt->info->width == 16)
1000 cmt->rate = clk_get_rate(cmt->clk) / 512;
1001 else
1002 cmt->rate = clk_get_rate(cmt->clk) / 8;
1003
1004 clk_disable(cmt->clk);
1005
31e912f5
LP
1006 /* Map the memory resource(s). */
1007 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
1008 if (ret < 0)
1009 goto err_clk_unprepare;
1010
1011 /* Allocate and setup the channels. */
1768aa2f 1012 cmt->num_channels = hweight8(cmt->hw_channels);
81b3b271
LP
1013 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1014 GFP_KERNEL);
f5ec9b19
LP
1015 if (cmt->channels == NULL) {
1016 ret = -ENOMEM;
81b3b271 1017 goto err_unmap;
f5ec9b19
LP
1018 }
1019
31e912f5
LP
1020 /*
1021 * Use the first channel as a clock event device and the second channel
1022 * as a clock source. If only one channel is available use it for both.
1023 */
1768aa2f 1024 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
31e912f5
LP
1025 unsigned int hwidx = ffs(mask) - 1;
1026 bool clocksource = i == 1 || cmt->num_channels == 1;
1027 bool clockevent = i == 0;
1028
1029 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1030 clockevent, clocksource, cmt);
81b3b271
LP
1031 if (ret < 0)
1032 goto err_unmap;
f5ec9b19 1033
31e912f5 1034 mask &= ~(1 << hwidx);
81b3b271 1035 }
da64c2a8 1036
2653caf4 1037 platform_set_drvdata(pdev, cmt);
adccc69e 1038
da64c2a8 1039 return 0;
81b3b271
LP
1040
1041err_unmap:
f5ec9b19 1042 kfree(cmt->channels);
31e912f5 1043 iounmap(cmt->mapbase);
81b3b271 1044err_clk_unprepare:
2653caf4 1045 clk_unprepare(cmt->clk);
81b3b271 1046err_clk_put:
2653caf4 1047 clk_put(cmt->clk);
3fb1b6ad
MD
1048 return ret;
1049}
1050
1850514b 1051static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1052{
2653caf4 1053 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1054 int ret;
1055
9bb5ec88 1056 if (!is_early_platform_device(pdev)) {
bad81383
RW
1057 pm_runtime_set_active(&pdev->dev);
1058 pm_runtime_enable(&pdev->dev);
9bb5ec88 1059 }
615a445f 1060
2653caf4 1061 if (cmt) {
214a607a 1062 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1063 goto out;
e475eedb
MD
1064 }
1065
b262bc74 1066 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1067 if (cmt == NULL)
3fb1b6ad 1068 return -ENOMEM;
3fb1b6ad 1069
2653caf4 1070 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1071 if (ret) {
2653caf4 1072 kfree(cmt);
bad81383
RW
1073 pm_runtime_idle(&pdev->dev);
1074 return ret;
3fb1b6ad 1075 }
bad81383
RW
1076 if (is_early_platform_device(pdev))
1077 return 0;
1078
1079 out:
81b3b271 1080 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1081 pm_runtime_irq_safe(&pdev->dev);
1082 else
1083 pm_runtime_idle(&pdev->dev);
1084
1085 return 0;
3fb1b6ad
MD
1086}
1087
1850514b 1088static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1089{
1090 return -EBUSY; /* cannot unregister clockevent and clocksource */
1091}
1092
1093static struct platform_driver sh_cmt_device_driver = {
1094 .probe = sh_cmt_probe,
1850514b 1095 .remove = sh_cmt_remove,
3fb1b6ad
MD
1096 .driver = {
1097 .name = "sh_cmt",
1768aa2f 1098 .of_match_table = of_match_ptr(sh_cmt_of_table),
81b3b271
LP
1099 },
1100 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1101};
1102
1103static int __init sh_cmt_init(void)
1104{
1105 return platform_driver_register(&sh_cmt_device_driver);
1106}
1107
1108static void __exit sh_cmt_exit(void)
1109{
1110 platform_driver_unregister(&sh_cmt_device_driver);
1111}
1112
e475eedb 1113early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1114subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1115module_exit(sh_cmt_exit);
1116
1117MODULE_AUTHOR("Magnus Damm");
1118MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119MODULE_LICENSE("GPL v2");