]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/clocksource/timer-microchip-pit64b.c
scsi: qla2xxx: Fix kernel crash when accessing port_speed sysfs file
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / timer-microchip-pit64b.c
CommitLineData
625022a5
CB
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * 64-bit Periodic Interval Timer driver
4 *
5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6 *
7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clockchips.h>
12#include <linux/interrupt.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
15#include <linux/sched_clock.h>
16#include <linux/slab.h>
17
18#define MCHP_PIT64B_CR 0x00 /* Control Register */
19#define MCHP_PIT64B_CR_START BIT(0)
20#define MCHP_PIT64B_CR_SWRST BIT(8)
21
22#define MCHP_PIT64B_MR 0x04 /* Mode Register */
23#define MCHP_PIT64B_MR_CONT BIT(0)
24#define MCHP_PIT64B_MR_ONE_SHOT (0)
25#define MCHP_PIT64B_MR_SGCLK BIT(3)
26#define MCHP_PIT64B_MR_PRES GENMASK(11, 8)
27
28#define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */
29
30#define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */
31
32#define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */
33#define MCHP_PIT64B_IER_PERIOD BIT(0)
34
35#define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */
36
37#define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */
38
39#define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */
40
41#define MCHP_PIT64B_PRES_MAX 0x10
42#define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0)
43#define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8))
44#define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45#define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */
46#define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */
47
48#define MCHP_PIT64B_NAME "pit64b"
49
50/**
51 * struct mchp_pit64b_timer - PIT64B timer data structure
52 * @base: base address of PIT64B hardware block
53 * @pclk: PIT64B's peripheral clock
54 * @gclk: PIT64B's generic clock
55 * @mode: precomputed value for mode register
56 */
57struct mchp_pit64b_timer {
58 void __iomem *base;
59 struct clk *pclk;
60 struct clk *gclk;
61 u32 mode;
62};
63
64/**
65 * mchp_pit64b_clkevt - PIT64B clockevent data structure
66 * @timer: PIT64B timer
67 * @clkevt: clockevent
68 */
69struct mchp_pit64b_clkevt {
70 struct mchp_pit64b_timer timer;
71 struct clock_event_device clkevt;
72};
73
e85c1d21 74#define clkevt_to_mchp_pit64b_timer(x) \
625022a5
CB
75 ((struct mchp_pit64b_timer *)container_of(x,\
76 struct mchp_pit64b_clkevt, clkevt))
77
e85c1d21
CB
78/**
79 * mchp_pit64b_clksrc - PIT64B clocksource data structure
80 * @timer: PIT64B timer
81 * @clksrc: clocksource
82 */
83struct mchp_pit64b_clksrc {
84 struct mchp_pit64b_timer timer;
85 struct clocksource clksrc;
86};
87
88#define clksrc_to_mchp_pit64b_timer(x) \
89 ((struct mchp_pit64b_timer *)container_of(x,\
90 struct mchp_pit64b_clksrc, clksrc))
91
625022a5
CB
92/* Base address for clocksource timer. */
93static void __iomem *mchp_pit64b_cs_base;
94/* Default cycles for clockevent timer. */
95static u64 mchp_pit64b_ce_cycles;
96
97static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
98{
99 unsigned long flags;
100 u32 low, high;
101
102 raw_local_irq_save(flags);
103
104 /*
105 * When using a 64 bit period TLSB must be read first, followed by the
106 * read of TMSB. This sequence generates an atomic read of the 64 bit
107 * timer value whatever the lapse of time between the accesses.
108 */
109 low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
110 high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
111
112 raw_local_irq_restore(flags);
113
114 return (((u64)high << 32) | low);
115}
116
117static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
118 u64 cycles, u32 mode, u32 irqs)
119{
120 u32 low, high;
121
122 low = cycles & MCHP_PIT64B_LSBMASK;
123 high = cycles >> 32;
124
125 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
126 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
127 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
128 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
129 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
130 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
131}
132
e85c1d21
CB
133static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
134{
135 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
136 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
137 clk_disable_unprepare(timer->gclk);
138 clk_disable_unprepare(timer->pclk);
139}
140
141static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
142{
143 clk_prepare_enable(timer->pclk);
144 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
145 clk_prepare_enable(timer->gclk);
146}
147
148static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
149{
150 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
151
152 mchp_pit64b_suspend(timer);
153}
154
155static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
156{
157 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
158
159 mchp_pit64b_resume(timer);
160 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
161}
162
625022a5
CB
163static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
164{
165 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
166}
167
168static u64 mchp_pit64b_sched_read_clk(void)
169{
170 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
171}
172
173static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
174{
e85c1d21 175 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5
CB
176
177 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
178
179 return 0;
180}
181
182static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
183{
e85c1d21 184 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5
CB
185
186 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
187 MCHP_PIT64B_IER_PERIOD);
188
189 return 0;
190}
191
192static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
193 struct clock_event_device *cedev)
194{
e85c1d21 195 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5
CB
196
197 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
198 MCHP_PIT64B_IER_PERIOD);
199
200 return 0;
201}
202
203static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
204{
e85c1d21 205 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 206
e85c1d21 207 mchp_pit64b_suspend(timer);
625022a5
CB
208}
209
210static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
211{
e85c1d21 212 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
625022a5 213
e85c1d21 214 mchp_pit64b_resume(timer);
625022a5
CB
215}
216
217static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
218{
219 struct mchp_pit64b_clkevt *irq_data = dev_id;
220
221 /* Need to clear the interrupt. */
222 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
223
224 irq_data->clkevt.event_handler(&irq_data->clkevt);
225
226 return IRQ_HANDLED;
227}
228
229static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
230 u32 max_rate)
231{
232 u32 tmp;
233
234 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
235 tmp = clk_rate / (*pres + 1);
236 if (tmp <= max_rate)
237 break;
238 }
239
4bf07f65 240 /* Use the biggest prescaler if we didn't match one. */
625022a5
CB
241 if (*pres == MCHP_PIT64B_PRES_MAX)
242 *pres = MCHP_PIT64B_PRES_MAX - 1;
243}
244
245/**
246 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
247 * runtime; this includes prescaler and SGCLK bit
248 *
249 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
250 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
251 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
252 * divided by the internal PIT64B's divider.
253 *
254 * This function, first tries to use GCLK by requesting the desired rate from
255 * PMC and then using the internal PIT64B prescaler, if any, to reach the
256 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
257 * then the function falls back on using PCLK as clock source for PIT64B timer
258 * choosing the highest prescaler in case it doesn't locate one to match the
259 * requested frequency.
260 *
261 * Below is presented the PIT64B block in relation with PMC:
262 *
263 * PIT64B
264 * PMC +------------------------------------+
265 * +----+ | +-----+ |
266 * | |-->gclk -->|-->| | +---------+ +-----+ |
267 * | | | | MUX |--->| Divider |->|timer| |
268 * | |-->pclk -->|-->| | +---------+ +-----+ |
269 * +----+ | +-----+ |
270 * | ^ |
271 * | sel |
272 * +------------------------------------+
273 *
274 * Where:
275 * - gclk rate <= pclk rate/3
276 * - gclk rate could be requested from PMC
277 * - pclk rate is fixed (cannot be requested from PMC)
278 */
279static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
280 unsigned long max_rate)
281{
282 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
283 long gclk_round = 0;
284 u32 pres, best_pres = 0;
285
286 pclk_rate = clk_get_rate(timer->pclk);
287 if (!pclk_rate)
288 return -EINVAL;
289
b9c60a74
CB
290 timer->mode = 0;
291
625022a5
CB
292 /* Try using GCLK. */
293 gclk_round = clk_round_rate(timer->gclk, max_rate);
294 if (gclk_round < 0)
295 goto pclk;
296
297 if (pclk_rate / gclk_round < 3)
298 goto pclk;
299
300 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
301 best_diff = abs(gclk_round / (pres + 1) - max_rate);
302 best_pres = pres;
303
304 if (!best_diff) {
305 timer->mode |= MCHP_PIT64B_MR_SGCLK;
05852445 306 clk_set_rate(timer->gclk, gclk_round);
625022a5
CB
307 goto done;
308 }
309
310pclk:
311 /* Check if requested rate could be obtained using PCLK. */
312 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
313 diff = abs(pclk_rate / (pres + 1) - max_rate);
314
315 if (best_diff > diff) {
316 /* Use PCLK. */
317 best_pres = pres;
318 } else {
319 /* Use GCLK. */
320 timer->mode |= MCHP_PIT64B_MR_SGCLK;
321 clk_set_rate(timer->gclk, gclk_round);
322 }
323
324done:
325 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
326
327 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
328 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
329 timer->mode & MCHP_PIT64B_MR_SGCLK ?
330 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
331
332 return 0;
333}
334
335static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
336 u32 clk_rate)
337{
e85c1d21 338 struct mchp_pit64b_clksrc *cs;
625022a5
CB
339 int ret;
340
e85c1d21
CB
341 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
342 if (!cs)
343 return -ENOMEM;
344
625022a5
CB
345 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
346
347 mchp_pit64b_cs_base = timer->base;
348
e85c1d21
CB
349 cs->timer.base = timer->base;
350 cs->timer.pclk = timer->pclk;
351 cs->timer.gclk = timer->gclk;
352 cs->timer.mode = timer->mode;
353 cs->clksrc.name = MCHP_PIT64B_NAME;
354 cs->clksrc.mask = CLOCKSOURCE_MASK(64);
355 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356 cs->clksrc.rating = 210;
357 cs->clksrc.read = mchp_pit64b_clksrc_read;
358 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
359 cs->clksrc.resume = mchp_pit64b_clksrc_resume;
360
361 ret = clocksource_register_hz(&cs->clksrc, clk_rate);
625022a5
CB
362 if (ret) {
363 pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
364
365 /* Stop timer. */
366 writel_relaxed(MCHP_PIT64B_CR_SWRST,
367 timer->base + MCHP_PIT64B_CR);
e85c1d21 368 kfree(cs);
625022a5
CB
369
370 return ret;
371 }
372
373 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
374
375 return 0;
376}
377
378static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
379 u32 clk_rate, u32 irq)
380{
381 struct mchp_pit64b_clkevt *ce;
382 int ret;
383
384 ce = kzalloc(sizeof(*ce), GFP_KERNEL);
385 if (!ce)
386 return -ENOMEM;
387
388 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
389
390 ce->timer.base = timer->base;
391 ce->timer.pclk = timer->pclk;
392 ce->timer.gclk = timer->gclk;
393 ce->timer.mode = timer->mode;
394 ce->clkevt.name = MCHP_PIT64B_NAME;
395 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
396 ce->clkevt.rating = 150;
397 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
398 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
399 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
400 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
401 ce->clkevt.resume = mchp_pit64b_clkevt_resume;
402 ce->clkevt.cpumask = cpumask_of(0);
403 ce->clkevt.irq = irq;
404
405 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
406 "pit64b_tick", ce);
407 if (ret) {
408 pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
409 kfree(ce);
410 return ret;
411 }
412
413 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
414
415 return 0;
416}
417
418static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
419 bool clkevt)
420{
421 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
b9c60a74 422 struct mchp_pit64b_timer timer;
625022a5
CB
423 unsigned long clk_rate;
424 u32 irq = 0;
425 int ret;
426
427 /* Parse DT node. */
428 timer.pclk = of_clk_get_by_name(node, "pclk");
429 if (IS_ERR(timer.pclk))
430 return PTR_ERR(timer.pclk);
431
432 timer.gclk = of_clk_get_by_name(node, "gclk");
433 if (IS_ERR(timer.gclk))
434 return PTR_ERR(timer.gclk);
435
436 timer.base = of_iomap(node, 0);
437 if (!timer.base)
438 return -ENXIO;
439
440 if (clkevt) {
441 irq = irq_of_parse_and_map(node, 0);
442 if (!irq) {
443 ret = -ENODEV;
444 goto io_unmap;
445 }
446 }
447
448 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
449 ret = mchp_pit64b_init_mode(&timer, freq);
450 if (ret)
451 goto irq_unmap;
452
453 ret = clk_prepare_enable(timer.pclk);
454 if (ret)
455 goto irq_unmap;
456
457 if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
458 ret = clk_prepare_enable(timer.gclk);
459 if (ret)
460 goto pclk_unprepare;
461
462 clk_rate = clk_get_rate(timer.gclk);
463 } else {
464 clk_rate = clk_get_rate(timer.pclk);
465 }
466 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
467
468 if (clkevt)
469 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
470 else
471 ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
472
473 if (ret)
474 goto gclk_unprepare;
475
476 return 0;
477
478gclk_unprepare:
479 if (timer.mode & MCHP_PIT64B_MR_SGCLK)
480 clk_disable_unprepare(timer.gclk);
481pclk_unprepare:
482 clk_disable_unprepare(timer.pclk);
483irq_unmap:
484 irq_dispose_mapping(irq);
485io_unmap:
486 iounmap(timer.base);
487
488 return ret;
489}
490
491static int __init mchp_pit64b_dt_init(struct device_node *node)
492{
493 static int inits;
494
495 switch (inits++) {
496 case 0:
497 /* 1st request, register clockevent. */
498 return mchp_pit64b_dt_init_timer(node, true);
499 case 1:
500 /* 2nd request, register clocksource. */
501 return mchp_pit64b_dt_init_timer(node, false);
502 }
503
504 /* The rest, don't care. */
505 return -EINVAL;
506}
507
508TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);