]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/cpufreq_ondemand.c
cpufreq: handle SW coordinated CPUs
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
4471a34f
VK
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/cpufreq.h>
4471a34f
VK
16#include <linux/init.h>
17#include <linux/kernel.h>
1da177e4 18#include <linux/kernel_stat.h>
4471a34f
VK
19#include <linux/kobject.h>
20#include <linux/module.h>
3fc54d37 21#include <linux/mutex.h>
4471a34f
VK
22#include <linux/percpu-defs.h>
23#include <linux/sysfs.h>
80800913 24#include <linux/tick.h>
4471a34f 25#include <linux/types.h>
1da177e4 26
4471a34f 27#include "cpufreq_governor.h"
1da177e4 28
4471a34f 29/* On-demand governor macors */
e9d95bf7 30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 31#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
32#define DEF_SAMPLING_DOWN_FACTOR (1)
33#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 34#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
35#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 36#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 37#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
38#define MAX_FREQUENCY_UP_THRESHOLD (100)
39
4471a34f
VK
40static struct dbs_data od_dbs_data;
41static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4 42
3e33ee9e
FB
43#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44static struct cpufreq_governor cpufreq_gov_ondemand;
45#endif
46
4471a34f 47static struct od_dbs_tuners od_tuners = {
32ee8c3e 48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 50 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 51 .ignore_nice = 0,
05ca0350 52 .powersave_bias = 0,
1da177e4
LT
53};
54
4471a34f 55static void ondemand_powersave_bias_init_cpu(int cpu)
6b8fcd90 56{
4471a34f 57 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
6b8fcd90 58
4471a34f
VK
59 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
60 dbs_info->freq_lo = 0;
61}
6b8fcd90 62
4471a34f
VK
63/*
64 * Not all CPUs want IO time to be accounted as busy; this depends on how
65 * efficient idling at a higher frequency/voltage is.
66 * Pavel Machek says this is not so for various generations of AMD and old
67 * Intel systems.
68 * Mike Chan (androidlcom) calis this is also not true for ARM.
69 * Because of this, whitelist specific known (series) of CPUs by default, and
70 * leave all others up to the user.
71 */
72static int should_io_be_busy(void)
73{
74#if defined(CONFIG_X86)
75 /*
76 * For Intel, Core 2 (model 15) andl later have an efficient idle.
77 */
78 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
79 boot_cpu_data.x86 == 6 &&
80 boot_cpu_data.x86_model >= 15)
81 return 1;
82#endif
83 return 0;
6b8fcd90
AV
84}
85
05ca0350
AS
86/*
87 * Find right freq to be set now with powersave_bias on.
88 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
89 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
90 */
b5ecf60f 91static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
4471a34f 92 unsigned int freq_next, unsigned int relation)
05ca0350
AS
93{
94 unsigned int freq_req, freq_reduc, freq_avg;
95 unsigned int freq_hi, freq_lo;
96 unsigned int index = 0;
97 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
4471a34f 98 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
245b2e70 99 policy->cpu);
05ca0350
AS
100
101 if (!dbs_info->freq_table) {
102 dbs_info->freq_lo = 0;
103 dbs_info->freq_lo_jiffies = 0;
104 return freq_next;
105 }
106
107 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
108 relation, &index);
109 freq_req = dbs_info->freq_table[index].frequency;
4471a34f 110 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
05ca0350
AS
111 freq_avg = freq_req - freq_reduc;
112
113 /* Find freq bounds for freq_avg in freq_table */
114 index = 0;
115 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
116 CPUFREQ_RELATION_H, &index);
117 freq_lo = dbs_info->freq_table[index].frequency;
118 index = 0;
119 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
120 CPUFREQ_RELATION_L, &index);
121 freq_hi = dbs_info->freq_table[index].frequency;
122
123 /* Find out how long we have to be in hi and lo freqs */
124 if (freq_hi == freq_lo) {
125 dbs_info->freq_lo = 0;
126 dbs_info->freq_lo_jiffies = 0;
127 return freq_lo;
128 }
4471a34f 129 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
05ca0350
AS
130 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
131 jiffies_hi += ((freq_hi - freq_lo) / 2);
132 jiffies_hi /= (freq_hi - freq_lo);
133 jiffies_lo = jiffies_total - jiffies_hi;
134 dbs_info->freq_lo = freq_lo;
135 dbs_info->freq_lo_jiffies = jiffies_lo;
136 dbs_info->freq_hi_jiffies = jiffies_hi;
137 return freq_hi;
138}
139
140static void ondemand_powersave_bias_init(void)
141{
142 int i;
143 for_each_online_cpu(i) {
5a75c828 144 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
145 }
146}
147
4471a34f
VK
148static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
149{
150 if (od_tuners.powersave_bias)
151 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
152 else if (p->cur == p->max)
153 return;
0e625ac1 154
4471a34f
VK
155 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
156 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
157}
158
159/*
160 * Every sampling_rate, we check, if current idle time is less than 20%
161 * (default), then we try to increase frequency Every sampling_rate, we look for
162 * a the lowest frequency which can sustain the load while keeping idle time
163 * over 30%. If such a frequency exist, we try to decrease to this frequency.
164 *
165 * Any frequency increase takes it to the maximum frequency. Frequency reduction
166 * happens at minimum steps of 5% (default) of current frequency
167 */
168static void od_check_cpu(int cpu, unsigned int load_freq)
1da177e4 169{
4471a34f
VK
170 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
171 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
172
173 dbs_info->freq_lo = 0;
174
175 /* Check for frequency increase */
176 if (load_freq > od_tuners.up_threshold * policy->cur) {
177 /* If switching to max speed, apply sampling_down_factor */
178 if (policy->cur < policy->max)
179 dbs_info->rate_mult =
180 od_tuners.sampling_down_factor;
181 dbs_freq_increase(policy, policy->max);
182 return;
183 }
184
185 /* Check for frequency decrease */
186 /* if we cannot reduce the frequency anymore, break out early */
187 if (policy->cur == policy->min)
188 return;
189
190 /*
191 * The optimal frequency is the frequency that is the lowest that can
192 * support the current CPU usage without triggering the up policy. To be
193 * safe, we focus 10 points under the threshold.
194 */
195 if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
196 policy->cur) {
197 unsigned int freq_next;
198 freq_next = load_freq / (od_tuners.up_threshold -
199 od_tuners.down_differential);
200
201 /* No longer fully busy, reset rate_mult */
202 dbs_info->rate_mult = 1;
203
204 if (freq_next < policy->min)
205 freq_next = policy->min;
206
207 if (!od_tuners.powersave_bias) {
208 __cpufreq_driver_target(policy, freq_next,
209 CPUFREQ_RELATION_L);
210 } else {
211 int freq = powersave_bias_target(policy, freq_next,
212 CPUFREQ_RELATION_L);
213 __cpufreq_driver_target(policy, freq,
214 CPUFREQ_RELATION_L);
215 }
216 }
1da177e4
LT
217}
218
4471a34f
VK
219static void od_dbs_timer(struct work_struct *work)
220{
221 struct od_cpu_dbs_info_s *dbs_info =
222 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223 unsigned int cpu = dbs_info->cdbs.cpu;
224 int delay, sample_type = dbs_info->sample_type;
1da177e4 225
4471a34f
VK
226 mutex_lock(&dbs_info->cdbs.timer_mutex);
227
228 /* Common NORMAL_SAMPLE setup */
229 dbs_info->sample_type = OD_NORMAL_SAMPLE;
230 if (sample_type == OD_SUB_SAMPLE) {
231 delay = dbs_info->freq_lo_jiffies;
232 __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
233 dbs_info->freq_lo, CPUFREQ_RELATION_H);
234 } else {
235 dbs_check_cpu(&od_dbs_data, cpu);
236 if (dbs_info->freq_lo) {
237 /* Setup timer for SUB_SAMPLE */
238 dbs_info->sample_type = OD_SUB_SAMPLE;
239 delay = dbs_info->freq_hi_jiffies;
240 } else {
d3c31a77
FB
241 delay = delay_for_sampling_rate(od_tuners.sampling_rate
242 * dbs_info->rate_mult);
4471a34f
VK
243 }
244 }
245
2abfa876
RA
246 schedule_delayed_work_on(smp_processor_id(), &dbs_info->cdbs.work,
247 delay);
4471a34f
VK
248 mutex_unlock(&dbs_info->cdbs.timer_mutex);
249}
250
251/************************** sysfs interface ************************/
252
253static ssize_t show_sampling_rate_min(struct kobject *kobj,
254 struct attribute *attr, char *buf)
255{
256 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
1da177e4 257}
1da177e4 258
fd0ef7a0
MH
259/**
260 * update_sampling_rate - update sampling rate effective immediately if needed.
261 * @new_rate: new sampling rate
262 *
263 * If new rate is smaller than the old, simply updaing
4471a34f
VK
264 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
265 * original sampling_rate was 1 second and the requested new sampling rate is 10
266 * ms because the user needs immediate reaction from ondemand governor, but not
267 * sure if higher frequency will be required or not, then, the governor may
268 * change the sampling rate too late; up to 1 second later. Thus, if we are
269 * reducing the sampling rate, we need to make the new value effective
270 * immediately.
fd0ef7a0
MH
271 */
272static void update_sampling_rate(unsigned int new_rate)
273{
274 int cpu;
275
4471a34f
VK
276 od_tuners.sampling_rate = new_rate = max(new_rate,
277 od_dbs_data.min_sampling_rate);
fd0ef7a0
MH
278
279 for_each_online_cpu(cpu) {
280 struct cpufreq_policy *policy;
4471a34f 281 struct od_cpu_dbs_info_s *dbs_info;
fd0ef7a0
MH
282 unsigned long next_sampling, appointed_at;
283
284 policy = cpufreq_cpu_get(cpu);
285 if (!policy)
286 continue;
3e33ee9e
FB
287 if (policy->governor != &cpufreq_gov_ondemand) {
288 cpufreq_cpu_put(policy);
289 continue;
290 }
fd0ef7a0
MH
291 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
292 cpufreq_cpu_put(policy);
293
4471a34f 294 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 295
4471a34f
VK
296 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
297 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
298 continue;
299 }
300
4471a34f
VK
301 next_sampling = jiffies + usecs_to_jiffies(new_rate);
302 appointed_at = dbs_info->cdbs.work.timer.expires;
fd0ef7a0
MH
303
304 if (time_before(next_sampling, appointed_at)) {
305
4471a34f
VK
306 mutex_unlock(&dbs_info->cdbs.timer_mutex);
307 cancel_delayed_work_sync(&dbs_info->cdbs.work);
308 mutex_lock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0 309
4471a34f
VK
310 schedule_delayed_work_on(dbs_info->cdbs.cpu,
311 &dbs_info->cdbs.work,
312 usecs_to_jiffies(new_rate));
fd0ef7a0
MH
313
314 }
4471a34f 315 mutex_unlock(&dbs_info->cdbs.timer_mutex);
fd0ef7a0
MH
316 }
317}
318
0e625ac1
TR
319static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
320 const char *buf, size_t count)
1da177e4
LT
321{
322 unsigned int input;
323 int ret;
ffac80e9 324 ret = sscanf(buf, "%u", &input);
5a75c828 325 if (ret != 1)
326 return -EINVAL;
fd0ef7a0 327 update_sampling_rate(input);
1da177e4
LT
328 return count;
329}
330
19379b11
AV
331static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
332 const char *buf, size_t count)
333{
334 unsigned int input;
335 int ret;
336
337 ret = sscanf(buf, "%u", &input);
338 if (ret != 1)
339 return -EINVAL;
4471a34f 340 od_tuners.io_is_busy = !!input;
19379b11
AV
341 return count;
342}
343
0e625ac1
TR
344static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
345 const char *buf, size_t count)
1da177e4
LT
346{
347 unsigned int input;
348 int ret;
ffac80e9 349 ret = sscanf(buf, "%u", &input);
1da177e4 350
32ee8c3e 351 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 352 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
353 return -EINVAL;
354 }
4471a34f 355 od_tuners.up_threshold = input;
1da177e4
LT
356 return count;
357}
358
3f78a9f7
DN
359static ssize_t store_sampling_down_factor(struct kobject *a,
360 struct attribute *b, const char *buf, size_t count)
361{
362 unsigned int input, j;
363 int ret;
364 ret = sscanf(buf, "%u", &input);
365
366 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
367 return -EINVAL;
4471a34f 368 od_tuners.sampling_down_factor = input;
3f78a9f7
DN
369
370 /* Reset down sampling multiplier in case it was active */
371 for_each_online_cpu(j) {
4471a34f
VK
372 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
373 j);
3f78a9f7
DN
374 dbs_info->rate_mult = 1;
375 }
3f78a9f7
DN
376 return count;
377}
378
0e625ac1
TR
379static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
380 const char *buf, size_t count)
3d5ee9e5
DJ
381{
382 unsigned int input;
383 int ret;
384
385 unsigned int j;
32ee8c3e 386
ffac80e9 387 ret = sscanf(buf, "%u", &input);
2b03f891 388 if (ret != 1)
3d5ee9e5
DJ
389 return -EINVAL;
390
2b03f891 391 if (input > 1)
3d5ee9e5 392 input = 1;
32ee8c3e 393
4471a34f 394 if (input == od_tuners.ignore_nice) { /* nothing to do */
3d5ee9e5
DJ
395 return count;
396 }
4471a34f 397 od_tuners.ignore_nice = input;
3d5ee9e5 398
ccb2fe20 399 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 400 for_each_online_cpu(j) {
4471a34f 401 struct od_cpu_dbs_info_s *dbs_info;
245b2e70 402 dbs_info = &per_cpu(od_cpu_dbs_info, j);
4471a34f
VK
403 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
404 &dbs_info->cdbs.prev_cpu_wall);
405 if (od_tuners.ignore_nice)
406 dbs_info->cdbs.prev_cpu_nice =
407 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
1ca3abdb 408
3d5ee9e5 409 }
3d5ee9e5
DJ
410 return count;
411}
412
0e625ac1
TR
413static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
414 const char *buf, size_t count)
05ca0350
AS
415{
416 unsigned int input;
417 int ret;
418 ret = sscanf(buf, "%u", &input);
419
420 if (ret != 1)
421 return -EINVAL;
422
423 if (input > 1000)
424 input = 1000;
425
4471a34f 426 od_tuners.powersave_bias = input;
05ca0350 427 ondemand_powersave_bias_init();
05ca0350
AS
428 return count;
429}
430
4471a34f
VK
431show_one(od, sampling_rate, sampling_rate);
432show_one(od, io_is_busy, io_is_busy);
433show_one(od, up_threshold, up_threshold);
434show_one(od, sampling_down_factor, sampling_down_factor);
435show_one(od, ignore_nice_load, ignore_nice);
436show_one(od, powersave_bias, powersave_bias);
437
6dad2a29 438define_one_global_rw(sampling_rate);
07d77759 439define_one_global_rw(io_is_busy);
6dad2a29 440define_one_global_rw(up_threshold);
3f78a9f7 441define_one_global_rw(sampling_down_factor);
6dad2a29
BP
442define_one_global_rw(ignore_nice_load);
443define_one_global_rw(powersave_bias);
4471a34f 444define_one_global_ro(sampling_rate_min);
1da177e4 445
2b03f891 446static struct attribute *dbs_attributes[] = {
1da177e4
LT
447 &sampling_rate_min.attr,
448 &sampling_rate.attr,
1da177e4 449 &up_threshold.attr,
3f78a9f7 450 &sampling_down_factor.attr,
001893cd 451 &ignore_nice_load.attr,
05ca0350 452 &powersave_bias.attr,
19379b11 453 &io_is_busy.attr,
1da177e4
LT
454 NULL
455};
456
4471a34f 457static struct attribute_group od_attr_group = {
1da177e4
LT
458 .attrs = dbs_attributes,
459 .name = "ondemand",
460};
461
462/************************** sysfs end ************************/
463
4471a34f 464define_get_cpu_dbs_routines(od_cpu_dbs_info);
6b8fcd90 465
4471a34f
VK
466static struct od_ops od_ops = {
467 .io_busy = should_io_be_busy,
468 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
469 .powersave_bias_target = powersave_bias_target,
470 .freq_increase = dbs_freq_increase,
471};
2f8a835c 472
4471a34f
VK
473static struct dbs_data od_dbs_data = {
474 .governor = GOV_ONDEMAND,
475 .attr_group = &od_attr_group,
476 .tuners = &od_tuners,
477 .get_cpu_cdbs = get_cpu_cdbs,
478 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
479 .gov_dbs_timer = od_dbs_timer,
480 .gov_check_cpu = od_check_cpu,
481 .gov_ops = &od_ops,
482};
1da177e4 483
4471a34f
VK
484static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
485 unsigned int event)
1da177e4 486{
4471a34f 487 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
1da177e4
LT
488}
489
4471a34f
VK
490#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
491static
19379b11 492#endif
4471a34f
VK
493struct cpufreq_governor cpufreq_gov_ondemand = {
494 .name = "ondemand",
495 .governor = od_cpufreq_governor_dbs,
496 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
497 .owner = THIS_MODULE,
498};
1da177e4 499
1da177e4
LT
500static int __init cpufreq_gov_dbs_init(void)
501{
4f6e6b9f
AR
502 u64 idle_time;
503 int cpu = get_cpu();
80800913 504
4471a34f 505 mutex_init(&od_dbs_data.mutex);
21f2e3c8 506 idle_time = get_cpu_idle_time_us(cpu, NULL);
4f6e6b9f 507 put_cpu();
80800913 508 if (idle_time != -1ULL) {
509 /* Idle micro accounting is supported. Use finer thresholds */
4471a34f
VK
510 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
511 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a 512 /*
bd74b32b 513 * In nohz/micro accounting case we set the minimum frequency
cef9615a
TR
514 * not depending on HZ, but fixed (very low). The deferred
515 * timer might skip some samples if idle/sleeping as needed.
516 */
4471a34f 517 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
cef9615a
TR
518 } else {
519 /* For correct statistics, we need 10 ticks for each measure */
4471a34f
VK
520 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
521 jiffies_to_usecs(10);
80800913 522 }
888a794c 523
57df5573 524 return cpufreq_register_governor(&cpufreq_gov_ondemand);
1da177e4
LT
525}
526
527static void __exit cpufreq_gov_dbs_exit(void)
528{
1c256245 529 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
1da177e4
LT
530}
531
ffac80e9
VP
532MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
533MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
534MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 535 "Low Latency Frequency Transition capable processors");
ffac80e9 536MODULE_LICENSE("GPL");
1da177e4 537
6915719b
JW
538#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
539fs_initcall(cpufreq_gov_dbs_init);
540#else
1da177e4 541module_init(cpufreq_gov_dbs_init);
6915719b 542#endif
1da177e4 543module_exit(cpufreq_gov_dbs_exit);