]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/cpufreq_conservative.c
[S390] cputime: add sparse checking and cleanup
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
ee88415c 67 /*
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
71 */
72 struct mutex timer_mutex;
b9170836 73};
245b2e70 74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
b9170836
DJ
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
4ec223d0 78/*
326c86de 79 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 80 */
9acef487 81static DEFINE_MUTEX(dbs_mutex);
b9170836 82
8e677ce8 83static struct dbs_tuners {
18a7247d
DJ
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
8e677ce8 90} dbs_tuners_ins = {
18a7247d
DJ
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 .ignore_nice = 0,
95 .freq_step = 5,
b9170836
DJ
96};
97
8e677ce8
AC
98static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
99 cputime64_t *wall)
dac1c1a5 100{
8e677ce8
AC
101 cputime64_t idle_time;
102 cputime64_t cur_wall_time;
103 cputime64_t busy_time;
104
105 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
64861634
MS
106 busy_time = kstat_cpu(cpu).cpustat.user;
107 busy_time += kstat_cpu(cpu).cpustat.system;
108 busy_time += kstat_cpu(cpu).cpustat.irq;
109 busy_time += kstat_cpu(cpu).cpustat.softirq;
110 busy_time += kstat_cpu(cpu).cpustat.steal;
111 busy_time += kstat_cpu(cpu).cpustat.nice;
112
113 idle_time = cur_wall_time - busy_time;
8e677ce8 114 if (wall)
54c9a35d 115 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
e08f5f5b 116
2feb690c 117 return (cputime64_t)jiffies_to_usecs(idle_time);
8e677ce8
AC
118}
119
120static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
121{
6beea0cd 122 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
8e677ce8
AC
123
124 if (idle_time == -1ULL)
125 return get_cpu_idle_time_jiffy(cpu, wall);
6beea0cd
MH
126 else
127 idle_time += get_cpu_iowait_time_us(cpu, wall);
8e677ce8
AC
128
129 return idle_time;
dac1c1a5
DJ
130}
131
a8d7c3bc
EO
132/* keep track of frequency transitions */
133static int
134dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135 void *data)
136{
137 struct cpufreq_freqs *freq = data;
245b2e70 138 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
a8d7c3bc
EO
139 freq->cpu);
140
f407a08b
AC
141 struct cpufreq_policy *policy;
142
a8d7c3bc
EO
143 if (!this_dbs_info->enable)
144 return 0;
145
f407a08b
AC
146 policy = this_dbs_info->cur_policy;
147
148 /*
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
152 */
153 if (this_dbs_info->requested_freq > policy->max
154 || this_dbs_info->requested_freq < policy->min)
155 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
156
157 return 0;
158}
159
160static struct notifier_block dbs_cpufreq_notifier_block = {
161 .notifier_call = dbs_cpufreq_notifier
162};
163
b9170836 164/************************** sysfs interface ************************/
49b015ce
TR
165static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 struct attribute *attr, char *buf)
b9170836 167{
cef9615a 168 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
169}
170
6dad2a29 171define_one_global_ro(sampling_rate_min);
b9170836
DJ
172
173/* cpufreq_conservative Governor Tunables */
174#define show_one(file_name, object) \
175static ssize_t show_##file_name \
49b015ce 176(struct kobject *kobj, struct attribute *attr, char *buf) \
b9170836
DJ
177{ \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
179}
180show_one(sampling_rate, sampling_rate);
181show_one(sampling_down_factor, sampling_down_factor);
182show_one(up_threshold, up_threshold);
183show_one(down_threshold, down_threshold);
001893cd 184show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
185show_one(freq_step, freq_step);
186
49b015ce
TR
187static ssize_t store_sampling_down_factor(struct kobject *a,
188 struct attribute *b,
189 const char *buf, size_t count)
b9170836
DJ
190{
191 unsigned int input;
192 int ret;
9acef487 193 ret = sscanf(buf, "%u", &input);
8e677ce8 194
2c906b31 195 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
196 return -EINVAL;
197
b9170836 198 dbs_tuners_ins.sampling_down_factor = input;
b9170836
DJ
199 return count;
200}
201
49b015ce
TR
202static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203 const char *buf, size_t count)
b9170836
DJ
204{
205 unsigned int input;
206 int ret;
9acef487 207 ret = sscanf(buf, "%u", &input);
b9170836 208
8e677ce8 209 if (ret != 1)
b9170836 210 return -EINVAL;
8e677ce8 211
cef9615a 212 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
b9170836
DJ
213 return count;
214}
215
49b015ce
TR
216static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217 const char *buf, size_t count)
b9170836
DJ
218{
219 unsigned int input;
220 int ret;
9acef487 221 ret = sscanf(buf, "%u", &input);
b9170836 222
9acef487 223 if (ret != 1 || input > 100 ||
326c86de 224 input <= dbs_tuners_ins.down_threshold)
b9170836 225 return -EINVAL;
b9170836
DJ
226
227 dbs_tuners_ins.up_threshold = input;
b9170836
DJ
228 return count;
229}
230
49b015ce
TR
231static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232 const char *buf, size_t count)
b9170836
DJ
233{
234 unsigned int input;
235 int ret;
9acef487 236 ret = sscanf(buf, "%u", &input);
b9170836 237
8e677ce8
AC
238 /* cannot be lower than 11 otherwise freq will not fall */
239 if (ret != 1 || input < 11 || input > 100 ||
326c86de 240 input >= dbs_tuners_ins.up_threshold)
b9170836 241 return -EINVAL;
b9170836
DJ
242
243 dbs_tuners_ins.down_threshold = input;
b9170836
DJ
244 return count;
245}
246
49b015ce
TR
247static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248 const char *buf, size_t count)
b9170836
DJ
249{
250 unsigned int input;
251 int ret;
252
253 unsigned int j;
18a7247d
DJ
254
255 ret = sscanf(buf, "%u", &input);
256 if (ret != 1)
b9170836
DJ
257 return -EINVAL;
258
18a7247d 259 if (input > 1)
b9170836 260 input = 1;
18a7247d 261
326c86de 262 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
b9170836 263 return count;
326c86de 264
b9170836
DJ
265 dbs_tuners_ins.ignore_nice = input;
266
8e677ce8 267 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 268 for_each_online_cpu(j) {
8e677ce8 269 struct cpu_dbs_info_s *dbs_info;
245b2e70 270 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
271 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272 &dbs_info->prev_cpu_wall);
273 if (dbs_tuners_ins.ignore_nice)
274 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 275 }
b9170836
DJ
276 return count;
277}
278
49b015ce
TR
279static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280 const char *buf, size_t count)
b9170836
DJ
281{
282 unsigned int input;
283 int ret;
18a7247d 284 ret = sscanf(buf, "%u", &input);
b9170836 285
18a7247d 286 if (ret != 1)
b9170836
DJ
287 return -EINVAL;
288
18a7247d 289 if (input > 100)
b9170836 290 input = 100;
18a7247d 291
b9170836
DJ
292 /* no need to test here if freq_step is zero as the user might actually
293 * want this, they would be crazy though :) */
b9170836 294 dbs_tuners_ins.freq_step = input;
b9170836
DJ
295 return count;
296}
297
6dad2a29
BP
298define_one_global_rw(sampling_rate);
299define_one_global_rw(sampling_down_factor);
300define_one_global_rw(up_threshold);
301define_one_global_rw(down_threshold);
302define_one_global_rw(ignore_nice_load);
303define_one_global_rw(freq_step);
b9170836 304
9acef487 305static struct attribute *dbs_attributes[] = {
b9170836
DJ
306 &sampling_rate_min.attr,
307 &sampling_rate.attr,
308 &sampling_down_factor.attr,
309 &up_threshold.attr,
310 &down_threshold.attr,
001893cd 311 &ignore_nice_load.attr,
b9170836
DJ
312 &freq_step.attr,
313 NULL
314};
315
316static struct attribute_group dbs_attr_group = {
317 .attrs = dbs_attributes,
318 .name = "conservative",
319};
320
321/************************** sysfs end ************************/
322
8e677ce8 323static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 324{
8e677ce8 325 unsigned int load = 0;
fd187aaf 326 unsigned int max_load = 0;
f068c04b 327 unsigned int freq_target;
b9170836 328
8e677ce8
AC
329 struct cpufreq_policy *policy;
330 unsigned int j;
b9170836 331
08a28e2e
AC
332 policy = this_dbs_info->cur_policy;
333
18a7247d 334 /*
8e677ce8
AC
335 * Every sampling_rate, we check, if current idle time is less
336 * than 20% (default), then we try to increase frequency
337 * Every sampling_rate*sampling_down_factor, we check, if current
338 * idle time is more than 80%, then we try to decrease frequency
b9170836 339 *
18a7247d
DJ
340 * Any frequency increase takes it to the maximum frequency.
341 * Frequency reduction happens at minimum steps of
8e677ce8 342 * 5% (default) of maximum frequency
b9170836
DJ
343 */
344
8e677ce8
AC
345 /* Get Absolute Load */
346 for_each_cpu(j, policy->cpus) {
347 struct cpu_dbs_info_s *j_dbs_info;
348 cputime64_t cur_wall_time, cur_idle_time;
349 unsigned int idle_time, wall_time;
b9170836 350
245b2e70 351 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
352
353 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
354
64861634
MS
355 wall_time = (unsigned int)
356 (cur_wall_time - j_dbs_info->prev_cpu_wall);
8e677ce8 357 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 358
64861634
MS
359 idle_time = (unsigned int)
360 (cur_idle_time - j_dbs_info->prev_cpu_idle);
8e677ce8 361 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 362
8e677ce8
AC
363 if (dbs_tuners_ins.ignore_nice) {
364 cputime64_t cur_nice;
365 unsigned long cur_nice_jiffies;
366
64861634
MS
367 cur_nice = kstat_cpu(j).cpustat.nice -
368 j_dbs_info->prev_cpu_nice;
8e677ce8
AC
369 /*
370 * Assumption: nice time between sampling periods will
371 * be less than 2^32 jiffies for 32 bit sys
372 */
373 cur_nice_jiffies = (unsigned long)
374 cputime64_to_jiffies64(cur_nice);
375
376 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
377 idle_time += jiffies_to_usecs(cur_nice_jiffies);
378 }
379
380 if (unlikely(!wall_time || wall_time < idle_time))
381 continue;
382
383 load = 100 * (wall_time - idle_time) / wall_time;
fd187aaf
DB
384
385 if (load > max_load)
386 max_load = load;
8e677ce8
AC
387 }
388
389 /*
390 * break out if we 'cannot' reduce the speed as the user might
391 * want freq_step to be zero
392 */
393 if (dbs_tuners_ins.freq_step == 0)
394 return;
b9170836 395
8e677ce8 396 /* Check for frequency increase */
fd187aaf 397 if (max_load > dbs_tuners_ins.up_threshold) {
a159b827 398 this_dbs_info->down_skip = 0;
790d76fa 399
b9170836 400 /* if we are already at full speed then break out early */
a159b827 401 if (this_dbs_info->requested_freq == policy->max)
b9170836 402 return;
18a7247d 403
f068c04b 404 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
405
406 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
407 if (unlikely(freq_target == 0))
408 freq_target = 5;
18a7247d 409
f068c04b 410 this_dbs_info->requested_freq += freq_target;
a159b827
AC
411 if (this_dbs_info->requested_freq > policy->max)
412 this_dbs_info->requested_freq = policy->max;
b9170836 413
a159b827 414 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 415 CPUFREQ_RELATION_H);
b9170836
DJ
416 return;
417 }
418
8e677ce8
AC
419 /*
420 * The optimal frequency is the frequency that is the lowest that
421 * can support the current CPU usage without triggering the up
422 * policy. To be safe, we focus 10 points under the threshold.
423 */
fd187aaf 424 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 425 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 426
f068c04b 427 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
428 if (this_dbs_info->requested_freq < policy->min)
429 this_dbs_info->requested_freq = policy->min;
b9170836 430
8e677ce8
AC
431 /*
432 * if we cannot reduce the frequency anymore, break out early
433 */
434 if (policy->cur == policy->min)
435 return;
436
a159b827 437 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 438 CPUFREQ_RELATION_H);
b9170836
DJ
439 return;
440 }
441}
442
c4028958 443static void do_dbs_timer(struct work_struct *work)
18a7247d 444{
8e677ce8
AC
445 struct cpu_dbs_info_s *dbs_info =
446 container_of(work, struct cpu_dbs_info_s, work.work);
447 unsigned int cpu = dbs_info->cpu;
448
449 /* We want all CPUs to do sampling nearly on same jiffy */
450 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
451
452 delay -= jiffies % delay;
453
ee88415c 454 mutex_lock(&dbs_info->timer_mutex);
8e677ce8
AC
455
456 dbs_check_cpu(dbs_info);
457
57df5573 458 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
ee88415c 459 mutex_unlock(&dbs_info->timer_mutex);
18a7247d 460}
b9170836 461
8e677ce8 462static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 463{
8e677ce8
AC
464 /* We want all CPUs to do sampling nearly on same jiffy */
465 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
466 delay -= jiffies % delay;
467
468 dbs_info->enable = 1;
469 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 470 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
b9170836
DJ
471}
472
8e677ce8 473static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 474{
8e677ce8 475 dbs_info->enable = 0;
b253d2b2 476 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
477}
478
479static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480 unsigned int event)
481{
482 unsigned int cpu = policy->cpu;
483 struct cpu_dbs_info_s *this_dbs_info;
484 unsigned int j;
914f7c31 485 int rc;
b9170836 486
245b2e70 487 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
b9170836
DJ
488
489 switch (event) {
490 case CPUFREQ_GOV_START:
18a7247d 491 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
492 return -EINVAL;
493
3fc54d37 494 mutex_lock(&dbs_mutex);
914f7c31 495
835481d9 496 for_each_cpu(j, policy->cpus) {
b9170836 497 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 498 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
b9170836 499 j_dbs_info->cur_policy = policy;
18a7247d 500
8e677ce8
AC
501 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
502 &j_dbs_info->prev_cpu_wall);
503 if (dbs_tuners_ins.ignore_nice) {
504 j_dbs_info->prev_cpu_nice =
505 kstat_cpu(j).cpustat.nice;
506 }
b9170836 507 }
a159b827
AC
508 this_dbs_info->down_skip = 0;
509 this_dbs_info->requested_freq = policy->cur;
914f7c31 510
ee88415c 511 mutex_init(&this_dbs_info->timer_mutex);
b9170836
DJ
512 dbs_enable++;
513 /*
514 * Start the timerschedule work, when this governor
515 * is used for first time
516 */
517 if (dbs_enable == 1) {
518 unsigned int latency;
519 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
520 latency = policy->cpuinfo.transition_latency / 1000;
521 if (latency == 0)
522 latency = 1;
b9170836 523
49b015ce
TR
524 rc = sysfs_create_group(cpufreq_global_kobject,
525 &dbs_attr_group);
526 if (rc) {
527 mutex_unlock(&dbs_mutex);
528 return rc;
529 }
530
cef9615a
TR
531 /*
532 * conservative does not implement micro like ondemand
533 * governor, thus we are bound to jiffes/HZ
534 */
535 min_sampling_rate =
536 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
537 /* Bring kernel and HW constraints together */
538 min_sampling_rate = max(min_sampling_rate,
539 MIN_LATENCY_MULTIPLIER * latency);
540 dbs_tuners_ins.sampling_rate =
541 max(min_sampling_rate,
542 latency * LATENCY_MULTIPLIER);
b9170836 543
a8d7c3bc
EO
544 cpufreq_register_notifier(
545 &dbs_cpufreq_notifier_block,
546 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 547 }
3fc54d37 548 mutex_unlock(&dbs_mutex);
8e677ce8 549
7d26e2d5 550 dbs_timer_init(this_dbs_info);
551
b9170836
DJ
552 break;
553
554 case CPUFREQ_GOV_STOP:
8e677ce8 555 dbs_timer_exit(this_dbs_info);
7d26e2d5 556
557 mutex_lock(&dbs_mutex);
b9170836 558 dbs_enable--;
ee88415c 559 mutex_destroy(&this_dbs_info->timer_mutex);
8e677ce8 560
b9170836
DJ
561 /*
562 * Stop the timerschedule work, when this governor
563 * is used for first time
564 */
8e677ce8 565 if (dbs_enable == 0)
a8d7c3bc
EO
566 cpufreq_unregister_notifier(
567 &dbs_cpufreq_notifier_block,
568 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 569
3fc54d37 570 mutex_unlock(&dbs_mutex);
49b015ce
TR
571 if (!dbs_enable)
572 sysfs_remove_group(cpufreq_global_kobject,
573 &dbs_attr_group);
b9170836
DJ
574
575 break;
576
577 case CPUFREQ_GOV_LIMITS:
ee88415c 578 mutex_lock(&this_dbs_info->timer_mutex);
b9170836
DJ
579 if (policy->max < this_dbs_info->cur_policy->cur)
580 __cpufreq_driver_target(
581 this_dbs_info->cur_policy,
18a7247d 582 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
583 else if (policy->min > this_dbs_info->cur_policy->cur)
584 __cpufreq_driver_target(
585 this_dbs_info->cur_policy,
18a7247d 586 policy->min, CPUFREQ_RELATION_L);
ee88415c 587 mutex_unlock(&this_dbs_info->timer_mutex);
8e677ce8 588
b9170836
DJ
589 break;
590 }
591 return 0;
592}
593
c4d14bc0
SW
594#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
595static
596#endif
1c256245
TR
597struct cpufreq_governor cpufreq_gov_conservative = {
598 .name = "conservative",
599 .governor = cpufreq_governor_dbs,
600 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
601 .owner = THIS_MODULE,
b9170836
DJ
602};
603
604static int __init cpufreq_gov_dbs_init(void)
605{
57df5573 606 return cpufreq_register_governor(&cpufreq_gov_conservative);
b9170836
DJ
607}
608
609static void __exit cpufreq_gov_dbs_exit(void)
610{
1c256245 611 cpufreq_unregister_governor(&cpufreq_gov_conservative);
b9170836
DJ
612}
613
614
11a80a9c 615MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 616MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
617 "Low Latency Frequency Transition capable processors "
618 "optimised for use in a battery environment");
9acef487 619MODULE_LICENSE("GPL");
b9170836 620
6915719b
JW
621#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
622fs_initcall(cpufreq_gov_dbs_init);
623#else
b9170836 624module_init(cpufreq_gov_dbs_init);
6915719b 625#endif
b9170836 626module_exit(cpufreq_gov_dbs_exit);