]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/cpufreq/cpufreq_governor.c
Merge tag 'dmaengine-fix-4.10-rc7' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
2aacdfff 1/*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
4471a34f
VK
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
2aacdfff 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
4471a34f
VK
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
2aacdfff 19#include <linux/export.h>
20#include <linux/kernel_stat.h>
adaf9fcd 21#include <linux/sched.h>
4d5dcc42 22#include <linux/slab.h>
4471a34f
VK
23
24#include "cpufreq_governor.h"
25
8c8f77fd
RW
26static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
27
1112e9d8 28static DEFINE_MUTEX(gov_dbs_data_mutex);
2bb8d94f 29
aded387b
VK
30/* Common sysfs tunables */
31/**
32 * store_sampling_rate - update sampling rate effective immediately if needed.
33 *
34 * If new rate is smaller than the old, simply updating
35 * dbs.sampling_rate might not be appropriate. For example, if the
36 * original sampling_rate was 1 second and the requested new sampling rate is 10
37 * ms because the user needs immediate reaction from ondemand governor, but not
38 * sure if higher frequency will be required or not, then, the governor may
39 * change the sampling rate too late; up to 1 second later. Thus, if we are
40 * reducing the sampling rate, we need to make the new value effective
41 * immediately.
42 *
aded387b
VK
43 * This must be called with dbs_data->mutex held, otherwise traversing
44 * policy_dbs_list isn't safe.
45 */
0dd3c1d6 46ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
aded387b
VK
47 size_t count)
48{
0dd3c1d6 49 struct dbs_data *dbs_data = to_dbs_data(attr_set);
aded387b
VK
50 struct policy_dbs_info *policy_dbs;
51 unsigned int rate;
52 int ret;
53 ret = sscanf(buf, "%u", &rate);
54 if (ret != 1)
55 return -EINVAL;
56
57 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
58
59 /*
60 * We are operating under dbs_data->mutex and so the list and its
61 * entries can't be freed concurrently.
62 */
0dd3c1d6 63 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
26f0dbc9 64 mutex_lock(&policy_dbs->update_mutex);
aded387b
VK
65 /*
66 * On 32-bit architectures this may race with the
67 * sample_delay_ns read in dbs_update_util_handler(), but that
68 * really doesn't matter. If the read returns a value that's
69 * too big, the sample will be skipped, but the next invocation
70 * of dbs_update_util_handler() (when the update has been
78347cdb 71 * completed) will take a sample.
aded387b
VK
72 *
73 * If this runs in parallel with dbs_work_handler(), we may end
74 * up overwriting the sample_delay_ns value that it has just
78347cdb
RW
75 * written, but it will be corrected next time a sample is
76 * taken, so it shouldn't be significant.
aded387b 77 */
78347cdb 78 gov_update_sample_delay(policy_dbs, 0);
26f0dbc9 79 mutex_unlock(&policy_dbs->update_mutex);
aded387b
VK
80 }
81
82 return count;
83}
84EXPORT_SYMBOL_GPL(store_sampling_rate);
85
a33cce1c
RW
86/**
87 * gov_update_cpu_data - Update CPU load data.
a33cce1c
RW
88 * @dbs_data: Top-level governor data pointer.
89 *
90 * Update CPU load data for all CPUs in the domain governed by @dbs_data
91 * (that may be a single policy or a bunch of them if governor tunables are
92 * system-wide).
93 *
94 * Call under the @dbs_data mutex.
95 */
8c8f77fd 96void gov_update_cpu_data(struct dbs_data *dbs_data)
a33cce1c
RW
97{
98 struct policy_dbs_info *policy_dbs;
99
0dd3c1d6 100 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
a33cce1c
RW
101 unsigned int j;
102
103 for_each_cpu(j, policy_dbs->policy->cpus) {
8c8f77fd 104 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
a33cce1c 105
b4f4b4b3 106 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
a33cce1c
RW
107 dbs_data->io_is_busy);
108 if (dbs_data->ignore_nice_load)
109 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
110 }
111 }
112}
113EXPORT_SYMBOL_GPL(gov_update_cpu_data);
114
4cccf755 115unsigned int dbs_update(struct cpufreq_policy *policy)
4471a34f 116{
bc505475
RW
117 struct policy_dbs_info *policy_dbs = policy->governor_data;
118 struct dbs_data *dbs_data = policy_dbs->dbs_data;
ff4b1789 119 unsigned int ignore_nice = dbs_data->ignore_nice_load;
00bfe058 120 unsigned int max_load = 0, idle_periods = UINT_MAX;
8847e038 121 unsigned int sampling_rate, io_busy, j;
4471a34f 122
57dc3bcd
RW
123 /*
124 * Sometimes governors may use an additional multiplier to increase
125 * sample delays temporarily. Apply that multiplier to sampling_rate
126 * so as to keep the wake-up-from-idle detection logic a bit
127 * conservative.
128 */
129 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
8847e038
RW
130 /*
131 * For the purpose of ondemand, waiting for disk IO is an indication
132 * that you're performance critical, and not that the system is actually
133 * idle, so do not add the iowait time to the CPU idle time then.
134 */
135 io_busy = dbs_data->io_is_busy;
4471a34f 136
dfa5bb62 137 /* Get Absolute Load */
4471a34f 138 for_each_cpu(j, policy->cpus) {
8c8f77fd 139 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
b4f4b4b3
RW
140 u64 update_time, cur_idle_time;
141 unsigned int idle_time, time_elapsed;
4471a34f
VK
142 unsigned int load;
143
b4f4b4b3 144 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
4471a34f 145
b4f4b4b3
RW
146 time_elapsed = update_time - j_cdbs->prev_update_time;
147 j_cdbs->prev_update_time = update_time;
4471a34f 148
94862a62
RW
149 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
150 j_cdbs->prev_cpu_idle = cur_idle_time;
4471a34f
VK
151
152 if (ignore_nice) {
679b8fe4
RW
153 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
154
155 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
156 j_cdbs->prev_cpu_nice = cur_nice;
4471a34f
VK
157 }
158
9485e4ca
RW
159 if (unlikely(!time_elapsed)) {
160 /*
161 * That can only happen when this function is called
162 * twice in a row with a very short interval between the
163 * calls, so the previous load value can be used then.
164 */
18b46abd 165 load = j_cdbs->prev_load;
9485e4ca
RW
166 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
167 j_cdbs->prev_load)) {
c8ae481b 168 /*
9485e4ca
RW
169 * If the CPU had gone completely idle and a task has
170 * just woken up on this CPU now, it would be unfair to
171 * calculate 'load' the usual way for this elapsed
172 * time-window, because it would show near-zero load,
173 * irrespective of how CPU intensive that task actually
174 * was. This is undesirable for latency-sensitive bursty
175 * workloads.
176 *
177 * To avoid this, reuse the 'load' from the previous
178 * time-window and give this task a chance to start with
179 * a reasonably high CPU frequency. However, that
180 * shouldn't be over-done, lest we get stuck at a high
181 * load (high frequency) for too long, even when the
182 * current system load has actually dropped down, so
183 * clear prev_load to guarantee that the load will be
184 * computed again next time.
185 *
186 * Detecting this situation is easy: the governor's
187 * utilization update handler would not have run during
188 * CPU-idle periods. Hence, an unusually large
189 * 'time_elapsed' (as compared to the sampling rate)
190 * indicates this scenario.
c8ae481b 191 */
9485e4ca 192 load = j_cdbs->prev_load;
c8ae481b 193 j_cdbs->prev_load = 0;
18b46abd 194 } else {
9485e4ca
RW
195 if (time_elapsed >= idle_time) {
196 load = 100 * (time_elapsed - idle_time) / time_elapsed;
197 } else {
198 /*
199 * That can happen if idle_time is returned by
200 * get_cpu_idle_time_jiffy(). In that case
201 * idle_time is roughly equal to the difference
202 * between time_elapsed and "busy time" obtained
203 * from CPU statistics. Then, the "busy time"
204 * can end up being greater than time_elapsed
205 * (for example, if jiffies_64 and the CPU
206 * statistics are updated by different CPUs),
207 * so idle_time may in fact be negative. That
208 * means, though, that the CPU was busy all
209 * the time (on the rough average) during the
210 * last sampling interval and 100 can be
211 * returned as the load.
212 */
213 load = (int)idle_time < 0 ? 100 : 0;
214 }
18b46abd 215 j_cdbs->prev_load = load;
18b46abd 216 }
4471a34f 217
00bfe058
SK
218 if (time_elapsed > 2 * sampling_rate) {
219 unsigned int periods = time_elapsed / sampling_rate;
220
221 if (periods < idle_periods)
222 idle_periods = periods;
223 }
224
4471a34f
VK
225 if (load > max_load)
226 max_load = load;
227 }
00bfe058
SK
228
229 policy_dbs->idle_periods = idle_periods;
230
4cccf755 231 return max_load;
4471a34f 232}
4cccf755 233EXPORT_SYMBOL_GPL(dbs_update);
4471a34f 234
70f43e5e 235static void dbs_work_handler(struct work_struct *work)
43e0ee36 236{
e40e7b25 237 struct policy_dbs_info *policy_dbs;
3a91b069 238 struct cpufreq_policy *policy;
ea59ee0d 239 struct dbs_governor *gov;
43e0ee36 240
e40e7b25
RW
241 policy_dbs = container_of(work, struct policy_dbs_info, work);
242 policy = policy_dbs->policy;
ea59ee0d 243 gov = dbs_governor_of(policy);
3a91b069 244
70f43e5e 245 /*
9be4fd2c
RW
246 * Make sure cpufreq_governor_limits() isn't evaluating load or the
247 * ondemand governor isn't updating the sampling rate in parallel.
70f43e5e 248 */
26f0dbc9
VK
249 mutex_lock(&policy_dbs->update_mutex);
250 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
251 mutex_unlock(&policy_dbs->update_mutex);
70f43e5e 252
e4db2813
RW
253 /* Allow the utilization update handler to queue up more work. */
254 atomic_set(&policy_dbs->work_count, 0);
9be4fd2c 255 /*
e4db2813
RW
256 * If the update below is reordered with respect to the sample delay
257 * modification, the utilization update handler may end up using a stale
258 * sample delay value.
9be4fd2c 259 */
e4db2813
RW
260 smp_wmb();
261 policy_dbs->work_in_progress = false;
9be4fd2c
RW
262}
263
264static void dbs_irq_work(struct irq_work *irq_work)
265{
e40e7b25 266 struct policy_dbs_info *policy_dbs;
70f43e5e 267
e40e7b25 268 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
539a4c42 269 schedule_work_on(smp_processor_id(), &policy_dbs->work);
70f43e5e
VK
270}
271
9be4fd2c 272static void dbs_update_util_handler(struct update_util_data *data, u64 time,
58919e83 273 unsigned int flags)
9be4fd2c
RW
274{
275 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
e40e7b25 276 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
27de3482 277 u64 delta_ns, lst;
70f43e5e
VK
278
279 /*
9be4fd2c
RW
280 * The work may not be allowed to be queued up right now.
281 * Possible reasons:
282 * - Work has already been queued up or is in progress.
9be4fd2c 283 * - It is too early (too little time from the previous sample).
70f43e5e 284 */
e4db2813
RW
285 if (policy_dbs->work_in_progress)
286 return;
287
288 /*
289 * If the reads below are reordered before the check above, the value
290 * of sample_delay_ns used in the computation may be stale.
291 */
292 smp_rmb();
27de3482
RW
293 lst = READ_ONCE(policy_dbs->last_sample_time);
294 delta_ns = time - lst;
e4db2813
RW
295 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
296 return;
297
298 /*
299 * If the policy is not shared, the irq_work may be queued up right away
300 * at this point. Otherwise, we need to ensure that only one of the
301 * CPUs sharing the policy will do that.
302 */
27de3482
RW
303 if (policy_dbs->is_shared) {
304 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
305 return;
306
307 /*
308 * If another CPU updated last_sample_time in the meantime, we
309 * shouldn't be here, so clear the work counter and bail out.
310 */
311 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
312 atomic_set(&policy_dbs->work_count, 0);
313 return;
314 }
315 }
e4db2813
RW
316
317 policy_dbs->last_sample_time = time;
318 policy_dbs->work_in_progress = true;
319 irq_work_queue(&policy_dbs->irq_work);
43e0ee36 320}
4447266b 321
0bed612b
RW
322static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
323 unsigned int delay_us)
324{
325 struct cpufreq_policy *policy = policy_dbs->policy;
326 int cpu;
327
328 gov_update_sample_delay(policy_dbs, delay_us);
329 policy_dbs->last_sample_time = 0;
330
331 for_each_cpu(cpu, policy->cpus) {
332 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
333
334 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
335 dbs_update_util_handler);
336 }
337}
338
339static inline void gov_clear_update_util(struct cpufreq_policy *policy)
340{
341 int i;
342
343 for_each_cpu(i, policy->cpus)
344 cpufreq_remove_update_util_hook(i);
345
346 synchronize_sched();
347}
348
bc505475
RW
349static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
350 struct dbs_governor *gov)
44152cb8 351{
e40e7b25 352 struct policy_dbs_info *policy_dbs;
44152cb8
VK
353 int j;
354
7d5a9956
RW
355 /* Allocate memory for per-policy governor data. */
356 policy_dbs = gov->alloc();
e40e7b25 357 if (!policy_dbs)
bc505475 358 return NULL;
44152cb8 359
581c214b 360 policy_dbs->policy = policy;
26f0dbc9 361 mutex_init(&policy_dbs->update_mutex);
686cc637 362 atomic_set(&policy_dbs->work_count, 0);
e40e7b25
RW
363 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
364 INIT_WORK(&policy_dbs->work, dbs_work_handler);
cea6a9e7
RW
365
366 /* Set policy_dbs for all CPUs, online+offline */
367 for_each_cpu(j, policy->related_cpus) {
8c8f77fd 368 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
cea6a9e7
RW
369
370 j_cdbs->policy_dbs = policy_dbs;
cea6a9e7 371 }
bc505475 372 return policy_dbs;
44152cb8
VK
373}
374
8c8f77fd 375static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
7bdad34d 376 struct dbs_governor *gov)
44152cb8 377{
44152cb8
VK
378 int j;
379
26f0dbc9 380 mutex_destroy(&policy_dbs->update_mutex);
5e4500d8 381
8c8f77fd
RW
382 for_each_cpu(j, policy_dbs->policy->related_cpus) {
383 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
44152cb8 384
cea6a9e7
RW
385 j_cdbs->policy_dbs = NULL;
386 j_cdbs->update_util.func = NULL;
387 }
7d5a9956 388 gov->free(policy_dbs);
44152cb8
VK
389}
390
e788892b 391int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
4471a34f 392{
ea59ee0d 393 struct dbs_governor *gov = dbs_governor_of(policy);
1112e9d8 394 struct dbs_data *dbs_data;
bc505475 395 struct policy_dbs_info *policy_dbs;
714a2d9c 396 unsigned int latency;
1112e9d8 397 int ret = 0;
4471a34f 398
a72c4959
VK
399 /* State should be equivalent to EXIT */
400 if (policy->governor_data)
401 return -EBUSY;
402
bc505475
RW
403 policy_dbs = alloc_policy_dbs_info(policy, gov);
404 if (!policy_dbs)
405 return -ENOMEM;
44152cb8 406
1112e9d8
RW
407 /* Protect gov->gdbs_data against concurrent updates. */
408 mutex_lock(&gov_dbs_data_mutex);
409
410 dbs_data = gov->gdbs_data;
bc505475
RW
411 if (dbs_data) {
412 if (WARN_ON(have_governor_per_policy())) {
413 ret = -EINVAL;
414 goto free_policy_dbs_info;
415 }
bc505475
RW
416 policy_dbs->dbs_data = dbs_data;
417 policy->governor_data = policy_dbs;
c54df071 418
0dd3c1d6 419 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
1112e9d8 420 goto out;
714a2d9c 421 }
4d5dcc42 422
714a2d9c 423 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
bc505475
RW
424 if (!dbs_data) {
425 ret = -ENOMEM;
426 goto free_policy_dbs_info;
427 }
44152cb8 428
0dd3c1d6 429 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
4d5dcc42 430
9a15fb2c 431 ret = gov->init(dbs_data);
714a2d9c 432 if (ret)
e40e7b25 433 goto free_policy_dbs_info;
4d5dcc42 434
714a2d9c
VK
435 /* policy latency is in ns. Convert it to us first */
436 latency = policy->cpuinfo.transition_latency / 1000;
437 if (latency == 0)
438 latency = 1;
4d5dcc42 439
714a2d9c
VK
440 /* Bring kernel and HW constraints together */
441 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
442 MIN_LATENCY_MULTIPLIER * latency);
ff4b1789
VK
443 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
444 LATENCY_MULTIPLIER * latency);
2361be23 445
8eec1020 446 if (!have_governor_per_policy())
7bdad34d 447 gov->gdbs_data = dbs_data;
4d5dcc42 448
c54df071 449 policy_dbs->dbs_data = dbs_data;
0dd3c1d6 450 policy->governor_data = policy_dbs;
c54df071 451
c4435630 452 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
0dd3c1d6 453 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
c4435630
VK
454 get_governor_parent_kobj(policy),
455 "%s", gov->gov.name);
fafd5e8a 456 if (!ret)
1112e9d8 457 goto out;
4d5dcc42 458
fafd5e8a 459 /* Failure, so roll back. */
666f4ccc 460 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
4d5dcc42 461
e4b133cc
VK
462 policy->governor_data = NULL;
463
8eec1020 464 if (!have_governor_per_policy())
7bdad34d 465 gov->gdbs_data = NULL;
9a15fb2c 466 gov->exit(dbs_data);
bc505475
RW
467 kfree(dbs_data);
468
e40e7b25 469free_policy_dbs_info:
8c8f77fd 470 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
471
472out:
473 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c
VK
474 return ret;
475}
e788892b 476EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
4d5dcc42 477
e788892b 478void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
714a2d9c 479{
ea59ee0d 480 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
481 struct policy_dbs_info *policy_dbs = policy->governor_data;
482 struct dbs_data *dbs_data = policy_dbs->dbs_data;
0dd3c1d6 483 unsigned int count;
a72c4959 484
1112e9d8
RW
485 /* Protect gov->gdbs_data against concurrent updates. */
486 mutex_lock(&gov_dbs_data_mutex);
487
0dd3c1d6 488 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
2361be23 489
0dd3c1d6 490 policy->governor_data = NULL;
e4b133cc 491
0dd3c1d6 492 if (!count) {
8eec1020 493 if (!have_governor_per_policy())
7bdad34d 494 gov->gdbs_data = NULL;
4471a34f 495
9a15fb2c 496 gov->exit(dbs_data);
714a2d9c 497 kfree(dbs_data);
4d5dcc42 498 }
44152cb8 499
8c8f77fd 500 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
501
502 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c 503}
e788892b 504EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
4d5dcc42 505
e788892b 506int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
714a2d9c 507{
ea59ee0d 508 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
509 struct policy_dbs_info *policy_dbs = policy->governor_data;
510 struct dbs_data *dbs_data = policy_dbs->dbs_data;
702c9e54 511 unsigned int sampling_rate, ignore_nice, j;
8847e038 512 unsigned int io_busy;
714a2d9c
VK
513
514 if (!policy->cur)
515 return -EINVAL;
516
e4db2813 517 policy_dbs->is_shared = policy_is_shared(policy);
57dc3bcd 518 policy_dbs->rate_mult = 1;
e4db2813 519
ff4b1789
VK
520 sampling_rate = dbs_data->sampling_rate;
521 ignore_nice = dbs_data->ignore_nice_load;
8847e038 522 io_busy = dbs_data->io_is_busy;
4471a34f 523
714a2d9c 524 for_each_cpu(j, policy->cpus) {
8c8f77fd 525 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
4471a34f 526
b4f4b4b3 527 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
ba1ca654
RW
528 /*
529 * Make the first invocation of dbs_update() compute the load.
530 */
531 j_cdbs->prev_load = 0;
18b46abd 532
714a2d9c
VK
533 if (ignore_nice)
534 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
714a2d9c 535 }
2abfa876 536
702c9e54 537 gov->start(policy);
4471a34f 538
e40e7b25 539 gov_set_update_util(policy_dbs, sampling_rate);
714a2d9c
VK
540 return 0;
541}
e788892b 542EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
714a2d9c 543
e788892b 544void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
714a2d9c 545{
f6709b8a
RW
546 struct policy_dbs_info *policy_dbs = policy->governor_data;
547
548 gov_clear_update_util(policy_dbs->policy);
549 irq_work_sync(&policy_dbs->irq_work);
550 cancel_work_sync(&policy_dbs->work);
551 atomic_set(&policy_dbs->work_count, 0);
552 policy_dbs->work_in_progress = false;
714a2d9c 553}
e788892b 554EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
4471a34f 555
e788892b 556void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
714a2d9c 557{
bc505475 558 struct policy_dbs_info *policy_dbs = policy->governor_data;
8eeed095 559
26f0dbc9 560 mutex_lock(&policy_dbs->update_mutex);
bf2be2de 561 cpufreq_policy_apply_limits(policy);
4cccf755
RW
562 gov_update_sample_delay(policy_dbs, 0);
563
26f0dbc9 564 mutex_unlock(&policy_dbs->update_mutex);
4471a34f 565}
e788892b 566EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);