]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: brcmstb-avs-cpufreq: add debugfs support
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
13ad7701
SP
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
a4675fbc 111 u64 time;
93f0822d
DB
112};
113
13ad7701
SP
114/**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
93f0822d
DB
128struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
3bcc6fa9 132 int max_pstate_physical;
b27580b0 133 int scaling;
93f0822d
DB
134 int turbo_pstate;
135};
136
13ad7701
SP
137/**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
007bea09 150struct vid_data {
21855ff5
DB
151 int min;
152 int max;
153 int turbo;
007bea09
DB
154 int32_t ratio;
155};
156
13ad7701
SP
157/**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
93f0822d
DB
169struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
d253d2a5 176 int32_t last_err;
93f0822d
DB
177};
178
eae48f04
SP
179/**
180 * struct perf_limits - Store user and policy limits
181 * @no_turbo: User requested turbo state from intel_pstate sysfs
182 * @turbo_disabled: Platform turbo status either from msr
183 * MSR_IA32_MISC_ENABLE or when maximum available pstate
184 * matches the maximum turbo pstate
185 * @max_perf_pct: Effective maximum performance limit in percentage, this
186 * is minimum of either limits enforced by cpufreq policy
187 * or limits from user set limits via intel_pstate sysfs
188 * @min_perf_pct: Effective minimum performance limit in percentage, this
189 * is maximum of either limits enforced by cpufreq policy
190 * or limits from user set limits via intel_pstate sysfs
191 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
192 * This value is used to limit max pstate
193 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
194 * This value is used to limit min pstate
195 * @max_policy_pct: The maximum performance in percentage enforced by
196 * cpufreq setpolicy interface
197 * @max_sysfs_pct: The maximum performance in percentage enforced by
198 * intel pstate sysfs interface, unused when per cpu
199 * controls are enforced
200 * @min_policy_pct: The minimum performance in percentage enforced by
201 * cpufreq setpolicy interface
202 * @min_sysfs_pct: The minimum performance in percentage enforced by
203 * intel pstate sysfs interface, unused when per cpu
204 * controls are enforced
205 *
206 * Storage for user and policy defined limits.
207 */
208struct perf_limits {
209 int no_turbo;
210 int turbo_disabled;
211 int max_perf_pct;
212 int min_perf_pct;
213 int32_t max_perf;
214 int32_t min_perf;
215 int max_policy_pct;
216 int max_sysfs_pct;
217 int min_policy_pct;
218 int min_sysfs_pct;
219};
220
13ad7701
SP
221/**
222 * struct cpudata - Per CPU instance data storage
223 * @cpu: CPU number for this instance data
2f1d407a 224 * @policy: CPUFreq policy value
13ad7701 225 * @update_util: CPUFreq utility callback information
4578ee7e 226 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
227 * @iowait_boost: iowait-related boost fraction
228 * @last_update: Time of the last update.
13ad7701
SP
229 * @pstate: Stores P state limits for this CPU
230 * @vid: Stores VID limits for this CPU
231 * @pid: Stores PID parameters for this CPU
232 * @last_sample_time: Last Sample time
233 * @prev_aperf: Last APERF value read from APERF MSR
234 * @prev_mperf: Last MPERF value read from MPERF MSR
235 * @prev_tsc: Last timestamp counter (TSC) value
236 * @prev_cummulative_iowait: IO Wait time difference from last and
237 * current sample
238 * @sample: Storage for storing last Sample data
eae48f04
SP
239 * @perf_limits: Pointer to perf_limit unique to this CPU
240 * Not all field in the structure are applicable
241 * when per cpu controls are enforced
9522a2ff
SP
242 * @acpi_perf_data: Stores ACPI perf information read from _PSS
243 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
244 *
245 * This structure stores per CPU instance data for all CPUs.
246 */
93f0822d
DB
247struct cpudata {
248 int cpu;
249
2f1d407a 250 unsigned int policy;
a4675fbc 251 struct update_util_data update_util;
4578ee7e 252 bool update_util_set;
93f0822d 253
93f0822d 254 struct pstate_data pstate;
007bea09 255 struct vid_data vid;
93f0822d 256 struct _pid pid;
93f0822d 257
09c448d3 258 u64 last_update;
a4675fbc 259 u64 last_sample_time;
93f0822d
DB
260 u64 prev_aperf;
261 u64 prev_mperf;
4055fad3 262 u64 prev_tsc;
63d1d656 263 u64 prev_cummulative_iowait;
d37e2b76 264 struct sample sample;
eae48f04 265 struct perf_limits *perf_limits;
9522a2ff
SP
266#ifdef CONFIG_ACPI
267 struct acpi_processor_performance acpi_perf_data;
268 bool valid_pss_table;
269#endif
09c448d3 270 unsigned int iowait_boost;
93f0822d
DB
271};
272
273static struct cpudata **all_cpu_data;
13ad7701
SP
274
275/**
3954517e 276 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
277 * @sample_rate_ms: PID calculation sample rate in ms
278 * @sample_rate_ns: Sample rate calculation in ns
279 * @deadband: PID deadband
280 * @setpoint: PID Setpoint
281 * @p_gain_pct: PID proportional gain
282 * @i_gain_pct: PID integral gain
283 * @d_gain_pct: PID derivative gain
284 *
285 * Stores per CPU model static PID configuration data.
286 */
93f0822d
DB
287struct pstate_adjust_policy {
288 int sample_rate_ms;
a4675fbc 289 s64 sample_rate_ns;
93f0822d
DB
290 int deadband;
291 int setpoint;
292 int p_gain_pct;
293 int d_gain_pct;
294 int i_gain_pct;
295};
296
13ad7701
SP
297/**
298 * struct pstate_funcs - Per CPU model specific callbacks
299 * @get_max: Callback to get maximum non turbo effective P state
300 * @get_max_physical: Callback to get maximum non turbo physical P state
301 * @get_min: Callback to get minimum P state
302 * @get_turbo: Callback to get turbo P state
303 * @get_scaling: Callback to get frequency scaling factor
304 * @get_val: Callback to convert P state to actual MSR write value
305 * @get_vid: Callback to get VID data for Atom platforms
306 * @get_target_pstate: Callback to a function to calculate next P state to use
307 *
308 * Core and Atom CPU models have different way to get P State limits. This
309 * structure is used to store those callbacks.
310 */
016c8150
DB
311struct pstate_funcs {
312 int (*get_max)(void);
3bcc6fa9 313 int (*get_max_physical)(void);
016c8150
DB
314 int (*get_min)(void);
315 int (*get_turbo)(void);
b27580b0 316 int (*get_scaling)(void);
fdfdb2b1 317 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 318 void (*get_vid)(struct cpudata *);
157386b6 319 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
320};
321
13ad7701
SP
322/**
323 * struct cpu_defaults- Per CPU model default config data
324 * @pid_policy: PID config data
325 * @funcs: Callback function data
326 */
016c8150
DB
327struct cpu_defaults {
328 struct pstate_adjust_policy pid_policy;
329 struct pstate_funcs funcs;
93f0822d
DB
330};
331
157386b6 332static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 333static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 334
4a7cb7a9
JZ
335static struct pstate_adjust_policy pid_params __read_mostly;
336static struct pstate_funcs pstate_funcs __read_mostly;
337static int hwp_active __read_mostly;
eae48f04 338static bool per_cpu_limits __read_mostly;
016c8150 339
9522a2ff
SP
340#ifdef CONFIG_ACPI
341static bool acpi_ppc;
342#endif
13ad7701 343
51443fbf
PB
344static struct perf_limits performance_limits = {
345 .no_turbo = 0,
346 .turbo_disabled = 0,
347 .max_perf_pct = 100,
348 .max_perf = int_tofp(1),
349 .min_perf_pct = 100,
350 .min_perf = int_tofp(1),
351 .max_policy_pct = 100,
352 .max_sysfs_pct = 100,
353 .min_policy_pct = 0,
354 .min_sysfs_pct = 0,
355};
356
357static struct perf_limits powersave_limits = {
93f0822d 358 .no_turbo = 0,
4521e1a0 359 .turbo_disabled = 0,
93f0822d
DB
360 .max_perf_pct = 100,
361 .max_perf = int_tofp(1),
362 .min_perf_pct = 0,
363 .min_perf = 0,
d8f469e9
DB
364 .max_policy_pct = 100,
365 .max_sysfs_pct = 100,
a0475992
KCA
366 .min_policy_pct = 0,
367 .min_sysfs_pct = 0,
93f0822d
DB
368};
369
51443fbf
PB
370#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
371static struct perf_limits *limits = &performance_limits;
372#else
373static struct perf_limits *limits = &powersave_limits;
374#endif
375
9522a2ff 376#ifdef CONFIG_ACPI
2b3ec765
SP
377
378static bool intel_pstate_get_ppc_enable_status(void)
379{
380 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
381 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
382 return true;
383
384 return acpi_ppc;
385}
386
9522a2ff
SP
387static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
388{
389 struct cpudata *cpu;
9522a2ff
SP
390 int ret;
391 int i;
392
e59a8f7f
SP
393 if (hwp_active)
394 return;
395
2b3ec765 396 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
397 return;
398
399 cpu = all_cpu_data[policy->cpu];
400
401 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
402 policy->cpu);
403 if (ret)
404 return;
405
406 /*
407 * Check if the control value in _PSS is for PERF_CTL MSR, which should
408 * guarantee that the states returned by it map to the states in our
409 * list directly.
410 */
411 if (cpu->acpi_perf_data.control_register.space_id !=
412 ACPI_ADR_SPACE_FIXED_HARDWARE)
413 goto err;
414
415 /*
416 * If there is only one entry _PSS, simply ignore _PSS and continue as
417 * usual without taking _PSS into account
418 */
419 if (cpu->acpi_perf_data.state_count < 2)
420 goto err;
421
422 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
423 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
424 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
425 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
426 (u32) cpu->acpi_perf_data.states[i].core_frequency,
427 (u32) cpu->acpi_perf_data.states[i].power,
428 (u32) cpu->acpi_perf_data.states[i].control);
429 }
430
431 /*
432 * The _PSS table doesn't contain whole turbo frequency range.
433 * This just contains +1 MHZ above the max non turbo frequency,
434 * with control value corresponding to max turbo ratio. But
435 * when cpufreq set policy is called, it will call with this
436 * max frequency, which will cause a reduced performance as
437 * this driver uses real max turbo frequency as the max
438 * frequency. So correct this frequency in _PSS table to
b00345d1 439 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
440 * Also need to convert to MHz as _PSS freq is in MHz.
441 */
b00345d1 442 if (!limits->turbo_disabled)
9522a2ff
SP
443 cpu->acpi_perf_data.states[0].core_frequency =
444 policy->cpuinfo.max_freq / 1000;
445 cpu->valid_pss_table = true;
6cacd115 446 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
447
448 return;
449
450 err:
451 cpu->valid_pss_table = false;
452 acpi_processor_unregister_performance(policy->cpu);
453}
454
455static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
456{
457 struct cpudata *cpu;
458
459 cpu = all_cpu_data[policy->cpu];
460 if (!cpu->valid_pss_table)
461 return;
462
463 acpi_processor_unregister_performance(policy->cpu);
464}
465
466#else
467static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
468{
469}
470
471static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
472{
473}
474#endif
475
93f0822d 476static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 477 int deadband, int integral) {
b54a0dfd
PL
478 pid->setpoint = int_tofp(setpoint);
479 pid->deadband = int_tofp(deadband);
93f0822d 480 pid->integral = int_tofp(integral);
d98d099b 481 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
482}
483
484static inline void pid_p_gain_set(struct _pid *pid, int percent)
485{
22590efb 486 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
487}
488
489static inline void pid_i_gain_set(struct _pid *pid, int percent)
490{
22590efb 491 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
492}
493
494static inline void pid_d_gain_set(struct _pid *pid, int percent)
495{
22590efb 496 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
497}
498
d253d2a5 499static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 500{
d253d2a5 501 signed int result;
93f0822d
DB
502 int32_t pterm, dterm, fp_error;
503 int32_t integral_limit;
504
b54a0dfd 505 fp_error = pid->setpoint - busy;
93f0822d 506
b54a0dfd 507 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
508 return 0;
509
510 pterm = mul_fp(pid->p_gain, fp_error);
511
512 pid->integral += fp_error;
513
e0d4c8f8
KCA
514 /*
515 * We limit the integral here so that it will never
516 * get higher than 30. This prevents it from becoming
517 * too large an input over long periods of time and allows
518 * it to get factored out sooner.
519 *
520 * The value of 30 was chosen through experimentation.
521 */
93f0822d
DB
522 integral_limit = int_tofp(30);
523 if (pid->integral > integral_limit)
524 pid->integral = integral_limit;
525 if (pid->integral < -integral_limit)
526 pid->integral = -integral_limit;
527
d253d2a5
BS
528 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
529 pid->last_err = fp_error;
93f0822d
DB
530
531 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 532 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
533 return (signed int)fp_toint(result);
534}
535
536static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
537{
016c8150
DB
538 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
539 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
540 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 541
2d8d1f18 542 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
543}
544
93f0822d
DB
545static inline void intel_pstate_reset_all_pid(void)
546{
547 unsigned int cpu;
845c1cbe 548
93f0822d
DB
549 for_each_online_cpu(cpu) {
550 if (all_cpu_data[cpu])
551 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
552 }
553}
554
4521e1a0
GM
555static inline void update_turbo_state(void)
556{
557 u64 misc_en;
558 struct cpudata *cpu;
559
560 cpu = all_cpu_data[0];
561 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 562 limits->turbo_disabled =
4521e1a0
GM
563 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
564 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
565}
566
41cfd64c 567static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 568{
74da56ce 569 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 570 struct perf_limits *perf_limits = limits;
74da56ce
KCA
571 u64 value, cap;
572
41cfd64c 573 for_each_cpu(cpu, cpumask) {
eae48f04
SP
574 int max_perf_pct, min_perf_pct;
575
576 if (per_cpu_limits)
577 perf_limits = all_cpu_data[cpu]->perf_limits;
578
f9f4872d
SP
579 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
580 hw_min = HWP_LOWEST_PERF(cap);
581 hw_max = HWP_HIGHEST_PERF(cap);
582 range = hw_max - hw_min;
583
eae48f04
SP
584 max_perf_pct = perf_limits->max_perf_pct;
585 min_perf_pct = perf_limits->min_perf_pct;
586
2f86dc4c 587 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 588 adj_range = min_perf_pct * range / 100;
74da56ce 589 min = hw_min + adj_range;
2f86dc4c
DB
590 value &= ~HWP_MIN_PERF(~0L);
591 value |= HWP_MIN_PERF(min);
592
eae48f04 593 adj_range = max_perf_pct * range / 100;
74da56ce 594 max = hw_min + adj_range;
51443fbf 595 if (limits->no_turbo) {
74da56ce
KCA
596 hw_max = HWP_GUARANTEED_PERF(cap);
597 if (hw_max < max)
598 max = hw_max;
2f86dc4c
DB
599 }
600
601 value &= ~HWP_MAX_PERF(~0L);
602 value |= HWP_MAX_PERF(max);
603 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
604 }
41cfd64c 605}
2f86dc4c 606
ba41e1bc
RW
607static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
608{
609 if (hwp_active)
610 intel_pstate_hwp_set(policy->cpus);
611
612 return 0;
613}
614
41cfd64c
VK
615static void intel_pstate_hwp_set_online_cpus(void)
616{
617 get_online_cpus();
618 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
619 put_online_cpus();
620}
621
93f0822d
DB
622/************************** debugfs begin ************************/
623static int pid_param_set(void *data, u64 val)
624{
625 *(u32 *)data = val;
626 intel_pstate_reset_all_pid();
627 return 0;
628}
845c1cbe 629
93f0822d
DB
630static int pid_param_get(void *data, u64 *val)
631{
632 *val = *(u32 *)data;
633 return 0;
634}
2d8d1f18 635DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
636
637struct pid_param {
638 char *name;
639 void *value;
640};
641
642static struct pid_param pid_files[] = {
016c8150
DB
643 {"sample_rate_ms", &pid_params.sample_rate_ms},
644 {"d_gain_pct", &pid_params.d_gain_pct},
645 {"i_gain_pct", &pid_params.i_gain_pct},
646 {"deadband", &pid_params.deadband},
647 {"setpoint", &pid_params.setpoint},
648 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
649 {NULL, NULL}
650};
651
317dd50e 652static void __init intel_pstate_debug_expose_params(void)
93f0822d 653{
317dd50e 654 struct dentry *debugfs_parent;
93f0822d
DB
655 int i = 0;
656
185d8245
SP
657 if (hwp_active ||
658 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
2f86dc4c 659 return;
185d8245 660
93f0822d
DB
661 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
662 if (IS_ERR_OR_NULL(debugfs_parent))
663 return;
664 while (pid_files[i].name) {
665 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
666 debugfs_parent, pid_files[i].value,
667 &fops_pid_param);
93f0822d
DB
668 i++;
669 }
670}
671
672/************************** debugfs end ************************/
673
674/************************** sysfs begin ************************/
675#define show_one(file_name, object) \
676 static ssize_t show_##file_name \
677 (struct kobject *kobj, struct attribute *attr, char *buf) \
678 { \
51443fbf 679 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
680 }
681
d01b1f48
KCA
682static ssize_t show_turbo_pct(struct kobject *kobj,
683 struct attribute *attr, char *buf)
684{
685 struct cpudata *cpu;
686 int total, no_turbo, turbo_pct;
687 uint32_t turbo_fp;
688
689 cpu = all_cpu_data[0];
690
691 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
692 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 693 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
694 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
695 return sprintf(buf, "%u\n", turbo_pct);
696}
697
0522424e
KCA
698static ssize_t show_num_pstates(struct kobject *kobj,
699 struct attribute *attr, char *buf)
700{
701 struct cpudata *cpu;
702 int total;
703
704 cpu = all_cpu_data[0];
705 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
706 return sprintf(buf, "%u\n", total);
707}
708
4521e1a0
GM
709static ssize_t show_no_turbo(struct kobject *kobj,
710 struct attribute *attr, char *buf)
711{
712 ssize_t ret;
713
714 update_turbo_state();
51443fbf
PB
715 if (limits->turbo_disabled)
716 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 717 else
51443fbf 718 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
719
720 return ret;
721}
722
93f0822d 723static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 724 const char *buf, size_t count)
93f0822d
DB
725{
726 unsigned int input;
727 int ret;
845c1cbe 728
93f0822d
DB
729 ret = sscanf(buf, "%u", &input);
730 if (ret != 1)
731 return -EINVAL;
4521e1a0
GM
732
733 update_turbo_state();
51443fbf 734 if (limits->turbo_disabled) {
4836df17 735 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 736 return -EPERM;
dd5fbf70 737 }
2f86dc4c 738
51443fbf 739 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 740
2f86dc4c 741 if (hwp_active)
41cfd64c 742 intel_pstate_hwp_set_online_cpus();
2f86dc4c 743
93f0822d
DB
744 return count;
745}
746
747static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 748 const char *buf, size_t count)
93f0822d
DB
749{
750 unsigned int input;
751 int ret;
845c1cbe 752
93f0822d
DB
753 ret = sscanf(buf, "%u", &input);
754 if (ret != 1)
755 return -EINVAL;
756
51443fbf
PB
757 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
758 limits->max_perf_pct = min(limits->max_policy_pct,
759 limits->max_sysfs_pct);
760 limits->max_perf_pct = max(limits->min_policy_pct,
761 limits->max_perf_pct);
762 limits->max_perf_pct = max(limits->min_perf_pct,
763 limits->max_perf_pct);
22590efb 764 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 765
2f86dc4c 766 if (hwp_active)
41cfd64c 767 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
768 return count;
769}
770
771static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 772 const char *buf, size_t count)
93f0822d
DB
773{
774 unsigned int input;
775 int ret;
845c1cbe 776
93f0822d
DB
777 ret = sscanf(buf, "%u", &input);
778 if (ret != 1)
779 return -EINVAL;
a0475992 780
51443fbf
PB
781 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
782 limits->min_perf_pct = max(limits->min_policy_pct,
783 limits->min_sysfs_pct);
784 limits->min_perf_pct = min(limits->max_policy_pct,
785 limits->min_perf_pct);
786 limits->min_perf_pct = min(limits->max_perf_pct,
787 limits->min_perf_pct);
22590efb 788 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 789
2f86dc4c 790 if (hwp_active)
41cfd64c 791 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
792 return count;
793}
794
93f0822d
DB
795show_one(max_perf_pct, max_perf_pct);
796show_one(min_perf_pct, min_perf_pct);
797
798define_one_global_rw(no_turbo);
799define_one_global_rw(max_perf_pct);
800define_one_global_rw(min_perf_pct);
d01b1f48 801define_one_global_ro(turbo_pct);
0522424e 802define_one_global_ro(num_pstates);
93f0822d
DB
803
804static struct attribute *intel_pstate_attributes[] = {
805 &no_turbo.attr,
d01b1f48 806 &turbo_pct.attr,
0522424e 807 &num_pstates.attr,
93f0822d
DB
808 NULL
809};
810
811static struct attribute_group intel_pstate_attr_group = {
812 .attrs = intel_pstate_attributes,
813};
93f0822d 814
317dd50e 815static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 816{
317dd50e 817 struct kobject *intel_pstate_kobject;
93f0822d
DB
818 int rc;
819
820 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
821 &cpu_subsys.dev_root->kobj);
eae48f04
SP
822 if (WARN_ON(!intel_pstate_kobject))
823 return;
824
2d8d1f18 825 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
826 if (WARN_ON(rc))
827 return;
828
829 /*
830 * If per cpu limits are enforced there are no global limits, so
831 * return without creating max/min_perf_pct attributes
832 */
833 if (per_cpu_limits)
834 return;
835
836 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
837 WARN_ON(rc);
838
839 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
840 WARN_ON(rc);
841
93f0822d 842}
93f0822d 843/************************** sysfs end ************************/
2f86dc4c 844
ba88d433 845static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 846{
f05c9665 847 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
848 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
849 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 850
ba88d433 851 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
852}
853
938d21a2 854static int atom_get_min_pstate(void)
19e77c28
DB
855{
856 u64 value;
845c1cbe 857
938d21a2 858 rdmsrl(ATOM_RATIOS, value);
c16ed060 859 return (value >> 8) & 0x7F;
19e77c28
DB
860}
861
938d21a2 862static int atom_get_max_pstate(void)
19e77c28
DB
863{
864 u64 value;
845c1cbe 865
938d21a2 866 rdmsrl(ATOM_RATIOS, value);
c16ed060 867 return (value >> 16) & 0x7F;
19e77c28 868}
93f0822d 869
938d21a2 870static int atom_get_turbo_pstate(void)
61d8d2ab
DB
871{
872 u64 value;
845c1cbe 873
938d21a2 874 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 875 return value & 0x7F;
61d8d2ab
DB
876}
877
fdfdb2b1 878static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
879{
880 u64 val;
881 int32_t vid_fp;
882 u32 vid;
883
144c8e17 884 val = (u64)pstate << 8;
51443fbf 885 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
886 val |= (u64)1 << 32;
887
888 vid_fp = cpudata->vid.min + mul_fp(
889 int_tofp(pstate - cpudata->pstate.min_pstate),
890 cpudata->vid.ratio);
891
892 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 893 vid = ceiling_fp(vid_fp);
007bea09 894
21855ff5
DB
895 if (pstate > cpudata->pstate.max_pstate)
896 vid = cpudata->vid.turbo;
897
fdfdb2b1 898 return val | vid;
007bea09
DB
899}
900
1421df63 901static int silvermont_get_scaling(void)
b27580b0
DB
902{
903 u64 value;
904 int i;
1421df63
PL
905 /* Defined in Table 35-6 from SDM (Sept 2015) */
906 static int silvermont_freq_table[] = {
907 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
908
909 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
910 i = value & 0x7;
911 WARN_ON(i > 4);
b27580b0 912
1421df63
PL
913 return silvermont_freq_table[i];
914}
b27580b0 915
1421df63
PL
916static int airmont_get_scaling(void)
917{
918 u64 value;
919 int i;
920 /* Defined in Table 35-10 from SDM (Sept 2015) */
921 static int airmont_freq_table[] = {
922 83300, 100000, 133300, 116700, 80000,
923 93300, 90000, 88900, 87500};
924
925 rdmsrl(MSR_FSB_FREQ, value);
926 i = value & 0xF;
927 WARN_ON(i > 8);
928
929 return airmont_freq_table[i];
b27580b0
DB
930}
931
938d21a2 932static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
933{
934 u64 value;
935
938d21a2 936 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
937 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
938 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
939 cpudata->vid.ratio = div_fp(
940 cpudata->vid.max - cpudata->vid.min,
941 int_tofp(cpudata->pstate.max_pstate -
942 cpudata->pstate.min_pstate));
21855ff5 943
938d21a2 944 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 945 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
946}
947
016c8150 948static int core_get_min_pstate(void)
93f0822d
DB
949{
950 u64 value;
845c1cbe 951
05e99c8c 952 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
953 return (value >> 40) & 0xFF;
954}
955
3bcc6fa9 956static int core_get_max_pstate_physical(void)
93f0822d
DB
957{
958 u64 value;
845c1cbe 959
05e99c8c 960 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
961 return (value >> 8) & 0xFF;
962}
963
016c8150 964static int core_get_max_pstate(void)
93f0822d 965{
6a35fc2d
SP
966 u64 tar;
967 u64 plat_info;
968 int max_pstate;
969 int err;
970
971 rdmsrl(MSR_PLATFORM_INFO, plat_info);
972 max_pstate = (plat_info >> 8) & 0xFF;
973
974 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
975 if (!err) {
976 /* Do some sanity checking for safety */
977 if (plat_info & 0x600000000) {
978 u64 tdp_ctrl;
979 u64 tdp_ratio;
980 int tdp_msr;
981
982 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
983 if (err)
984 goto skip_tar;
985
5fc8f707 986 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
987 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
988 if (err)
989 goto skip_tar;
990
1becf035
SP
991 /* For level 1 and 2, bits[23:16] contain the ratio */
992 if (tdp_ctrl)
993 tdp_ratio >>= 16;
994
995 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
996 if (tdp_ratio - 1 == tar) {
997 max_pstate = tar;
998 pr_debug("max_pstate=TAC %x\n", max_pstate);
999 } else {
1000 goto skip_tar;
1001 }
1002 }
1003 }
845c1cbe 1004
6a35fc2d
SP
1005skip_tar:
1006 return max_pstate;
93f0822d
DB
1007}
1008
016c8150 1009static int core_get_turbo_pstate(void)
93f0822d
DB
1010{
1011 u64 value;
1012 int nont, ret;
845c1cbe 1013
100cf6f2 1014 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1015 nont = core_get_max_pstate();
285cb990 1016 ret = (value) & 255;
93f0822d
DB
1017 if (ret <= nont)
1018 ret = nont;
1019 return ret;
1020}
1021
b27580b0
DB
1022static inline int core_get_scaling(void)
1023{
1024 return 100000;
1025}
1026
fdfdb2b1 1027static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1028{
1029 u64 val;
1030
144c8e17 1031 val = (u64)pstate << 8;
51443fbf 1032 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1033 val |= (u64)1 << 32;
1034
fdfdb2b1 1035 return val;
016c8150
DB
1036}
1037
b34ef932
DC
1038static int knl_get_turbo_pstate(void)
1039{
1040 u64 value;
1041 int nont, ret;
1042
100cf6f2 1043 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1044 nont = core_get_max_pstate();
1045 ret = (((value) >> 8) & 0xFF);
1046 if (ret <= nont)
1047 ret = nont;
1048 return ret;
1049}
1050
016c8150
DB
1051static struct cpu_defaults core_params = {
1052 .pid_policy = {
1053 .sample_rate_ms = 10,
1054 .deadband = 0,
1055 .setpoint = 97,
1056 .p_gain_pct = 20,
1057 .d_gain_pct = 0,
1058 .i_gain_pct = 0,
1059 },
1060 .funcs = {
1061 .get_max = core_get_max_pstate,
3bcc6fa9 1062 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1063 .get_min = core_get_min_pstate,
1064 .get_turbo = core_get_turbo_pstate,
b27580b0 1065 .get_scaling = core_get_scaling,
fdfdb2b1 1066 .get_val = core_get_val,
157386b6 1067 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1068 },
1069};
1070
42ce8921 1071static const struct cpu_defaults silvermont_params = {
1421df63
PL
1072 .pid_policy = {
1073 .sample_rate_ms = 10,
1074 .deadband = 0,
1075 .setpoint = 60,
1076 .p_gain_pct = 14,
1077 .d_gain_pct = 0,
1078 .i_gain_pct = 4,
1079 },
1080 .funcs = {
1081 .get_max = atom_get_max_pstate,
1082 .get_max_physical = atom_get_max_pstate,
1083 .get_min = atom_get_min_pstate,
1084 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1085 .get_val = atom_get_val,
1421df63
PL
1086 .get_scaling = silvermont_get_scaling,
1087 .get_vid = atom_get_vid,
e70eed2b 1088 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1089 },
1090};
1091
42ce8921 1092static const struct cpu_defaults airmont_params = {
19e77c28
DB
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
6a82ba6d 1096 .setpoint = 60,
19e77c28
DB
1097 .p_gain_pct = 14,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 4,
1100 },
1101 .funcs = {
938d21a2
PL
1102 .get_max = atom_get_max_pstate,
1103 .get_max_physical = atom_get_max_pstate,
1104 .get_min = atom_get_min_pstate,
1105 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1106 .get_val = atom_get_val,
1421df63 1107 .get_scaling = airmont_get_scaling,
938d21a2 1108 .get_vid = atom_get_vid,
e70eed2b 1109 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1110 },
1111};
1112
42ce8921 1113static const struct cpu_defaults knl_params = {
b34ef932
DC
1114 .pid_policy = {
1115 .sample_rate_ms = 10,
1116 .deadband = 0,
1117 .setpoint = 97,
1118 .p_gain_pct = 20,
1119 .d_gain_pct = 0,
1120 .i_gain_pct = 0,
1121 },
1122 .funcs = {
1123 .get_max = core_get_max_pstate,
3bcc6fa9 1124 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1125 .get_min = core_get_min_pstate,
1126 .get_turbo = knl_get_turbo_pstate,
69cefc27 1127 .get_scaling = core_get_scaling,
fdfdb2b1 1128 .get_val = core_get_val,
157386b6 1129 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1130 },
1131};
1132
42ce8921 1133static const struct cpu_defaults bxt_params = {
41bad47f
SP
1134 .pid_policy = {
1135 .sample_rate_ms = 10,
1136 .deadband = 0,
1137 .setpoint = 60,
1138 .p_gain_pct = 14,
1139 .d_gain_pct = 0,
1140 .i_gain_pct = 4,
1141 },
1142 .funcs = {
1143 .get_max = core_get_max_pstate,
1144 .get_max_physical = core_get_max_pstate_physical,
1145 .get_min = core_get_min_pstate,
1146 .get_turbo = core_get_turbo_pstate,
1147 .get_scaling = core_get_scaling,
1148 .get_val = core_get_val,
1149 .get_target_pstate = get_target_pstate_use_cpu_load,
1150 },
1151};
1152
93f0822d
DB
1153static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1154{
1155 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1156 int max_perf_adj;
93f0822d 1157 int min_perf;
eae48f04 1158 struct perf_limits *perf_limits = limits;
845c1cbe 1159
51443fbf 1160 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1161 max_perf = cpu->pstate.max_pstate;
1162
eae48f04
SP
1163 if (per_cpu_limits)
1164 perf_limits = cpu->perf_limits;
1165
e0d4c8f8
KCA
1166 /*
1167 * performance can be limited by user through sysfs, by cpufreq
1168 * policy, or by cpu specific default values determined through
1169 * experimentation.
1170 */
eae48f04 1171 max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1172 *max = clamp_t(int, max_perf_adj,
1173 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1174
eae48f04 1175 min_perf = fp_toint(max_perf * perf_limits->min_perf);
799281a3 1176 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1177}
1178
a6c6ead1 1179static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1180{
bc95a454
RW
1181 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1182 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1183 /*
1184 * Generally, there is no guarantee that this code will always run on
1185 * the CPU being updated, so force the register update to run on the
1186 * right CPU.
1187 */
1188 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1189 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1190}
1191
a6c6ead1
RW
1192static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1193{
1194 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1195}
1196
1197static void intel_pstate_max_within_limits(struct cpudata *cpu)
1198{
1199 int min_pstate, max_pstate;
1200
1201 update_turbo_state();
1202 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1203 intel_pstate_set_pstate(cpu, max_pstate);
1204}
1205
93f0822d
DB
1206static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1207{
016c8150
DB
1208 cpu->pstate.min_pstate = pstate_funcs.get_min();
1209 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1210 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1211 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1212 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1213
007bea09
DB
1214 if (pstate_funcs.get_vid)
1215 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1216
1217 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1218}
1219
a1c9787d 1220static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1221{
6b17ddb2 1222 struct sample *sample = &cpu->sample;
e66c1768 1223
a1c9787d 1224 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1225}
1226
4fec7ad5 1227static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1228{
93f0822d 1229 u64 aperf, mperf;
4ab60c3f 1230 unsigned long flags;
4055fad3 1231 u64 tsc;
93f0822d 1232
4ab60c3f 1233 local_irq_save(flags);
93f0822d
DB
1234 rdmsrl(MSR_IA32_APERF, aperf);
1235 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1236 tsc = rdtsc();
4fec7ad5 1237 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1238 local_irq_restore(flags);
4fec7ad5 1239 return false;
8e601a9f 1240 }
4ab60c3f 1241 local_irq_restore(flags);
b69880f9 1242
c4ee841f 1243 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1244 cpu->sample.time = time;
d37e2b76
DB
1245 cpu->sample.aperf = aperf;
1246 cpu->sample.mperf = mperf;
4055fad3 1247 cpu->sample.tsc = tsc;
d37e2b76
DB
1248 cpu->sample.aperf -= cpu->prev_aperf;
1249 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1250 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1251
93f0822d
DB
1252 cpu->prev_aperf = aperf;
1253 cpu->prev_mperf = mperf;
4055fad3 1254 cpu->prev_tsc = tsc;
febce40f
RW
1255 /*
1256 * First time this function is invoked in a given cycle, all of the
1257 * previous sample data fields are equal to zero or stale and they must
1258 * be populated with meaningful numbers for things to work, so assume
1259 * that sample.time will always be reset before setting the utilization
1260 * update hook and make the caller skip the sample then.
1261 */
1262 return !!cpu->last_sample_time;
93f0822d
DB
1263}
1264
8fa520af
PL
1265static inline int32_t get_avg_frequency(struct cpudata *cpu)
1266{
a1c9787d
RW
1267 return mul_ext_fp(cpu->sample.core_avg_perf,
1268 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1269}
1270
bdcaa23f
PL
1271static inline int32_t get_avg_pstate(struct cpudata *cpu)
1272{
8edb0a6e
RW
1273 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1274 cpu->sample.core_avg_perf);
bdcaa23f
PL
1275}
1276
e70eed2b
PL
1277static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1278{
1279 struct sample *sample = &cpu->sample;
09c448d3 1280 int32_t busy_frac, boost;
0843e83c 1281 int target, avg_pstate;
e70eed2b 1282
09c448d3 1283 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1284
09c448d3
RW
1285 boost = cpu->iowait_boost;
1286 cpu->iowait_boost >>= 1;
63d1d656 1287
09c448d3
RW
1288 if (busy_frac < boost)
1289 busy_frac = boost;
63d1d656 1290
09c448d3 1291 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1292
1293 target = limits->no_turbo || limits->turbo_disabled ?
1294 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1295 target += target >> 2;
1296 target = mul_fp(target, busy_frac);
1297 if (target < cpu->pstate.min_pstate)
1298 target = cpu->pstate.min_pstate;
1299
1300 /*
1301 * If the average P-state during the previous cycle was higher than the
1302 * current target, add 50% of the difference to the target to reduce
1303 * possible performance oscillations and offset possible performance
1304 * loss related to moving the workload from one CPU to another within
1305 * a package/module.
1306 */
1307 avg_pstate = get_avg_pstate(cpu);
1308 if (avg_pstate > target)
1309 target += (avg_pstate - target) >> 1;
1310
1311 return target;
e70eed2b
PL
1312}
1313
157386b6 1314static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1315{
1aa7a6e2 1316 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1317 u64 duration_ns;
93f0822d 1318
e0d4c8f8 1319 /*
f00593a4
RW
1320 * perf_scaled is the ratio of the average P-state during the last
1321 * sampling period to the P-state requested last time (in percent).
1322 *
1323 * That measures the system's response to the previous P-state
1324 * selection.
e0d4c8f8 1325 */
22590efb
RW
1326 max_pstate = cpu->pstate.max_pstate_physical;
1327 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1328 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1329 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1330
e0d4c8f8 1331 /*
a4675fbc
RW
1332 * Since our utilization update callback will not run unless we are
1333 * in C0, check if the actual elapsed time is significantly greater (3x)
1334 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1335 * enough period of time to adjust our performance metric.
e0d4c8f8 1336 */
a4675fbc 1337 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1338 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1339 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1340 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1341 } else {
1342 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1343 if (sample_ratio < int_tofp(1))
1aa7a6e2 1344 perf_scaled = 0;
c4ee841f
DB
1345 }
1346
1aa7a6e2
RW
1347 cpu->sample.busy_scaled = perf_scaled;
1348 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1349}
1350
fdfdb2b1
RW
1351static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1352{
1353 int max_perf, min_perf;
1354
1355 update_turbo_state();
1356
1357 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1358 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1359 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1
RW
1360 if (pstate == cpu->pstate.current_pstate)
1361 return;
1362
bc95a454 1363 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1364 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1365}
1366
93f0822d
DB
1367static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1368{
157386b6 1369 int from, target_pstate;
4055fad3
DS
1370 struct sample *sample;
1371
1372 from = cpu->pstate.current_pstate;
93f0822d 1373
2f1d407a
RW
1374 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1375 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1376
fdfdb2b1 1377 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1378
1379 sample = &cpu->sample;
a1c9787d 1380 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1381 fp_toint(sample->busy_scaled),
4055fad3
DS
1382 from,
1383 cpu->pstate.current_pstate,
1384 sample->mperf,
1385 sample->aperf,
1386 sample->tsc,
3ba7bcaa
SP
1387 get_avg_frequency(cpu),
1388 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1389}
1390
a4675fbc 1391static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1392 unsigned int flags)
93f0822d 1393{
a4675fbc 1394 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1395 u64 delta_ns;
1396
1d29815e 1397 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1398 if (flags & SCHED_CPUFREQ_IOWAIT) {
1399 cpu->iowait_boost = int_tofp(1);
1400 } else if (cpu->iowait_boost) {
1401 /* Clear iowait_boost if the CPU may have been idle. */
1402 delta_ns = time - cpu->last_update;
1403 if (delta_ns > TICK_NSEC)
1404 cpu->iowait_boost = 0;
1405 }
1406 cpu->last_update = time;
1407 }
b69880f9 1408
09c448d3 1409 delta_ns = time - cpu->sample.time;
a4675fbc 1410 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1411 bool sample_taken = intel_pstate_sample(cpu, time);
1412
6d45b719 1413 if (sample_taken) {
a1c9787d 1414 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1415 if (!hwp_active)
1416 intel_pstate_adjust_busy_pstate(cpu);
1417 }
a4675fbc 1418 }
93f0822d
DB
1419}
1420
1421#define ICPU(model, policy) \
6cbd7ee1
DB
1422 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1423 (unsigned long)&policy }
93f0822d
DB
1424
1425static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1426 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1427 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1428 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1429 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1430 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1431 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1432 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1433 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1434 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1435 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1436 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1437 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1438 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1439 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1440 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1441 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1442 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1443 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1444 {}
1445};
1446MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1447
29327c84 1448static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1449 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1450 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1451 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1452 {}
1453};
1454
93f0822d
DB
1455static int intel_pstate_init_cpu(unsigned int cpunum)
1456{
93f0822d
DB
1457 struct cpudata *cpu;
1458
eae48f04
SP
1459 cpu = all_cpu_data[cpunum];
1460
1461 if (!cpu) {
1462 unsigned int size = sizeof(struct cpudata);
1463
1464 if (per_cpu_limits)
1465 size += sizeof(struct perf_limits);
1466
1467 cpu = kzalloc(size, GFP_KERNEL);
1468 if (!cpu)
1469 return -ENOMEM;
1470
1471 all_cpu_data[cpunum] = cpu;
1472 if (per_cpu_limits)
1473 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1474
1475 }
93f0822d
DB
1476
1477 cpu = all_cpu_data[cpunum];
1478
93f0822d 1479 cpu->cpu = cpunum;
ba88d433 1480
a4675fbc 1481 if (hwp_active) {
ba88d433 1482 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1483 pid_params.sample_rate_ms = 50;
1484 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1485 }
ba88d433 1486
179e8471 1487 intel_pstate_get_cpu_pstates(cpu);
016c8150 1488
93f0822d 1489 intel_pstate_busy_pid_reset(cpu);
93f0822d 1490
4836df17 1491 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1492
1493 return 0;
1494}
1495
1496static unsigned int intel_pstate_get(unsigned int cpu_num)
1497{
f96fd0c8 1498 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1499
f96fd0c8 1500 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1501}
1502
febce40f 1503static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1504{
febce40f
RW
1505 struct cpudata *cpu = all_cpu_data[cpu_num];
1506
5ab666e0
RW
1507 if (cpu->update_util_set)
1508 return;
1509
febce40f
RW
1510 /* Prevent intel_pstate_update_util() from using stale data. */
1511 cpu->sample.time = 0;
0bed612b
RW
1512 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1513 intel_pstate_update_util);
4578ee7e 1514 cpu->update_util_set = true;
bb6ab52f
RW
1515}
1516
1517static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1518{
4578ee7e
CY
1519 struct cpudata *cpu_data = all_cpu_data[cpu];
1520
1521 if (!cpu_data->update_util_set)
1522 return;
1523
0bed612b 1524 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1525 cpu_data->update_util_set = false;
bb6ab52f
RW
1526 synchronize_sched();
1527}
1528
30a39153
SP
1529static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1530{
1531 limits->no_turbo = 0;
1532 limits->turbo_disabled = 0;
1533 limits->max_perf_pct = 100;
1534 limits->max_perf = int_tofp(1);
1535 limits->min_perf_pct = 100;
1536 limits->min_perf = int_tofp(1);
1537 limits->max_policy_pct = 100;
1538 limits->max_sysfs_pct = 100;
1539 limits->min_policy_pct = 0;
1540 limits->min_sysfs_pct = 0;
1541}
1542
eae48f04
SP
1543static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1544 struct perf_limits *limits)
1545{
eae48f04
SP
1546 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1547 policy->cpuinfo.max_freq);
1548 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
1549 if (policy->max == policy->min) {
1550 limits->min_policy_pct = limits->max_policy_pct;
1551 } else {
1552 limits->min_policy_pct = (policy->min * 100) /
1553 policy->cpuinfo.max_freq;
1554 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1555 0, 100);
1556 }
eae48f04
SP
1557
1558 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1559 limits->min_perf_pct = max(limits->min_policy_pct,
1560 limits->min_sysfs_pct);
1561 limits->min_perf_pct = min(limits->max_policy_pct,
1562 limits->min_perf_pct);
1563 limits->max_perf_pct = min(limits->max_policy_pct,
1564 limits->max_sysfs_pct);
1565 limits->max_perf_pct = max(limits->min_policy_pct,
1566 limits->max_perf_pct);
1567
1568 /* Make sure min_perf_pct <= max_perf_pct */
1569 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1570
1571 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1572 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1573 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1574
1575 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1576 limits->max_perf_pct, limits->min_perf_pct);
1577}
1578
93f0822d
DB
1579static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1580{
3be9200d 1581 struct cpudata *cpu;
eae48f04 1582 struct perf_limits *perf_limits = NULL;
3be9200d 1583
d3929b83
DB
1584 if (!policy->cpuinfo.max_freq)
1585 return -ENODEV;
1586
2c2c1af4
SP
1587 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1588 policy->cpuinfo.max_freq, policy->max);
1589
a6c6ead1 1590 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
1591 cpu->policy = policy->policy;
1592
c749c64f
RW
1593 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1594 policy->max < policy->cpuinfo.max_freq &&
1595 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1596 pr_debug("policy->max > max non turbo frequency\n");
1597 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1598 }
1599
eae48f04
SP
1600 if (per_cpu_limits)
1601 perf_limits = cpu->perf_limits;
1602
1603 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1604 if (!perf_limits) {
1605 limits = &performance_limits;
1606 perf_limits = limits;
1607 }
30a39153 1608 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1609 pr_debug("set performance\n");
eae48f04 1610 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
1611 goto out;
1612 }
1613 } else {
4836df17 1614 pr_debug("set powersave\n");
eae48f04
SP
1615 if (!perf_limits) {
1616 limits = &powersave_limits;
1617 perf_limits = limits;
1618 }
43717aad 1619
eae48f04 1620 }
93f0822d 1621
eae48f04 1622 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 1623 out:
2f1d407a 1624 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
1625 /*
1626 * NOHZ_FULL CPUs need this as the governor callback may not
1627 * be invoked on them.
1628 */
1629 intel_pstate_clear_update_util_hook(policy->cpu);
1630 intel_pstate_max_within_limits(cpu);
1631 }
1632
bb6ab52f
RW
1633 intel_pstate_set_update_util_hook(policy->cpu);
1634
ba41e1bc 1635 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1636
93f0822d
DB
1637 return 0;
1638}
1639
1640static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1641{
be49e346 1642 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1643
285cb990 1644 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1645 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1646 return -EINVAL;
1647
1648 return 0;
1649}
1650
bb18008f 1651static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1652{
bb18008f
DB
1653 int cpu_num = policy->cpu;
1654 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1655
4836df17 1656 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1657
bb6ab52f 1658 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1659
2f86dc4c
DB
1660 if (hwp_active)
1661 return;
1662
fdfdb2b1 1663 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1664}
1665
2760984f 1666static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1667{
93f0822d 1668 struct cpudata *cpu;
52e0a509 1669 int rc;
93f0822d
DB
1670
1671 rc = intel_pstate_init_cpu(policy->cpu);
1672 if (rc)
1673 return rc;
1674
1675 cpu = all_cpu_data[policy->cpu];
1676
51443fbf 1677 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1678 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1679 else
1680 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1681
eae48f04
SP
1682 /*
1683 * We need sane value in the cpu->perf_limits, so inherit from global
1684 * perf_limits limits, which are seeded with values based on the
1685 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1686 */
1687 if (per_cpu_limits)
1688 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1689
b27580b0
DB
1690 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1691 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1692
1693 /* cpuinfo and default policy values */
b27580b0 1694 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1695 update_turbo_state();
1696 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1697 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1698 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1699
9522a2ff 1700 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1701 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1702 cpumask_set_cpu(policy->cpu, policy->cpus);
1703
1704 return 0;
1705}
1706
9522a2ff
SP
1707static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1708{
1709 intel_pstate_exit_perf_limits(policy);
1710
1711 return 0;
1712}
1713
93f0822d
DB
1714static struct cpufreq_driver intel_pstate_driver = {
1715 .flags = CPUFREQ_CONST_LOOPS,
1716 .verify = intel_pstate_verify_policy,
1717 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1718 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1719 .get = intel_pstate_get,
1720 .init = intel_pstate_cpu_init,
9522a2ff 1721 .exit = intel_pstate_cpu_exit,
bb18008f 1722 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1723 .name = "intel_pstate",
93f0822d
DB
1724};
1725
eed43609
JZ
1726static int no_load __initdata;
1727static int no_hwp __initdata;
1728static int hwp_only __initdata;
29327c84 1729static unsigned int force_load __initdata;
6be26498 1730
29327c84 1731static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1732{
016c8150 1733 if (!pstate_funcs.get_max() ||
c410833a
SK
1734 !pstate_funcs.get_min() ||
1735 !pstate_funcs.get_turbo())
b563b4e3
DB
1736 return -ENODEV;
1737
b563b4e3
DB
1738 return 0;
1739}
016c8150 1740
29327c84 1741static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1742{
1743 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1744 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1745 pid_params.p_gain_pct = policy->p_gain_pct;
1746 pid_params.i_gain_pct = policy->i_gain_pct;
1747 pid_params.d_gain_pct = policy->d_gain_pct;
1748 pid_params.deadband = policy->deadband;
1749 pid_params.setpoint = policy->setpoint;
1750}
1751
29327c84 1752static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1753{
1754 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1755 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1756 pstate_funcs.get_min = funcs->get_min;
1757 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1758 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1759 pstate_funcs.get_val = funcs->get_val;
007bea09 1760 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1761 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1762
016c8150
DB
1763}
1764
9522a2ff 1765#ifdef CONFIG_ACPI
fbbcdc07 1766
29327c84 1767static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1768{
1769 int i;
1770
1771 for_each_possible_cpu(i) {
1772 acpi_status status;
1773 union acpi_object *pss;
1774 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1775 struct acpi_processor *pr = per_cpu(processors, i);
1776
1777 if (!pr)
1778 continue;
1779
1780 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1781 if (ACPI_FAILURE(status))
1782 continue;
1783
1784 pss = buffer.pointer;
1785 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1786 kfree(pss);
1787 return false;
1788 }
1789
1790 kfree(pss);
1791 }
1792
1793 return true;
1794}
1795
29327c84 1796static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1797{
1798 int i;
1799
1800 for_each_possible_cpu(i) {
1801 struct acpi_processor *pr = per_cpu(processors, i);
1802
1803 if (!pr)
1804 continue;
1805 if (acpi_has_method(pr->handle, "_PPC"))
1806 return true;
1807 }
1808 return false;
1809}
1810
1811enum {
1812 PSS,
1813 PPC,
1814};
1815
fbbcdc07
AH
1816struct hw_vendor_info {
1817 u16 valid;
1818 char oem_id[ACPI_OEM_ID_SIZE];
1819 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1820 int oem_pwr_table;
fbbcdc07
AH
1821};
1822
1823/* Hardware vendor-specific info that has its own power management modes */
29327c84 1824static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1825 {1, "HP ", "ProLiant", PSS},
1826 {1, "ORACLE", "X4-2 ", PPC},
1827 {1, "ORACLE", "X4-2L ", PPC},
1828 {1, "ORACLE", "X4-2B ", PPC},
1829 {1, "ORACLE", "X3-2 ", PPC},
1830 {1, "ORACLE", "X3-2L ", PPC},
1831 {1, "ORACLE", "X3-2B ", PPC},
1832 {1, "ORACLE", "X4470M2 ", PPC},
1833 {1, "ORACLE", "X4270M3 ", PPC},
1834 {1, "ORACLE", "X4270M2 ", PPC},
1835 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1836 {1, "ORACLE", "X4170 M3", PPC},
1837 {1, "ORACLE", "X4275 M3", PPC},
1838 {1, "ORACLE", "X6-2 ", PPC},
1839 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1840 {0, "", ""},
1841};
1842
29327c84 1843static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1844{
1845 struct acpi_table_header hdr;
1846 struct hw_vendor_info *v_info;
2f86dc4c
DB
1847 const struct x86_cpu_id *id;
1848 u64 misc_pwr;
1849
1850 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1851 if (id) {
1852 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1853 if ( misc_pwr & (1 << 8))
1854 return true;
1855 }
fbbcdc07 1856
c410833a
SK
1857 if (acpi_disabled ||
1858 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1859 return false;
1860
1861 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1862 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1863 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1864 ACPI_OEM_TABLE_ID_SIZE))
1865 switch (v_info->oem_pwr_table) {
1866 case PSS:
1867 return intel_pstate_no_acpi_pss();
1868 case PPC:
aa4ea34d
EZ
1869 return intel_pstate_has_acpi_ppc() &&
1870 (!force_load);
966916ea 1871 }
fbbcdc07
AH
1872 }
1873
1874 return false;
1875}
1876#else /* CONFIG_ACPI not enabled */
1877static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1878static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1879#endif /* CONFIG_ACPI */
1880
7791e4aa
SP
1881static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1882 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1883 {}
1884};
1885
93f0822d
DB
1886static int __init intel_pstate_init(void)
1887{
907cc908 1888 int cpu, rc = 0;
93f0822d 1889 const struct x86_cpu_id *id;
64df1fdf 1890 struct cpu_defaults *cpu_def;
93f0822d 1891
6be26498
DB
1892 if (no_load)
1893 return -ENODEV;
1894
7791e4aa
SP
1895 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1896 copy_cpu_funcs(&core_params.funcs);
1897 hwp_active++;
1898 goto hwp_cpu_matched;
1899 }
1900
93f0822d
DB
1901 id = x86_match_cpu(intel_pstate_cpu_ids);
1902 if (!id)
1903 return -ENODEV;
1904
64df1fdf 1905 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1906
64df1fdf
BP
1907 copy_pid_params(&cpu_def->pid_policy);
1908 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1909
b563b4e3
DB
1910 if (intel_pstate_msrs_not_valid())
1911 return -ENODEV;
1912
7791e4aa
SP
1913hwp_cpu_matched:
1914 /*
1915 * The Intel pstate driver will be ignored if the platform
1916 * firmware has its own power management modes.
1917 */
1918 if (intel_pstate_platform_pwr_mgmt_exists())
1919 return -ENODEV;
1920
4836df17 1921 pr_info("Intel P-state driver initializing\n");
93f0822d 1922
b57ffac5 1923 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1924 if (!all_cpu_data)
1925 return -ENOMEM;
93f0822d 1926
d64c3b0b
KCA
1927 if (!hwp_active && hwp_only)
1928 goto out;
1929
93f0822d
DB
1930 rc = cpufreq_register_driver(&intel_pstate_driver);
1931 if (rc)
1932 goto out;
1933
1934 intel_pstate_debug_expose_params();
1935 intel_pstate_sysfs_expose_params();
b69880f9 1936
7791e4aa 1937 if (hwp_active)
4836df17 1938 pr_info("HWP enabled\n");
7791e4aa 1939
93f0822d
DB
1940 return rc;
1941out:
907cc908
DB
1942 get_online_cpus();
1943 for_each_online_cpu(cpu) {
1944 if (all_cpu_data[cpu]) {
bb6ab52f 1945 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1946 kfree(all_cpu_data[cpu]);
1947 }
1948 }
1949
1950 put_online_cpus();
1951 vfree(all_cpu_data);
93f0822d
DB
1952 return -ENODEV;
1953}
1954device_initcall(intel_pstate_init);
1955
6be26498
DB
1956static int __init intel_pstate_setup(char *str)
1957{
1958 if (!str)
1959 return -EINVAL;
1960
1961 if (!strcmp(str, "disable"))
1962 no_load = 1;
539342f6 1963 if (!strcmp(str, "no_hwp")) {
4836df17 1964 pr_info("HWP disabled\n");
2f86dc4c 1965 no_hwp = 1;
539342f6 1966 }
aa4ea34d
EZ
1967 if (!strcmp(str, "force"))
1968 force_load = 1;
d64c3b0b
KCA
1969 if (!strcmp(str, "hwp_only"))
1970 hwp_only = 1;
eae48f04
SP
1971 if (!strcmp(str, "per_cpu_perf_limits"))
1972 per_cpu_limits = true;
9522a2ff
SP
1973
1974#ifdef CONFIG_ACPI
1975 if (!strcmp(str, "support_acpi_ppc"))
1976 acpi_ppc = true;
1977#endif
1978
6be26498
DB
1979 return 0;
1980}
1981early_param("intel_pstate", intel_pstate_setup);
1982
93f0822d
DB
1983MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1984MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1985MODULE_LICENSE("GPL");