]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: Make cpufreq_update_policy() void
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
938d21a2
PL
42#define ATOM_RATIOS 0x66a
43#define ATOM_VIDS 0x66b
44#define ATOM_TURBO_RATIOS 0x66c
45#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 46
9522a2ff
SP
47#ifdef CONFIG_ACPI
48#include <acpi/processor.h>
49#endif
50
f0fe3cd7 51#define FRAC_BITS 8
93f0822d
DB
52#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 54
a1c9787d
RW
55#define EXT_BITS 6
56#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57
93f0822d
DB
58static inline int32_t mul_fp(int32_t x, int32_t y)
59{
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61}
62
7180dddf 63static inline int32_t div_fp(s64 x, s64 y)
93f0822d 64{
7180dddf 65 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
66}
67
d022a65e
DB
68static inline int ceiling_fp(int32_t x)
69{
70 int mask, ret;
71
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
77}
78
a1c9787d
RW
79static inline u64 mul_ext_fp(u64 x, u64 y)
80{
81 return (x * y) >> EXT_FRAC_BITS;
82}
83
84static inline u64 div_ext_fp(u64 x, u64 y)
85{
86 return div64_u64(x << EXT_FRAC_BITS, y);
87}
88
13ad7701
SP
89/**
90 * struct sample - Store performance sample
a1c9787d 91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 94 * P state. This can be different than core_avg_perf
13ad7701
SP
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
101 * current sample
13ad7701
SP
102 * @time: Current time from scheduler
103 *
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
106 */
93f0822d 107struct sample {
a1c9787d 108 int32_t core_avg_perf;
157386b6 109 int32_t busy_scaled;
93f0822d
DB
110 u64 aperf;
111 u64 mperf;
4055fad3 112 u64 tsc;
a4675fbc 113 u64 time;
93f0822d
DB
114};
115
13ad7701
SP
116/**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
125 * frequency units
126 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
127 * @max_freq: @max_pstate frequency in cpufreq units
128 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
129 *
130 * Stores the per cpu model P state limits and current P state.
131 */
93f0822d
DB
132struct pstate_data {
133 int current_pstate;
134 int min_pstate;
135 int max_pstate;
3bcc6fa9 136 int max_pstate_physical;
b27580b0 137 int scaling;
93f0822d 138 int turbo_pstate;
001c76f0
RW
139 unsigned int max_freq;
140 unsigned int turbo_freq;
93f0822d
DB
141};
142
13ad7701
SP
143/**
144 * struct vid_data - Stores voltage information data
145 * @min: VID data for this platform corresponding to
146 * the lowest P state
147 * @max: VID data corresponding to the highest P State.
148 * @turbo: VID data for turbo P state
149 * @ratio: Ratio of (vid max - vid min) /
150 * (max P state - Min P State)
151 *
152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
153 * This data is used in Atom platforms, where in addition to target P state,
154 * the voltage data needs to be specified to select next P State.
155 */
007bea09 156struct vid_data {
21855ff5
DB
157 int min;
158 int max;
159 int turbo;
007bea09
DB
160 int32_t ratio;
161};
162
13ad7701
SP
163/**
164 * struct _pid - Stores PID data
165 * @setpoint: Target set point for busyness or performance
166 * @integral: Storage for accumulated error values
167 * @p_gain: PID proportional gain
168 * @i_gain: PID integral gain
169 * @d_gain: PID derivative gain
170 * @deadband: PID deadband
171 * @last_err: Last error storage for integral part of PID calculation
172 *
173 * Stores PID coefficients and last error for PID controller.
174 */
93f0822d
DB
175struct _pid {
176 int setpoint;
177 int32_t integral;
178 int32_t p_gain;
179 int32_t i_gain;
180 int32_t d_gain;
181 int deadband;
d253d2a5 182 int32_t last_err;
93f0822d
DB
183};
184
eae48f04
SP
185/**
186 * struct perf_limits - Store user and policy limits
187 * @no_turbo: User requested turbo state from intel_pstate sysfs
188 * @turbo_disabled: Platform turbo status either from msr
189 * MSR_IA32_MISC_ENABLE or when maximum available pstate
190 * matches the maximum turbo pstate
191 * @max_perf_pct: Effective maximum performance limit in percentage, this
192 * is minimum of either limits enforced by cpufreq policy
193 * or limits from user set limits via intel_pstate sysfs
194 * @min_perf_pct: Effective minimum performance limit in percentage, this
195 * is maximum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
198 * This value is used to limit max pstate
199 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
200 * This value is used to limit min pstate
201 * @max_policy_pct: The maximum performance in percentage enforced by
202 * cpufreq setpolicy interface
203 * @max_sysfs_pct: The maximum performance in percentage enforced by
204 * intel pstate sysfs interface, unused when per cpu
205 * controls are enforced
206 * @min_policy_pct: The minimum performance in percentage enforced by
207 * cpufreq setpolicy interface
208 * @min_sysfs_pct: The minimum performance in percentage enforced by
209 * intel pstate sysfs interface, unused when per cpu
210 * controls are enforced
211 *
212 * Storage for user and policy defined limits.
213 */
214struct perf_limits {
215 int no_turbo;
216 int turbo_disabled;
217 int max_perf_pct;
218 int min_perf_pct;
219 int32_t max_perf;
220 int32_t min_perf;
221 int max_policy_pct;
222 int max_sysfs_pct;
223 int min_policy_pct;
224 int min_sysfs_pct;
225};
226
13ad7701
SP
227/**
228 * struct cpudata - Per CPU instance data storage
229 * @cpu: CPU number for this instance data
2f1d407a 230 * @policy: CPUFreq policy value
13ad7701 231 * @update_util: CPUFreq utility callback information
4578ee7e 232 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
233 * @iowait_boost: iowait-related boost fraction
234 * @last_update: Time of the last update.
13ad7701
SP
235 * @pstate: Stores P state limits for this CPU
236 * @vid: Stores VID limits for this CPU
237 * @pid: Stores PID parameters for this CPU
238 * @last_sample_time: Last Sample time
239 * @prev_aperf: Last APERF value read from APERF MSR
240 * @prev_mperf: Last MPERF value read from MPERF MSR
241 * @prev_tsc: Last timestamp counter (TSC) value
242 * @prev_cummulative_iowait: IO Wait time difference from last and
243 * current sample
244 * @sample: Storage for storing last Sample data
eae48f04
SP
245 * @perf_limits: Pointer to perf_limit unique to this CPU
246 * Not all field in the structure are applicable
247 * when per cpu controls are enforced
9522a2ff
SP
248 * @acpi_perf_data: Stores ACPI perf information read from _PSS
249 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
250 *
251 * This structure stores per CPU instance data for all CPUs.
252 */
93f0822d
DB
253struct cpudata {
254 int cpu;
255
2f1d407a 256 unsigned int policy;
a4675fbc 257 struct update_util_data update_util;
4578ee7e 258 bool update_util_set;
93f0822d 259
93f0822d 260 struct pstate_data pstate;
007bea09 261 struct vid_data vid;
93f0822d 262 struct _pid pid;
93f0822d 263
09c448d3 264 u64 last_update;
a4675fbc 265 u64 last_sample_time;
93f0822d
DB
266 u64 prev_aperf;
267 u64 prev_mperf;
4055fad3 268 u64 prev_tsc;
63d1d656 269 u64 prev_cummulative_iowait;
d37e2b76 270 struct sample sample;
eae48f04 271 struct perf_limits *perf_limits;
9522a2ff
SP
272#ifdef CONFIG_ACPI
273 struct acpi_processor_performance acpi_perf_data;
274 bool valid_pss_table;
275#endif
09c448d3 276 unsigned int iowait_boost;
93f0822d
DB
277};
278
279static struct cpudata **all_cpu_data;
13ad7701
SP
280
281/**
3954517e 282 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
283 * @sample_rate_ms: PID calculation sample rate in ms
284 * @sample_rate_ns: Sample rate calculation in ns
285 * @deadband: PID deadband
286 * @setpoint: PID Setpoint
287 * @p_gain_pct: PID proportional gain
288 * @i_gain_pct: PID integral gain
289 * @d_gain_pct: PID derivative gain
290 *
291 * Stores per CPU model static PID configuration data.
292 */
93f0822d
DB
293struct pstate_adjust_policy {
294 int sample_rate_ms;
a4675fbc 295 s64 sample_rate_ns;
93f0822d
DB
296 int deadband;
297 int setpoint;
298 int p_gain_pct;
299 int d_gain_pct;
300 int i_gain_pct;
301};
302
13ad7701
SP
303/**
304 * struct pstate_funcs - Per CPU model specific callbacks
305 * @get_max: Callback to get maximum non turbo effective P state
306 * @get_max_physical: Callback to get maximum non turbo physical P state
307 * @get_min: Callback to get minimum P state
308 * @get_turbo: Callback to get turbo P state
309 * @get_scaling: Callback to get frequency scaling factor
310 * @get_val: Callback to convert P state to actual MSR write value
311 * @get_vid: Callback to get VID data for Atom platforms
312 * @get_target_pstate: Callback to a function to calculate next P state to use
313 *
314 * Core and Atom CPU models have different way to get P State limits. This
315 * structure is used to store those callbacks.
316 */
016c8150
DB
317struct pstate_funcs {
318 int (*get_max)(void);
3bcc6fa9 319 int (*get_max_physical)(void);
016c8150
DB
320 int (*get_min)(void);
321 int (*get_turbo)(void);
b27580b0 322 int (*get_scaling)(void);
fdfdb2b1 323 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 324 void (*get_vid)(struct cpudata *);
157386b6 325 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
326};
327
13ad7701
SP
328/**
329 * struct cpu_defaults- Per CPU model default config data
330 * @pid_policy: PID config data
331 * @funcs: Callback function data
332 */
016c8150
DB
333struct cpu_defaults {
334 struct pstate_adjust_policy pid_policy;
335 struct pstate_funcs funcs;
93f0822d
DB
336};
337
157386b6 338static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 339static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 340
4a7cb7a9
JZ
341static struct pstate_adjust_policy pid_params __read_mostly;
342static struct pstate_funcs pstate_funcs __read_mostly;
343static int hwp_active __read_mostly;
eae48f04 344static bool per_cpu_limits __read_mostly;
016c8150 345
9522a2ff
SP
346#ifdef CONFIG_ACPI
347static bool acpi_ppc;
348#endif
13ad7701 349
51443fbf
PB
350static struct perf_limits performance_limits = {
351 .no_turbo = 0,
352 .turbo_disabled = 0,
353 .max_perf_pct = 100,
354 .max_perf = int_tofp(1),
355 .min_perf_pct = 100,
356 .min_perf = int_tofp(1),
357 .max_policy_pct = 100,
358 .max_sysfs_pct = 100,
359 .min_policy_pct = 0,
360 .min_sysfs_pct = 0,
361};
362
363static struct perf_limits powersave_limits = {
93f0822d 364 .no_turbo = 0,
4521e1a0 365 .turbo_disabled = 0,
93f0822d
DB
366 .max_perf_pct = 100,
367 .max_perf = int_tofp(1),
368 .min_perf_pct = 0,
369 .min_perf = 0,
d8f469e9
DB
370 .max_policy_pct = 100,
371 .max_sysfs_pct = 100,
a0475992
KCA
372 .min_policy_pct = 0,
373 .min_sysfs_pct = 0,
93f0822d
DB
374};
375
51443fbf
PB
376#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
377static struct perf_limits *limits = &performance_limits;
378#else
379static struct perf_limits *limits = &powersave_limits;
380#endif
381
a410c03d
SP
382static DEFINE_MUTEX(intel_pstate_limits_lock);
383
9522a2ff 384#ifdef CONFIG_ACPI
2b3ec765
SP
385
386static bool intel_pstate_get_ppc_enable_status(void)
387{
388 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
389 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
390 return true;
391
392 return acpi_ppc;
393}
394
9522a2ff
SP
395static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
396{
397 struct cpudata *cpu;
9522a2ff
SP
398 int ret;
399 int i;
400
e59a8f7f
SP
401 if (hwp_active)
402 return;
403
2b3ec765 404 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
405 return;
406
407 cpu = all_cpu_data[policy->cpu];
408
409 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
410 policy->cpu);
411 if (ret)
412 return;
413
414 /*
415 * Check if the control value in _PSS is for PERF_CTL MSR, which should
416 * guarantee that the states returned by it map to the states in our
417 * list directly.
418 */
419 if (cpu->acpi_perf_data.control_register.space_id !=
420 ACPI_ADR_SPACE_FIXED_HARDWARE)
421 goto err;
422
423 /*
424 * If there is only one entry _PSS, simply ignore _PSS and continue as
425 * usual without taking _PSS into account
426 */
427 if (cpu->acpi_perf_data.state_count < 2)
428 goto err;
429
430 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
431 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
432 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
433 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
434 (u32) cpu->acpi_perf_data.states[i].core_frequency,
435 (u32) cpu->acpi_perf_data.states[i].power,
436 (u32) cpu->acpi_perf_data.states[i].control);
437 }
438
439 /*
440 * The _PSS table doesn't contain whole turbo frequency range.
441 * This just contains +1 MHZ above the max non turbo frequency,
442 * with control value corresponding to max turbo ratio. But
443 * when cpufreq set policy is called, it will call with this
444 * max frequency, which will cause a reduced performance as
445 * this driver uses real max turbo frequency as the max
446 * frequency. So correct this frequency in _PSS table to
b00345d1 447 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
448 * Also need to convert to MHz as _PSS freq is in MHz.
449 */
b00345d1 450 if (!limits->turbo_disabled)
9522a2ff
SP
451 cpu->acpi_perf_data.states[0].core_frequency =
452 policy->cpuinfo.max_freq / 1000;
453 cpu->valid_pss_table = true;
6cacd115 454 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
455
456 return;
457
458 err:
459 cpu->valid_pss_table = false;
460 acpi_processor_unregister_performance(policy->cpu);
461}
462
463static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464{
465 struct cpudata *cpu;
466
467 cpu = all_cpu_data[policy->cpu];
468 if (!cpu->valid_pss_table)
469 return;
470
471 acpi_processor_unregister_performance(policy->cpu);
472}
473
474#else
475static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
476{
477}
478
001c76f0 479static inline int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
480{
481}
482#endif
483
93f0822d 484static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 485 int deadband, int integral) {
b54a0dfd
PL
486 pid->setpoint = int_tofp(setpoint);
487 pid->deadband = int_tofp(deadband);
93f0822d 488 pid->integral = int_tofp(integral);
d98d099b 489 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
490}
491
492static inline void pid_p_gain_set(struct _pid *pid, int percent)
493{
22590efb 494 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
495}
496
497static inline void pid_i_gain_set(struct _pid *pid, int percent)
498{
22590efb 499 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
500}
501
502static inline void pid_d_gain_set(struct _pid *pid, int percent)
503{
22590efb 504 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
505}
506
d253d2a5 507static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 508{
d253d2a5 509 signed int result;
93f0822d
DB
510 int32_t pterm, dterm, fp_error;
511 int32_t integral_limit;
512
b54a0dfd 513 fp_error = pid->setpoint - busy;
93f0822d 514
b54a0dfd 515 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
516 return 0;
517
518 pterm = mul_fp(pid->p_gain, fp_error);
519
520 pid->integral += fp_error;
521
e0d4c8f8
KCA
522 /*
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
527 *
528 * The value of 30 was chosen through experimentation.
529 */
93f0822d
DB
530 integral_limit = int_tofp(30);
531 if (pid->integral > integral_limit)
532 pid->integral = integral_limit;
533 if (pid->integral < -integral_limit)
534 pid->integral = -integral_limit;
535
d253d2a5
BS
536 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 pid->last_err = fp_error;
93f0822d
DB
538
539 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 540 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
541 return (signed int)fp_toint(result);
542}
543
544static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
545{
016c8150
DB
546 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
547 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
548 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 549
2d8d1f18 550 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
551}
552
93f0822d
DB
553static inline void intel_pstate_reset_all_pid(void)
554{
555 unsigned int cpu;
845c1cbe 556
93f0822d
DB
557 for_each_online_cpu(cpu) {
558 if (all_cpu_data[cpu])
559 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
560 }
561}
562
4521e1a0
GM
563static inline void update_turbo_state(void)
564{
565 u64 misc_en;
566 struct cpudata *cpu;
567
568 cpu = all_cpu_data[0];
569 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 570 limits->turbo_disabled =
4521e1a0
GM
571 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
572 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
573}
574
41cfd64c 575static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 576{
74da56ce 577 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 578 struct perf_limits *perf_limits = limits;
74da56ce
KCA
579 u64 value, cap;
580
41cfd64c 581 for_each_cpu(cpu, cpumask) {
eae48f04
SP
582 int max_perf_pct, min_perf_pct;
583
584 if (per_cpu_limits)
585 perf_limits = all_cpu_data[cpu]->perf_limits;
586
f9f4872d
SP
587 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
588 hw_min = HWP_LOWEST_PERF(cap);
589 hw_max = HWP_HIGHEST_PERF(cap);
590 range = hw_max - hw_min;
591
eae48f04
SP
592 max_perf_pct = perf_limits->max_perf_pct;
593 min_perf_pct = perf_limits->min_perf_pct;
594
2f86dc4c 595 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 596 adj_range = min_perf_pct * range / 100;
74da56ce 597 min = hw_min + adj_range;
2f86dc4c
DB
598 value &= ~HWP_MIN_PERF(~0L);
599 value |= HWP_MIN_PERF(min);
600
eae48f04 601 adj_range = max_perf_pct * range / 100;
74da56ce 602 max = hw_min + adj_range;
51443fbf 603 if (limits->no_turbo) {
74da56ce
KCA
604 hw_max = HWP_GUARANTEED_PERF(cap);
605 if (hw_max < max)
606 max = hw_max;
2f86dc4c
DB
607 }
608
609 value &= ~HWP_MAX_PERF(~0L);
610 value |= HWP_MAX_PERF(max);
611 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
612 }
41cfd64c 613}
2f86dc4c 614
ba41e1bc
RW
615static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
616{
617 if (hwp_active)
618 intel_pstate_hwp_set(policy->cpus);
619
620 return 0;
621}
622
41cfd64c
VK
623static void intel_pstate_hwp_set_online_cpus(void)
624{
625 get_online_cpus();
626 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
627 put_online_cpus();
628}
629
93f0822d
DB
630/************************** debugfs begin ************************/
631static int pid_param_set(void *data, u64 val)
632{
633 *(u32 *)data = val;
634 intel_pstate_reset_all_pid();
635 return 0;
636}
845c1cbe 637
93f0822d
DB
638static int pid_param_get(void *data, u64 *val)
639{
640 *val = *(u32 *)data;
641 return 0;
642}
2d8d1f18 643DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
644
645struct pid_param {
646 char *name;
647 void *value;
648};
649
650static struct pid_param pid_files[] = {
016c8150
DB
651 {"sample_rate_ms", &pid_params.sample_rate_ms},
652 {"d_gain_pct", &pid_params.d_gain_pct},
653 {"i_gain_pct", &pid_params.i_gain_pct},
654 {"deadband", &pid_params.deadband},
655 {"setpoint", &pid_params.setpoint},
656 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
657 {NULL, NULL}
658};
659
317dd50e 660static void __init intel_pstate_debug_expose_params(void)
93f0822d 661{
317dd50e 662 struct dentry *debugfs_parent;
93f0822d
DB
663 int i = 0;
664
185d8245
SP
665 if (hwp_active ||
666 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
2f86dc4c 667 return;
185d8245 668
93f0822d
DB
669 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
670 if (IS_ERR_OR_NULL(debugfs_parent))
671 return;
672 while (pid_files[i].name) {
673 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
674 debugfs_parent, pid_files[i].value,
675 &fops_pid_param);
93f0822d
DB
676 i++;
677 }
678}
679
680/************************** debugfs end ************************/
681
682/************************** sysfs begin ************************/
683#define show_one(file_name, object) \
684 static ssize_t show_##file_name \
685 (struct kobject *kobj, struct attribute *attr, char *buf) \
686 { \
51443fbf 687 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
688 }
689
d01b1f48
KCA
690static ssize_t show_turbo_pct(struct kobject *kobj,
691 struct attribute *attr, char *buf)
692{
693 struct cpudata *cpu;
694 int total, no_turbo, turbo_pct;
695 uint32_t turbo_fp;
696
697 cpu = all_cpu_data[0];
698
699 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
700 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 701 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
702 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
703 return sprintf(buf, "%u\n", turbo_pct);
704}
705
0522424e
KCA
706static ssize_t show_num_pstates(struct kobject *kobj,
707 struct attribute *attr, char *buf)
708{
709 struct cpudata *cpu;
710 int total;
711
712 cpu = all_cpu_data[0];
713 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
714 return sprintf(buf, "%u\n", total);
715}
716
4521e1a0
GM
717static ssize_t show_no_turbo(struct kobject *kobj,
718 struct attribute *attr, char *buf)
719{
720 ssize_t ret;
721
722 update_turbo_state();
51443fbf
PB
723 if (limits->turbo_disabled)
724 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 725 else
51443fbf 726 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
727
728 return ret;
729}
730
93f0822d 731static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 732 const char *buf, size_t count)
93f0822d
DB
733{
734 unsigned int input;
735 int ret;
845c1cbe 736
93f0822d
DB
737 ret = sscanf(buf, "%u", &input);
738 if (ret != 1)
739 return -EINVAL;
4521e1a0 740
a410c03d
SP
741 mutex_lock(&intel_pstate_limits_lock);
742
4521e1a0 743 update_turbo_state();
51443fbf 744 if (limits->turbo_disabled) {
4836df17 745 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 746 mutex_unlock(&intel_pstate_limits_lock);
4521e1a0 747 return -EPERM;
dd5fbf70 748 }
2f86dc4c 749
51443fbf 750 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 751
a410c03d
SP
752 mutex_unlock(&intel_pstate_limits_lock);
753
2f86dc4c 754 if (hwp_active)
41cfd64c 755 intel_pstate_hwp_set_online_cpus();
2f86dc4c 756
93f0822d
DB
757 return count;
758}
759
760static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 761 const char *buf, size_t count)
93f0822d
DB
762{
763 unsigned int input;
764 int ret;
845c1cbe 765
93f0822d
DB
766 ret = sscanf(buf, "%u", &input);
767 if (ret != 1)
768 return -EINVAL;
769
a410c03d
SP
770 mutex_lock(&intel_pstate_limits_lock);
771
51443fbf
PB
772 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
773 limits->max_perf_pct = min(limits->max_policy_pct,
774 limits->max_sysfs_pct);
775 limits->max_perf_pct = max(limits->min_policy_pct,
776 limits->max_perf_pct);
777 limits->max_perf_pct = max(limits->min_perf_pct,
778 limits->max_perf_pct);
22590efb 779 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 780
a410c03d
SP
781 mutex_unlock(&intel_pstate_limits_lock);
782
2f86dc4c 783 if (hwp_active)
41cfd64c 784 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
785 return count;
786}
787
788static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 789 const char *buf, size_t count)
93f0822d
DB
790{
791 unsigned int input;
792 int ret;
845c1cbe 793
93f0822d
DB
794 ret = sscanf(buf, "%u", &input);
795 if (ret != 1)
796 return -EINVAL;
a0475992 797
a410c03d
SP
798 mutex_lock(&intel_pstate_limits_lock);
799
51443fbf
PB
800 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
801 limits->min_perf_pct = max(limits->min_policy_pct,
802 limits->min_sysfs_pct);
803 limits->min_perf_pct = min(limits->max_policy_pct,
804 limits->min_perf_pct);
805 limits->min_perf_pct = min(limits->max_perf_pct,
806 limits->min_perf_pct);
22590efb 807 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 808
a410c03d
SP
809 mutex_unlock(&intel_pstate_limits_lock);
810
2f86dc4c 811 if (hwp_active)
41cfd64c 812 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
813 return count;
814}
815
93f0822d
DB
816show_one(max_perf_pct, max_perf_pct);
817show_one(min_perf_pct, min_perf_pct);
818
819define_one_global_rw(no_turbo);
820define_one_global_rw(max_perf_pct);
821define_one_global_rw(min_perf_pct);
d01b1f48 822define_one_global_ro(turbo_pct);
0522424e 823define_one_global_ro(num_pstates);
93f0822d
DB
824
825static struct attribute *intel_pstate_attributes[] = {
826 &no_turbo.attr,
d01b1f48 827 &turbo_pct.attr,
0522424e 828 &num_pstates.attr,
93f0822d
DB
829 NULL
830};
831
832static struct attribute_group intel_pstate_attr_group = {
833 .attrs = intel_pstate_attributes,
834};
93f0822d 835
317dd50e 836static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 837{
317dd50e 838 struct kobject *intel_pstate_kobject;
93f0822d
DB
839 int rc;
840
841 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
842 &cpu_subsys.dev_root->kobj);
eae48f04
SP
843 if (WARN_ON(!intel_pstate_kobject))
844 return;
845
2d8d1f18 846 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
847 if (WARN_ON(rc))
848 return;
849
850 /*
851 * If per cpu limits are enforced there are no global limits, so
852 * return without creating max/min_perf_pct attributes
853 */
854 if (per_cpu_limits)
855 return;
856
857 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
858 WARN_ON(rc);
859
860 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
861 WARN_ON(rc);
862
93f0822d 863}
93f0822d 864/************************** sysfs end ************************/
2f86dc4c 865
ba88d433 866static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 867{
f05c9665 868 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
869 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
870 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 871
ba88d433 872 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
873}
874
938d21a2 875static int atom_get_min_pstate(void)
19e77c28
DB
876{
877 u64 value;
845c1cbe 878
938d21a2 879 rdmsrl(ATOM_RATIOS, value);
c16ed060 880 return (value >> 8) & 0x7F;
19e77c28
DB
881}
882
938d21a2 883static int atom_get_max_pstate(void)
19e77c28
DB
884{
885 u64 value;
845c1cbe 886
938d21a2 887 rdmsrl(ATOM_RATIOS, value);
c16ed060 888 return (value >> 16) & 0x7F;
19e77c28 889}
93f0822d 890
938d21a2 891static int atom_get_turbo_pstate(void)
61d8d2ab
DB
892{
893 u64 value;
845c1cbe 894
938d21a2 895 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 896 return value & 0x7F;
61d8d2ab
DB
897}
898
fdfdb2b1 899static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
900{
901 u64 val;
902 int32_t vid_fp;
903 u32 vid;
904
144c8e17 905 val = (u64)pstate << 8;
51443fbf 906 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
907 val |= (u64)1 << 32;
908
909 vid_fp = cpudata->vid.min + mul_fp(
910 int_tofp(pstate - cpudata->pstate.min_pstate),
911 cpudata->vid.ratio);
912
913 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 914 vid = ceiling_fp(vid_fp);
007bea09 915
21855ff5
DB
916 if (pstate > cpudata->pstate.max_pstate)
917 vid = cpudata->vid.turbo;
918
fdfdb2b1 919 return val | vid;
007bea09
DB
920}
921
1421df63 922static int silvermont_get_scaling(void)
b27580b0
DB
923{
924 u64 value;
925 int i;
1421df63
PL
926 /* Defined in Table 35-6 from SDM (Sept 2015) */
927 static int silvermont_freq_table[] = {
928 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
929
930 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
931 i = value & 0x7;
932 WARN_ON(i > 4);
b27580b0 933
1421df63
PL
934 return silvermont_freq_table[i];
935}
b27580b0 936
1421df63
PL
937static int airmont_get_scaling(void)
938{
939 u64 value;
940 int i;
941 /* Defined in Table 35-10 from SDM (Sept 2015) */
942 static int airmont_freq_table[] = {
943 83300, 100000, 133300, 116700, 80000,
944 93300, 90000, 88900, 87500};
945
946 rdmsrl(MSR_FSB_FREQ, value);
947 i = value & 0xF;
948 WARN_ON(i > 8);
949
950 return airmont_freq_table[i];
b27580b0
DB
951}
952
938d21a2 953static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
954{
955 u64 value;
956
938d21a2 957 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
958 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
959 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
960 cpudata->vid.ratio = div_fp(
961 cpudata->vid.max - cpudata->vid.min,
962 int_tofp(cpudata->pstate.max_pstate -
963 cpudata->pstate.min_pstate));
21855ff5 964
938d21a2 965 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 966 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
967}
968
016c8150 969static int core_get_min_pstate(void)
93f0822d
DB
970{
971 u64 value;
845c1cbe 972
05e99c8c 973 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
974 return (value >> 40) & 0xFF;
975}
976
3bcc6fa9 977static int core_get_max_pstate_physical(void)
93f0822d
DB
978{
979 u64 value;
845c1cbe 980
05e99c8c 981 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
982 return (value >> 8) & 0xFF;
983}
984
016c8150 985static int core_get_max_pstate(void)
93f0822d 986{
6a35fc2d
SP
987 u64 tar;
988 u64 plat_info;
989 int max_pstate;
990 int err;
991
992 rdmsrl(MSR_PLATFORM_INFO, plat_info);
993 max_pstate = (plat_info >> 8) & 0xFF;
994
995 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
996 if (!err) {
997 /* Do some sanity checking for safety */
998 if (plat_info & 0x600000000) {
999 u64 tdp_ctrl;
1000 u64 tdp_ratio;
1001 int tdp_msr;
1002
1003 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1004 if (err)
1005 goto skip_tar;
1006
5fc8f707 1007 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
1008 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1009 if (err)
1010 goto skip_tar;
1011
1becf035
SP
1012 /* For level 1 and 2, bits[23:16] contain the ratio */
1013 if (tdp_ctrl)
1014 tdp_ratio >>= 16;
1015
1016 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
1017 if (tdp_ratio - 1 == tar) {
1018 max_pstate = tar;
1019 pr_debug("max_pstate=TAC %x\n", max_pstate);
1020 } else {
1021 goto skip_tar;
1022 }
1023 }
1024 }
845c1cbe 1025
6a35fc2d
SP
1026skip_tar:
1027 return max_pstate;
93f0822d
DB
1028}
1029
016c8150 1030static int core_get_turbo_pstate(void)
93f0822d
DB
1031{
1032 u64 value;
1033 int nont, ret;
845c1cbe 1034
100cf6f2 1035 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1036 nont = core_get_max_pstate();
285cb990 1037 ret = (value) & 255;
93f0822d
DB
1038 if (ret <= nont)
1039 ret = nont;
1040 return ret;
1041}
1042
b27580b0
DB
1043static inline int core_get_scaling(void)
1044{
1045 return 100000;
1046}
1047
fdfdb2b1 1048static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1049{
1050 u64 val;
1051
144c8e17 1052 val = (u64)pstate << 8;
51443fbf 1053 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1054 val |= (u64)1 << 32;
1055
fdfdb2b1 1056 return val;
016c8150
DB
1057}
1058
b34ef932
DC
1059static int knl_get_turbo_pstate(void)
1060{
1061 u64 value;
1062 int nont, ret;
1063
100cf6f2 1064 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1065 nont = core_get_max_pstate();
1066 ret = (((value) >> 8) & 0xFF);
1067 if (ret <= nont)
1068 ret = nont;
1069 return ret;
1070}
1071
016c8150
DB
1072static struct cpu_defaults core_params = {
1073 .pid_policy = {
1074 .sample_rate_ms = 10,
1075 .deadband = 0,
1076 .setpoint = 97,
1077 .p_gain_pct = 20,
1078 .d_gain_pct = 0,
1079 .i_gain_pct = 0,
1080 },
1081 .funcs = {
1082 .get_max = core_get_max_pstate,
3bcc6fa9 1083 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1084 .get_min = core_get_min_pstate,
1085 .get_turbo = core_get_turbo_pstate,
b27580b0 1086 .get_scaling = core_get_scaling,
fdfdb2b1 1087 .get_val = core_get_val,
157386b6 1088 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1089 },
1090};
1091
42ce8921 1092static const struct cpu_defaults silvermont_params = {
1421df63
PL
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
1096 .setpoint = 60,
1097 .p_gain_pct = 14,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 4,
1100 },
1101 .funcs = {
1102 .get_max = atom_get_max_pstate,
1103 .get_max_physical = atom_get_max_pstate,
1104 .get_min = atom_get_min_pstate,
1105 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1106 .get_val = atom_get_val,
1421df63
PL
1107 .get_scaling = silvermont_get_scaling,
1108 .get_vid = atom_get_vid,
e70eed2b 1109 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1110 },
1111};
1112
42ce8921 1113static const struct cpu_defaults airmont_params = {
19e77c28
DB
1114 .pid_policy = {
1115 .sample_rate_ms = 10,
1116 .deadband = 0,
6a82ba6d 1117 .setpoint = 60,
19e77c28
DB
1118 .p_gain_pct = 14,
1119 .d_gain_pct = 0,
1120 .i_gain_pct = 4,
1121 },
1122 .funcs = {
938d21a2
PL
1123 .get_max = atom_get_max_pstate,
1124 .get_max_physical = atom_get_max_pstate,
1125 .get_min = atom_get_min_pstate,
1126 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1127 .get_val = atom_get_val,
1421df63 1128 .get_scaling = airmont_get_scaling,
938d21a2 1129 .get_vid = atom_get_vid,
e70eed2b 1130 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1131 },
1132};
1133
42ce8921 1134static const struct cpu_defaults knl_params = {
b34ef932
DC
1135 .pid_policy = {
1136 .sample_rate_ms = 10,
1137 .deadband = 0,
1138 .setpoint = 97,
1139 .p_gain_pct = 20,
1140 .d_gain_pct = 0,
1141 .i_gain_pct = 0,
1142 },
1143 .funcs = {
1144 .get_max = core_get_max_pstate,
3bcc6fa9 1145 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1146 .get_min = core_get_min_pstate,
1147 .get_turbo = knl_get_turbo_pstate,
69cefc27 1148 .get_scaling = core_get_scaling,
fdfdb2b1 1149 .get_val = core_get_val,
157386b6 1150 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1151 },
1152};
1153
42ce8921 1154static const struct cpu_defaults bxt_params = {
41bad47f
SP
1155 .pid_policy = {
1156 .sample_rate_ms = 10,
1157 .deadband = 0,
1158 .setpoint = 60,
1159 .p_gain_pct = 14,
1160 .d_gain_pct = 0,
1161 .i_gain_pct = 4,
1162 },
1163 .funcs = {
1164 .get_max = core_get_max_pstate,
1165 .get_max_physical = core_get_max_pstate_physical,
1166 .get_min = core_get_min_pstate,
1167 .get_turbo = core_get_turbo_pstate,
1168 .get_scaling = core_get_scaling,
1169 .get_val = core_get_val,
1170 .get_target_pstate = get_target_pstate_use_cpu_load,
1171 },
1172};
1173
93f0822d
DB
1174static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1175{
1176 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1177 int max_perf_adj;
93f0822d 1178 int min_perf;
eae48f04 1179 struct perf_limits *perf_limits = limits;
845c1cbe 1180
51443fbf 1181 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1182 max_perf = cpu->pstate.max_pstate;
1183
eae48f04
SP
1184 if (per_cpu_limits)
1185 perf_limits = cpu->perf_limits;
1186
e0d4c8f8
KCA
1187 /*
1188 * performance can be limited by user through sysfs, by cpufreq
1189 * policy, or by cpu specific default values determined through
1190 * experimentation.
1191 */
eae48f04 1192 max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1193 *max = clamp_t(int, max_perf_adj,
1194 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1195
eae48f04 1196 min_perf = fp_toint(max_perf * perf_limits->min_perf);
799281a3 1197 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1198}
1199
a6c6ead1 1200static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1201{
bc95a454
RW
1202 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1203 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1204 /*
1205 * Generally, there is no guarantee that this code will always run on
1206 * the CPU being updated, so force the register update to run on the
1207 * right CPU.
1208 */
1209 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1210 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1211}
1212
a6c6ead1
RW
1213static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1214{
1215 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1216}
1217
1218static void intel_pstate_max_within_limits(struct cpudata *cpu)
1219{
1220 int min_pstate, max_pstate;
1221
1222 update_turbo_state();
1223 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1224 intel_pstate_set_pstate(cpu, max_pstate);
1225}
1226
93f0822d
DB
1227static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1228{
016c8150
DB
1229 cpu->pstate.min_pstate = pstate_funcs.get_min();
1230 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1231 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1232 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1233 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1234 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1235 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1236
007bea09
DB
1237 if (pstate_funcs.get_vid)
1238 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1239
1240 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1241}
1242
a1c9787d 1243static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1244{
6b17ddb2 1245 struct sample *sample = &cpu->sample;
e66c1768 1246
a1c9787d 1247 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1248}
1249
4fec7ad5 1250static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1251{
93f0822d 1252 u64 aperf, mperf;
4ab60c3f 1253 unsigned long flags;
4055fad3 1254 u64 tsc;
93f0822d 1255
4ab60c3f 1256 local_irq_save(flags);
93f0822d
DB
1257 rdmsrl(MSR_IA32_APERF, aperf);
1258 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1259 tsc = rdtsc();
4fec7ad5 1260 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1261 local_irq_restore(flags);
4fec7ad5 1262 return false;
8e601a9f 1263 }
4ab60c3f 1264 local_irq_restore(flags);
b69880f9 1265
c4ee841f 1266 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1267 cpu->sample.time = time;
d37e2b76
DB
1268 cpu->sample.aperf = aperf;
1269 cpu->sample.mperf = mperf;
4055fad3 1270 cpu->sample.tsc = tsc;
d37e2b76
DB
1271 cpu->sample.aperf -= cpu->prev_aperf;
1272 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1273 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1274
93f0822d
DB
1275 cpu->prev_aperf = aperf;
1276 cpu->prev_mperf = mperf;
4055fad3 1277 cpu->prev_tsc = tsc;
febce40f
RW
1278 /*
1279 * First time this function is invoked in a given cycle, all of the
1280 * previous sample data fields are equal to zero or stale and they must
1281 * be populated with meaningful numbers for things to work, so assume
1282 * that sample.time will always be reset before setting the utilization
1283 * update hook and make the caller skip the sample then.
1284 */
1285 return !!cpu->last_sample_time;
93f0822d
DB
1286}
1287
8fa520af
PL
1288static inline int32_t get_avg_frequency(struct cpudata *cpu)
1289{
a1c9787d
RW
1290 return mul_ext_fp(cpu->sample.core_avg_perf,
1291 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1292}
1293
bdcaa23f
PL
1294static inline int32_t get_avg_pstate(struct cpudata *cpu)
1295{
8edb0a6e
RW
1296 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1297 cpu->sample.core_avg_perf);
bdcaa23f
PL
1298}
1299
e70eed2b
PL
1300static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1301{
1302 struct sample *sample = &cpu->sample;
09c448d3 1303 int32_t busy_frac, boost;
0843e83c 1304 int target, avg_pstate;
e70eed2b 1305
09c448d3 1306 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1307
09c448d3
RW
1308 boost = cpu->iowait_boost;
1309 cpu->iowait_boost >>= 1;
63d1d656 1310
09c448d3
RW
1311 if (busy_frac < boost)
1312 busy_frac = boost;
63d1d656 1313
09c448d3 1314 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1315
1316 target = limits->no_turbo || limits->turbo_disabled ?
1317 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1318 target += target >> 2;
1319 target = mul_fp(target, busy_frac);
1320 if (target < cpu->pstate.min_pstate)
1321 target = cpu->pstate.min_pstate;
1322
1323 /*
1324 * If the average P-state during the previous cycle was higher than the
1325 * current target, add 50% of the difference to the target to reduce
1326 * possible performance oscillations and offset possible performance
1327 * loss related to moving the workload from one CPU to another within
1328 * a package/module.
1329 */
1330 avg_pstate = get_avg_pstate(cpu);
1331 if (avg_pstate > target)
1332 target += (avg_pstate - target) >> 1;
1333
1334 return target;
e70eed2b
PL
1335}
1336
157386b6 1337static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1338{
1aa7a6e2 1339 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1340 u64 duration_ns;
93f0822d 1341
e0d4c8f8 1342 /*
f00593a4
RW
1343 * perf_scaled is the ratio of the average P-state during the last
1344 * sampling period to the P-state requested last time (in percent).
1345 *
1346 * That measures the system's response to the previous P-state
1347 * selection.
e0d4c8f8 1348 */
22590efb
RW
1349 max_pstate = cpu->pstate.max_pstate_physical;
1350 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1351 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1352 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1353
e0d4c8f8 1354 /*
a4675fbc
RW
1355 * Since our utilization update callback will not run unless we are
1356 * in C0, check if the actual elapsed time is significantly greater (3x)
1357 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1358 * enough period of time to adjust our performance metric.
e0d4c8f8 1359 */
a4675fbc 1360 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1361 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1362 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1363 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1364 } else {
1365 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1366 if (sample_ratio < int_tofp(1))
1aa7a6e2 1367 perf_scaled = 0;
c4ee841f
DB
1368 }
1369
1aa7a6e2
RW
1370 cpu->sample.busy_scaled = perf_scaled;
1371 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1372}
1373
001c76f0 1374static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1375{
1376 int max_perf, min_perf;
1377
fdfdb2b1
RW
1378 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1379 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1380 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
001c76f0
RW
1381 return pstate;
1382}
1383
1384static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1385{
1386 pstate = intel_pstate_prepare_request(cpu, pstate);
fdfdb2b1
RW
1387 if (pstate == cpu->pstate.current_pstate)
1388 return;
1389
bc95a454 1390 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1391 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1392}
1393
93f0822d
DB
1394static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1395{
157386b6 1396 int from, target_pstate;
4055fad3
DS
1397 struct sample *sample;
1398
1399 from = cpu->pstate.current_pstate;
93f0822d 1400
2f1d407a
RW
1401 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1402 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1403
001c76f0
RW
1404 update_turbo_state();
1405
fdfdb2b1 1406 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1407
1408 sample = &cpu->sample;
a1c9787d 1409 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1410 fp_toint(sample->busy_scaled),
4055fad3
DS
1411 from,
1412 cpu->pstate.current_pstate,
1413 sample->mperf,
1414 sample->aperf,
1415 sample->tsc,
3ba7bcaa
SP
1416 get_avg_frequency(cpu),
1417 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1418}
1419
a4675fbc 1420static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1421 unsigned int flags)
93f0822d 1422{
a4675fbc 1423 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1424 u64 delta_ns;
1425
1d29815e 1426 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1427 if (flags & SCHED_CPUFREQ_IOWAIT) {
1428 cpu->iowait_boost = int_tofp(1);
1429 } else if (cpu->iowait_boost) {
1430 /* Clear iowait_boost if the CPU may have been idle. */
1431 delta_ns = time - cpu->last_update;
1432 if (delta_ns > TICK_NSEC)
1433 cpu->iowait_boost = 0;
1434 }
1435 cpu->last_update = time;
1436 }
b69880f9 1437
09c448d3 1438 delta_ns = time - cpu->sample.time;
a4675fbc 1439 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1440 bool sample_taken = intel_pstate_sample(cpu, time);
1441
6d45b719 1442 if (sample_taken) {
a1c9787d 1443 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1444 if (!hwp_active)
1445 intel_pstate_adjust_busy_pstate(cpu);
1446 }
a4675fbc 1447 }
93f0822d
DB
1448}
1449
1450#define ICPU(model, policy) \
6cbd7ee1
DB
1451 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1452 (unsigned long)&policy }
93f0822d
DB
1453
1454static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1455 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1456 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1457 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1458 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1459 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1460 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1461 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1462 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1463 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1464 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1465 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1466 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1467 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1468 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1469 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1470 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1471 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1472 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1473 {}
1474};
1475MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1476
29327c84 1477static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1478 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1479 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1480 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1481 {}
1482};
1483
93f0822d
DB
1484static int intel_pstate_init_cpu(unsigned int cpunum)
1485{
93f0822d
DB
1486 struct cpudata *cpu;
1487
eae48f04
SP
1488 cpu = all_cpu_data[cpunum];
1489
1490 if (!cpu) {
1491 unsigned int size = sizeof(struct cpudata);
1492
1493 if (per_cpu_limits)
1494 size += sizeof(struct perf_limits);
1495
1496 cpu = kzalloc(size, GFP_KERNEL);
1497 if (!cpu)
1498 return -ENOMEM;
1499
1500 all_cpu_data[cpunum] = cpu;
1501 if (per_cpu_limits)
1502 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1503
1504 }
93f0822d
DB
1505
1506 cpu = all_cpu_data[cpunum];
1507
93f0822d 1508 cpu->cpu = cpunum;
ba88d433 1509
a4675fbc 1510 if (hwp_active) {
ba88d433 1511 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1512 pid_params.sample_rate_ms = 50;
1513 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1514 }
ba88d433 1515
179e8471 1516 intel_pstate_get_cpu_pstates(cpu);
016c8150 1517
93f0822d 1518 intel_pstate_busy_pid_reset(cpu);
93f0822d 1519
4836df17 1520 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1521
1522 return 0;
1523}
1524
1525static unsigned int intel_pstate_get(unsigned int cpu_num)
1526{
f96fd0c8 1527 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1528
f96fd0c8 1529 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1530}
1531
febce40f 1532static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1533{
febce40f
RW
1534 struct cpudata *cpu = all_cpu_data[cpu_num];
1535
5ab666e0
RW
1536 if (cpu->update_util_set)
1537 return;
1538
febce40f
RW
1539 /* Prevent intel_pstate_update_util() from using stale data. */
1540 cpu->sample.time = 0;
0bed612b
RW
1541 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1542 intel_pstate_update_util);
4578ee7e 1543 cpu->update_util_set = true;
bb6ab52f
RW
1544}
1545
1546static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1547{
4578ee7e
CY
1548 struct cpudata *cpu_data = all_cpu_data[cpu];
1549
1550 if (!cpu_data->update_util_set)
1551 return;
1552
0bed612b 1553 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1554 cpu_data->update_util_set = false;
bb6ab52f
RW
1555 synchronize_sched();
1556}
1557
30a39153
SP
1558static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1559{
a410c03d 1560 mutex_lock(&intel_pstate_limits_lock);
30a39153
SP
1561 limits->no_turbo = 0;
1562 limits->turbo_disabled = 0;
1563 limits->max_perf_pct = 100;
1564 limits->max_perf = int_tofp(1);
1565 limits->min_perf_pct = 100;
1566 limits->min_perf = int_tofp(1);
1567 limits->max_policy_pct = 100;
1568 limits->max_sysfs_pct = 100;
1569 limits->min_policy_pct = 0;
1570 limits->min_sysfs_pct = 0;
a410c03d 1571 mutex_unlock(&intel_pstate_limits_lock);
30a39153
SP
1572}
1573
eae48f04
SP
1574static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1575 struct perf_limits *limits)
1576{
a410c03d
SP
1577
1578 mutex_lock(&intel_pstate_limits_lock);
1579
eae48f04
SP
1580 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1581 policy->cpuinfo.max_freq);
1582 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
1583 if (policy->max == policy->min) {
1584 limits->min_policy_pct = limits->max_policy_pct;
1585 } else {
1586 limits->min_policy_pct = (policy->min * 100) /
1587 policy->cpuinfo.max_freq;
1588 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1589 0, 100);
1590 }
eae48f04
SP
1591
1592 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1593 limits->min_perf_pct = max(limits->min_policy_pct,
1594 limits->min_sysfs_pct);
1595 limits->min_perf_pct = min(limits->max_policy_pct,
1596 limits->min_perf_pct);
1597 limits->max_perf_pct = min(limits->max_policy_pct,
1598 limits->max_sysfs_pct);
1599 limits->max_perf_pct = max(limits->min_policy_pct,
1600 limits->max_perf_pct);
1601
1602 /* Make sure min_perf_pct <= max_perf_pct */
1603 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1604
1605 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1606 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1607 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1608
a410c03d
SP
1609 mutex_unlock(&intel_pstate_limits_lock);
1610
eae48f04
SP
1611 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1612 limits->max_perf_pct, limits->min_perf_pct);
1613}
1614
93f0822d
DB
1615static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1616{
3be9200d 1617 struct cpudata *cpu;
eae48f04 1618 struct perf_limits *perf_limits = NULL;
3be9200d 1619
d3929b83
DB
1620 if (!policy->cpuinfo.max_freq)
1621 return -ENODEV;
1622
2c2c1af4
SP
1623 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1624 policy->cpuinfo.max_freq, policy->max);
1625
a6c6ead1 1626 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
1627 cpu->policy = policy->policy;
1628
c749c64f
RW
1629 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1630 policy->max < policy->cpuinfo.max_freq &&
1631 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1632 pr_debug("policy->max > max non turbo frequency\n");
1633 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1634 }
1635
eae48f04
SP
1636 if (per_cpu_limits)
1637 perf_limits = cpu->perf_limits;
1638
1639 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1640 if (!perf_limits) {
1641 limits = &performance_limits;
1642 perf_limits = limits;
1643 }
30a39153 1644 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1645 pr_debug("set performance\n");
eae48f04 1646 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
1647 goto out;
1648 }
1649 } else {
4836df17 1650 pr_debug("set powersave\n");
eae48f04
SP
1651 if (!perf_limits) {
1652 limits = &powersave_limits;
1653 perf_limits = limits;
1654 }
43717aad 1655
eae48f04 1656 }
93f0822d 1657
eae48f04 1658 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 1659 out:
2f1d407a 1660 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
1661 /*
1662 * NOHZ_FULL CPUs need this as the governor callback may not
1663 * be invoked on them.
1664 */
1665 intel_pstate_clear_update_util_hook(policy->cpu);
1666 intel_pstate_max_within_limits(cpu);
1667 }
1668
bb6ab52f
RW
1669 intel_pstate_set_update_util_hook(policy->cpu);
1670
ba41e1bc 1671 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1672
93f0822d
DB
1673 return 0;
1674}
1675
1676static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1677{
be49e346 1678 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1679
285cb990 1680 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1681 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1682 return -EINVAL;
1683
1684 return 0;
1685}
1686
001c76f0
RW
1687static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1688{
1689 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1690}
1691
bb18008f 1692static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1693{
001c76f0 1694 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 1695
001c76f0
RW
1696 intel_pstate_clear_update_util_hook(policy->cpu);
1697 if (!hwp_active)
1698 intel_cpufreq_stop_cpu(policy);
1699}
bb18008f 1700
001c76f0
RW
1701static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1702{
1703 intel_pstate_exit_perf_limits(policy);
a4675fbc 1704
001c76f0 1705 policy->fast_switch_possible = false;
2f86dc4c 1706
001c76f0 1707 return 0;
93f0822d
DB
1708}
1709
001c76f0 1710static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1711{
93f0822d 1712 struct cpudata *cpu;
52e0a509 1713 int rc;
93f0822d
DB
1714
1715 rc = intel_pstate_init_cpu(policy->cpu);
1716 if (rc)
1717 return rc;
1718
1719 cpu = all_cpu_data[policy->cpu];
1720
eae48f04
SP
1721 /*
1722 * We need sane value in the cpu->perf_limits, so inherit from global
1723 * perf_limits limits, which are seeded with values based on the
1724 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1725 */
1726 if (per_cpu_limits)
1727 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1728
b27580b0
DB
1729 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1730 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1731
1732 /* cpuinfo and default policy values */
b27580b0 1733 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1734 update_turbo_state();
1735 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1736 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1737 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1738
9522a2ff 1739 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1740 cpumask_set_cpu(policy->cpu, policy->cpus);
1741
001c76f0
RW
1742 policy->fast_switch_possible = true;
1743
93f0822d
DB
1744 return 0;
1745}
1746
001c76f0 1747static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 1748{
001c76f0
RW
1749 int ret = __intel_pstate_cpu_init(policy);
1750
1751 if (ret)
1752 return ret;
1753
1754 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1755 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1756 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1757 else
1758 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
1759
1760 return 0;
1761}
1762
001c76f0 1763static struct cpufreq_driver intel_pstate = {
93f0822d
DB
1764 .flags = CPUFREQ_CONST_LOOPS,
1765 .verify = intel_pstate_verify_policy,
1766 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1767 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1768 .get = intel_pstate_get,
1769 .init = intel_pstate_cpu_init,
9522a2ff 1770 .exit = intel_pstate_cpu_exit,
bb18008f 1771 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1772 .name = "intel_pstate",
93f0822d
DB
1773};
1774
001c76f0
RW
1775static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1776{
1777 struct cpudata *cpu = all_cpu_data[policy->cpu];
1778 struct perf_limits *perf_limits = limits;
1779
1780 update_turbo_state();
1781 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1782 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1783
1784 cpufreq_verify_within_cpu_limits(policy);
1785
1786 if (per_cpu_limits)
1787 perf_limits = cpu->perf_limits;
1788
1789 intel_pstate_update_perf_limits(policy, perf_limits);
1790
1791 return 0;
1792}
1793
1794static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
1795 struct cpufreq_policy *policy,
1796 unsigned int target_freq)
1797{
1798 unsigned int max_freq;
1799
1800 update_turbo_state();
1801
1802 max_freq = limits->no_turbo || limits->turbo_disabled ?
1803 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1804 policy->cpuinfo.max_freq = max_freq;
1805 if (policy->max > max_freq)
1806 policy->max = max_freq;
1807
1808 if (target_freq > max_freq)
1809 target_freq = max_freq;
1810
1811 return target_freq;
1812}
1813
1814static int intel_cpufreq_target(struct cpufreq_policy *policy,
1815 unsigned int target_freq,
1816 unsigned int relation)
1817{
1818 struct cpudata *cpu = all_cpu_data[policy->cpu];
1819 struct cpufreq_freqs freqs;
1820 int target_pstate;
1821
1822 freqs.old = policy->cur;
1823 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1824
1825 cpufreq_freq_transition_begin(policy, &freqs);
1826 switch (relation) {
1827 case CPUFREQ_RELATION_L:
1828 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1829 break;
1830 case CPUFREQ_RELATION_H:
1831 target_pstate = freqs.new / cpu->pstate.scaling;
1832 break;
1833 default:
1834 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1835 break;
1836 }
1837 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1838 if (target_pstate != cpu->pstate.current_pstate) {
1839 cpu->pstate.current_pstate = target_pstate;
1840 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1841 pstate_funcs.get_val(cpu, target_pstate));
1842 }
1843 cpufreq_freq_transition_end(policy, &freqs, false);
1844
1845 return 0;
1846}
1847
1848static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1849 unsigned int target_freq)
1850{
1851 struct cpudata *cpu = all_cpu_data[policy->cpu];
1852 int target_pstate;
1853
1854 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
1855 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1856 intel_pstate_update_pstate(cpu, target_pstate);
1857 return target_freq;
1858}
1859
1860static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1861{
1862 int ret = __intel_pstate_cpu_init(policy);
1863
1864 if (ret)
1865 return ret;
1866
1867 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1868 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
1869 policy->cur = policy->cpuinfo.min_freq;
1870
1871 return 0;
1872}
1873
1874static struct cpufreq_driver intel_cpufreq = {
1875 .flags = CPUFREQ_CONST_LOOPS,
1876 .verify = intel_cpufreq_verify_policy,
1877 .target = intel_cpufreq_target,
1878 .fast_switch = intel_cpufreq_fast_switch,
1879 .init = intel_cpufreq_cpu_init,
1880 .exit = intel_pstate_cpu_exit,
1881 .stop_cpu = intel_cpufreq_stop_cpu,
1882 .name = "intel_cpufreq",
1883};
1884
1885static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
1886
eed43609
JZ
1887static int no_load __initdata;
1888static int no_hwp __initdata;
1889static int hwp_only __initdata;
29327c84 1890static unsigned int force_load __initdata;
6be26498 1891
29327c84 1892static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1893{
016c8150 1894 if (!pstate_funcs.get_max() ||
c410833a
SK
1895 !pstate_funcs.get_min() ||
1896 !pstate_funcs.get_turbo())
b563b4e3
DB
1897 return -ENODEV;
1898
b563b4e3
DB
1899 return 0;
1900}
016c8150 1901
29327c84 1902static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1903{
1904 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1905 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1906 pid_params.p_gain_pct = policy->p_gain_pct;
1907 pid_params.i_gain_pct = policy->i_gain_pct;
1908 pid_params.d_gain_pct = policy->d_gain_pct;
1909 pid_params.deadband = policy->deadband;
1910 pid_params.setpoint = policy->setpoint;
1911}
1912
7f7a516e
SP
1913#ifdef CONFIG_ACPI
1914static void intel_pstate_use_acpi_profile(void)
1915{
1916 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
1917 pstate_funcs.get_target_pstate =
1918 get_target_pstate_use_cpu_load;
1919}
1920#else
1921static void intel_pstate_use_acpi_profile(void)
1922{
1923}
1924#endif
1925
29327c84 1926static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1927{
1928 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1929 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1930 pstate_funcs.get_min = funcs->get_min;
1931 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1932 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1933 pstate_funcs.get_val = funcs->get_val;
007bea09 1934 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1935 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1936
7f7a516e 1937 intel_pstate_use_acpi_profile();
016c8150
DB
1938}
1939
9522a2ff 1940#ifdef CONFIG_ACPI
fbbcdc07 1941
29327c84 1942static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1943{
1944 int i;
1945
1946 for_each_possible_cpu(i) {
1947 acpi_status status;
1948 union acpi_object *pss;
1949 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1950 struct acpi_processor *pr = per_cpu(processors, i);
1951
1952 if (!pr)
1953 continue;
1954
1955 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1956 if (ACPI_FAILURE(status))
1957 continue;
1958
1959 pss = buffer.pointer;
1960 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1961 kfree(pss);
1962 return false;
1963 }
1964
1965 kfree(pss);
1966 }
1967
1968 return true;
1969}
1970
29327c84 1971static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1972{
1973 int i;
1974
1975 for_each_possible_cpu(i) {
1976 struct acpi_processor *pr = per_cpu(processors, i);
1977
1978 if (!pr)
1979 continue;
1980 if (acpi_has_method(pr->handle, "_PPC"))
1981 return true;
1982 }
1983 return false;
1984}
1985
1986enum {
1987 PSS,
1988 PPC,
1989};
1990
fbbcdc07
AH
1991struct hw_vendor_info {
1992 u16 valid;
1993 char oem_id[ACPI_OEM_ID_SIZE];
1994 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1995 int oem_pwr_table;
fbbcdc07
AH
1996};
1997
1998/* Hardware vendor-specific info that has its own power management modes */
29327c84 1999static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2000 {1, "HP ", "ProLiant", PSS},
2001 {1, "ORACLE", "X4-2 ", PPC},
2002 {1, "ORACLE", "X4-2L ", PPC},
2003 {1, "ORACLE", "X4-2B ", PPC},
2004 {1, "ORACLE", "X3-2 ", PPC},
2005 {1, "ORACLE", "X3-2L ", PPC},
2006 {1, "ORACLE", "X3-2B ", PPC},
2007 {1, "ORACLE", "X4470M2 ", PPC},
2008 {1, "ORACLE", "X4270M3 ", PPC},
2009 {1, "ORACLE", "X4270M2 ", PPC},
2010 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2011 {1, "ORACLE", "X4170 M3", PPC},
2012 {1, "ORACLE", "X4275 M3", PPC},
2013 {1, "ORACLE", "X6-2 ", PPC},
2014 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2015 {0, "", ""},
2016};
2017
29327c84 2018static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2019{
2020 struct acpi_table_header hdr;
2021 struct hw_vendor_info *v_info;
2f86dc4c
DB
2022 const struct x86_cpu_id *id;
2023 u64 misc_pwr;
2024
2025 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2026 if (id) {
2027 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2028 if ( misc_pwr & (1 << 8))
2029 return true;
2030 }
fbbcdc07 2031
c410833a
SK
2032 if (acpi_disabled ||
2033 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2034 return false;
2035
2036 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2037 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2038 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2039 ACPI_OEM_TABLE_ID_SIZE))
2040 switch (v_info->oem_pwr_table) {
2041 case PSS:
2042 return intel_pstate_no_acpi_pss();
2043 case PPC:
aa4ea34d
EZ
2044 return intel_pstate_has_acpi_ppc() &&
2045 (!force_load);
966916ea 2046 }
fbbcdc07
AH
2047 }
2048
2049 return false;
2050}
d0ea59e1
RW
2051
2052static void intel_pstate_request_control_from_smm(void)
2053{
2054 /*
2055 * It may be unsafe to request P-states control from SMM if _PPC support
2056 * has not been enabled.
2057 */
2058 if (acpi_ppc)
2059 acpi_processor_pstate_control();
2060}
fbbcdc07
AH
2061#else /* CONFIG_ACPI not enabled */
2062static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2063static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2064static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2065#endif /* CONFIG_ACPI */
2066
7791e4aa
SP
2067static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2068 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2069 {}
2070};
2071
93f0822d
DB
2072static int __init intel_pstate_init(void)
2073{
907cc908 2074 int cpu, rc = 0;
93f0822d 2075 const struct x86_cpu_id *id;
64df1fdf 2076 struct cpu_defaults *cpu_def;
93f0822d 2077
6be26498
DB
2078 if (no_load)
2079 return -ENODEV;
2080
7791e4aa
SP
2081 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2082 copy_cpu_funcs(&core_params.funcs);
2083 hwp_active++;
2084 goto hwp_cpu_matched;
2085 }
2086
93f0822d
DB
2087 id = x86_match_cpu(intel_pstate_cpu_ids);
2088 if (!id)
2089 return -ENODEV;
2090
64df1fdf 2091 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2092
64df1fdf
BP
2093 copy_pid_params(&cpu_def->pid_policy);
2094 copy_cpu_funcs(&cpu_def->funcs);
016c8150 2095
b563b4e3
DB
2096 if (intel_pstate_msrs_not_valid())
2097 return -ENODEV;
2098
7791e4aa
SP
2099hwp_cpu_matched:
2100 /*
2101 * The Intel pstate driver will be ignored if the platform
2102 * firmware has its own power management modes.
2103 */
2104 if (intel_pstate_platform_pwr_mgmt_exists())
2105 return -ENODEV;
2106
4836df17 2107 pr_info("Intel P-state driver initializing\n");
93f0822d 2108
b57ffac5 2109 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2110 if (!all_cpu_data)
2111 return -ENOMEM;
93f0822d 2112
d64c3b0b
KCA
2113 if (!hwp_active && hwp_only)
2114 goto out;
2115
d0ea59e1
RW
2116 intel_pstate_request_control_from_smm();
2117
001c76f0 2118 rc = cpufreq_register_driver(intel_pstate_driver);
93f0822d
DB
2119 if (rc)
2120 goto out;
2121
2122 intel_pstate_debug_expose_params();
2123 intel_pstate_sysfs_expose_params();
b69880f9 2124
7791e4aa 2125 if (hwp_active)
4836df17 2126 pr_info("HWP enabled\n");
7791e4aa 2127
93f0822d
DB
2128 return rc;
2129out:
907cc908
DB
2130 get_online_cpus();
2131 for_each_online_cpu(cpu) {
2132 if (all_cpu_data[cpu]) {
001c76f0
RW
2133 if (intel_pstate_driver == &intel_pstate)
2134 intel_pstate_clear_update_util_hook(cpu);
2135
907cc908
DB
2136 kfree(all_cpu_data[cpu]);
2137 }
2138 }
2139
2140 put_online_cpus();
2141 vfree(all_cpu_data);
93f0822d
DB
2142 return -ENODEV;
2143}
2144device_initcall(intel_pstate_init);
2145
6be26498
DB
2146static int __init intel_pstate_setup(char *str)
2147{
2148 if (!str)
2149 return -EINVAL;
2150
001c76f0 2151 if (!strcmp(str, "disable")) {
6be26498 2152 no_load = 1;
001c76f0
RW
2153 } else if (!strcmp(str, "passive")) {
2154 pr_info("Passive mode enabled\n");
2155 intel_pstate_driver = &intel_cpufreq;
2156 no_hwp = 1;
2157 }
539342f6 2158 if (!strcmp(str, "no_hwp")) {
4836df17 2159 pr_info("HWP disabled\n");
2f86dc4c 2160 no_hwp = 1;
539342f6 2161 }
aa4ea34d
EZ
2162 if (!strcmp(str, "force"))
2163 force_load = 1;
d64c3b0b
KCA
2164 if (!strcmp(str, "hwp_only"))
2165 hwp_only = 1;
eae48f04
SP
2166 if (!strcmp(str, "per_cpu_perf_limits"))
2167 per_cpu_limits = true;
9522a2ff
SP
2168
2169#ifdef CONFIG_ACPI
2170 if (!strcmp(str, "support_acpi_ppc"))
2171 acpi_ppc = true;
2172#endif
2173
6be26498
DB
2174 return 0;
2175}
2176early_param("intel_pstate", intel_pstate_setup);
2177
93f0822d
DB
2178MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2179MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2180MODULE_LICENSE("GPL");