]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/cpufreq_ondemand.c
[CPUFREQ] checkpatch cleanups for ondemand governor.
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
1da177e4
LT
24
25/*
26 * dbs is used in this file as a shortform for demandbased switching
27 * It helps to keep variable names smaller, simpler
28 */
29
e9d95bf7 30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 31#define DEF_FREQUENCY_UP_THRESHOLD (80)
80800913 32#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
33#define MICRO_FREQUENCY_UP_THRESHOLD (95)
c29f1403 34#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
35#define MAX_FREQUENCY_UP_THRESHOLD (100)
36
32ee8c3e
DJ
37/*
38 * The polling frequency of this governor depends on the capability of
1da177e4 39 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
40 * latency of the processor. The governor will work on any processor with
41 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
42 * rate.
43 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44 * this governor will not work.
45 * All times here are in uS.
46 */
32ee8c3e 47static unsigned int def_sampling_rate;
df8b59be
DJ
48#define MIN_SAMPLING_RATE_RATIO (2)
49/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
50#define MIN_STAT_SAMPLING_RATE \
51 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52#define MIN_SAMPLING_RATE \
53 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
1da177e4
LT
54#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
55#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
1c256245 56#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 57
c4028958
DH
58static void do_dbs_timer(struct work_struct *work);
59
60/* Sampling types */
529af7a1 61enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
62
63struct cpu_dbs_info_s {
ccb2fe20
VP
64 cputime64_t prev_cpu_idle;
65 cputime64_t prev_cpu_wall;
80800913 66 cputime64_t prev_cpu_nice;
32ee8c3e 67 struct cpufreq_policy *cur_policy;
2b03f891 68 struct delayed_work work;
05ca0350
AS
69 struct cpufreq_frequency_table *freq_table;
70 unsigned int freq_lo;
71 unsigned int freq_lo_jiffies;
72 unsigned int freq_hi_jiffies;
529af7a1
VP
73 int cpu;
74 unsigned int enable:1,
2b03f891 75 sample_type:1;
1da177e4
LT
76};
77static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
78
79static unsigned int dbs_enable; /* number of CPUs using this policy */
80
4ec223d0
VP
81/*
82 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83 * lock and dbs_mutex. cpu_hotplug lock should always be held before
84 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87 * is recursive for the same process. -Venki
88 */
ffac80e9 89static DEFINE_MUTEX(dbs_mutex);
1da177e4 90
2f8a835c 91static struct workqueue_struct *kondemand_wq;
6810b548 92
05ca0350 93static struct dbs_tuners {
32ee8c3e 94 unsigned int sampling_rate;
32ee8c3e 95 unsigned int up_threshold;
e9d95bf7 96 unsigned int down_differential;
32ee8c3e 97 unsigned int ignore_nice;
05ca0350
AS
98 unsigned int powersave_bias;
99} dbs_tuners_ins = {
32ee8c3e 100 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
e9d95bf7 101 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 102 .ignore_nice = 0,
05ca0350 103 .powersave_bias = 0,
1da177e4
LT
104};
105
80800913 106static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107 cputime64_t *wall)
dac1c1a5 108{
ea487615 109 cputime64_t idle_time;
3430502d 110 cputime64_t cur_wall_time;
ea487615 111 cputime64_t busy_time;
ccb2fe20 112
3430502d 113 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
114 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115 kstat_cpu(cpu).cpustat.system);
ccb2fe20 116
ea487615
VP
117 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 120 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 121
3430502d 122 idle_time = cputime64_sub(cur_wall_time, busy_time);
123 if (wall)
124 *wall = cur_wall_time;
125
ea487615 126 return idle_time;
dac1c1a5
DJ
127}
128
80800913 129static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
130{
131 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
132
133 if (idle_time == -1ULL)
134 return get_cpu_idle_time_jiffy(cpu, wall);
135
80800913 136 return idle_time;
137}
138
05ca0350
AS
139/*
140 * Find right freq to be set now with powersave_bias on.
141 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
143 */
b5ecf60f
AB
144static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
145 unsigned int freq_next,
146 unsigned int relation)
05ca0350
AS
147{
148 unsigned int freq_req, freq_reduc, freq_avg;
149 unsigned int freq_hi, freq_lo;
150 unsigned int index = 0;
151 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
152 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
153
154 if (!dbs_info->freq_table) {
155 dbs_info->freq_lo = 0;
156 dbs_info->freq_lo_jiffies = 0;
157 return freq_next;
158 }
159
160 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
161 relation, &index);
162 freq_req = dbs_info->freq_table[index].frequency;
163 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
164 freq_avg = freq_req - freq_reduc;
165
166 /* Find freq bounds for freq_avg in freq_table */
167 index = 0;
168 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
169 CPUFREQ_RELATION_H, &index);
170 freq_lo = dbs_info->freq_table[index].frequency;
171 index = 0;
172 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
173 CPUFREQ_RELATION_L, &index);
174 freq_hi = dbs_info->freq_table[index].frequency;
175
176 /* Find out how long we have to be in hi and lo freqs */
177 if (freq_hi == freq_lo) {
178 dbs_info->freq_lo = 0;
179 dbs_info->freq_lo_jiffies = 0;
180 return freq_lo;
181 }
182 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
183 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
184 jiffies_hi += ((freq_hi - freq_lo) / 2);
185 jiffies_hi /= (freq_hi - freq_lo);
186 jiffies_lo = jiffies_total - jiffies_hi;
187 dbs_info->freq_lo = freq_lo;
188 dbs_info->freq_lo_jiffies = jiffies_lo;
189 dbs_info->freq_hi_jiffies = jiffies_hi;
190 return freq_hi;
191}
192
193static void ondemand_powersave_bias_init(void)
194{
195 int i;
196 for_each_online_cpu(i) {
197 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
198 dbs_info->freq_table = cpufreq_frequency_get_table(i);
199 dbs_info->freq_lo = 0;
200 }
201}
202
1da177e4
LT
203/************************** sysfs interface ************************/
204static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
205{
2b03f891 206 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
1da177e4
LT
207}
208
209static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
210{
2b03f891 211 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
1da177e4
LT
212}
213
32ee8c3e
DJ
214#define define_one_ro(_name) \
215static struct freq_attr _name = \
1da177e4
LT
216__ATTR(_name, 0444, show_##_name, NULL)
217
218define_one_ro(sampling_rate_max);
219define_one_ro(sampling_rate_min);
220
221/* cpufreq_ondemand Governor Tunables */
222#define show_one(file_name, object) \
223static ssize_t show_##file_name \
224(struct cpufreq_policy *unused, char *buf) \
225{ \
226 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
227}
228show_one(sampling_rate, sampling_rate);
1da177e4 229show_one(up_threshold, up_threshold);
001893cd 230show_one(ignore_nice_load, ignore_nice);
05ca0350 231show_one(powersave_bias, powersave_bias);
1da177e4 232
32ee8c3e 233static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
1da177e4
LT
234 const char *buf, size_t count)
235{
236 unsigned int input;
237 int ret;
ffac80e9 238 ret = sscanf(buf, "%u", &input);
1da177e4 239
3fc54d37 240 mutex_lock(&dbs_mutex);
e08f5f5b
GS
241 if (ret != 1 || input > MAX_SAMPLING_RATE
242 || input < MIN_SAMPLING_RATE) {
3fc54d37 243 mutex_unlock(&dbs_mutex);
1da177e4
LT
244 return -EINVAL;
245 }
246
247 dbs_tuners_ins.sampling_rate = input;
3fc54d37 248 mutex_unlock(&dbs_mutex);
1da177e4
LT
249
250 return count;
251}
252
32ee8c3e 253static ssize_t store_up_threshold(struct cpufreq_policy *unused,
1da177e4
LT
254 const char *buf, size_t count)
255{
256 unsigned int input;
257 int ret;
ffac80e9 258 ret = sscanf(buf, "%u", &input);
1da177e4 259
3fc54d37 260 mutex_lock(&dbs_mutex);
32ee8c3e 261 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 262 input < MIN_FREQUENCY_UP_THRESHOLD) {
3fc54d37 263 mutex_unlock(&dbs_mutex);
1da177e4
LT
264 return -EINVAL;
265 }
266
267 dbs_tuners_ins.up_threshold = input;
3fc54d37 268 mutex_unlock(&dbs_mutex);
1da177e4
LT
269
270 return count;
271}
272
001893cd 273static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
3d5ee9e5
DJ
274 const char *buf, size_t count)
275{
276 unsigned int input;
277 int ret;
278
279 unsigned int j;
32ee8c3e 280
ffac80e9 281 ret = sscanf(buf, "%u", &input);
2b03f891 282 if (ret != 1)
3d5ee9e5
DJ
283 return -EINVAL;
284
2b03f891 285 if (input > 1)
3d5ee9e5 286 input = 1;
32ee8c3e 287
3fc54d37 288 mutex_lock(&dbs_mutex);
2b03f891 289 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 290 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
291 return count;
292 }
293 dbs_tuners_ins.ignore_nice = input;
294
ccb2fe20 295 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 296 for_each_online_cpu(j) {
ccb2fe20
VP
297 struct cpu_dbs_info_s *dbs_info;
298 dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 299 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
300 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
301 if (dbs_tuners_ins.ignore_nice)
302 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
303
3d5ee9e5 304 }
3fc54d37 305 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
306
307 return count;
308}
309
05ca0350
AS
310static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
311 const char *buf, size_t count)
312{
313 unsigned int input;
314 int ret;
315 ret = sscanf(buf, "%u", &input);
316
317 if (ret != 1)
318 return -EINVAL;
319
320 if (input > 1000)
321 input = 1000;
322
323 mutex_lock(&dbs_mutex);
324 dbs_tuners_ins.powersave_bias = input;
325 ondemand_powersave_bias_init();
326 mutex_unlock(&dbs_mutex);
327
328 return count;
329}
330
1da177e4
LT
331#define define_one_rw(_name) \
332static struct freq_attr _name = \
333__ATTR(_name, 0644, show_##_name, store_##_name)
334
335define_one_rw(sampling_rate);
1da177e4 336define_one_rw(up_threshold);
001893cd 337define_one_rw(ignore_nice_load);
05ca0350 338define_one_rw(powersave_bias);
1da177e4 339
2b03f891 340static struct attribute *dbs_attributes[] = {
1da177e4
LT
341 &sampling_rate_max.attr,
342 &sampling_rate_min.attr,
343 &sampling_rate.attr,
1da177e4 344 &up_threshold.attr,
001893cd 345 &ignore_nice_load.attr,
05ca0350 346 &powersave_bias.attr,
1da177e4
LT
347 NULL
348};
349
350static struct attribute_group dbs_attr_group = {
351 .attrs = dbs_attributes,
352 .name = "ondemand",
353};
354
355/************************** sysfs end ************************/
356
2f8a835c 357static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 358{
c43aa3bd 359 unsigned int max_load_freq;
1da177e4
LT
360
361 struct cpufreq_policy *policy;
362 unsigned int j;
363
1da177e4
LT
364 if (!this_dbs_info->enable)
365 return;
366
05ca0350 367 this_dbs_info->freq_lo = 0;
1da177e4 368 policy = this_dbs_info->cur_policy;
ea487615 369
32ee8c3e 370 /*
c29f1403
DJ
371 * Every sampling_rate, we check, if current idle time is less
372 * than 20% (default), then we try to increase frequency
ccb2fe20 373 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
374 * frequency which can sustain the load while keeping idle time over
375 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 376 *
32ee8c3e
DJ
377 * Any frequency increase takes it to the maximum frequency.
378 * Frequency reduction happens at minimum steps of
379 * 5% (default) of current frequency
1da177e4
LT
380 */
381
c43aa3bd 382 /* Get Absolute Load - in terms of freq */
383 max_load_freq = 0;
384
835481d9 385 for_each_cpu(j, policy->cpus) {
1da177e4 386 struct cpu_dbs_info_s *j_dbs_info;
c43aa3bd 387 cputime64_t cur_wall_time, cur_idle_time;
388 unsigned int idle_time, wall_time;
389 unsigned int load, load_freq;
390 int freq_avg;
1da177e4 391
1da177e4 392 j_dbs_info = &per_cpu(cpu_dbs_info, j);
3430502d 393
394 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
395
c43aa3bd 396 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
397 j_dbs_info->prev_cpu_wall);
398 j_dbs_info->prev_cpu_wall = cur_wall_time;
399
c43aa3bd 400 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 401 j_dbs_info->prev_cpu_idle);
c43aa3bd 402 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 403
1ca3abdb
VP
404 if (dbs_tuners_ins.ignore_nice) {
405 cputime64_t cur_nice;
406 unsigned long cur_nice_jiffies;
407
408 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
409 j_dbs_info->prev_cpu_nice);
410 /*
411 * Assumption: nice time between sampling periods will
412 * be less than 2^32 jiffies for 32 bit sys
413 */
414 cur_nice_jiffies = (unsigned long)
415 cputime64_to_jiffies64(cur_nice);
416
417 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
418 idle_time += jiffies_to_usecs(cur_nice_jiffies);
419 }
420
3430502d 421 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 422 continue;
c43aa3bd 423
424 load = 100 * (wall_time - idle_time) / wall_time;
425
426 freq_avg = __cpufreq_driver_getavg(policy, j);
427 if (freq_avg <= 0)
428 freq_avg = policy->cur;
429
430 load_freq = load * freq_avg;
431 if (load_freq > max_load_freq)
432 max_load_freq = load_freq;
1da177e4
LT
433 }
434
ccb2fe20 435 /* Check for frequency increase */
c43aa3bd 436 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
c11420a6 437 /* if we are already at full speed then break out early */
05ca0350
AS
438 if (!dbs_tuners_ins.powersave_bias) {
439 if (policy->cur == policy->max)
440 return;
441
442 __cpufreq_driver_target(policy, policy->max,
443 CPUFREQ_RELATION_H);
444 } else {
445 int freq = powersave_bias_target(policy, policy->max,
446 CPUFREQ_RELATION_H);
447 __cpufreq_driver_target(policy, freq,
448 CPUFREQ_RELATION_L);
449 }
1da177e4
LT
450 return;
451 }
452
453 /* Check for frequency decrease */
c29f1403
DJ
454 /* if we cannot reduce the frequency anymore, break out early */
455 if (policy->cur == policy->min)
456 return;
1da177e4 457
c29f1403
DJ
458 /*
459 * The optimal frequency is the frequency that is the lowest that
460 * can support the current CPU usage without triggering the up
461 * policy. To be safe, we focus 10 points under the threshold.
462 */
e9d95bf7 463 if (max_load_freq <
464 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
465 policy->cur) {
c43aa3bd 466 unsigned int freq_next;
e9d95bf7 467 freq_next = max_load_freq /
468 (dbs_tuners_ins.up_threshold -
469 dbs_tuners_ins.down_differential);
dfde5d62 470
05ca0350
AS
471 if (!dbs_tuners_ins.powersave_bias) {
472 __cpufreq_driver_target(policy, freq_next,
473 CPUFREQ_RELATION_L);
474 } else {
475 int freq = powersave_bias_target(policy, freq_next,
476 CPUFREQ_RELATION_L);
477 __cpufreq_driver_target(policy, freq,
478 CPUFREQ_RELATION_L);
479 }
ccb2fe20 480 }
1da177e4
LT
481}
482
c4028958 483static void do_dbs_timer(struct work_struct *work)
32ee8c3e 484{
529af7a1
VP
485 struct cpu_dbs_info_s *dbs_info =
486 container_of(work, struct cpu_dbs_info_s, work.work);
487 unsigned int cpu = dbs_info->cpu;
488 int sample_type = dbs_info->sample_type;
489
1ce28d6b
AS
490 /* We want all CPUs to do sampling nearly on same jiffy */
491 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
c4028958 492
1ce28d6b 493 delay -= jiffies % delay;
2f8a835c 494
56463b78 495 if (lock_policy_rwsem_write(cpu) < 0)
2cd7cbdf 496 return;
56463b78
VP
497
498 if (!dbs_info->enable) {
499 unlock_policy_rwsem_write(cpu);
500 return;
501 }
502
05ca0350 503 /* Common NORMAL_SAMPLE setup */
c4028958 504 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 505 if (!dbs_tuners_ins.powersave_bias ||
c4028958 506 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 507 dbs_check_cpu(dbs_info);
05ca0350
AS
508 if (dbs_info->freq_lo) {
509 /* Setup timer for SUB_SAMPLE */
c4028958 510 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
511 delay = dbs_info->freq_hi_jiffies;
512 }
513 } else {
514 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 515 dbs_info->freq_lo, CPUFREQ_RELATION_H);
05ca0350 516 }
1ce28d6b 517 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
56463b78 518 unlock_policy_rwsem_write(cpu);
32ee8c3e 519}
1da177e4 520
529af7a1 521static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 522{
1ce28d6b
AS
523 /* We want all CPUs to do sampling nearly on same jiffy */
524 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
525 delay -= jiffies % delay;
2f8a835c 526
c18a1483 527 dbs_info->enable = 1;
05ca0350 528 ondemand_powersave_bias_init();
c4028958 529 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 530 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
529af7a1 531 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
2b03f891 532 delay);
1da177e4
LT
533}
534
2cd7cbdf 535static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 536{
2cd7cbdf
LT
537 dbs_info->enable = 0;
538 cancel_delayed_work(&dbs_info->work);
1da177e4
LT
539}
540
541static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
542 unsigned int event)
543{
544 unsigned int cpu = policy->cpu;
545 struct cpu_dbs_info_s *this_dbs_info;
546 unsigned int j;
914f7c31 547 int rc;
1da177e4
LT
548
549 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
550
551 switch (event) {
552 case CPUFREQ_GOV_START:
ffac80e9 553 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
554 return -EINVAL;
555
1da177e4
LT
556 if (this_dbs_info->enable) /* Already enabled */
557 break;
32ee8c3e 558
3fc54d37 559 mutex_lock(&dbs_mutex);
2f8a835c 560 dbs_enable++;
914f7c31
JG
561
562 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
563 if (rc) {
914f7c31
JG
564 dbs_enable--;
565 mutex_unlock(&dbs_mutex);
566 return rc;
567 }
568
835481d9 569 for_each_cpu(j, policy->cpus) {
1da177e4
LT
570 struct cpu_dbs_info_s *j_dbs_info;
571 j_dbs_info = &per_cpu(cpu_dbs_info, j);
572 j_dbs_info->cur_policy = policy;
32ee8c3e 573
3430502d 574 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
575 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
576 if (dbs_tuners_ins.ignore_nice) {
577 j_dbs_info->prev_cpu_nice =
578 kstat_cpu(j).cpustat.nice;
579 }
1da177e4 580 }
529af7a1 581 this_dbs_info->cpu = cpu;
1da177e4
LT
582 /*
583 * Start the timerschedule work, when this governor
584 * is used for first time
585 */
586 if (dbs_enable == 1) {
587 unsigned int latency;
588 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
589 latency = policy->cpuinfo.transition_latency / 1000;
590 if (latency == 0)
591 latency = 1;
1da177e4 592
df8b59be 593 def_sampling_rate = latency *
1da177e4 594 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
df8b59be
DJ
595
596 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
597 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
598
1da177e4 599 dbs_tuners_ins.sampling_rate = def_sampling_rate;
1da177e4 600 }
529af7a1 601 dbs_timer_init(this_dbs_info);
32ee8c3e 602
3fc54d37 603 mutex_unlock(&dbs_mutex);
1da177e4
LT
604 break;
605
606 case CPUFREQ_GOV_STOP:
3fc54d37 607 mutex_lock(&dbs_mutex);
2cd7cbdf 608 dbs_timer_exit(this_dbs_info);
1da177e4
LT
609 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
610 dbs_enable--;
3fc54d37 611 mutex_unlock(&dbs_mutex);
1da177e4
LT
612
613 break;
614
615 case CPUFREQ_GOV_LIMITS:
3fc54d37 616 mutex_lock(&dbs_mutex);
1da177e4 617 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 618 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 619 policy->max, CPUFREQ_RELATION_H);
1da177e4 620 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 621 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 622 policy->min, CPUFREQ_RELATION_L);
3fc54d37 623 mutex_unlock(&dbs_mutex);
1da177e4
LT
624 break;
625 }
626 return 0;
627}
628
c4d14bc0
SW
629#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630static
631#endif
1c256245
TR
632struct cpufreq_governor cpufreq_gov_ondemand = {
633 .name = "ondemand",
634 .governor = cpufreq_governor_dbs,
635 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
636 .owner = THIS_MODULE,
1da177e4 637};
1da177e4
LT
638
639static int __init cpufreq_gov_dbs_init(void)
640{
888a794c 641 int err;
80800913 642 cputime64_t wall;
4f6e6b9f
AR
643 u64 idle_time;
644 int cpu = get_cpu();
80800913 645
4f6e6b9f
AR
646 idle_time = get_cpu_idle_time_us(cpu, &wall);
647 put_cpu();
80800913 648 if (idle_time != -1ULL) {
649 /* Idle micro accounting is supported. Use finer thresholds */
650 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651 dbs_tuners_ins.down_differential =
652 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
653 }
888a794c 654
56463b78
VP
655 kondemand_wq = create_workqueue("kondemand");
656 if (!kondemand_wq) {
657 printk(KERN_ERR "Creation of kondemand failed\n");
658 return -EFAULT;
659 }
888a794c
AM
660 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
661 if (err)
662 destroy_workqueue(kondemand_wq);
663
664 return err;
1da177e4
LT
665}
666
667static void __exit cpufreq_gov_dbs_exit(void)
668{
1c256245 669 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
56463b78 670 destroy_workqueue(kondemand_wq);
1da177e4
LT
671}
672
673
ffac80e9
VP
674MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
675MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
676MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 677 "Low Latency Frequency Transition capable processors");
ffac80e9 678MODULE_LICENSE("GPL");
1da177e4 679
6915719b
JW
680#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
681fs_initcall(cpufreq_gov_dbs_init);
682#else
1da177e4 683module_init(cpufreq_gov_dbs_init);
6915719b 684#endif
1da177e4 685module_exit(cpufreq_gov_dbs_exit);