]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/cpufreq/cpufreq_conservative.c
[CPUFREQ] Remove old, deprecated per cpu ondemand/conservative sysfs files
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
ee88415c 67 /*
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
71 */
72 struct mutex timer_mutex;
b9170836 73};
245b2e70 74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
b9170836
DJ
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
4ec223d0 78/*
7d26e2d5 79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
ee88415c 80 * different CPUs. It protects dbs_enable in governor start/stop.
4ec223d0 81 */
9acef487 82static DEFINE_MUTEX(dbs_mutex);
b9170836 83
8e677ce8 84static struct dbs_tuners {
18a7247d
DJ
85 unsigned int sampling_rate;
86 unsigned int sampling_down_factor;
87 unsigned int up_threshold;
88 unsigned int down_threshold;
89 unsigned int ignore_nice;
90 unsigned int freq_step;
8e677ce8 91} dbs_tuners_ins = {
18a7247d
DJ
92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
94 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
95 .ignore_nice = 0,
96 .freq_step = 5,
b9170836
DJ
97};
98
8e677ce8
AC
99static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
100 cputime64_t *wall)
dac1c1a5 101{
8e677ce8
AC
102 cputime64_t idle_time;
103 cputime64_t cur_wall_time;
104 cputime64_t busy_time;
105
106 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
107 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
108 kstat_cpu(cpu).cpustat.system);
e08f5f5b 109
8e677ce8
AC
110 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
111 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 114
8e677ce8
AC
115 idle_time = cputime64_sub(cur_wall_time, busy_time);
116 if (wall)
54c9a35d 117 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
e08f5f5b 118
2feb690c 119 return (cputime64_t)jiffies_to_usecs(idle_time);
8e677ce8
AC
120}
121
122static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
123{
124 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
125
126 if (idle_time == -1ULL)
127 return get_cpu_idle_time_jiffy(cpu, wall);
128
129 return idle_time;
dac1c1a5
DJ
130}
131
a8d7c3bc
EO
132/* keep track of frequency transitions */
133static int
134dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135 void *data)
136{
137 struct cpufreq_freqs *freq = data;
245b2e70 138 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
a8d7c3bc
EO
139 freq->cpu);
140
f407a08b
AC
141 struct cpufreq_policy *policy;
142
a8d7c3bc
EO
143 if (!this_dbs_info->enable)
144 return 0;
145
f407a08b
AC
146 policy = this_dbs_info->cur_policy;
147
148 /*
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
152 */
153 if (this_dbs_info->requested_freq > policy->max
154 || this_dbs_info->requested_freq < policy->min)
155 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
156
157 return 0;
158}
159
160static struct notifier_block dbs_cpufreq_notifier_block = {
161 .notifier_call = dbs_cpufreq_notifier
162};
163
b9170836 164/************************** sysfs interface ************************/
49b015ce
TR
165static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 struct attribute *attr, char *buf)
b9170836 167{
cef9615a 168 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
169}
170
6dad2a29 171define_one_global_ro(sampling_rate_min);
b9170836
DJ
172
173/* cpufreq_conservative Governor Tunables */
174#define show_one(file_name, object) \
175static ssize_t show_##file_name \
49b015ce 176(struct kobject *kobj, struct attribute *attr, char *buf) \
b9170836
DJ
177{ \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
179}
180show_one(sampling_rate, sampling_rate);
181show_one(sampling_down_factor, sampling_down_factor);
182show_one(up_threshold, up_threshold);
183show_one(down_threshold, down_threshold);
001893cd 184show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
185show_one(freq_step, freq_step);
186
49b015ce
TR
187static ssize_t store_sampling_down_factor(struct kobject *a,
188 struct attribute *b,
189 const char *buf, size_t count)
b9170836
DJ
190{
191 unsigned int input;
192 int ret;
9acef487 193 ret = sscanf(buf, "%u", &input);
8e677ce8 194
2c906b31 195 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
196 return -EINVAL;
197
3fc54d37 198 mutex_lock(&dbs_mutex);
b9170836 199 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 200 mutex_unlock(&dbs_mutex);
b9170836
DJ
201
202 return count;
203}
204
49b015ce
TR
205static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
206 const char *buf, size_t count)
b9170836
DJ
207{
208 unsigned int input;
209 int ret;
9acef487 210 ret = sscanf(buf, "%u", &input);
b9170836 211
8e677ce8 212 if (ret != 1)
b9170836 213 return -EINVAL;
8e677ce8
AC
214
215 mutex_lock(&dbs_mutex);
cef9615a 216 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
3fc54d37 217 mutex_unlock(&dbs_mutex);
b9170836
DJ
218
219 return count;
220}
221
49b015ce
TR
222static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
223 const char *buf, size_t count)
b9170836
DJ
224{
225 unsigned int input;
226 int ret;
9acef487 227 ret = sscanf(buf, "%u", &input);
b9170836 228
3fc54d37 229 mutex_lock(&dbs_mutex);
9acef487 230 if (ret != 1 || input > 100 ||
8e677ce8 231 input <= dbs_tuners_ins.down_threshold) {
3fc54d37 232 mutex_unlock(&dbs_mutex);
b9170836
DJ
233 return -EINVAL;
234 }
235
236 dbs_tuners_ins.up_threshold = input;
3fc54d37 237 mutex_unlock(&dbs_mutex);
b9170836
DJ
238
239 return count;
240}
241
49b015ce
TR
242static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
243 const char *buf, size_t count)
b9170836
DJ
244{
245 unsigned int input;
246 int ret;
9acef487 247 ret = sscanf(buf, "%u", &input);
b9170836 248
3fc54d37 249 mutex_lock(&dbs_mutex);
8e677ce8
AC
250 /* cannot be lower than 11 otherwise freq will not fall */
251 if (ret != 1 || input < 11 || input > 100 ||
252 input >= dbs_tuners_ins.up_threshold) {
3fc54d37 253 mutex_unlock(&dbs_mutex);
b9170836
DJ
254 return -EINVAL;
255 }
256
257 dbs_tuners_ins.down_threshold = input;
3fc54d37 258 mutex_unlock(&dbs_mutex);
b9170836
DJ
259
260 return count;
261}
262
49b015ce
TR
263static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
264 const char *buf, size_t count)
b9170836
DJ
265{
266 unsigned int input;
267 int ret;
268
269 unsigned int j;
18a7247d
DJ
270
271 ret = sscanf(buf, "%u", &input);
272 if (ret != 1)
b9170836
DJ
273 return -EINVAL;
274
18a7247d 275 if (input > 1)
b9170836 276 input = 1;
18a7247d 277
3fc54d37 278 mutex_lock(&dbs_mutex);
18a7247d 279 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 280 mutex_unlock(&dbs_mutex);
b9170836
DJ
281 return count;
282 }
283 dbs_tuners_ins.ignore_nice = input;
284
8e677ce8 285 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 286 for_each_online_cpu(j) {
8e677ce8 287 struct cpu_dbs_info_s *dbs_info;
245b2e70 288 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
289 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
290 &dbs_info->prev_cpu_wall);
291 if (dbs_tuners_ins.ignore_nice)
292 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 293 }
3fc54d37 294 mutex_unlock(&dbs_mutex);
b9170836
DJ
295
296 return count;
297}
298
49b015ce
TR
299static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
300 const char *buf, size_t count)
b9170836
DJ
301{
302 unsigned int input;
303 int ret;
18a7247d 304 ret = sscanf(buf, "%u", &input);
b9170836 305
18a7247d 306 if (ret != 1)
b9170836
DJ
307 return -EINVAL;
308
18a7247d 309 if (input > 100)
b9170836 310 input = 100;
18a7247d 311
b9170836
DJ
312 /* no need to test here if freq_step is zero as the user might actually
313 * want this, they would be crazy though :) */
3fc54d37 314 mutex_lock(&dbs_mutex);
b9170836 315 dbs_tuners_ins.freq_step = input;
3fc54d37 316 mutex_unlock(&dbs_mutex);
b9170836
DJ
317
318 return count;
319}
320
6dad2a29
BP
321define_one_global_rw(sampling_rate);
322define_one_global_rw(sampling_down_factor);
323define_one_global_rw(up_threshold);
324define_one_global_rw(down_threshold);
325define_one_global_rw(ignore_nice_load);
326define_one_global_rw(freq_step);
b9170836 327
9acef487 328static struct attribute *dbs_attributes[] = {
b9170836
DJ
329 &sampling_rate_min.attr,
330 &sampling_rate.attr,
331 &sampling_down_factor.attr,
332 &up_threshold.attr,
333 &down_threshold.attr,
001893cd 334 &ignore_nice_load.attr,
b9170836
DJ
335 &freq_step.attr,
336 NULL
337};
338
339static struct attribute_group dbs_attr_group = {
340 .attrs = dbs_attributes,
341 .name = "conservative",
342};
343
344/************************** sysfs end ************************/
345
8e677ce8 346static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 347{
8e677ce8 348 unsigned int load = 0;
fd187aaf 349 unsigned int max_load = 0;
f068c04b 350 unsigned int freq_target;
b9170836 351
8e677ce8
AC
352 struct cpufreq_policy *policy;
353 unsigned int j;
b9170836 354
08a28e2e
AC
355 policy = this_dbs_info->cur_policy;
356
18a7247d 357 /*
8e677ce8
AC
358 * Every sampling_rate, we check, if current idle time is less
359 * than 20% (default), then we try to increase frequency
360 * Every sampling_rate*sampling_down_factor, we check, if current
361 * idle time is more than 80%, then we try to decrease frequency
b9170836 362 *
18a7247d
DJ
363 * Any frequency increase takes it to the maximum frequency.
364 * Frequency reduction happens at minimum steps of
8e677ce8 365 * 5% (default) of maximum frequency
b9170836
DJ
366 */
367
8e677ce8
AC
368 /* Get Absolute Load */
369 for_each_cpu(j, policy->cpus) {
370 struct cpu_dbs_info_s *j_dbs_info;
371 cputime64_t cur_wall_time, cur_idle_time;
372 unsigned int idle_time, wall_time;
b9170836 373
245b2e70 374 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
375
376 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
377
378 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
379 j_dbs_info->prev_cpu_wall);
380 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 381
8e677ce8
AC
382 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
383 j_dbs_info->prev_cpu_idle);
384 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 385
8e677ce8
AC
386 if (dbs_tuners_ins.ignore_nice) {
387 cputime64_t cur_nice;
388 unsigned long cur_nice_jiffies;
389
390 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
391 j_dbs_info->prev_cpu_nice);
392 /*
393 * Assumption: nice time between sampling periods will
394 * be less than 2^32 jiffies for 32 bit sys
395 */
396 cur_nice_jiffies = (unsigned long)
397 cputime64_to_jiffies64(cur_nice);
398
399 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
400 idle_time += jiffies_to_usecs(cur_nice_jiffies);
401 }
402
403 if (unlikely(!wall_time || wall_time < idle_time))
404 continue;
405
406 load = 100 * (wall_time - idle_time) / wall_time;
fd187aaf
DB
407
408 if (load > max_load)
409 max_load = load;
8e677ce8
AC
410 }
411
412 /*
413 * break out if we 'cannot' reduce the speed as the user might
414 * want freq_step to be zero
415 */
416 if (dbs_tuners_ins.freq_step == 0)
417 return;
b9170836 418
8e677ce8 419 /* Check for frequency increase */
fd187aaf 420 if (max_load > dbs_tuners_ins.up_threshold) {
a159b827 421 this_dbs_info->down_skip = 0;
790d76fa 422
b9170836 423 /* if we are already at full speed then break out early */
a159b827 424 if (this_dbs_info->requested_freq == policy->max)
b9170836 425 return;
18a7247d 426
f068c04b 427 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
428
429 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
430 if (unlikely(freq_target == 0))
431 freq_target = 5;
18a7247d 432
f068c04b 433 this_dbs_info->requested_freq += freq_target;
a159b827
AC
434 if (this_dbs_info->requested_freq > policy->max)
435 this_dbs_info->requested_freq = policy->max;
b9170836 436
a159b827 437 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 438 CPUFREQ_RELATION_H);
b9170836
DJ
439 return;
440 }
441
8e677ce8
AC
442 /*
443 * The optimal frequency is the frequency that is the lowest that
444 * can support the current CPU usage without triggering the up
445 * policy. To be safe, we focus 10 points under the threshold.
446 */
fd187aaf 447 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 448 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 449
f068c04b 450 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
451 if (this_dbs_info->requested_freq < policy->min)
452 this_dbs_info->requested_freq = policy->min;
b9170836 453
8e677ce8
AC
454 /*
455 * if we cannot reduce the frequency anymore, break out early
456 */
457 if (policy->cur == policy->min)
458 return;
459
a159b827 460 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 461 CPUFREQ_RELATION_H);
b9170836
DJ
462 return;
463 }
464}
465
c4028958 466static void do_dbs_timer(struct work_struct *work)
18a7247d 467{
8e677ce8
AC
468 struct cpu_dbs_info_s *dbs_info =
469 container_of(work, struct cpu_dbs_info_s, work.work);
470 unsigned int cpu = dbs_info->cpu;
471
472 /* We want all CPUs to do sampling nearly on same jiffy */
473 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
474
475 delay -= jiffies % delay;
476
ee88415c 477 mutex_lock(&dbs_info->timer_mutex);
8e677ce8
AC
478
479 dbs_check_cpu(dbs_info);
480
57df5573 481 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
ee88415c 482 mutex_unlock(&dbs_info->timer_mutex);
18a7247d 483}
b9170836 484
8e677ce8 485static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 486{
8e677ce8
AC
487 /* We want all CPUs to do sampling nearly on same jiffy */
488 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
489 delay -= jiffies % delay;
490
491 dbs_info->enable = 1;
492 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
57df5573 493 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
b9170836
DJ
494}
495
8e677ce8 496static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 497{
8e677ce8 498 dbs_info->enable = 0;
b253d2b2 499 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
500}
501
502static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
503 unsigned int event)
504{
505 unsigned int cpu = policy->cpu;
506 struct cpu_dbs_info_s *this_dbs_info;
507 unsigned int j;
914f7c31 508 int rc;
b9170836 509
245b2e70 510 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
b9170836
DJ
511
512 switch (event) {
513 case CPUFREQ_GOV_START:
18a7247d 514 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
515 return -EINVAL;
516
3fc54d37 517 mutex_lock(&dbs_mutex);
914f7c31 518
835481d9 519 for_each_cpu(j, policy->cpus) {
b9170836 520 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 521 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
b9170836 522 j_dbs_info->cur_policy = policy;
18a7247d 523
8e677ce8
AC
524 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
525 &j_dbs_info->prev_cpu_wall);
526 if (dbs_tuners_ins.ignore_nice) {
527 j_dbs_info->prev_cpu_nice =
528 kstat_cpu(j).cpustat.nice;
529 }
b9170836 530 }
a159b827
AC
531 this_dbs_info->down_skip = 0;
532 this_dbs_info->requested_freq = policy->cur;
914f7c31 533
ee88415c 534 mutex_init(&this_dbs_info->timer_mutex);
b9170836
DJ
535 dbs_enable++;
536 /*
537 * Start the timerschedule work, when this governor
538 * is used for first time
539 */
540 if (dbs_enable == 1) {
541 unsigned int latency;
542 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
543 latency = policy->cpuinfo.transition_latency / 1000;
544 if (latency == 0)
545 latency = 1;
b9170836 546
49b015ce
TR
547 rc = sysfs_create_group(cpufreq_global_kobject,
548 &dbs_attr_group);
549 if (rc) {
550 mutex_unlock(&dbs_mutex);
551 return rc;
552 }
553
cef9615a
TR
554 /*
555 * conservative does not implement micro like ondemand
556 * governor, thus we are bound to jiffes/HZ
557 */
558 min_sampling_rate =
559 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
560 /* Bring kernel and HW constraints together */
561 min_sampling_rate = max(min_sampling_rate,
562 MIN_LATENCY_MULTIPLIER * latency);
563 dbs_tuners_ins.sampling_rate =
564 max(min_sampling_rate,
565 latency * LATENCY_MULTIPLIER);
b9170836 566
a8d7c3bc
EO
567 cpufreq_register_notifier(
568 &dbs_cpufreq_notifier_block,
569 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 570 }
3fc54d37 571 mutex_unlock(&dbs_mutex);
8e677ce8 572
7d26e2d5 573 dbs_timer_init(this_dbs_info);
574
b9170836
DJ
575 break;
576
577 case CPUFREQ_GOV_STOP:
8e677ce8 578 dbs_timer_exit(this_dbs_info);
7d26e2d5 579
580 mutex_lock(&dbs_mutex);
b9170836 581 dbs_enable--;
ee88415c 582 mutex_destroy(&this_dbs_info->timer_mutex);
8e677ce8 583
b9170836
DJ
584 /*
585 * Stop the timerschedule work, when this governor
586 * is used for first time
587 */
8e677ce8 588 if (dbs_enable == 0)
a8d7c3bc
EO
589 cpufreq_unregister_notifier(
590 &dbs_cpufreq_notifier_block,
591 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 592
3fc54d37 593 mutex_unlock(&dbs_mutex);
49b015ce
TR
594 if (!dbs_enable)
595 sysfs_remove_group(cpufreq_global_kobject,
596 &dbs_attr_group);
b9170836
DJ
597
598 break;
599
600 case CPUFREQ_GOV_LIMITS:
ee88415c 601 mutex_lock(&this_dbs_info->timer_mutex);
b9170836
DJ
602 if (policy->max < this_dbs_info->cur_policy->cur)
603 __cpufreq_driver_target(
604 this_dbs_info->cur_policy,
18a7247d 605 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
606 else if (policy->min > this_dbs_info->cur_policy->cur)
607 __cpufreq_driver_target(
608 this_dbs_info->cur_policy,
18a7247d 609 policy->min, CPUFREQ_RELATION_L);
ee88415c 610 mutex_unlock(&this_dbs_info->timer_mutex);
8e677ce8 611
b9170836
DJ
612 break;
613 }
614 return 0;
615}
616
c4d14bc0
SW
617#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
618static
619#endif
1c256245
TR
620struct cpufreq_governor cpufreq_gov_conservative = {
621 .name = "conservative",
622 .governor = cpufreq_governor_dbs,
623 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
624 .owner = THIS_MODULE,
b9170836
DJ
625};
626
627static int __init cpufreq_gov_dbs_init(void)
628{
57df5573 629 return cpufreq_register_governor(&cpufreq_gov_conservative);
b9170836
DJ
630}
631
632static void __exit cpufreq_gov_dbs_exit(void)
633{
1c256245 634 cpufreq_unregister_governor(&cpufreq_gov_conservative);
b9170836
DJ
635}
636
637
11a80a9c 638MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 639MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
640 "Low Latency Frequency Transition capable processors "
641 "optimised for use in a battery environment");
9acef487 642MODULE_LICENSE("GPL");
b9170836 643
6915719b
JW
644#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
645fs_initcall(cpufreq_gov_dbs_init);
646#else
b9170836 647module_init(cpufreq_gov_dbs_init);
6915719b 648#endif
b9170836 649module_exit(cpufreq_gov_dbs_exit);