]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/clocksource/timer-microchip-pit64b.c
clocksource/drivers/exynos_mct: Rename Exynos to lowercase
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / timer-microchip-pit64b.c
CommitLineData
625022a5
CB
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * 64-bit Periodic Interval Timer driver
4 *
5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6 *
7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clockchips.h>
12#include <linux/interrupt.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
15#include <linux/sched_clock.h>
16#include <linux/slab.h>
17
18#define MCHP_PIT64B_CR 0x00 /* Control Register */
19#define MCHP_PIT64B_CR_START BIT(0)
20#define MCHP_PIT64B_CR_SWRST BIT(8)
21
22#define MCHP_PIT64B_MR 0x04 /* Mode Register */
23#define MCHP_PIT64B_MR_CONT BIT(0)
24#define MCHP_PIT64B_MR_ONE_SHOT (0)
25#define MCHP_PIT64B_MR_SGCLK BIT(3)
26#define MCHP_PIT64B_MR_PRES GENMASK(11, 8)
27
28#define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */
29
30#define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */
31
32#define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */
33#define MCHP_PIT64B_IER_PERIOD BIT(0)
34
35#define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */
36
37#define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */
38
39#define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */
40
41#define MCHP_PIT64B_PRES_MAX 0x10
42#define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0)
43#define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8))
44#define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45#define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */
46#define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */
47
48#define MCHP_PIT64B_NAME "pit64b"
49
50/**
51 * struct mchp_pit64b_timer - PIT64B timer data structure
52 * @base: base address of PIT64B hardware block
53 * @pclk: PIT64B's peripheral clock
54 * @gclk: PIT64B's generic clock
55 * @mode: precomputed value for mode register
56 */
57struct mchp_pit64b_timer {
58 void __iomem *base;
59 struct clk *pclk;
60 struct clk *gclk;
61 u32 mode;
62};
63
64/**
65 * mchp_pit64b_clkevt - PIT64B clockevent data structure
66 * @timer: PIT64B timer
67 * @clkevt: clockevent
68 */
69struct mchp_pit64b_clkevt {
70 struct mchp_pit64b_timer timer;
71 struct clock_event_device clkevt;
72};
73
74#define to_mchp_pit64b_timer(x) \
75 ((struct mchp_pit64b_timer *)container_of(x,\
76 struct mchp_pit64b_clkevt, clkevt))
77
78/* Base address for clocksource timer. */
79static void __iomem *mchp_pit64b_cs_base;
80/* Default cycles for clockevent timer. */
81static u64 mchp_pit64b_ce_cycles;
82
83static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
84{
85 unsigned long flags;
86 u32 low, high;
87
88 raw_local_irq_save(flags);
89
90 /*
91 * When using a 64 bit period TLSB must be read first, followed by the
92 * read of TMSB. This sequence generates an atomic read of the 64 bit
93 * timer value whatever the lapse of time between the accesses.
94 */
95 low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
96 high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
97
98 raw_local_irq_restore(flags);
99
100 return (((u64)high << 32) | low);
101}
102
103static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
104 u64 cycles, u32 mode, u32 irqs)
105{
106 u32 low, high;
107
108 low = cycles & MCHP_PIT64B_LSBMASK;
109 high = cycles >> 32;
110
111 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
112 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
113 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
114 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
115 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
116 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
117}
118
119static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
120{
121 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
122}
123
124static u64 mchp_pit64b_sched_read_clk(void)
125{
126 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
127}
128
129static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
130{
131 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
132
133 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
134
135 return 0;
136}
137
138static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
139{
140 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
141
142 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
143 MCHP_PIT64B_IER_PERIOD);
144
145 return 0;
146}
147
148static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
149 struct clock_event_device *cedev)
150{
151 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
152
153 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
154 MCHP_PIT64B_IER_PERIOD);
155
156 return 0;
157}
158
159static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
160{
161 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
162
163 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
164 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
165 clk_disable_unprepare(timer->gclk);
166 clk_disable_unprepare(timer->pclk);
167}
168
169static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
170{
171 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
172
173 clk_prepare_enable(timer->pclk);
174 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
175 clk_prepare_enable(timer->gclk);
176}
177
178static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
179{
180 struct mchp_pit64b_clkevt *irq_data = dev_id;
181
182 /* Need to clear the interrupt. */
183 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
184
185 irq_data->clkevt.event_handler(&irq_data->clkevt);
186
187 return IRQ_HANDLED;
188}
189
190static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
191 u32 max_rate)
192{
193 u32 tmp;
194
195 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
196 tmp = clk_rate / (*pres + 1);
197 if (tmp <= max_rate)
198 break;
199 }
200
201 /* Use the bigest prescaler if we didn't match one. */
202 if (*pres == MCHP_PIT64B_PRES_MAX)
203 *pres = MCHP_PIT64B_PRES_MAX - 1;
204}
205
206/**
207 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
208 * runtime; this includes prescaler and SGCLK bit
209 *
210 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
211 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
212 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
213 * divided by the internal PIT64B's divider.
214 *
215 * This function, first tries to use GCLK by requesting the desired rate from
216 * PMC and then using the internal PIT64B prescaler, if any, to reach the
217 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
218 * then the function falls back on using PCLK as clock source for PIT64B timer
219 * choosing the highest prescaler in case it doesn't locate one to match the
220 * requested frequency.
221 *
222 * Below is presented the PIT64B block in relation with PMC:
223 *
224 * PIT64B
225 * PMC +------------------------------------+
226 * +----+ | +-----+ |
227 * | |-->gclk -->|-->| | +---------+ +-----+ |
228 * | | | | MUX |--->| Divider |->|timer| |
229 * | |-->pclk -->|-->| | +---------+ +-----+ |
230 * +----+ | +-----+ |
231 * | ^ |
232 * | sel |
233 * +------------------------------------+
234 *
235 * Where:
236 * - gclk rate <= pclk rate/3
237 * - gclk rate could be requested from PMC
238 * - pclk rate is fixed (cannot be requested from PMC)
239 */
240static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
241 unsigned long max_rate)
242{
243 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
244 long gclk_round = 0;
245 u32 pres, best_pres = 0;
246
247 pclk_rate = clk_get_rate(timer->pclk);
248 if (!pclk_rate)
249 return -EINVAL;
250
251 /* Try using GCLK. */
252 gclk_round = clk_round_rate(timer->gclk, max_rate);
253 if (gclk_round < 0)
254 goto pclk;
255
256 if (pclk_rate / gclk_round < 3)
257 goto pclk;
258
259 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
260 best_diff = abs(gclk_round / (pres + 1) - max_rate);
261 best_pres = pres;
262
263 if (!best_diff) {
264 timer->mode |= MCHP_PIT64B_MR_SGCLK;
265 goto done;
266 }
267
268pclk:
269 /* Check if requested rate could be obtained using PCLK. */
270 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
271 diff = abs(pclk_rate / (pres + 1) - max_rate);
272
273 if (best_diff > diff) {
274 /* Use PCLK. */
275 best_pres = pres;
276 } else {
277 /* Use GCLK. */
278 timer->mode |= MCHP_PIT64B_MR_SGCLK;
279 clk_set_rate(timer->gclk, gclk_round);
280 }
281
282done:
283 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
284
285 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
286 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
287 timer->mode & MCHP_PIT64B_MR_SGCLK ?
288 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
289
290 return 0;
291}
292
293static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
294 u32 clk_rate)
295{
296 int ret;
297
298 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
299
300 mchp_pit64b_cs_base = timer->base;
301
302 ret = clocksource_mmio_init(timer->base, MCHP_PIT64B_NAME, clk_rate,
303 210, 64, mchp_pit64b_clksrc_read);
304 if (ret) {
305 pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
306
307 /* Stop timer. */
308 writel_relaxed(MCHP_PIT64B_CR_SWRST,
309 timer->base + MCHP_PIT64B_CR);
310
311 return ret;
312 }
313
314 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
315
316 return 0;
317}
318
319static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
320 u32 clk_rate, u32 irq)
321{
322 struct mchp_pit64b_clkevt *ce;
323 int ret;
324
325 ce = kzalloc(sizeof(*ce), GFP_KERNEL);
326 if (!ce)
327 return -ENOMEM;
328
329 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
330
331 ce->timer.base = timer->base;
332 ce->timer.pclk = timer->pclk;
333 ce->timer.gclk = timer->gclk;
334 ce->timer.mode = timer->mode;
335 ce->clkevt.name = MCHP_PIT64B_NAME;
336 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
337 ce->clkevt.rating = 150;
338 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
339 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
340 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
341 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
342 ce->clkevt.resume = mchp_pit64b_clkevt_resume;
343 ce->clkevt.cpumask = cpumask_of(0);
344 ce->clkevt.irq = irq;
345
346 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
347 "pit64b_tick", ce);
348 if (ret) {
349 pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
350 kfree(ce);
351 return ret;
352 }
353
354 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
355
356 return 0;
357}
358
359static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
360 bool clkevt)
361{
362 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
363 struct mchp_pit64b_timer timer = { 0 };
364 unsigned long clk_rate;
365 u32 irq = 0;
366 int ret;
367
368 /* Parse DT node. */
369 timer.pclk = of_clk_get_by_name(node, "pclk");
370 if (IS_ERR(timer.pclk))
371 return PTR_ERR(timer.pclk);
372
373 timer.gclk = of_clk_get_by_name(node, "gclk");
374 if (IS_ERR(timer.gclk))
375 return PTR_ERR(timer.gclk);
376
377 timer.base = of_iomap(node, 0);
378 if (!timer.base)
379 return -ENXIO;
380
381 if (clkevt) {
382 irq = irq_of_parse_and_map(node, 0);
383 if (!irq) {
384 ret = -ENODEV;
385 goto io_unmap;
386 }
387 }
388
389 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
390 ret = mchp_pit64b_init_mode(&timer, freq);
391 if (ret)
392 goto irq_unmap;
393
394 ret = clk_prepare_enable(timer.pclk);
395 if (ret)
396 goto irq_unmap;
397
398 if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
399 ret = clk_prepare_enable(timer.gclk);
400 if (ret)
401 goto pclk_unprepare;
402
403 clk_rate = clk_get_rate(timer.gclk);
404 } else {
405 clk_rate = clk_get_rate(timer.pclk);
406 }
407 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
408
409 if (clkevt)
410 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
411 else
412 ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
413
414 if (ret)
415 goto gclk_unprepare;
416
417 return 0;
418
419gclk_unprepare:
420 if (timer.mode & MCHP_PIT64B_MR_SGCLK)
421 clk_disable_unprepare(timer.gclk);
422pclk_unprepare:
423 clk_disable_unprepare(timer.pclk);
424irq_unmap:
425 irq_dispose_mapping(irq);
426io_unmap:
427 iounmap(timer.base);
428
429 return ret;
430}
431
432static int __init mchp_pit64b_dt_init(struct device_node *node)
433{
434 static int inits;
435
436 switch (inits++) {
437 case 0:
438 /* 1st request, register clockevent. */
439 return mchp_pit64b_dt_init_timer(node, true);
440 case 1:
441 /* 2nd request, register clocksource. */
442 return mchp_pit64b_dt_init_timer(node, false);
443 }
444
445 /* The rest, don't care. */
446 return -EINVAL;
447}
448
449TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);