]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/cpufreq/intel_pstate.c
UBUNTU: [Config] Set CONFIG_PWM_PCA9685=m for amd64 and i386
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
938d21a2
PL
42#define ATOM_RATIOS 0x66a
43#define ATOM_VIDS 0x66b
44#define ATOM_TURBO_RATIOS 0x66c
45#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 46
9522a2ff
SP
47#ifdef CONFIG_ACPI
48#include <acpi/processor.h>
17669006 49#include <acpi/cppc_acpi.h>
9522a2ff
SP
50#endif
51
f0fe3cd7 52#define FRAC_BITS 8
93f0822d
DB
53#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 55
a1c9787d
RW
56#define EXT_BITS 6
57#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
58#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 60
93f0822d
DB
61static inline int32_t mul_fp(int32_t x, int32_t y)
62{
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64}
65
7180dddf 66static inline int32_t div_fp(s64 x, s64 y)
93f0822d 67{
7180dddf 68 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
69}
70
d022a65e
DB
71static inline int ceiling_fp(int32_t x)
72{
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80}
81
a1c9787d
RW
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
eae48f04
SP
188/**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228};
229
13ad7701
SP
230/**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
2f1d407a 233 * @policy: CPUFreq policy value
13ad7701 234 * @update_util: CPUFreq utility callback information
4578ee7e 235 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
13ad7701
SP
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
eae48f04
SP
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
9522a2ff
SP
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
8442885f 256 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
13ad7701
SP
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
93f0822d
DB
264struct cpudata {
265 int cpu;
266
2f1d407a 267 unsigned int policy;
a4675fbc 268 struct update_util_data update_util;
4578ee7e 269 bool update_util_set;
93f0822d 270
93f0822d 271 struct pstate_data pstate;
007bea09 272 struct vid_data vid;
93f0822d 273 struct _pid pid;
93f0822d 274
09c448d3 275 u64 last_update;
a4675fbc 276 u64 last_sample_time;
93f0822d
DB
277 u64 prev_aperf;
278 u64 prev_mperf;
4055fad3 279 u64 prev_tsc;
63d1d656 280 u64 prev_cummulative_iowait;
d37e2b76 281 struct sample sample;
eae48f04 282 struct perf_limits *perf_limits;
9522a2ff
SP
283#ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286#endif
09c448d3 287 unsigned int iowait_boost;
984edbdc 288 s16 epp_powersave;
8442885f 289 s16 epp_policy;
984edbdc
SP
290 s16 epp_default;
291 s16 epp_saved;
93f0822d
DB
292};
293
294static struct cpudata **all_cpu_data;
13ad7701
SP
295
296/**
3954517e 297 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
93f0822d
DB
308struct pstate_adjust_policy {
309 int sample_rate_ms;
a4675fbc 310 s64 sample_rate_ns;
93f0822d
DB
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316};
317
13ad7701
SP
318/**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
016c8150
DB
332struct pstate_funcs {
333 int (*get_max)(void);
3bcc6fa9 334 int (*get_max_physical)(void);
016c8150
DB
335 int (*get_min)(void);
336 int (*get_turbo)(void);
b27580b0 337 int (*get_scaling)(void);
fdfdb2b1 338 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 339 void (*get_vid)(struct cpudata *);
157386b6 340 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
341};
342
13ad7701
SP
343/**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
016c8150
DB
348struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
93f0822d
DB
351};
352
157386b6 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 355
4a7cb7a9
JZ
356static struct pstate_adjust_policy pid_params __read_mostly;
357static struct pstate_funcs pstate_funcs __read_mostly;
358static int hwp_active __read_mostly;
eae48f04 359static bool per_cpu_limits __read_mostly;
016c8150 360
9522a2ff
SP
361#ifdef CONFIG_ACPI
362static bool acpi_ppc;
363#endif
13ad7701 364
51443fbf
PB
365static struct perf_limits performance_limits = {
366 .no_turbo = 0,
367 .turbo_disabled = 0,
368 .max_perf_pct = 100,
d5dd33d9 369 .max_perf = int_ext_tofp(1),
51443fbf 370 .min_perf_pct = 100,
d5dd33d9 371 .min_perf = int_ext_tofp(1),
51443fbf
PB
372 .max_policy_pct = 100,
373 .max_sysfs_pct = 100,
374 .min_policy_pct = 0,
375 .min_sysfs_pct = 0,
376};
377
378static struct perf_limits powersave_limits = {
93f0822d 379 .no_turbo = 0,
4521e1a0 380 .turbo_disabled = 0,
93f0822d 381 .max_perf_pct = 100,
d5dd33d9 382 .max_perf = int_ext_tofp(1),
93f0822d
DB
383 .min_perf_pct = 0,
384 .min_perf = 0,
d8f469e9
DB
385 .max_policy_pct = 100,
386 .max_sysfs_pct = 100,
a0475992
KCA
387 .min_policy_pct = 0,
388 .min_sysfs_pct = 0,
93f0822d
DB
389};
390
51443fbf
PB
391#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392static struct perf_limits *limits = &performance_limits;
393#else
394static struct perf_limits *limits = &powersave_limits;
395#endif
396
a410c03d
SP
397static DEFINE_MUTEX(intel_pstate_limits_lock);
398
9522a2ff 399#ifdef CONFIG_ACPI
2b3ec765
SP
400
401static bool intel_pstate_get_ppc_enable_status(void)
402{
403 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405 return true;
406
407 return acpi_ppc;
408}
409
17669006
RW
410#ifdef CONFIG_ACPI_CPPC_LIB
411
412/* The work item is needed to avoid CPU hotplug locking issues */
413static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414{
415 sched_set_itmt_support();
416}
417
418static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420static void intel_pstate_set_itmt_prio(int cpu)
421{
422 struct cppc_perf_caps cppc_perf;
423 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424 int ret;
425
426 ret = cppc_get_perf_caps(cpu, &cppc_perf);
427 if (ret)
428 return;
429
430 /*
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
434 */
435 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437 if (max_highest_perf <= min_highest_perf) {
438 if (cppc_perf.highest_perf > max_highest_perf)
439 max_highest_perf = cppc_perf.highest_perf;
440
441 if (cppc_perf.highest_perf < min_highest_perf)
442 min_highest_perf = cppc_perf.highest_perf;
443
444 if (max_highest_perf > min_highest_perf) {
445 /*
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
449 * to invoke it.
450 */
451 schedule_work(&sched_itmt_work);
452 }
453 }
454}
455#else
456static void intel_pstate_set_itmt_prio(int cpu)
457{
458}
459#endif
460
9522a2ff
SP
461static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462{
463 struct cpudata *cpu;
9522a2ff
SP
464 int ret;
465 int i;
466
17669006
RW
467 if (hwp_active) {
468 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 469 return;
17669006 470 }
e59a8f7f 471
2b3ec765 472 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
473 return;
474
475 cpu = all_cpu_data[policy->cpu];
476
477 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478 policy->cpu);
479 if (ret)
480 return;
481
482 /*
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
485 * list directly.
486 */
487 if (cpu->acpi_perf_data.control_register.space_id !=
488 ACPI_ADR_SPACE_FIXED_HARDWARE)
489 goto err;
490
491 /*
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
494 */
495 if (cpu->acpi_perf_data.state_count < 2)
496 goto err;
497
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502 (u32) cpu->acpi_perf_data.states[i].core_frequency,
503 (u32) cpu->acpi_perf_data.states[i].power,
504 (u32) cpu->acpi_perf_data.states[i].control);
505 }
506
507 /*
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
b00345d1 515 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
516 * Also need to convert to MHz as _PSS freq is in MHz.
517 */
b00345d1 518 if (!limits->turbo_disabled)
9522a2ff
SP
519 cpu->acpi_perf_data.states[0].core_frequency =
520 policy->cpuinfo.max_freq / 1000;
521 cpu->valid_pss_table = true;
6cacd115 522 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
523
524 return;
525
526 err:
527 cpu->valid_pss_table = false;
528 acpi_processor_unregister_performance(policy->cpu);
529}
530
531static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532{
533 struct cpudata *cpu;
534
535 cpu = all_cpu_data[policy->cpu];
536 if (!cpu->valid_pss_table)
537 return;
538
539 acpi_processor_unregister_performance(policy->cpu);
540}
541
542#else
7a3ba767 543static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
544{
545}
546
7a3ba767 547static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
548{
549}
550#endif
551
93f0822d 552static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 553 int deadband, int integral) {
b54a0dfd
PL
554 pid->setpoint = int_tofp(setpoint);
555 pid->deadband = int_tofp(deadband);
93f0822d 556 pid->integral = int_tofp(integral);
d98d099b 557 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
558}
559
560static inline void pid_p_gain_set(struct _pid *pid, int percent)
561{
22590efb 562 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
563}
564
565static inline void pid_i_gain_set(struct _pid *pid, int percent)
566{
22590efb 567 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
568}
569
570static inline void pid_d_gain_set(struct _pid *pid, int percent)
571{
22590efb 572 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
573}
574
d253d2a5 575static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 576{
d253d2a5 577 signed int result;
93f0822d
DB
578 int32_t pterm, dterm, fp_error;
579 int32_t integral_limit;
580
b54a0dfd 581 fp_error = pid->setpoint - busy;
93f0822d 582
b54a0dfd 583 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
584 return 0;
585
586 pterm = mul_fp(pid->p_gain, fp_error);
587
588 pid->integral += fp_error;
589
e0d4c8f8
KCA
590 /*
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
595 *
596 * The value of 30 was chosen through experimentation.
597 */
93f0822d
DB
598 integral_limit = int_tofp(30);
599 if (pid->integral > integral_limit)
600 pid->integral = integral_limit;
601 if (pid->integral < -integral_limit)
602 pid->integral = -integral_limit;
603
d253d2a5
BS
604 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605 pid->last_err = fp_error;
93f0822d
DB
606
607 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 608 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
609 return (signed int)fp_toint(result);
610}
611
612static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613{
016c8150
DB
614 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 617
2d8d1f18 618 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
619}
620
93f0822d
DB
621static inline void intel_pstate_reset_all_pid(void)
622{
623 unsigned int cpu;
845c1cbe 624
93f0822d
DB
625 for_each_online_cpu(cpu) {
626 if (all_cpu_data[cpu])
627 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628 }
629}
630
4521e1a0
GM
631static inline void update_turbo_state(void)
632{
633 u64 misc_en;
634 struct cpudata *cpu;
635
636 cpu = all_cpu_data[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 638 limits->turbo_disabled =
4521e1a0
GM
639 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641}
642
8442885f
SP
643static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644{
645 u64 epb;
646 int ret;
647
648 if (!static_cpu_has(X86_FEATURE_EPB))
649 return -ENXIO;
650
651 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652 if (ret)
653 return (s16)ret;
654
655 return (s16)(epb & 0x0f);
656}
657
658static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659{
660 s16 epp;
661
984edbdc
SP
662 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663 /*
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
666 */
667 if (!hwp_req_data) {
668 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669 &hwp_req_data);
670 if (epp)
671 return epp;
672 }
8442885f 673 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 674 } else {
8442885f
SP
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp = intel_pstate_get_epb(cpu_data);
984edbdc 677 }
8442885f
SP
678
679 return epp;
680}
681
984edbdc 682static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
683{
684 u64 epb;
984edbdc 685 int ret;
8442885f
SP
686
687 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 688 return -ENXIO;
8442885f 689
984edbdc
SP
690 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691 if (ret)
692 return ret;
8442885f
SP
693
694 epb = (epb & ~0x0f) | pref;
695 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
696
697 return 0;
8442885f
SP
698}
699
984edbdc
SP
700/*
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
703 * index String
704 *-------------------------------------
705 * 0 default
706 * 1 performance
707 * 2 balance_performance
708 * 3 balance_power
709 * 4 power
710 */
711static const char * const energy_perf_strings[] = {
712 "default",
713 "performance",
714 "balance_performance",
715 "balance_power",
716 "power",
717 NULL
718};
719
720static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721{
722 s16 epp;
723 int index = -EINVAL;
724
725 epp = intel_pstate_get_epp(cpu_data, 0);
726 if (epp < 0)
727 return epp;
728
729 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730 /*
731 * Range:
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
735 * 0xC0-0xFF : Power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB)) {
742 /*
743 * Range:
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
747 * 0x0C-0x0F : Power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
750 * effectively.
751 */
752 index = (epp >> 2) + 1;
753 }
754
755 return index;
756}
757
758static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759 int pref_index)
760{
761 int epp = -EINVAL;
762 int ret;
763
764 if (!pref_index)
765 epp = cpu_data->epp_default;
766
767 mutex_lock(&intel_pstate_limits_lock);
768
769 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770 u64 value;
771
772 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773 if (ret)
774 goto return_pref;
775
776 value &= ~GENMASK_ULL(31, 24);
777
778 /*
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
784 */
785 if (epp == -EINVAL)
786 epp = (pref_index - 1) << 6;
787
788 value |= (u64)epp << 24;
789 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790 } else {
791 if (epp == -EINVAL)
792 epp = (pref_index - 1) << 2;
793 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794 }
795return_pref:
796 mutex_unlock(&intel_pstate_limits_lock);
797
798 return ret;
799}
800
801static ssize_t show_energy_performance_available_preferences(
802 struct cpufreq_policy *policy, char *buf)
803{
804 int i = 0;
805 int ret = 0;
806
807 while (energy_perf_strings[i] != NULL)
808 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810 ret += sprintf(&buf[ret], "\n");
811
812 return ret;
813}
814
815cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817static ssize_t store_energy_performance_preference(
818 struct cpufreq_policy *policy, const char *buf, size_t count)
819{
820 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821 char str_preference[21];
822 int ret, i = 0;
823
824 ret = sscanf(buf, "%20s", str_preference);
825 if (ret != 1)
826 return -EINVAL;
827
828 while (energy_perf_strings[i] != NULL) {
829 if (!strcmp(str_preference, energy_perf_strings[i])) {
830 intel_pstate_set_energy_pref_index(cpu_data, i);
831 return count;
832 }
833 ++i;
834 }
835
836 return -EINVAL;
837}
838
839static ssize_t show_energy_performance_preference(
840 struct cpufreq_policy *policy, char *buf)
841{
842 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843 int preference;
844
845 preference = intel_pstate_get_energy_pref_index(cpu_data);
846 if (preference < 0)
847 return preference;
848
849 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
850}
851
852cpufreq_freq_attr_rw(energy_performance_preference);
853
854static struct freq_attr *hwp_cpufreq_attrs[] = {
855 &energy_performance_preference,
856 &energy_performance_available_preferences,
857 NULL,
858};
859
111b8b3f 860static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 861{
74da56ce 862 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 863 struct perf_limits *perf_limits = limits;
74da56ce
KCA
864 u64 value, cap;
865
111b8b3f 866 for_each_cpu(cpu, policy->cpus) {
eae48f04 867 int max_perf_pct, min_perf_pct;
8442885f
SP
868 struct cpudata *cpu_data = all_cpu_data[cpu];
869 s16 epp;
eae48f04
SP
870
871 if (per_cpu_limits)
872 perf_limits = all_cpu_data[cpu]->perf_limits;
873
f9f4872d
SP
874 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875 hw_min = HWP_LOWEST_PERF(cap);
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
eae48f04
SP
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
2f86dc4c 882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 883 adj_range = min_perf_pct * range / 100;
74da56ce 884 min = hw_min + adj_range;
2f86dc4c
DB
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
eae48f04 888 adj_range = max_perf_pct * range / 100;
74da56ce 889 max = hw_min + adj_range;
51443fbf 890 if (limits->no_turbo) {
74da56ce
KCA
891 hw_max = HWP_GUARANTEED_PERF(cap);
892 if (hw_max < max)
893 max = hw_max;
2f86dc4c
DB
894 }
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
8442885f
SP
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
984edbdc
SP
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
8442885f
SP
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 912 cpu_data->epp_powersave = epp;
8442885f 913 /* If EPP read was failed, then don't try to write */
984edbdc 914 if (epp < 0)
8442885f 915 goto skip_epp;
8442885f 916
8442885f
SP
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
984edbdc 921 if (cpu_data->epp_powersave < 0)
8442885f
SP
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
984edbdc 935 epp = cpu_data->epp_powersave;
8442885f 936 }
984edbdc 937update_epp:
8442885f
SP
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944skip_epp:
2f86dc4c
DB
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
41cfd64c 947}
2f86dc4c 948
ba41e1bc
RW
949static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950{
951 if (hwp_active)
111b8b3f 952 intel_pstate_hwp_set(policy);
ba41e1bc
RW
953
954 return 0;
955}
956
984edbdc
SP
957static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958{
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967}
968
8442885f
SP
969static int intel_pstate_resume(struct cpufreq_policy *policy)
970{
aa439248
RW
971 int ret;
972
8442885f
SP
973 if (!hwp_active)
974 return 0;
975
aa439248
RW
976 mutex_lock(&intel_pstate_limits_lock);
977
8442885f 978 all_cpu_data[policy->cpu]->epp_policy = 0;
8442885f 979
aa439248
RW
980 ret = intel_pstate_hwp_set_policy(policy);
981
982 mutex_unlock(&intel_pstate_limits_lock);
983
984 return ret;
8442885f
SP
985}
986
111b8b3f 987static void intel_pstate_update_policies(void)
41cfd64c 988{
111b8b3f
RW
989 int cpu;
990
991 for_each_possible_cpu(cpu)
992 cpufreq_update_policy(cpu);
2f86dc4c
DB
993}
994
93f0822d
DB
995/************************** debugfs begin ************************/
996static int pid_param_set(void *data, u64 val)
997{
998 *(u32 *)data = val;
999 intel_pstate_reset_all_pid();
1000 return 0;
1001}
845c1cbe 1002
93f0822d
DB
1003static int pid_param_get(void *data, u64 *val)
1004{
1005 *val = *(u32 *)data;
1006 return 0;
1007}
2d8d1f18 1008DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
1009
1010struct pid_param {
1011 char *name;
1012 void *value;
1013};
1014
1015static struct pid_param pid_files[] = {
016c8150
DB
1016 {"sample_rate_ms", &pid_params.sample_rate_ms},
1017 {"d_gain_pct", &pid_params.d_gain_pct},
1018 {"i_gain_pct", &pid_params.i_gain_pct},
1019 {"deadband", &pid_params.deadband},
1020 {"setpoint", &pid_params.setpoint},
1021 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
1022 {NULL, NULL}
1023};
1024
317dd50e 1025static void __init intel_pstate_debug_expose_params(void)
93f0822d 1026{
317dd50e 1027 struct dentry *debugfs_parent;
93f0822d
DB
1028 int i = 0;
1029
1030 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1031 if (IS_ERR_OR_NULL(debugfs_parent))
1032 return;
1033 while (pid_files[i].name) {
1034 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
1035 debugfs_parent, pid_files[i].value,
1036 &fops_pid_param);
93f0822d
DB
1037 i++;
1038 }
1039}
1040
1041/************************** debugfs end ************************/
1042
1043/************************** sysfs begin ************************/
1044#define show_one(file_name, object) \
1045 static ssize_t show_##file_name \
1046 (struct kobject *kobj, struct attribute *attr, char *buf) \
1047 { \
51443fbf 1048 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
1049 }
1050
d01b1f48
KCA
1051static ssize_t show_turbo_pct(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053{
1054 struct cpudata *cpu;
1055 int total, no_turbo, turbo_pct;
1056 uint32_t turbo_fp;
1057
1058 cpu = all_cpu_data[0];
1059
1060 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1062 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
1063 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1064 return sprintf(buf, "%u\n", turbo_pct);
1065}
1066
0522424e
KCA
1067static ssize_t show_num_pstates(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069{
1070 struct cpudata *cpu;
1071 int total;
1072
1073 cpu = all_cpu_data[0];
1074 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1075 return sprintf(buf, "%u\n", total);
1076}
1077
4521e1a0
GM
1078static ssize_t show_no_turbo(struct kobject *kobj,
1079 struct attribute *attr, char *buf)
1080{
1081 ssize_t ret;
1082
1083 update_turbo_state();
51443fbf
PB
1084 if (limits->turbo_disabled)
1085 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 1086 else
51443fbf 1087 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
1088
1089 return ret;
1090}
1091
93f0822d 1092static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1093 const char *buf, size_t count)
93f0822d
DB
1094{
1095 unsigned int input;
1096 int ret;
845c1cbe 1097
93f0822d
DB
1098 ret = sscanf(buf, "%u", &input);
1099 if (ret != 1)
1100 return -EINVAL;
4521e1a0 1101
a410c03d
SP
1102 mutex_lock(&intel_pstate_limits_lock);
1103
4521e1a0 1104 update_turbo_state();
51443fbf 1105 if (limits->turbo_disabled) {
4836df17 1106 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1107 mutex_unlock(&intel_pstate_limits_lock);
4521e1a0 1108 return -EPERM;
dd5fbf70 1109 }
2f86dc4c 1110
51443fbf 1111 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 1112
b59fe540
SP
1113 mutex_unlock(&intel_pstate_limits_lock);
1114
111b8b3f
RW
1115 intel_pstate_update_policies();
1116
93f0822d
DB
1117 return count;
1118}
1119
1120static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1121 const char *buf, size_t count)
93f0822d
DB
1122{
1123 unsigned int input;
1124 int ret;
845c1cbe 1125
93f0822d
DB
1126 ret = sscanf(buf, "%u", &input);
1127 if (ret != 1)
1128 return -EINVAL;
1129
a410c03d
SP
1130 mutex_lock(&intel_pstate_limits_lock);
1131
51443fbf
PB
1132 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1133 limits->max_perf_pct = min(limits->max_policy_pct,
1134 limits->max_sysfs_pct);
1135 limits->max_perf_pct = max(limits->min_policy_pct,
1136 limits->max_perf_pct);
1137 limits->max_perf_pct = max(limits->min_perf_pct,
1138 limits->max_perf_pct);
d5dd33d9 1139 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
845c1cbe 1140
b59fe540
SP
1141 mutex_unlock(&intel_pstate_limits_lock);
1142
111b8b3f
RW
1143 intel_pstate_update_policies();
1144
93f0822d
DB
1145 return count;
1146}
1147
1148static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1149 const char *buf, size_t count)
93f0822d
DB
1150{
1151 unsigned int input;
1152 int ret;
845c1cbe 1153
93f0822d
DB
1154 ret = sscanf(buf, "%u", &input);
1155 if (ret != 1)
1156 return -EINVAL;
a0475992 1157
a410c03d
SP
1158 mutex_lock(&intel_pstate_limits_lock);
1159
51443fbf
PB
1160 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1161 limits->min_perf_pct = max(limits->min_policy_pct,
1162 limits->min_sysfs_pct);
1163 limits->min_perf_pct = min(limits->max_policy_pct,
1164 limits->min_perf_pct);
1165 limits->min_perf_pct = min(limits->max_perf_pct,
1166 limits->min_perf_pct);
d5dd33d9 1167 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
93f0822d 1168
b59fe540
SP
1169 mutex_unlock(&intel_pstate_limits_lock);
1170
111b8b3f
RW
1171 intel_pstate_update_policies();
1172
93f0822d
DB
1173 return count;
1174}
1175
93f0822d
DB
1176show_one(max_perf_pct, max_perf_pct);
1177show_one(min_perf_pct, min_perf_pct);
1178
1179define_one_global_rw(no_turbo);
1180define_one_global_rw(max_perf_pct);
1181define_one_global_rw(min_perf_pct);
d01b1f48 1182define_one_global_ro(turbo_pct);
0522424e 1183define_one_global_ro(num_pstates);
93f0822d
DB
1184
1185static struct attribute *intel_pstate_attributes[] = {
1186 &no_turbo.attr,
d01b1f48 1187 &turbo_pct.attr,
0522424e 1188 &num_pstates.attr,
93f0822d
DB
1189 NULL
1190};
1191
1192static struct attribute_group intel_pstate_attr_group = {
1193 .attrs = intel_pstate_attributes,
1194};
93f0822d 1195
317dd50e 1196static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1197{
317dd50e 1198 struct kobject *intel_pstate_kobject;
93f0822d
DB
1199 int rc;
1200
1201 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1202 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1203 if (WARN_ON(!intel_pstate_kobject))
1204 return;
1205
2d8d1f18 1206 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1207 if (WARN_ON(rc))
1208 return;
1209
1210 /*
1211 * If per cpu limits are enforced there are no global limits, so
1212 * return without creating max/min_perf_pct attributes
1213 */
1214 if (per_cpu_limits)
1215 return;
1216
1217 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1218 WARN_ON(rc);
1219
1220 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1221 WARN_ON(rc);
1222
93f0822d 1223}
93f0822d 1224/************************** sysfs end ************************/
2f86dc4c 1225
ba88d433 1226static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1227{
f05c9665 1228 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1229 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1230 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1231
ba88d433 1232 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1233 cpudata->epp_policy = 0;
984edbdc
SP
1234 if (cpudata->epp_default == -EINVAL)
1235 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1236}
1237
6e978b22
SP
1238#define MSR_IA32_POWER_CTL_BIT_EE 19
1239
1240/* Disable energy efficiency optimization */
1241static void intel_pstate_disable_ee(int cpu)
1242{
1243 u64 power_ctl;
1244 int ret;
1245
1246 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1247 if (ret)
1248 return;
1249
1250 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1251 pr_info("Disabling energy efficiency optimization\n");
1252 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1253 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1254 }
1255}
1256
938d21a2 1257static int atom_get_min_pstate(void)
19e77c28
DB
1258{
1259 u64 value;
845c1cbe 1260
938d21a2 1261 rdmsrl(ATOM_RATIOS, value);
c16ed060 1262 return (value >> 8) & 0x7F;
19e77c28
DB
1263}
1264
938d21a2 1265static int atom_get_max_pstate(void)
19e77c28
DB
1266{
1267 u64 value;
845c1cbe 1268
938d21a2 1269 rdmsrl(ATOM_RATIOS, value);
c16ed060 1270 return (value >> 16) & 0x7F;
19e77c28 1271}
93f0822d 1272
938d21a2 1273static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1274{
1275 u64 value;
845c1cbe 1276
938d21a2 1277 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 1278 return value & 0x7F;
61d8d2ab
DB
1279}
1280
fdfdb2b1 1281static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1282{
1283 u64 val;
1284 int32_t vid_fp;
1285 u32 vid;
1286
144c8e17 1287 val = (u64)pstate << 8;
51443fbf 1288 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
1289 val |= (u64)1 << 32;
1290
1291 vid_fp = cpudata->vid.min + mul_fp(
1292 int_tofp(pstate - cpudata->pstate.min_pstate),
1293 cpudata->vid.ratio);
1294
1295 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1296 vid = ceiling_fp(vid_fp);
007bea09 1297
21855ff5
DB
1298 if (pstate > cpudata->pstate.max_pstate)
1299 vid = cpudata->vid.turbo;
1300
fdfdb2b1 1301 return val | vid;
007bea09
DB
1302}
1303
1421df63 1304static int silvermont_get_scaling(void)
b27580b0
DB
1305{
1306 u64 value;
1307 int i;
1421df63
PL
1308 /* Defined in Table 35-6 from SDM (Sept 2015) */
1309 static int silvermont_freq_table[] = {
1310 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1311
1312 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1313 i = value & 0x7;
1314 WARN_ON(i > 4);
b27580b0 1315
1421df63
PL
1316 return silvermont_freq_table[i];
1317}
b27580b0 1318
1421df63
PL
1319static int airmont_get_scaling(void)
1320{
1321 u64 value;
1322 int i;
1323 /* Defined in Table 35-10 from SDM (Sept 2015) */
1324 static int airmont_freq_table[] = {
1325 83300, 100000, 133300, 116700, 80000,
1326 93300, 90000, 88900, 87500};
1327
1328 rdmsrl(MSR_FSB_FREQ, value);
1329 i = value & 0xF;
1330 WARN_ON(i > 8);
1331
1332 return airmont_freq_table[i];
b27580b0
DB
1333}
1334
938d21a2 1335static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1336{
1337 u64 value;
1338
938d21a2 1339 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
1340 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1341 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1342 cpudata->vid.ratio = div_fp(
1343 cpudata->vid.max - cpudata->vid.min,
1344 int_tofp(cpudata->pstate.max_pstate -
1345 cpudata->pstate.min_pstate));
21855ff5 1346
938d21a2 1347 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 1348 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1349}
1350
016c8150 1351static int core_get_min_pstate(void)
93f0822d
DB
1352{
1353 u64 value;
845c1cbe 1354
05e99c8c 1355 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1356 return (value >> 40) & 0xFF;
1357}
1358
3bcc6fa9 1359static int core_get_max_pstate_physical(void)
93f0822d
DB
1360{
1361 u64 value;
845c1cbe 1362
05e99c8c 1363 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1364 return (value >> 8) & 0xFF;
1365}
1366
016c8150 1367static int core_get_max_pstate(void)
93f0822d 1368{
6a35fc2d
SP
1369 u64 tar;
1370 u64 plat_info;
1371 int max_pstate;
1372 int err;
1373
1374 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1375 max_pstate = (plat_info >> 8) & 0xFF;
1376
1377 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1378 if (!err) {
1379 /* Do some sanity checking for safety */
1380 if (plat_info & 0x600000000) {
1381 u64 tdp_ctrl;
1382 u64 tdp_ratio;
1383 int tdp_msr;
1384
1385 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1386 if (err)
1387 goto skip_tar;
1388
5fc8f707 1389 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
1390 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1391 if (err)
1392 goto skip_tar;
1393
1becf035
SP
1394 /* For level 1 and 2, bits[23:16] contain the ratio */
1395 if (tdp_ctrl)
1396 tdp_ratio >>= 16;
1397
1398 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
1399 if (tdp_ratio - 1 == tar) {
1400 max_pstate = tar;
1401 pr_debug("max_pstate=TAC %x\n", max_pstate);
1402 } else {
1403 goto skip_tar;
1404 }
1405 }
1406 }
845c1cbe 1407
6a35fc2d
SP
1408skip_tar:
1409 return max_pstate;
93f0822d
DB
1410}
1411
016c8150 1412static int core_get_turbo_pstate(void)
93f0822d
DB
1413{
1414 u64 value;
1415 int nont, ret;
845c1cbe 1416
100cf6f2 1417 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1418 nont = core_get_max_pstate();
285cb990 1419 ret = (value) & 255;
93f0822d
DB
1420 if (ret <= nont)
1421 ret = nont;
1422 return ret;
1423}
1424
b27580b0
DB
1425static inline int core_get_scaling(void)
1426{
1427 return 100000;
1428}
1429
fdfdb2b1 1430static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1431{
1432 u64 val;
1433
144c8e17 1434 val = (u64)pstate << 8;
51443fbf 1435 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1436 val |= (u64)1 << 32;
1437
fdfdb2b1 1438 return val;
016c8150
DB
1439}
1440
b34ef932
DC
1441static int knl_get_turbo_pstate(void)
1442{
1443 u64 value;
1444 int nont, ret;
1445
100cf6f2 1446 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1447 nont = core_get_max_pstate();
1448 ret = (((value) >> 8) & 0xFF);
1449 if (ret <= nont)
1450 ret = nont;
1451 return ret;
1452}
1453
016c8150
DB
1454static struct cpu_defaults core_params = {
1455 .pid_policy = {
1456 .sample_rate_ms = 10,
1457 .deadband = 0,
1458 .setpoint = 97,
1459 .p_gain_pct = 20,
1460 .d_gain_pct = 0,
1461 .i_gain_pct = 0,
1462 },
1463 .funcs = {
1464 .get_max = core_get_max_pstate,
3bcc6fa9 1465 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1466 .get_min = core_get_min_pstate,
1467 .get_turbo = core_get_turbo_pstate,
b27580b0 1468 .get_scaling = core_get_scaling,
fdfdb2b1 1469 .get_val = core_get_val,
157386b6 1470 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1471 },
1472};
1473
42ce8921 1474static const struct cpu_defaults silvermont_params = {
1421df63
PL
1475 .pid_policy = {
1476 .sample_rate_ms = 10,
1477 .deadband = 0,
1478 .setpoint = 60,
1479 .p_gain_pct = 14,
1480 .d_gain_pct = 0,
1481 .i_gain_pct = 4,
1482 },
1483 .funcs = {
1484 .get_max = atom_get_max_pstate,
1485 .get_max_physical = atom_get_max_pstate,
1486 .get_min = atom_get_min_pstate,
1487 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1488 .get_val = atom_get_val,
1421df63
PL
1489 .get_scaling = silvermont_get_scaling,
1490 .get_vid = atom_get_vid,
e70eed2b 1491 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1492 },
1493};
1494
42ce8921 1495static const struct cpu_defaults airmont_params = {
19e77c28
DB
1496 .pid_policy = {
1497 .sample_rate_ms = 10,
1498 .deadband = 0,
6a82ba6d 1499 .setpoint = 60,
19e77c28
DB
1500 .p_gain_pct = 14,
1501 .d_gain_pct = 0,
1502 .i_gain_pct = 4,
1503 },
1504 .funcs = {
938d21a2
PL
1505 .get_max = atom_get_max_pstate,
1506 .get_max_physical = atom_get_max_pstate,
1507 .get_min = atom_get_min_pstate,
1508 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1509 .get_val = atom_get_val,
1421df63 1510 .get_scaling = airmont_get_scaling,
938d21a2 1511 .get_vid = atom_get_vid,
e70eed2b 1512 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1513 },
1514};
1515
42ce8921 1516static const struct cpu_defaults knl_params = {
b34ef932
DC
1517 .pid_policy = {
1518 .sample_rate_ms = 10,
1519 .deadband = 0,
1520 .setpoint = 97,
1521 .p_gain_pct = 20,
1522 .d_gain_pct = 0,
1523 .i_gain_pct = 0,
1524 },
1525 .funcs = {
1526 .get_max = core_get_max_pstate,
3bcc6fa9 1527 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1528 .get_min = core_get_min_pstate,
1529 .get_turbo = knl_get_turbo_pstate,
69cefc27 1530 .get_scaling = core_get_scaling,
fdfdb2b1 1531 .get_val = core_get_val,
157386b6 1532 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1533 },
1534};
1535
42ce8921 1536static const struct cpu_defaults bxt_params = {
41bad47f
SP
1537 .pid_policy = {
1538 .sample_rate_ms = 10,
1539 .deadband = 0,
1540 .setpoint = 60,
1541 .p_gain_pct = 14,
1542 .d_gain_pct = 0,
1543 .i_gain_pct = 4,
1544 },
1545 .funcs = {
1546 .get_max = core_get_max_pstate,
1547 .get_max_physical = core_get_max_pstate_physical,
1548 .get_min = core_get_min_pstate,
1549 .get_turbo = core_get_turbo_pstate,
1550 .get_scaling = core_get_scaling,
1551 .get_val = core_get_val,
1552 .get_target_pstate = get_target_pstate_use_cpu_load,
1553 },
1554};
1555
93f0822d
DB
1556static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1557{
1558 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1559 int max_perf_adj;
93f0822d 1560 int min_perf;
eae48f04 1561 struct perf_limits *perf_limits = limits;
845c1cbe 1562
51443fbf 1563 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1564 max_perf = cpu->pstate.max_pstate;
1565
eae48f04
SP
1566 if (per_cpu_limits)
1567 perf_limits = cpu->perf_limits;
1568
e0d4c8f8
KCA
1569 /*
1570 * performance can be limited by user through sysfs, by cpufreq
1571 * policy, or by cpu specific default values determined through
1572 * experimentation.
1573 */
d5dd33d9 1574 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1575 *max = clamp_t(int, max_perf_adj,
1576 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1577
d5dd33d9 1578 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
799281a3 1579 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1580}
1581
a6c6ead1 1582static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1583{
bc95a454
RW
1584 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1585 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1586 /*
1587 * Generally, there is no guarantee that this code will always run on
1588 * the CPU being updated, so force the register update to run on the
1589 * right CPU.
1590 */
1591 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1592 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1593}
1594
a6c6ead1
RW
1595static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1596{
1597 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1598}
1599
1600static void intel_pstate_max_within_limits(struct cpudata *cpu)
1601{
1602 int min_pstate, max_pstate;
1603
1604 update_turbo_state();
1605 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1606 intel_pstate_set_pstate(cpu, max_pstate);
1607}
1608
93f0822d
DB
1609static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1610{
016c8150
DB
1611 cpu->pstate.min_pstate = pstate_funcs.get_min();
1612 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1613 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1614 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1615 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1616 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1617 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1618
007bea09
DB
1619 if (pstate_funcs.get_vid)
1620 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1621
1622 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1623}
1624
a1c9787d 1625static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1626{
6b17ddb2 1627 struct sample *sample = &cpu->sample;
e66c1768 1628
a1c9787d 1629 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1630}
1631
4fec7ad5 1632static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1633{
93f0822d 1634 u64 aperf, mperf;
4ab60c3f 1635 unsigned long flags;
4055fad3 1636 u64 tsc;
93f0822d 1637
4ab60c3f 1638 local_irq_save(flags);
93f0822d
DB
1639 rdmsrl(MSR_IA32_APERF, aperf);
1640 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1641 tsc = rdtsc();
4fec7ad5 1642 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1643 local_irq_restore(flags);
4fec7ad5 1644 return false;
8e601a9f 1645 }
4ab60c3f 1646 local_irq_restore(flags);
b69880f9 1647
c4ee841f 1648 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1649 cpu->sample.time = time;
d37e2b76
DB
1650 cpu->sample.aperf = aperf;
1651 cpu->sample.mperf = mperf;
4055fad3 1652 cpu->sample.tsc = tsc;
d37e2b76
DB
1653 cpu->sample.aperf -= cpu->prev_aperf;
1654 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1655 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1656
93f0822d
DB
1657 cpu->prev_aperf = aperf;
1658 cpu->prev_mperf = mperf;
4055fad3 1659 cpu->prev_tsc = tsc;
febce40f
RW
1660 /*
1661 * First time this function is invoked in a given cycle, all of the
1662 * previous sample data fields are equal to zero or stale and they must
1663 * be populated with meaningful numbers for things to work, so assume
1664 * that sample.time will always be reset before setting the utilization
1665 * update hook and make the caller skip the sample then.
1666 */
1667 return !!cpu->last_sample_time;
93f0822d
DB
1668}
1669
8fa520af
PL
1670static inline int32_t get_avg_frequency(struct cpudata *cpu)
1671{
a1c9787d
RW
1672 return mul_ext_fp(cpu->sample.core_avg_perf,
1673 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1674}
1675
bdcaa23f
PL
1676static inline int32_t get_avg_pstate(struct cpudata *cpu)
1677{
8edb0a6e
RW
1678 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1679 cpu->sample.core_avg_perf);
bdcaa23f
PL
1680}
1681
e70eed2b
PL
1682static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1683{
1684 struct sample *sample = &cpu->sample;
09c448d3 1685 int32_t busy_frac, boost;
0843e83c 1686 int target, avg_pstate;
e70eed2b 1687
09c448d3 1688 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1689
09c448d3
RW
1690 boost = cpu->iowait_boost;
1691 cpu->iowait_boost >>= 1;
63d1d656 1692
09c448d3
RW
1693 if (busy_frac < boost)
1694 busy_frac = boost;
63d1d656 1695
09c448d3 1696 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1697
1698 target = limits->no_turbo || limits->turbo_disabled ?
1699 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1700 target += target >> 2;
1701 target = mul_fp(target, busy_frac);
1702 if (target < cpu->pstate.min_pstate)
1703 target = cpu->pstate.min_pstate;
1704
1705 /*
1706 * If the average P-state during the previous cycle was higher than the
1707 * current target, add 50% of the difference to the target to reduce
1708 * possible performance oscillations and offset possible performance
1709 * loss related to moving the workload from one CPU to another within
1710 * a package/module.
1711 */
1712 avg_pstate = get_avg_pstate(cpu);
1713 if (avg_pstate > target)
1714 target += (avg_pstate - target) >> 1;
1715
1716 return target;
e70eed2b
PL
1717}
1718
157386b6 1719static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1720{
1aa7a6e2 1721 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1722 u64 duration_ns;
93f0822d 1723
e0d4c8f8 1724 /*
f00593a4
RW
1725 * perf_scaled is the ratio of the average P-state during the last
1726 * sampling period to the P-state requested last time (in percent).
1727 *
1728 * That measures the system's response to the previous P-state
1729 * selection.
e0d4c8f8 1730 */
22590efb
RW
1731 max_pstate = cpu->pstate.max_pstate_physical;
1732 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1733 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1734 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1735
e0d4c8f8 1736 /*
a4675fbc
RW
1737 * Since our utilization update callback will not run unless we are
1738 * in C0, check if the actual elapsed time is significantly greater (3x)
1739 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1740 * enough period of time to adjust our performance metric.
e0d4c8f8 1741 */
a4675fbc 1742 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1743 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1744 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1745 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1746 } else {
1747 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1748 if (sample_ratio < int_tofp(1))
1aa7a6e2 1749 perf_scaled = 0;
c4ee841f
DB
1750 }
1751
1aa7a6e2
RW
1752 cpu->sample.busy_scaled = perf_scaled;
1753 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1754}
1755
001c76f0 1756static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1757{
1758 int max_perf, min_perf;
1759
fdfdb2b1
RW
1760 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1761 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1762 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
001c76f0
RW
1763 return pstate;
1764}
1765
1766static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1767{
1768 pstate = intel_pstate_prepare_request(cpu, pstate);
fdfdb2b1
RW
1769 if (pstate == cpu->pstate.current_pstate)
1770 return;
1771
bc95a454 1772 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1773 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1774}
1775
93f0822d
DB
1776static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1777{
157386b6 1778 int from, target_pstate;
4055fad3
DS
1779 struct sample *sample;
1780
1781 from = cpu->pstate.current_pstate;
93f0822d 1782
2f1d407a
RW
1783 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1784 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1785
001c76f0
RW
1786 update_turbo_state();
1787
fdfdb2b1 1788 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1789
1790 sample = &cpu->sample;
a1c9787d 1791 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1792 fp_toint(sample->busy_scaled),
4055fad3
DS
1793 from,
1794 cpu->pstate.current_pstate,
1795 sample->mperf,
1796 sample->aperf,
1797 sample->tsc,
3ba7bcaa
SP
1798 get_avg_frequency(cpu),
1799 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1800}
1801
a4675fbc 1802static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1803 unsigned int flags)
93f0822d 1804{
a4675fbc 1805 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1806 u64 delta_ns;
1807
1d29815e 1808 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1809 if (flags & SCHED_CPUFREQ_IOWAIT) {
1810 cpu->iowait_boost = int_tofp(1);
1811 } else if (cpu->iowait_boost) {
1812 /* Clear iowait_boost if the CPU may have been idle. */
1813 delta_ns = time - cpu->last_update;
1814 if (delta_ns > TICK_NSEC)
1815 cpu->iowait_boost = 0;
1816 }
1817 cpu->last_update = time;
1818 }
b69880f9 1819
09c448d3 1820 delta_ns = time - cpu->sample.time;
a4675fbc 1821 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1822 bool sample_taken = intel_pstate_sample(cpu, time);
1823
6d45b719 1824 if (sample_taken) {
a1c9787d 1825 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1826 if (!hwp_active)
1827 intel_pstate_adjust_busy_pstate(cpu);
1828 }
a4675fbc 1829 }
93f0822d
DB
1830}
1831
1832#define ICPU(model, policy) \
6cbd7ee1
DB
1833 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1834 (unsigned long)&policy }
93f0822d
DB
1835
1836static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1837 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1838 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1839 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1840 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1841 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1842 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1843 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1844 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1845 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1846 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1847 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1848 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1849 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1850 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1851 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1852 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1853 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1854 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1855 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1856 {}
1857};
1858MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1859
29327c84 1860static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1861 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1862 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1863 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1864 {}
1865};
1866
6e978b22
SP
1867static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1869 {}
1870};
1871
93f0822d
DB
1872static int intel_pstate_init_cpu(unsigned int cpunum)
1873{
93f0822d
DB
1874 struct cpudata *cpu;
1875
eae48f04
SP
1876 cpu = all_cpu_data[cpunum];
1877
1878 if (!cpu) {
1879 unsigned int size = sizeof(struct cpudata);
1880
1881 if (per_cpu_limits)
1882 size += sizeof(struct perf_limits);
1883
1884 cpu = kzalloc(size, GFP_KERNEL);
1885 if (!cpu)
1886 return -ENOMEM;
1887
1888 all_cpu_data[cpunum] = cpu;
1889 if (per_cpu_limits)
1890 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1891
984edbdc
SP
1892 cpu->epp_default = -EINVAL;
1893 cpu->epp_powersave = -EINVAL;
1894 cpu->epp_saved = -EINVAL;
eae48f04 1895 }
93f0822d
DB
1896
1897 cpu = all_cpu_data[cpunum];
1898
93f0822d 1899 cpu->cpu = cpunum;
ba88d433 1900
a4675fbc 1901 if (hwp_active) {
6e978b22
SP
1902 const struct x86_cpu_id *id;
1903
1904 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1905 if (id)
1906 intel_pstate_disable_ee(cpunum);
1907
ba88d433 1908 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1909 pid_params.sample_rate_ms = 50;
1910 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1911 }
ba88d433 1912
179e8471 1913 intel_pstate_get_cpu_pstates(cpu);
016c8150 1914
93f0822d 1915 intel_pstate_busy_pid_reset(cpu);
93f0822d 1916
4836df17 1917 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1918
1919 return 0;
1920}
1921
1922static unsigned int intel_pstate_get(unsigned int cpu_num)
1923{
f96fd0c8 1924 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1925
f96fd0c8 1926 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1927}
1928
febce40f 1929static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1930{
febce40f
RW
1931 struct cpudata *cpu = all_cpu_data[cpu_num];
1932
5ab666e0
RW
1933 if (cpu->update_util_set)
1934 return;
1935
febce40f
RW
1936 /* Prevent intel_pstate_update_util() from using stale data. */
1937 cpu->sample.time = 0;
0bed612b
RW
1938 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1939 intel_pstate_update_util);
4578ee7e 1940 cpu->update_util_set = true;
bb6ab52f
RW
1941}
1942
1943static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1944{
4578ee7e
CY
1945 struct cpudata *cpu_data = all_cpu_data[cpu];
1946
1947 if (!cpu_data->update_util_set)
1948 return;
1949
0bed612b 1950 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1951 cpu_data->update_util_set = false;
bb6ab52f
RW
1952 synchronize_sched();
1953}
1954
30a39153
SP
1955static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1956{
1957 limits->no_turbo = 0;
1958 limits->turbo_disabled = 0;
1959 limits->max_perf_pct = 100;
d5dd33d9 1960 limits->max_perf = int_ext_tofp(1);
30a39153 1961 limits->min_perf_pct = 100;
d5dd33d9 1962 limits->min_perf = int_ext_tofp(1);
30a39153
SP
1963 limits->max_policy_pct = 100;
1964 limits->max_sysfs_pct = 100;
1965 limits->min_policy_pct = 0;
1966 limits->min_sysfs_pct = 0;
1967}
1968
eae48f04
SP
1969static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1970 struct perf_limits *limits)
1971{
a410c03d 1972
eae48f04
SP
1973 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1974 policy->cpuinfo.max_freq);
1975 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
1976 if (policy->max == policy->min) {
1977 limits->min_policy_pct = limits->max_policy_pct;
1978 } else {
46992d6b
SP
1979 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1980 policy->cpuinfo.max_freq);
5879f877
SP
1981 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1982 0, 100);
1983 }
eae48f04
SP
1984
1985 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1986 limits->min_perf_pct = max(limits->min_policy_pct,
1987 limits->min_sysfs_pct);
1988 limits->min_perf_pct = min(limits->max_policy_pct,
1989 limits->min_perf_pct);
1990 limits->max_perf_pct = min(limits->max_policy_pct,
1991 limits->max_sysfs_pct);
1992 limits->max_perf_pct = max(limits->min_policy_pct,
1993 limits->max_perf_pct);
1994
1995 /* Make sure min_perf_pct <= max_perf_pct */
1996 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1997
d5dd33d9
SP
1998 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1999 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2000 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2001 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2002
2003 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2004 limits->max_perf_pct, limits->min_perf_pct);
2005}
2006
93f0822d
DB
2007static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2008{
3be9200d 2009 struct cpudata *cpu;
eae48f04 2010 struct perf_limits *perf_limits = NULL;
3be9200d 2011
d3929b83
DB
2012 if (!policy->cpuinfo.max_freq)
2013 return -ENODEV;
2014
2c2c1af4
SP
2015 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2016 policy->cpuinfo.max_freq, policy->max);
2017
a6c6ead1 2018 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2019 cpu->policy = policy->policy;
2020
c749c64f
RW
2021 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2022 policy->max < policy->cpuinfo.max_freq &&
2023 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2024 pr_debug("policy->max > max non turbo frequency\n");
2025 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
2026 }
2027
eae48f04
SP
2028 if (per_cpu_limits)
2029 perf_limits = cpu->perf_limits;
2030
b59fe540
SP
2031 mutex_lock(&intel_pstate_limits_lock);
2032
eae48f04
SP
2033 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2034 if (!perf_limits) {
2035 limits = &performance_limits;
2036 perf_limits = limits;
2037 }
1443ebba
SP
2038 if (policy->max >= policy->cpuinfo.max_freq &&
2039 !limits->no_turbo) {
4836df17 2040 pr_debug("set performance\n");
eae48f04 2041 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
2042 goto out;
2043 }
2044 } else {
4836df17 2045 pr_debug("set powersave\n");
eae48f04
SP
2046 if (!perf_limits) {
2047 limits = &powersave_limits;
2048 perf_limits = limits;
2049 }
43717aad 2050
eae48f04 2051 }
93f0822d 2052
eae48f04 2053 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 2054 out:
2f1d407a 2055 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2056 /*
2057 * NOHZ_FULL CPUs need this as the governor callback may not
2058 * be invoked on them.
2059 */
2060 intel_pstate_clear_update_util_hook(policy->cpu);
2061 intel_pstate_max_within_limits(cpu);
2062 }
2063
bb6ab52f
RW
2064 intel_pstate_set_update_util_hook(policy->cpu);
2065
ba41e1bc 2066 intel_pstate_hwp_set_policy(policy);
2f86dc4c 2067
b59fe540
SP
2068 mutex_unlock(&intel_pstate_limits_lock);
2069
93f0822d
DB
2070 return 0;
2071}
2072
2073static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2074{
be49e346 2075 cpufreq_verify_within_cpu_limits(policy);
93f0822d 2076
285cb990 2077 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2078 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2079 return -EINVAL;
2080
1443ebba
SP
2081 /* When per-CPU limits are used, sysfs limits are not used */
2082 if (!per_cpu_limits) {
2083 unsigned int max_freq, min_freq;
2084
2085 max_freq = policy->cpuinfo.max_freq *
2086 limits->max_sysfs_pct / 100;
2087 min_freq = policy->cpuinfo.max_freq *
2088 limits->min_sysfs_pct / 100;
2089 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2090 }
2091
93f0822d
DB
2092 return 0;
2093}
2094
001c76f0
RW
2095static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2096{
2097 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2098}
2099
bb18008f 2100static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2101{
001c76f0 2102 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2103
001c76f0 2104 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2105 if (hwp_active)
2106 intel_pstate_hwp_save_state(policy);
2107 else
001c76f0
RW
2108 intel_cpufreq_stop_cpu(policy);
2109}
bb18008f 2110
001c76f0
RW
2111static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2112{
2113 intel_pstate_exit_perf_limits(policy);
a4675fbc 2114
001c76f0 2115 policy->fast_switch_possible = false;
2f86dc4c 2116
001c76f0 2117 return 0;
93f0822d
DB
2118}
2119
001c76f0 2120static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2121{
93f0822d 2122 struct cpudata *cpu;
52e0a509 2123 int rc;
93f0822d
DB
2124
2125 rc = intel_pstate_init_cpu(policy->cpu);
2126 if (rc)
2127 return rc;
2128
2129 cpu = all_cpu_data[policy->cpu];
2130
eae48f04
SP
2131 /*
2132 * We need sane value in the cpu->perf_limits, so inherit from global
2133 * perf_limits limits, which are seeded with values based on the
2134 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2135 */
2136 if (per_cpu_limits)
2137 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
93f0822d 2138
b27580b0
DB
2139 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2141
2142 /* cpuinfo and default policy values */
b27580b0 2143 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
2144 update_turbo_state();
2145 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2146 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2147 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2148
9522a2ff 2149 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2150 cpumask_set_cpu(policy->cpu, policy->cpus);
2151
001c76f0
RW
2152 policy->fast_switch_possible = true;
2153
93f0822d
DB
2154 return 0;
2155}
2156
001c76f0 2157static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2158{
001c76f0
RW
2159 int ret = __intel_pstate_cpu_init(policy);
2160
2161 if (ret)
2162 return ret;
2163
2164 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2165 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2166 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2167 else
2168 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2169
2170 return 0;
2171}
2172
001c76f0 2173static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2174 .flags = CPUFREQ_CONST_LOOPS,
2175 .verify = intel_pstate_verify_policy,
2176 .setpolicy = intel_pstate_set_policy,
984edbdc 2177 .suspend = intel_pstate_hwp_save_state,
8442885f 2178 .resume = intel_pstate_resume,
93f0822d
DB
2179 .get = intel_pstate_get,
2180 .init = intel_pstate_cpu_init,
9522a2ff 2181 .exit = intel_pstate_cpu_exit,
bb18008f 2182 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2183 .name = "intel_pstate",
93f0822d
DB
2184};
2185
001c76f0
RW
2186static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2187{
2188 struct cpudata *cpu = all_cpu_data[policy->cpu];
2189 struct perf_limits *perf_limits = limits;
2190
2191 update_turbo_state();
2192 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2193 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2194
2195 cpufreq_verify_within_cpu_limits(policy);
2196
2197 if (per_cpu_limits)
2198 perf_limits = cpu->perf_limits;
2199
cad30467
RW
2200 mutex_lock(&intel_pstate_limits_lock);
2201
001c76f0
RW
2202 intel_pstate_update_perf_limits(policy, perf_limits);
2203
cad30467
RW
2204 mutex_unlock(&intel_pstate_limits_lock);
2205
001c76f0
RW
2206 return 0;
2207}
2208
2209static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2210 struct cpufreq_policy *policy,
2211 unsigned int target_freq)
2212{
2213 unsigned int max_freq;
2214
2215 update_turbo_state();
2216
2217 max_freq = limits->no_turbo || limits->turbo_disabled ?
2218 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2219 policy->cpuinfo.max_freq = max_freq;
2220 if (policy->max > max_freq)
2221 policy->max = max_freq;
2222
2223 if (target_freq > max_freq)
2224 target_freq = max_freq;
2225
2226 return target_freq;
2227}
2228
2229static int intel_cpufreq_target(struct cpufreq_policy *policy,
2230 unsigned int target_freq,
2231 unsigned int relation)
2232{
2233 struct cpudata *cpu = all_cpu_data[policy->cpu];
2234 struct cpufreq_freqs freqs;
2235 int target_pstate;
2236
2237 freqs.old = policy->cur;
2238 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2239
2240 cpufreq_freq_transition_begin(policy, &freqs);
2241 switch (relation) {
2242 case CPUFREQ_RELATION_L:
2243 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2244 break;
2245 case CPUFREQ_RELATION_H:
2246 target_pstate = freqs.new / cpu->pstate.scaling;
2247 break;
2248 default:
2249 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2250 break;
2251 }
2252 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2253 if (target_pstate != cpu->pstate.current_pstate) {
2254 cpu->pstate.current_pstate = target_pstate;
2255 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2256 pstate_funcs.get_val(cpu, target_pstate));
2257 }
2258 cpufreq_freq_transition_end(policy, &freqs, false);
2259
2260 return 0;
2261}
2262
2263static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2264 unsigned int target_freq)
2265{
2266 struct cpudata *cpu = all_cpu_data[policy->cpu];
2267 int target_pstate;
2268
2269 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2270 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2271 intel_pstate_update_pstate(cpu, target_pstate);
2272 return target_freq;
2273}
2274
2275static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2276{
2277 int ret = __intel_pstate_cpu_init(policy);
2278
2279 if (ret)
2280 return ret;
2281
2282 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2283 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2284 policy->cur = policy->cpuinfo.min_freq;
2285
2286 return 0;
2287}
2288
2289static struct cpufreq_driver intel_cpufreq = {
2290 .flags = CPUFREQ_CONST_LOOPS,
2291 .verify = intel_cpufreq_verify_policy,
2292 .target = intel_cpufreq_target,
2293 .fast_switch = intel_cpufreq_fast_switch,
2294 .init = intel_cpufreq_cpu_init,
2295 .exit = intel_pstate_cpu_exit,
2296 .stop_cpu = intel_cpufreq_stop_cpu,
2297 .name = "intel_cpufreq",
2298};
2299
2300static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2301
eed43609
JZ
2302static int no_load __initdata;
2303static int no_hwp __initdata;
2304static int hwp_only __initdata;
29327c84 2305static unsigned int force_load __initdata;
6be26498 2306
29327c84 2307static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2308{
016c8150 2309 if (!pstate_funcs.get_max() ||
c410833a
SK
2310 !pstate_funcs.get_min() ||
2311 !pstate_funcs.get_turbo())
b563b4e3
DB
2312 return -ENODEV;
2313
b563b4e3
DB
2314 return 0;
2315}
016c8150 2316
29327c84 2317static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
2318{
2319 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 2320 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
2321 pid_params.p_gain_pct = policy->p_gain_pct;
2322 pid_params.i_gain_pct = policy->i_gain_pct;
2323 pid_params.d_gain_pct = policy->d_gain_pct;
2324 pid_params.deadband = policy->deadband;
2325 pid_params.setpoint = policy->setpoint;
2326}
2327
7f7a516e
SP
2328#ifdef CONFIG_ACPI
2329static void intel_pstate_use_acpi_profile(void)
2330{
2331 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2332 pstate_funcs.get_target_pstate =
2333 get_target_pstate_use_cpu_load;
2334}
2335#else
2336static void intel_pstate_use_acpi_profile(void)
2337{
2338}
2339#endif
2340
29327c84 2341static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2342{
2343 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2344 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2345 pstate_funcs.get_min = funcs->get_min;
2346 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2347 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2348 pstate_funcs.get_val = funcs->get_val;
007bea09 2349 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2350 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2351
7f7a516e 2352 intel_pstate_use_acpi_profile();
016c8150
DB
2353}
2354
9522a2ff 2355#ifdef CONFIG_ACPI
fbbcdc07 2356
29327c84 2357static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2358{
2359 int i;
2360
2361 for_each_possible_cpu(i) {
2362 acpi_status status;
2363 union acpi_object *pss;
2364 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2365 struct acpi_processor *pr = per_cpu(processors, i);
2366
2367 if (!pr)
2368 continue;
2369
2370 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2371 if (ACPI_FAILURE(status))
2372 continue;
2373
2374 pss = buffer.pointer;
2375 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2376 kfree(pss);
2377 return false;
2378 }
2379
2380 kfree(pss);
2381 }
2382
2383 return true;
2384}
2385
29327c84 2386static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2387{
2388 int i;
2389
2390 for_each_possible_cpu(i) {
2391 struct acpi_processor *pr = per_cpu(processors, i);
2392
2393 if (!pr)
2394 continue;
2395 if (acpi_has_method(pr->handle, "_PPC"))
2396 return true;
2397 }
2398 return false;
2399}
2400
2401enum {
2402 PSS,
2403 PPC,
2404};
2405
fbbcdc07
AH
2406struct hw_vendor_info {
2407 u16 valid;
2408 char oem_id[ACPI_OEM_ID_SIZE];
2409 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2410 int oem_pwr_table;
fbbcdc07
AH
2411};
2412
2413/* Hardware vendor-specific info that has its own power management modes */
29327c84 2414static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2415 {1, "HP ", "ProLiant", PSS},
2416 {1, "ORACLE", "X4-2 ", PPC},
2417 {1, "ORACLE", "X4-2L ", PPC},
2418 {1, "ORACLE", "X4-2B ", PPC},
2419 {1, "ORACLE", "X3-2 ", PPC},
2420 {1, "ORACLE", "X3-2L ", PPC},
2421 {1, "ORACLE", "X3-2B ", PPC},
2422 {1, "ORACLE", "X4470M2 ", PPC},
2423 {1, "ORACLE", "X4270M3 ", PPC},
2424 {1, "ORACLE", "X4270M2 ", PPC},
2425 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2426 {1, "ORACLE", "X4170 M3", PPC},
2427 {1, "ORACLE", "X4275 M3", PPC},
2428 {1, "ORACLE", "X6-2 ", PPC},
2429 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2430 {0, "", ""},
2431};
2432
29327c84 2433static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2434{
2435 struct acpi_table_header hdr;
2436 struct hw_vendor_info *v_info;
2f86dc4c
DB
2437 const struct x86_cpu_id *id;
2438 u64 misc_pwr;
2439
2440 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2441 if (id) {
2442 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2443 if ( misc_pwr & (1 << 8))
2444 return true;
2445 }
fbbcdc07 2446
c410833a
SK
2447 if (acpi_disabled ||
2448 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2449 return false;
2450
2451 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2452 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2453 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2454 ACPI_OEM_TABLE_ID_SIZE))
2455 switch (v_info->oem_pwr_table) {
2456 case PSS:
2457 return intel_pstate_no_acpi_pss();
2458 case PPC:
aa4ea34d
EZ
2459 return intel_pstate_has_acpi_ppc() &&
2460 (!force_load);
966916ea 2461 }
fbbcdc07
AH
2462 }
2463
2464 return false;
2465}
d0ea59e1
RW
2466
2467static void intel_pstate_request_control_from_smm(void)
2468{
2469 /*
2470 * It may be unsafe to request P-states control from SMM if _PPC support
2471 * has not been enabled.
2472 */
2473 if (acpi_ppc)
2474 acpi_processor_pstate_control();
2475}
fbbcdc07
AH
2476#else /* CONFIG_ACPI not enabled */
2477static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2478static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2479static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2480#endif /* CONFIG_ACPI */
2481
7791e4aa
SP
2482static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2483 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2484 {}
2485};
2486
93f0822d
DB
2487static int __init intel_pstate_init(void)
2488{
907cc908 2489 int cpu, rc = 0;
93f0822d 2490 const struct x86_cpu_id *id;
64df1fdf 2491 struct cpu_defaults *cpu_def;
93f0822d 2492
6be26498
DB
2493 if (no_load)
2494 return -ENODEV;
2495
7791e4aa
SP
2496 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2497 copy_cpu_funcs(&core_params.funcs);
2498 hwp_active++;
984edbdc 2499 intel_pstate.attr = hwp_cpufreq_attrs;
7791e4aa
SP
2500 goto hwp_cpu_matched;
2501 }
2502
93f0822d
DB
2503 id = x86_match_cpu(intel_pstate_cpu_ids);
2504 if (!id)
2505 return -ENODEV;
2506
64df1fdf 2507 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2508
64df1fdf
BP
2509 copy_pid_params(&cpu_def->pid_policy);
2510 copy_cpu_funcs(&cpu_def->funcs);
016c8150 2511
b563b4e3
DB
2512 if (intel_pstate_msrs_not_valid())
2513 return -ENODEV;
2514
7791e4aa
SP
2515hwp_cpu_matched:
2516 /*
2517 * The Intel pstate driver will be ignored if the platform
2518 * firmware has its own power management modes.
2519 */
2520 if (intel_pstate_platform_pwr_mgmt_exists())
2521 return -ENODEV;
2522
4836df17 2523 pr_info("Intel P-state driver initializing\n");
93f0822d 2524
b57ffac5 2525 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2526 if (!all_cpu_data)
2527 return -ENOMEM;
93f0822d 2528
d64c3b0b
KCA
2529 if (!hwp_active && hwp_only)
2530 goto out;
2531
d0ea59e1
RW
2532 intel_pstate_request_control_from_smm();
2533
001c76f0 2534 rc = cpufreq_register_driver(intel_pstate_driver);
93f0822d
DB
2535 if (rc)
2536 goto out;
2537
366430b5
RW
2538 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2539 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2540 intel_pstate_debug_expose_params();
2541
93f0822d 2542 intel_pstate_sysfs_expose_params();
b69880f9 2543
7791e4aa 2544 if (hwp_active)
4836df17 2545 pr_info("HWP enabled\n");
7791e4aa 2546
93f0822d
DB
2547 return rc;
2548out:
907cc908
DB
2549 get_online_cpus();
2550 for_each_online_cpu(cpu) {
2551 if (all_cpu_data[cpu]) {
001c76f0
RW
2552 if (intel_pstate_driver == &intel_pstate)
2553 intel_pstate_clear_update_util_hook(cpu);
2554
907cc908
DB
2555 kfree(all_cpu_data[cpu]);
2556 }
2557 }
2558
2559 put_online_cpus();
2560 vfree(all_cpu_data);
93f0822d
DB
2561 return -ENODEV;
2562}
2563device_initcall(intel_pstate_init);
2564
6be26498
DB
2565static int __init intel_pstate_setup(char *str)
2566{
2567 if (!str)
2568 return -EINVAL;
2569
001c76f0 2570 if (!strcmp(str, "disable")) {
6be26498 2571 no_load = 1;
001c76f0
RW
2572 } else if (!strcmp(str, "passive")) {
2573 pr_info("Passive mode enabled\n");
2574 intel_pstate_driver = &intel_cpufreq;
2575 no_hwp = 1;
2576 }
539342f6 2577 if (!strcmp(str, "no_hwp")) {
4836df17 2578 pr_info("HWP disabled\n");
2f86dc4c 2579 no_hwp = 1;
539342f6 2580 }
aa4ea34d
EZ
2581 if (!strcmp(str, "force"))
2582 force_load = 1;
d64c3b0b
KCA
2583 if (!strcmp(str, "hwp_only"))
2584 hwp_only = 1;
eae48f04
SP
2585 if (!strcmp(str, "per_cpu_perf_limits"))
2586 per_cpu_limits = true;
9522a2ff
SP
2587
2588#ifdef CONFIG_ACPI
2589 if (!strcmp(str, "support_acpi_ppc"))
2590 acpi_ppc = true;
2591#endif
2592
6be26498
DB
2593 return 0;
2594}
2595early_param("intel_pstate", intel_pstate_setup);
2596
93f0822d
DB
2597MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2598MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2599MODULE_LICENSE("GPL");