]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/cpufreq_governor.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq_governor.c
CommitLineData
2aacdfff 1/*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
4471a34f
VK
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
2aacdfff 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
4471a34f
VK
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
2aacdfff 19#include <linux/export.h>
20#include <linux/kernel_stat.h>
4d5dcc42 21#include <linux/slab.h>
4471a34f
VK
22
23#include "cpufreq_governor.h"
24
56026645
RW
25#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC)
26
8c8f77fd
RW
27static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
28
1112e9d8 29static DEFINE_MUTEX(gov_dbs_data_mutex);
2bb8d94f 30
aded387b
VK
31/* Common sysfs tunables */
32/**
33 * store_sampling_rate - update sampling rate effective immediately if needed.
34 *
35 * If new rate is smaller than the old, simply updating
36 * dbs.sampling_rate might not be appropriate. For example, if the
37 * original sampling_rate was 1 second and the requested new sampling rate is 10
38 * ms because the user needs immediate reaction from ondemand governor, but not
39 * sure if higher frequency will be required or not, then, the governor may
40 * change the sampling rate too late; up to 1 second later. Thus, if we are
41 * reducing the sampling rate, we need to make the new value effective
42 * immediately.
43 *
aded387b
VK
44 * This must be called with dbs_data->mutex held, otherwise traversing
45 * policy_dbs_list isn't safe.
46 */
0dd3c1d6 47ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
aded387b
VK
48 size_t count)
49{
0dd3c1d6 50 struct dbs_data *dbs_data = to_dbs_data(attr_set);
aded387b 51 struct policy_dbs_info *policy_dbs;
56026645 52 unsigned int sampling_interval;
aded387b 53 int ret;
56026645
RW
54
55 ret = sscanf(buf, "%u", &sampling_interval);
56 if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
aded387b
VK
57 return -EINVAL;
58
56026645
RW
59 dbs_data->sampling_rate = sampling_interval;
60
aded387b
VK
61 /*
62 * We are operating under dbs_data->mutex and so the list and its
63 * entries can't be freed concurrently.
64 */
0dd3c1d6 65 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
26f0dbc9 66 mutex_lock(&policy_dbs->update_mutex);
aded387b
VK
67 /*
68 * On 32-bit architectures this may race with the
69 * sample_delay_ns read in dbs_update_util_handler(), but that
70 * really doesn't matter. If the read returns a value that's
71 * too big, the sample will be skipped, but the next invocation
72 * of dbs_update_util_handler() (when the update has been
78347cdb 73 * completed) will take a sample.
aded387b
VK
74 *
75 * If this runs in parallel with dbs_work_handler(), we may end
76 * up overwriting the sample_delay_ns value that it has just
78347cdb
RW
77 * written, but it will be corrected next time a sample is
78 * taken, so it shouldn't be significant.
aded387b 79 */
78347cdb 80 gov_update_sample_delay(policy_dbs, 0);
26f0dbc9 81 mutex_unlock(&policy_dbs->update_mutex);
aded387b
VK
82 }
83
84 return count;
85}
86EXPORT_SYMBOL_GPL(store_sampling_rate);
87
a33cce1c
RW
88/**
89 * gov_update_cpu_data - Update CPU load data.
a33cce1c
RW
90 * @dbs_data: Top-level governor data pointer.
91 *
92 * Update CPU load data for all CPUs in the domain governed by @dbs_data
93 * (that may be a single policy or a bunch of them if governor tunables are
94 * system-wide).
95 *
96 * Call under the @dbs_data mutex.
97 */
8c8f77fd 98void gov_update_cpu_data(struct dbs_data *dbs_data)
a33cce1c
RW
99{
100 struct policy_dbs_info *policy_dbs;
101
0dd3c1d6 102 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
a33cce1c
RW
103 unsigned int j;
104
105 for_each_cpu(j, policy_dbs->policy->cpus) {
8c8f77fd 106 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
a33cce1c 107
b4f4b4b3 108 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
a33cce1c
RW
109 dbs_data->io_is_busy);
110 if (dbs_data->ignore_nice_load)
111 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
112 }
113 }
114}
115EXPORT_SYMBOL_GPL(gov_update_cpu_data);
116
4cccf755 117unsigned int dbs_update(struct cpufreq_policy *policy)
4471a34f 118{
bc505475
RW
119 struct policy_dbs_info *policy_dbs = policy->governor_data;
120 struct dbs_data *dbs_data = policy_dbs->dbs_data;
ff4b1789 121 unsigned int ignore_nice = dbs_data->ignore_nice_load;
00bfe058 122 unsigned int max_load = 0, idle_periods = UINT_MAX;
8847e038 123 unsigned int sampling_rate, io_busy, j;
4471a34f 124
57dc3bcd
RW
125 /*
126 * Sometimes governors may use an additional multiplier to increase
127 * sample delays temporarily. Apply that multiplier to sampling_rate
128 * so as to keep the wake-up-from-idle detection logic a bit
129 * conservative.
130 */
131 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
8847e038
RW
132 /*
133 * For the purpose of ondemand, waiting for disk IO is an indication
134 * that you're performance critical, and not that the system is actually
135 * idle, so do not add the iowait time to the CPU idle time then.
136 */
137 io_busy = dbs_data->io_is_busy;
4471a34f 138
dfa5bb62 139 /* Get Absolute Load */
4471a34f 140 for_each_cpu(j, policy->cpus) {
8c8f77fd 141 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
b4f4b4b3
RW
142 u64 update_time, cur_idle_time;
143 unsigned int idle_time, time_elapsed;
4471a34f
VK
144 unsigned int load;
145
b4f4b4b3 146 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
4471a34f 147
b4f4b4b3
RW
148 time_elapsed = update_time - j_cdbs->prev_update_time;
149 j_cdbs->prev_update_time = update_time;
4471a34f 150
94862a62
RW
151 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
152 j_cdbs->prev_cpu_idle = cur_idle_time;
4471a34f
VK
153
154 if (ignore_nice) {
679b8fe4
RW
155 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
156
7fb1327e 157 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
679b8fe4 158 j_cdbs->prev_cpu_nice = cur_nice;
4471a34f
VK
159 }
160
9485e4ca
RW
161 if (unlikely(!time_elapsed)) {
162 /*
163 * That can only happen when this function is called
164 * twice in a row with a very short interval between the
165 * calls, so the previous load value can be used then.
166 */
18b46abd 167 load = j_cdbs->prev_load;
9485e4ca
RW
168 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
169 j_cdbs->prev_load)) {
c8ae481b 170 /*
9485e4ca
RW
171 * If the CPU had gone completely idle and a task has
172 * just woken up on this CPU now, it would be unfair to
173 * calculate 'load' the usual way for this elapsed
174 * time-window, because it would show near-zero load,
175 * irrespective of how CPU intensive that task actually
176 * was. This is undesirable for latency-sensitive bursty
177 * workloads.
178 *
179 * To avoid this, reuse the 'load' from the previous
180 * time-window and give this task a chance to start with
181 * a reasonably high CPU frequency. However, that
182 * shouldn't be over-done, lest we get stuck at a high
183 * load (high frequency) for too long, even when the
184 * current system load has actually dropped down, so
185 * clear prev_load to guarantee that the load will be
186 * computed again next time.
187 *
188 * Detecting this situation is easy: the governor's
189 * utilization update handler would not have run during
190 * CPU-idle periods. Hence, an unusually large
191 * 'time_elapsed' (as compared to the sampling rate)
192 * indicates this scenario.
c8ae481b 193 */
9485e4ca 194 load = j_cdbs->prev_load;
c8ae481b 195 j_cdbs->prev_load = 0;
18b46abd 196 } else {
9485e4ca
RW
197 if (time_elapsed >= idle_time) {
198 load = 100 * (time_elapsed - idle_time) / time_elapsed;
199 } else {
200 /*
201 * That can happen if idle_time is returned by
202 * get_cpu_idle_time_jiffy(). In that case
203 * idle_time is roughly equal to the difference
204 * between time_elapsed and "busy time" obtained
205 * from CPU statistics. Then, the "busy time"
206 * can end up being greater than time_elapsed
207 * (for example, if jiffies_64 and the CPU
208 * statistics are updated by different CPUs),
209 * so idle_time may in fact be negative. That
210 * means, though, that the CPU was busy all
211 * the time (on the rough average) during the
212 * last sampling interval and 100 can be
213 * returned as the load.
214 */
215 load = (int)idle_time < 0 ? 100 : 0;
216 }
18b46abd 217 j_cdbs->prev_load = load;
18b46abd 218 }
4471a34f 219
00bfe058
SK
220 if (time_elapsed > 2 * sampling_rate) {
221 unsigned int periods = time_elapsed / sampling_rate;
222
223 if (periods < idle_periods)
224 idle_periods = periods;
225 }
226
4471a34f
VK
227 if (load > max_load)
228 max_load = load;
229 }
00bfe058
SK
230
231 policy_dbs->idle_periods = idle_periods;
232
4cccf755 233 return max_load;
4471a34f 234}
4cccf755 235EXPORT_SYMBOL_GPL(dbs_update);
4471a34f 236
70f43e5e 237static void dbs_work_handler(struct work_struct *work)
43e0ee36 238{
e40e7b25 239 struct policy_dbs_info *policy_dbs;
3a91b069 240 struct cpufreq_policy *policy;
ea59ee0d 241 struct dbs_governor *gov;
43e0ee36 242
e40e7b25
RW
243 policy_dbs = container_of(work, struct policy_dbs_info, work);
244 policy = policy_dbs->policy;
ea59ee0d 245 gov = dbs_governor_of(policy);
3a91b069 246
70f43e5e 247 /*
9be4fd2c
RW
248 * Make sure cpufreq_governor_limits() isn't evaluating load or the
249 * ondemand governor isn't updating the sampling rate in parallel.
70f43e5e 250 */
26f0dbc9
VK
251 mutex_lock(&policy_dbs->update_mutex);
252 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
253 mutex_unlock(&policy_dbs->update_mutex);
70f43e5e 254
e4db2813
RW
255 /* Allow the utilization update handler to queue up more work. */
256 atomic_set(&policy_dbs->work_count, 0);
9be4fd2c 257 /*
e4db2813
RW
258 * If the update below is reordered with respect to the sample delay
259 * modification, the utilization update handler may end up using a stale
260 * sample delay value.
9be4fd2c 261 */
e4db2813
RW
262 smp_wmb();
263 policy_dbs->work_in_progress = false;
9be4fd2c
RW
264}
265
266static void dbs_irq_work(struct irq_work *irq_work)
267{
e40e7b25 268 struct policy_dbs_info *policy_dbs;
70f43e5e 269
e40e7b25 270 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
539a4c42 271 schedule_work_on(smp_processor_id(), &policy_dbs->work);
70f43e5e
VK
272}
273
9be4fd2c 274static void dbs_update_util_handler(struct update_util_data *data, u64 time,
58919e83 275 unsigned int flags)
9be4fd2c
RW
276{
277 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
e40e7b25 278 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
27de3482 279 u64 delta_ns, lst;
70f43e5e 280
674e7541
VK
281 if (!cpufreq_can_do_remote_dvfs(policy_dbs->policy))
282 return;
283
70f43e5e 284 /*
9be4fd2c
RW
285 * The work may not be allowed to be queued up right now.
286 * Possible reasons:
287 * - Work has already been queued up or is in progress.
9be4fd2c 288 * - It is too early (too little time from the previous sample).
70f43e5e 289 */
e4db2813
RW
290 if (policy_dbs->work_in_progress)
291 return;
292
293 /*
294 * If the reads below are reordered before the check above, the value
295 * of sample_delay_ns used in the computation may be stale.
296 */
297 smp_rmb();
27de3482
RW
298 lst = READ_ONCE(policy_dbs->last_sample_time);
299 delta_ns = time - lst;
e4db2813
RW
300 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
301 return;
302
303 /*
304 * If the policy is not shared, the irq_work may be queued up right away
305 * at this point. Otherwise, we need to ensure that only one of the
306 * CPUs sharing the policy will do that.
307 */
27de3482
RW
308 if (policy_dbs->is_shared) {
309 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
310 return;
311
312 /*
313 * If another CPU updated last_sample_time in the meantime, we
314 * shouldn't be here, so clear the work counter and bail out.
315 */
316 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
317 atomic_set(&policy_dbs->work_count, 0);
318 return;
319 }
320 }
e4db2813
RW
321
322 policy_dbs->last_sample_time = time;
323 policy_dbs->work_in_progress = true;
324 irq_work_queue(&policy_dbs->irq_work);
43e0ee36 325}
4447266b 326
0bed612b
RW
327static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
328 unsigned int delay_us)
329{
330 struct cpufreq_policy *policy = policy_dbs->policy;
331 int cpu;
332
333 gov_update_sample_delay(policy_dbs, delay_us);
334 policy_dbs->last_sample_time = 0;
335
336 for_each_cpu(cpu, policy->cpus) {
337 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
338
339 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
340 dbs_update_util_handler);
341 }
342}
343
344static inline void gov_clear_update_util(struct cpufreq_policy *policy)
345{
346 int i;
347
348 for_each_cpu(i, policy->cpus)
349 cpufreq_remove_update_util_hook(i);
350
351 synchronize_sched();
352}
353
bc505475
RW
354static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
355 struct dbs_governor *gov)
44152cb8 356{
e40e7b25 357 struct policy_dbs_info *policy_dbs;
44152cb8
VK
358 int j;
359
7d5a9956
RW
360 /* Allocate memory for per-policy governor data. */
361 policy_dbs = gov->alloc();
e40e7b25 362 if (!policy_dbs)
bc505475 363 return NULL;
44152cb8 364
581c214b 365 policy_dbs->policy = policy;
26f0dbc9 366 mutex_init(&policy_dbs->update_mutex);
686cc637 367 atomic_set(&policy_dbs->work_count, 0);
e40e7b25
RW
368 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
369 INIT_WORK(&policy_dbs->work, dbs_work_handler);
cea6a9e7
RW
370
371 /* Set policy_dbs for all CPUs, online+offline */
372 for_each_cpu(j, policy->related_cpus) {
8c8f77fd 373 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
cea6a9e7
RW
374
375 j_cdbs->policy_dbs = policy_dbs;
cea6a9e7 376 }
bc505475 377 return policy_dbs;
44152cb8
VK
378}
379
8c8f77fd 380static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
7bdad34d 381 struct dbs_governor *gov)
44152cb8 382{
44152cb8
VK
383 int j;
384
26f0dbc9 385 mutex_destroy(&policy_dbs->update_mutex);
5e4500d8 386
8c8f77fd
RW
387 for_each_cpu(j, policy_dbs->policy->related_cpus) {
388 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
44152cb8 389
cea6a9e7
RW
390 j_cdbs->policy_dbs = NULL;
391 j_cdbs->update_util.func = NULL;
392 }
7d5a9956 393 gov->free(policy_dbs);
44152cb8
VK
394}
395
e788892b 396int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
4471a34f 397{
ea59ee0d 398 struct dbs_governor *gov = dbs_governor_of(policy);
1112e9d8 399 struct dbs_data *dbs_data;
bc505475 400 struct policy_dbs_info *policy_dbs;
1112e9d8 401 int ret = 0;
4471a34f 402
a72c4959
VK
403 /* State should be equivalent to EXIT */
404 if (policy->governor_data)
405 return -EBUSY;
406
bc505475
RW
407 policy_dbs = alloc_policy_dbs_info(policy, gov);
408 if (!policy_dbs)
409 return -ENOMEM;
44152cb8 410
1112e9d8
RW
411 /* Protect gov->gdbs_data against concurrent updates. */
412 mutex_lock(&gov_dbs_data_mutex);
413
414 dbs_data = gov->gdbs_data;
bc505475
RW
415 if (dbs_data) {
416 if (WARN_ON(have_governor_per_policy())) {
417 ret = -EINVAL;
418 goto free_policy_dbs_info;
419 }
bc505475
RW
420 policy_dbs->dbs_data = dbs_data;
421 policy->governor_data = policy_dbs;
c54df071 422
0dd3c1d6 423 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
1112e9d8 424 goto out;
714a2d9c 425 }
4d5dcc42 426
714a2d9c 427 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
bc505475
RW
428 if (!dbs_data) {
429 ret = -ENOMEM;
430 goto free_policy_dbs_info;
431 }
44152cb8 432
0dd3c1d6 433 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
4d5dcc42 434
9a15fb2c 435 ret = gov->init(dbs_data);
714a2d9c 436 if (ret)
e40e7b25 437 goto free_policy_dbs_info;
4d5dcc42 438
56026645
RW
439 /*
440 * The sampling interval should not be less than the transition latency
441 * of the CPU and it also cannot be too small for dbs_update() to work
442 * correctly.
443 */
444 dbs_data->sampling_rate = max_t(unsigned int,
445 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
446 cpufreq_policy_transition_delay_us(policy));
2361be23 447
8eec1020 448 if (!have_governor_per_policy())
7bdad34d 449 gov->gdbs_data = dbs_data;
4d5dcc42 450
c54df071 451 policy_dbs->dbs_data = dbs_data;
0dd3c1d6 452 policy->governor_data = policy_dbs;
c54df071 453
c4435630 454 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
0dd3c1d6 455 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
c4435630
VK
456 get_governor_parent_kobj(policy),
457 "%s", gov->gov.name);
fafd5e8a 458 if (!ret)
1112e9d8 459 goto out;
4d5dcc42 460
fafd5e8a 461 /* Failure, so roll back. */
666f4ccc 462 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
4d5dcc42 463
e4b133cc
VK
464 policy->governor_data = NULL;
465
8eec1020 466 if (!have_governor_per_policy())
7bdad34d 467 gov->gdbs_data = NULL;
9a15fb2c 468 gov->exit(dbs_data);
bc505475
RW
469 kfree(dbs_data);
470
e40e7b25 471free_policy_dbs_info:
8c8f77fd 472 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
473
474out:
475 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c
VK
476 return ret;
477}
e788892b 478EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
4d5dcc42 479
e788892b 480void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
714a2d9c 481{
ea59ee0d 482 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
483 struct policy_dbs_info *policy_dbs = policy->governor_data;
484 struct dbs_data *dbs_data = policy_dbs->dbs_data;
0dd3c1d6 485 unsigned int count;
a72c4959 486
1112e9d8
RW
487 /* Protect gov->gdbs_data against concurrent updates. */
488 mutex_lock(&gov_dbs_data_mutex);
489
0dd3c1d6 490 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
2361be23 491
0dd3c1d6 492 policy->governor_data = NULL;
e4b133cc 493
0dd3c1d6 494 if (!count) {
8eec1020 495 if (!have_governor_per_policy())
7bdad34d 496 gov->gdbs_data = NULL;
4471a34f 497
9a15fb2c 498 gov->exit(dbs_data);
714a2d9c 499 kfree(dbs_data);
4d5dcc42 500 }
44152cb8 501
8c8f77fd 502 free_policy_dbs_info(policy_dbs, gov);
1112e9d8
RW
503
504 mutex_unlock(&gov_dbs_data_mutex);
714a2d9c 505}
e788892b 506EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
4d5dcc42 507
e788892b 508int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
714a2d9c 509{
ea59ee0d 510 struct dbs_governor *gov = dbs_governor_of(policy);
bc505475
RW
511 struct policy_dbs_info *policy_dbs = policy->governor_data;
512 struct dbs_data *dbs_data = policy_dbs->dbs_data;
702c9e54 513 unsigned int sampling_rate, ignore_nice, j;
8847e038 514 unsigned int io_busy;
714a2d9c
VK
515
516 if (!policy->cur)
517 return -EINVAL;
518
e4db2813 519 policy_dbs->is_shared = policy_is_shared(policy);
57dc3bcd 520 policy_dbs->rate_mult = 1;
e4db2813 521
ff4b1789
VK
522 sampling_rate = dbs_data->sampling_rate;
523 ignore_nice = dbs_data->ignore_nice_load;
8847e038 524 io_busy = dbs_data->io_is_busy;
4471a34f 525
714a2d9c 526 for_each_cpu(j, policy->cpus) {
8c8f77fd 527 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
4471a34f 528
b4f4b4b3 529 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
ba1ca654
RW
530 /*
531 * Make the first invocation of dbs_update() compute the load.
532 */
533 j_cdbs->prev_load = 0;
18b46abd 534
714a2d9c
VK
535 if (ignore_nice)
536 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
714a2d9c 537 }
2abfa876 538
702c9e54 539 gov->start(policy);
4471a34f 540
e40e7b25 541 gov_set_update_util(policy_dbs, sampling_rate);
714a2d9c
VK
542 return 0;
543}
e788892b 544EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
714a2d9c 545
e788892b 546void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
714a2d9c 547{
f6709b8a
RW
548 struct policy_dbs_info *policy_dbs = policy->governor_data;
549
550 gov_clear_update_util(policy_dbs->policy);
551 irq_work_sync(&policy_dbs->irq_work);
552 cancel_work_sync(&policy_dbs->work);
553 atomic_set(&policy_dbs->work_count, 0);
554 policy_dbs->work_in_progress = false;
714a2d9c 555}
e788892b 556EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
4471a34f 557
e788892b 558void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
714a2d9c 559{
bc505475 560 struct policy_dbs_info *policy_dbs = policy->governor_data;
8eeed095 561
26f0dbc9 562 mutex_lock(&policy_dbs->update_mutex);
bf2be2de 563 cpufreq_policy_apply_limits(policy);
4cccf755
RW
564 gov_update_sample_delay(policy_dbs, 0);
565
26f0dbc9 566 mutex_unlock(&policy_dbs->update_mutex);
4471a34f 567}
e788892b 568EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);