]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Adjust policy->max
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
93f0822d 38
938d21a2
PL
39#define ATOM_RATIOS 0x66a
40#define ATOM_VIDS 0x66b
41#define ATOM_TURBO_RATIOS 0x66c
42#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#endif
47
f0fe3cd7 48#define FRAC_BITS 8
93f0822d
DB
49#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 51
93f0822d
DB
52static inline int32_t mul_fp(int32_t x, int32_t y)
53{
54 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55}
56
7180dddf 57static inline int32_t div_fp(s64 x, s64 y)
93f0822d 58{
7180dddf 59 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
60}
61
d022a65e
DB
62static inline int ceiling_fp(int32_t x)
63{
64 int mask, ret;
65
66 ret = fp_toint(x);
67 mask = (1 << FRAC_BITS) - 1;
68 if (x & mask)
69 ret += 1;
70 return ret;
71}
72
13ad7701
SP
73/**
74 * struct sample - Store performance sample
75 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
76 * performance during last sample period
77 * @busy_scaled: Scaled busy value which is used to calculate next
78 * P state. This can be different than core_pct_busy
79 * to account for cpu idle period
80 * @aperf: Difference of actual performance frequency clock count
81 * read from APERF MSR between last and current sample
82 * @mperf: Difference of maximum performance frequency clock count
83 * read from MPERF MSR between last and current sample
84 * @tsc: Difference of time stamp counter between last and
85 * current sample
86 * @freq: Effective frequency calculated from APERF/MPERF
87 * @time: Current time from scheduler
88 *
89 * This structure is used in the cpudata structure to store performance sample
90 * data for choosing next P State.
91 */
93f0822d 92struct sample {
d253d2a5 93 int32_t core_pct_busy;
157386b6 94 int32_t busy_scaled;
93f0822d
DB
95 u64 aperf;
96 u64 mperf;
4055fad3 97 u64 tsc;
93f0822d 98 int freq;
a4675fbc 99 u64 time;
93f0822d
DB
100};
101
13ad7701
SP
102/**
103 * struct pstate_data - Store P state data
104 * @current_pstate: Current requested P state
105 * @min_pstate: Min P state possible for this platform
106 * @max_pstate: Max P state possible for this platform
107 * @max_pstate_physical:This is physical Max P state for a processor
108 * This can be higher than the max_pstate which can
109 * be limited by platform thermal design power limits
110 * @scaling: Scaling factor to convert frequency to cpufreq
111 * frequency units
112 * @turbo_pstate: Max Turbo P state possible for this platform
113 *
114 * Stores the per cpu model P state limits and current P state.
115 */
93f0822d
DB
116struct pstate_data {
117 int current_pstate;
118 int min_pstate;
119 int max_pstate;
3bcc6fa9 120 int max_pstate_physical;
b27580b0 121 int scaling;
93f0822d
DB
122 int turbo_pstate;
123};
124
13ad7701
SP
125/**
126 * struct vid_data - Stores voltage information data
127 * @min: VID data for this platform corresponding to
128 * the lowest P state
129 * @max: VID data corresponding to the highest P State.
130 * @turbo: VID data for turbo P state
131 * @ratio: Ratio of (vid max - vid min) /
132 * (max P state - Min P State)
133 *
134 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135 * This data is used in Atom platforms, where in addition to target P state,
136 * the voltage data needs to be specified to select next P State.
137 */
007bea09 138struct vid_data {
21855ff5
DB
139 int min;
140 int max;
141 int turbo;
007bea09
DB
142 int32_t ratio;
143};
144
13ad7701
SP
145/**
146 * struct _pid - Stores PID data
147 * @setpoint: Target set point for busyness or performance
148 * @integral: Storage for accumulated error values
149 * @p_gain: PID proportional gain
150 * @i_gain: PID integral gain
151 * @d_gain: PID derivative gain
152 * @deadband: PID deadband
153 * @last_err: Last error storage for integral part of PID calculation
154 *
155 * Stores PID coefficients and last error for PID controller.
156 */
93f0822d
DB
157struct _pid {
158 int setpoint;
159 int32_t integral;
160 int32_t p_gain;
161 int32_t i_gain;
162 int32_t d_gain;
163 int deadband;
d253d2a5 164 int32_t last_err;
93f0822d
DB
165};
166
13ad7701
SP
167/**
168 * struct cpudata - Per CPU instance data storage
169 * @cpu: CPU number for this instance data
170 * @update_util: CPUFreq utility callback information
171 * @pstate: Stores P state limits for this CPU
172 * @vid: Stores VID limits for this CPU
173 * @pid: Stores PID parameters for this CPU
174 * @last_sample_time: Last Sample time
175 * @prev_aperf: Last APERF value read from APERF MSR
176 * @prev_mperf: Last MPERF value read from MPERF MSR
177 * @prev_tsc: Last timestamp counter (TSC) value
178 * @prev_cummulative_iowait: IO Wait time difference from last and
179 * current sample
180 * @sample: Storage for storing last Sample data
9522a2ff
SP
181 * @acpi_perf_data: Stores ACPI perf information read from _PSS
182 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
183 *
184 * This structure stores per CPU instance data for all CPUs.
185 */
93f0822d
DB
186struct cpudata {
187 int cpu;
188
a4675fbc 189 struct update_util_data update_util;
93f0822d 190
93f0822d 191 struct pstate_data pstate;
007bea09 192 struct vid_data vid;
93f0822d 193 struct _pid pid;
93f0822d 194
a4675fbc 195 u64 last_sample_time;
93f0822d
DB
196 u64 prev_aperf;
197 u64 prev_mperf;
4055fad3 198 u64 prev_tsc;
63d1d656 199 u64 prev_cummulative_iowait;
d37e2b76 200 struct sample sample;
9522a2ff
SP
201#ifdef CONFIG_ACPI
202 struct acpi_processor_performance acpi_perf_data;
203 bool valid_pss_table;
204#endif
93f0822d
DB
205};
206
207static struct cpudata **all_cpu_data;
13ad7701
SP
208
209/**
210 * struct pid_adjust_policy - Stores static PID configuration data
211 * @sample_rate_ms: PID calculation sample rate in ms
212 * @sample_rate_ns: Sample rate calculation in ns
213 * @deadband: PID deadband
214 * @setpoint: PID Setpoint
215 * @p_gain_pct: PID proportional gain
216 * @i_gain_pct: PID integral gain
217 * @d_gain_pct: PID derivative gain
218 *
219 * Stores per CPU model static PID configuration data.
220 */
93f0822d
DB
221struct pstate_adjust_policy {
222 int sample_rate_ms;
a4675fbc 223 s64 sample_rate_ns;
93f0822d
DB
224 int deadband;
225 int setpoint;
226 int p_gain_pct;
227 int d_gain_pct;
228 int i_gain_pct;
229};
230
13ad7701
SP
231/**
232 * struct pstate_funcs - Per CPU model specific callbacks
233 * @get_max: Callback to get maximum non turbo effective P state
234 * @get_max_physical: Callback to get maximum non turbo physical P state
235 * @get_min: Callback to get minimum P state
236 * @get_turbo: Callback to get turbo P state
237 * @get_scaling: Callback to get frequency scaling factor
238 * @get_val: Callback to convert P state to actual MSR write value
239 * @get_vid: Callback to get VID data for Atom platforms
240 * @get_target_pstate: Callback to a function to calculate next P state to use
241 *
242 * Core and Atom CPU models have different way to get P State limits. This
243 * structure is used to store those callbacks.
244 */
016c8150
DB
245struct pstate_funcs {
246 int (*get_max)(void);
3bcc6fa9 247 int (*get_max_physical)(void);
016c8150
DB
248 int (*get_min)(void);
249 int (*get_turbo)(void);
b27580b0 250 int (*get_scaling)(void);
fdfdb2b1 251 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 252 void (*get_vid)(struct cpudata *);
157386b6 253 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
254};
255
13ad7701
SP
256/**
257 * struct cpu_defaults- Per CPU model default config data
258 * @pid_policy: PID config data
259 * @funcs: Callback function data
260 */
016c8150
DB
261struct cpu_defaults {
262 struct pstate_adjust_policy pid_policy;
263 struct pstate_funcs funcs;
93f0822d
DB
264};
265
157386b6 266static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 267static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 268
016c8150
DB
269static struct pstate_adjust_policy pid_params;
270static struct pstate_funcs pstate_funcs;
2f86dc4c 271static int hwp_active;
016c8150 272
9522a2ff
SP
273#ifdef CONFIG_ACPI
274static bool acpi_ppc;
275#endif
13ad7701
SP
276
277/**
278 * struct perf_limits - Store user and policy limits
279 * @no_turbo: User requested turbo state from intel_pstate sysfs
280 * @turbo_disabled: Platform turbo status either from msr
281 * MSR_IA32_MISC_ENABLE or when maximum available pstate
282 * matches the maximum turbo pstate
283 * @max_perf_pct: Effective maximum performance limit in percentage, this
284 * is minimum of either limits enforced by cpufreq policy
285 * or limits from user set limits via intel_pstate sysfs
286 * @min_perf_pct: Effective minimum performance limit in percentage, this
287 * is maximum of either limits enforced by cpufreq policy
288 * or limits from user set limits via intel_pstate sysfs
289 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
290 * This value is used to limit max pstate
291 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
292 * This value is used to limit min pstate
293 * @max_policy_pct: The maximum performance in percentage enforced by
294 * cpufreq setpolicy interface
295 * @max_sysfs_pct: The maximum performance in percentage enforced by
296 * intel pstate sysfs interface
297 * @min_policy_pct: The minimum performance in percentage enforced by
298 * cpufreq setpolicy interface
299 * @min_sysfs_pct: The minimum performance in percentage enforced by
300 * intel pstate sysfs interface
301 *
302 * Storage for user and policy defined limits.
303 */
93f0822d
DB
304struct perf_limits {
305 int no_turbo;
dd5fbf70 306 int turbo_disabled;
93f0822d
DB
307 int max_perf_pct;
308 int min_perf_pct;
309 int32_t max_perf;
310 int32_t min_perf;
d8f469e9
DB
311 int max_policy_pct;
312 int max_sysfs_pct;
a0475992
KCA
313 int min_policy_pct;
314 int min_sysfs_pct;
93f0822d
DB
315};
316
51443fbf
PB
317static struct perf_limits performance_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 100,
323 .min_perf = int_tofp(1),
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328};
329
330static struct perf_limits powersave_limits = {
93f0822d 331 .no_turbo = 0,
4521e1a0 332 .turbo_disabled = 0,
93f0822d
DB
333 .max_perf_pct = 100,
334 .max_perf = int_tofp(1),
335 .min_perf_pct = 0,
336 .min_perf = 0,
d8f469e9
DB
337 .max_policy_pct = 100,
338 .max_sysfs_pct = 100,
a0475992
KCA
339 .min_policy_pct = 0,
340 .min_sysfs_pct = 0,
93f0822d
DB
341};
342
51443fbf
PB
343#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344static struct perf_limits *limits = &performance_limits;
345#else
346static struct perf_limits *limits = &powersave_limits;
347#endif
348
9522a2ff
SP
349#ifdef CONFIG_ACPI
350/*
351 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
352 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
353 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
354 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
355 * target ratio 0x17. The _PSS control value stores in a format which can be
356 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
357 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
358 * This function converts the _PSS control value to intel pstate driver format
359 * for comparison and assignment.
360 */
361static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
362{
363 return cpu->acpi_perf_data.states[index].control >> 8;
364}
365
366static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
367{
368 struct cpudata *cpu;
369 int turbo_pss_ctl;
370 int ret;
371 int i;
372
373 if (!acpi_ppc)
374 return;
375
376 cpu = all_cpu_data[policy->cpu];
377
378 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
379 policy->cpu);
380 if (ret)
381 return;
382
383 /*
384 * Check if the control value in _PSS is for PERF_CTL MSR, which should
385 * guarantee that the states returned by it map to the states in our
386 * list directly.
387 */
388 if (cpu->acpi_perf_data.control_register.space_id !=
389 ACPI_ADR_SPACE_FIXED_HARDWARE)
390 goto err;
391
392 /*
393 * If there is only one entry _PSS, simply ignore _PSS and continue as
394 * usual without taking _PSS into account
395 */
396 if (cpu->acpi_perf_data.state_count < 2)
397 goto err;
398
399 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
400 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
401 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
402 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
403 (u32) cpu->acpi_perf_data.states[i].core_frequency,
404 (u32) cpu->acpi_perf_data.states[i].power,
405 (u32) cpu->acpi_perf_data.states[i].control);
406 }
407
408 /*
409 * The _PSS table doesn't contain whole turbo frequency range.
410 * This just contains +1 MHZ above the max non turbo frequency,
411 * with control value corresponding to max turbo ratio. But
412 * when cpufreq set policy is called, it will call with this
413 * max frequency, which will cause a reduced performance as
414 * this driver uses real max turbo frequency as the max
415 * frequency. So correct this frequency in _PSS table to
416 * correct max turbo frequency based on the turbo ratio.
417 * Also need to convert to MHz as _PSS freq is in MHz.
418 */
419 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
420 if (turbo_pss_ctl > cpu->pstate.max_pstate)
421 cpu->acpi_perf_data.states[0].core_frequency =
422 policy->cpuinfo.max_freq / 1000;
423 cpu->valid_pss_table = true;
424 pr_info("_PPC limits will be enforced\n");
425
426 return;
427
428 err:
429 cpu->valid_pss_table = false;
430 acpi_processor_unregister_performance(policy->cpu);
431}
432
433static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434{
435 struct cpudata *cpu;
436
437 cpu = all_cpu_data[policy->cpu];
438 if (!cpu->valid_pss_table)
439 return;
440
441 acpi_processor_unregister_performance(policy->cpu);
442}
443
444#else
445static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
446{
447}
448
449static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
450{
451}
452#endif
453
93f0822d 454static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 455 int deadband, int integral) {
b54a0dfd
PL
456 pid->setpoint = int_tofp(setpoint);
457 pid->deadband = int_tofp(deadband);
93f0822d 458 pid->integral = int_tofp(integral);
d98d099b 459 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
460}
461
462static inline void pid_p_gain_set(struct _pid *pid, int percent)
463{
22590efb 464 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
465}
466
467static inline void pid_i_gain_set(struct _pid *pid, int percent)
468{
22590efb 469 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
470}
471
472static inline void pid_d_gain_set(struct _pid *pid, int percent)
473{
22590efb 474 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
475}
476
d253d2a5 477static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 478{
d253d2a5 479 signed int result;
93f0822d
DB
480 int32_t pterm, dterm, fp_error;
481 int32_t integral_limit;
482
b54a0dfd 483 fp_error = pid->setpoint - busy;
93f0822d 484
b54a0dfd 485 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
486 return 0;
487
488 pterm = mul_fp(pid->p_gain, fp_error);
489
490 pid->integral += fp_error;
491
e0d4c8f8
KCA
492 /*
493 * We limit the integral here so that it will never
494 * get higher than 30. This prevents it from becoming
495 * too large an input over long periods of time and allows
496 * it to get factored out sooner.
497 *
498 * The value of 30 was chosen through experimentation.
499 */
93f0822d
DB
500 integral_limit = int_tofp(30);
501 if (pid->integral > integral_limit)
502 pid->integral = integral_limit;
503 if (pid->integral < -integral_limit)
504 pid->integral = -integral_limit;
505
d253d2a5
BS
506 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
507 pid->last_err = fp_error;
93f0822d
DB
508
509 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 510 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
511 return (signed int)fp_toint(result);
512}
513
514static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
515{
016c8150
DB
516 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
517 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
518 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 519
2d8d1f18 520 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
521}
522
93f0822d
DB
523static inline void intel_pstate_reset_all_pid(void)
524{
525 unsigned int cpu;
845c1cbe 526
93f0822d
DB
527 for_each_online_cpu(cpu) {
528 if (all_cpu_data[cpu])
529 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
530 }
531}
532
4521e1a0
GM
533static inline void update_turbo_state(void)
534{
535 u64 misc_en;
536 struct cpudata *cpu;
537
538 cpu = all_cpu_data[0];
539 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 540 limits->turbo_disabled =
4521e1a0
GM
541 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
542 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
543}
544
41cfd64c 545static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 546{
74da56ce
KCA
547 int min, hw_min, max, hw_max, cpu, range, adj_range;
548 u64 value, cap;
549
550 rdmsrl(MSR_HWP_CAPABILITIES, cap);
551 hw_min = HWP_LOWEST_PERF(cap);
552 hw_max = HWP_HIGHEST_PERF(cap);
553 range = hw_max - hw_min;
2f86dc4c 554
41cfd64c 555 for_each_cpu(cpu, cpumask) {
2f86dc4c 556 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 557 adj_range = limits->min_perf_pct * range / 100;
74da56ce 558 min = hw_min + adj_range;
2f86dc4c
DB
559 value &= ~HWP_MIN_PERF(~0L);
560 value |= HWP_MIN_PERF(min);
561
51443fbf 562 adj_range = limits->max_perf_pct * range / 100;
74da56ce 563 max = hw_min + adj_range;
51443fbf 564 if (limits->no_turbo) {
74da56ce
KCA
565 hw_max = HWP_GUARANTEED_PERF(cap);
566 if (hw_max < max)
567 max = hw_max;
2f86dc4c
DB
568 }
569
570 value &= ~HWP_MAX_PERF(~0L);
571 value |= HWP_MAX_PERF(max);
572 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
573 }
41cfd64c 574}
2f86dc4c 575
41cfd64c
VK
576static void intel_pstate_hwp_set_online_cpus(void)
577{
578 get_online_cpus();
579 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
580 put_online_cpus();
581}
582
93f0822d
DB
583/************************** debugfs begin ************************/
584static int pid_param_set(void *data, u64 val)
585{
586 *(u32 *)data = val;
587 intel_pstate_reset_all_pid();
588 return 0;
589}
845c1cbe 590
93f0822d
DB
591static int pid_param_get(void *data, u64 *val)
592{
593 *val = *(u32 *)data;
594 return 0;
595}
2d8d1f18 596DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
597
598struct pid_param {
599 char *name;
600 void *value;
601};
602
603static struct pid_param pid_files[] = {
016c8150
DB
604 {"sample_rate_ms", &pid_params.sample_rate_ms},
605 {"d_gain_pct", &pid_params.d_gain_pct},
606 {"i_gain_pct", &pid_params.i_gain_pct},
607 {"deadband", &pid_params.deadband},
608 {"setpoint", &pid_params.setpoint},
609 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
610 {NULL, NULL}
611};
612
317dd50e 613static void __init intel_pstate_debug_expose_params(void)
93f0822d 614{
317dd50e 615 struct dentry *debugfs_parent;
93f0822d
DB
616 int i = 0;
617
2f86dc4c
DB
618 if (hwp_active)
619 return;
93f0822d
DB
620 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
621 if (IS_ERR_OR_NULL(debugfs_parent))
622 return;
623 while (pid_files[i].name) {
624 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
625 debugfs_parent, pid_files[i].value,
626 &fops_pid_param);
93f0822d
DB
627 i++;
628 }
629}
630
631/************************** debugfs end ************************/
632
633/************************** sysfs begin ************************/
634#define show_one(file_name, object) \
635 static ssize_t show_##file_name \
636 (struct kobject *kobj, struct attribute *attr, char *buf) \
637 { \
51443fbf 638 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
639 }
640
d01b1f48
KCA
641static ssize_t show_turbo_pct(struct kobject *kobj,
642 struct attribute *attr, char *buf)
643{
644 struct cpudata *cpu;
645 int total, no_turbo, turbo_pct;
646 uint32_t turbo_fp;
647
648 cpu = all_cpu_data[0];
649
650 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
651 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 652 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
653 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
654 return sprintf(buf, "%u\n", turbo_pct);
655}
656
0522424e
KCA
657static ssize_t show_num_pstates(struct kobject *kobj,
658 struct attribute *attr, char *buf)
659{
660 struct cpudata *cpu;
661 int total;
662
663 cpu = all_cpu_data[0];
664 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
665 return sprintf(buf, "%u\n", total);
666}
667
4521e1a0
GM
668static ssize_t show_no_turbo(struct kobject *kobj,
669 struct attribute *attr, char *buf)
670{
671 ssize_t ret;
672
673 update_turbo_state();
51443fbf
PB
674 if (limits->turbo_disabled)
675 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 676 else
51443fbf 677 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
678
679 return ret;
680}
681
93f0822d 682static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 683 const char *buf, size_t count)
93f0822d
DB
684{
685 unsigned int input;
686 int ret;
845c1cbe 687
93f0822d
DB
688 ret = sscanf(buf, "%u", &input);
689 if (ret != 1)
690 return -EINVAL;
4521e1a0
GM
691
692 update_turbo_state();
51443fbf 693 if (limits->turbo_disabled) {
4836df17 694 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 695 return -EPERM;
dd5fbf70 696 }
2f86dc4c 697
51443fbf 698 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 699
2f86dc4c 700 if (hwp_active)
41cfd64c 701 intel_pstate_hwp_set_online_cpus();
2f86dc4c 702
93f0822d
DB
703 return count;
704}
705
706static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 707 const char *buf, size_t count)
93f0822d
DB
708{
709 unsigned int input;
710 int ret;
845c1cbe 711
93f0822d
DB
712 ret = sscanf(buf, "%u", &input);
713 if (ret != 1)
714 return -EINVAL;
715
51443fbf
PB
716 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
717 limits->max_perf_pct = min(limits->max_policy_pct,
718 limits->max_sysfs_pct);
719 limits->max_perf_pct = max(limits->min_policy_pct,
720 limits->max_perf_pct);
721 limits->max_perf_pct = max(limits->min_perf_pct,
722 limits->max_perf_pct);
22590efb 723 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 724
2f86dc4c 725 if (hwp_active)
41cfd64c 726 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
727 return count;
728}
729
730static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 731 const char *buf, size_t count)
93f0822d
DB
732{
733 unsigned int input;
734 int ret;
845c1cbe 735
93f0822d
DB
736 ret = sscanf(buf, "%u", &input);
737 if (ret != 1)
738 return -EINVAL;
a0475992 739
51443fbf
PB
740 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
741 limits->min_perf_pct = max(limits->min_policy_pct,
742 limits->min_sysfs_pct);
743 limits->min_perf_pct = min(limits->max_policy_pct,
744 limits->min_perf_pct);
745 limits->min_perf_pct = min(limits->max_perf_pct,
746 limits->min_perf_pct);
22590efb 747 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 748
2f86dc4c 749 if (hwp_active)
41cfd64c 750 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
751 return count;
752}
753
93f0822d
DB
754show_one(max_perf_pct, max_perf_pct);
755show_one(min_perf_pct, min_perf_pct);
756
757define_one_global_rw(no_turbo);
758define_one_global_rw(max_perf_pct);
759define_one_global_rw(min_perf_pct);
d01b1f48 760define_one_global_ro(turbo_pct);
0522424e 761define_one_global_ro(num_pstates);
93f0822d
DB
762
763static struct attribute *intel_pstate_attributes[] = {
764 &no_turbo.attr,
765 &max_perf_pct.attr,
766 &min_perf_pct.attr,
d01b1f48 767 &turbo_pct.attr,
0522424e 768 &num_pstates.attr,
93f0822d
DB
769 NULL
770};
771
772static struct attribute_group intel_pstate_attr_group = {
773 .attrs = intel_pstate_attributes,
774};
93f0822d 775
317dd50e 776static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 777{
317dd50e 778 struct kobject *intel_pstate_kobject;
93f0822d
DB
779 int rc;
780
781 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
782 &cpu_subsys.dev_root->kobj);
783 BUG_ON(!intel_pstate_kobject);
2d8d1f18 784 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
785 BUG_ON(rc);
786}
93f0822d 787/************************** sysfs end ************************/
2f86dc4c 788
ba88d433 789static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 790{
f05c9665
SP
791 /* First disable HWP notification interrupt as we don't process them */
792 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
793
ba88d433 794 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
795}
796
938d21a2 797static int atom_get_min_pstate(void)
19e77c28
DB
798{
799 u64 value;
845c1cbe 800
938d21a2 801 rdmsrl(ATOM_RATIOS, value);
c16ed060 802 return (value >> 8) & 0x7F;
19e77c28
DB
803}
804
938d21a2 805static int atom_get_max_pstate(void)
19e77c28
DB
806{
807 u64 value;
845c1cbe 808
938d21a2 809 rdmsrl(ATOM_RATIOS, value);
c16ed060 810 return (value >> 16) & 0x7F;
19e77c28 811}
93f0822d 812
938d21a2 813static int atom_get_turbo_pstate(void)
61d8d2ab
DB
814{
815 u64 value;
845c1cbe 816
938d21a2 817 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 818 return value & 0x7F;
61d8d2ab
DB
819}
820
fdfdb2b1 821static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
822{
823 u64 val;
824 int32_t vid_fp;
825 u32 vid;
826
144c8e17 827 val = (u64)pstate << 8;
51443fbf 828 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
829 val |= (u64)1 << 32;
830
831 vid_fp = cpudata->vid.min + mul_fp(
832 int_tofp(pstate - cpudata->pstate.min_pstate),
833 cpudata->vid.ratio);
834
835 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 836 vid = ceiling_fp(vid_fp);
007bea09 837
21855ff5
DB
838 if (pstate > cpudata->pstate.max_pstate)
839 vid = cpudata->vid.turbo;
840
fdfdb2b1 841 return val | vid;
007bea09
DB
842}
843
1421df63 844static int silvermont_get_scaling(void)
b27580b0
DB
845{
846 u64 value;
847 int i;
1421df63
PL
848 /* Defined in Table 35-6 from SDM (Sept 2015) */
849 static int silvermont_freq_table[] = {
850 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
851
852 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
853 i = value & 0x7;
854 WARN_ON(i > 4);
b27580b0 855
1421df63
PL
856 return silvermont_freq_table[i];
857}
b27580b0 858
1421df63
PL
859static int airmont_get_scaling(void)
860{
861 u64 value;
862 int i;
863 /* Defined in Table 35-10 from SDM (Sept 2015) */
864 static int airmont_freq_table[] = {
865 83300, 100000, 133300, 116700, 80000,
866 93300, 90000, 88900, 87500};
867
868 rdmsrl(MSR_FSB_FREQ, value);
869 i = value & 0xF;
870 WARN_ON(i > 8);
871
872 return airmont_freq_table[i];
b27580b0
DB
873}
874
938d21a2 875static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
876{
877 u64 value;
878
938d21a2 879 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
880 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
881 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
882 cpudata->vid.ratio = div_fp(
883 cpudata->vid.max - cpudata->vid.min,
884 int_tofp(cpudata->pstate.max_pstate -
885 cpudata->pstate.min_pstate));
21855ff5 886
938d21a2 887 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 888 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
889}
890
016c8150 891static int core_get_min_pstate(void)
93f0822d
DB
892{
893 u64 value;
845c1cbe 894
05e99c8c 895 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
896 return (value >> 40) & 0xFF;
897}
898
3bcc6fa9 899static int core_get_max_pstate_physical(void)
93f0822d
DB
900{
901 u64 value;
845c1cbe 902
05e99c8c 903 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
904 return (value >> 8) & 0xFF;
905}
906
016c8150 907static int core_get_max_pstate(void)
93f0822d 908{
6a35fc2d
SP
909 u64 tar;
910 u64 plat_info;
911 int max_pstate;
912 int err;
913
914 rdmsrl(MSR_PLATFORM_INFO, plat_info);
915 max_pstate = (plat_info >> 8) & 0xFF;
916
917 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
918 if (!err) {
919 /* Do some sanity checking for safety */
920 if (plat_info & 0x600000000) {
921 u64 tdp_ctrl;
922 u64 tdp_ratio;
923 int tdp_msr;
924
925 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
926 if (err)
927 goto skip_tar;
928
929 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
930 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
931 if (err)
932 goto skip_tar;
933
934 if (tdp_ratio - 1 == tar) {
935 max_pstate = tar;
936 pr_debug("max_pstate=TAC %x\n", max_pstate);
937 } else {
938 goto skip_tar;
939 }
940 }
941 }
845c1cbe 942
6a35fc2d
SP
943skip_tar:
944 return max_pstate;
93f0822d
DB
945}
946
016c8150 947static int core_get_turbo_pstate(void)
93f0822d
DB
948{
949 u64 value;
950 int nont, ret;
845c1cbe 951
05e99c8c 952 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 953 nont = core_get_max_pstate();
285cb990 954 ret = (value) & 255;
93f0822d
DB
955 if (ret <= nont)
956 ret = nont;
957 return ret;
958}
959
b27580b0
DB
960static inline int core_get_scaling(void)
961{
962 return 100000;
963}
964
fdfdb2b1 965static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
966{
967 u64 val;
968
144c8e17 969 val = (u64)pstate << 8;
51443fbf 970 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
971 val |= (u64)1 << 32;
972
fdfdb2b1 973 return val;
016c8150
DB
974}
975
b34ef932
DC
976static int knl_get_turbo_pstate(void)
977{
978 u64 value;
979 int nont, ret;
980
981 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
982 nont = core_get_max_pstate();
983 ret = (((value) >> 8) & 0xFF);
984 if (ret <= nont)
985 ret = nont;
986 return ret;
987}
988
016c8150
DB
989static struct cpu_defaults core_params = {
990 .pid_policy = {
991 .sample_rate_ms = 10,
992 .deadband = 0,
993 .setpoint = 97,
994 .p_gain_pct = 20,
995 .d_gain_pct = 0,
996 .i_gain_pct = 0,
997 },
998 .funcs = {
999 .get_max = core_get_max_pstate,
3bcc6fa9 1000 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1001 .get_min = core_get_min_pstate,
1002 .get_turbo = core_get_turbo_pstate,
b27580b0 1003 .get_scaling = core_get_scaling,
fdfdb2b1 1004 .get_val = core_get_val,
157386b6 1005 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1006 },
1007};
1008
1421df63
PL
1009static struct cpu_defaults silvermont_params = {
1010 .pid_policy = {
1011 .sample_rate_ms = 10,
1012 .deadband = 0,
1013 .setpoint = 60,
1014 .p_gain_pct = 14,
1015 .d_gain_pct = 0,
1016 .i_gain_pct = 4,
1017 },
1018 .funcs = {
1019 .get_max = atom_get_max_pstate,
1020 .get_max_physical = atom_get_max_pstate,
1021 .get_min = atom_get_min_pstate,
1022 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1023 .get_val = atom_get_val,
1421df63
PL
1024 .get_scaling = silvermont_get_scaling,
1025 .get_vid = atom_get_vid,
e70eed2b 1026 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1027 },
1028};
1029
1030static struct cpu_defaults airmont_params = {
19e77c28
DB
1031 .pid_policy = {
1032 .sample_rate_ms = 10,
1033 .deadband = 0,
6a82ba6d 1034 .setpoint = 60,
19e77c28
DB
1035 .p_gain_pct = 14,
1036 .d_gain_pct = 0,
1037 .i_gain_pct = 4,
1038 },
1039 .funcs = {
938d21a2
PL
1040 .get_max = atom_get_max_pstate,
1041 .get_max_physical = atom_get_max_pstate,
1042 .get_min = atom_get_min_pstate,
1043 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1044 .get_val = atom_get_val,
1421df63 1045 .get_scaling = airmont_get_scaling,
938d21a2 1046 .get_vid = atom_get_vid,
e70eed2b 1047 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1048 },
1049};
1050
b34ef932
DC
1051static struct cpu_defaults knl_params = {
1052 .pid_policy = {
1053 .sample_rate_ms = 10,
1054 .deadband = 0,
1055 .setpoint = 97,
1056 .p_gain_pct = 20,
1057 .d_gain_pct = 0,
1058 .i_gain_pct = 0,
1059 },
1060 .funcs = {
1061 .get_max = core_get_max_pstate,
3bcc6fa9 1062 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1063 .get_min = core_get_min_pstate,
1064 .get_turbo = knl_get_turbo_pstate,
69cefc27 1065 .get_scaling = core_get_scaling,
fdfdb2b1 1066 .get_val = core_get_val,
157386b6 1067 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1068 },
1069};
1070
93f0822d
DB
1071static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1072{
1073 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1074 int max_perf_adj;
93f0822d 1075 int min_perf;
845c1cbe 1076
51443fbf 1077 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1078 max_perf = cpu->pstate.max_pstate;
1079
e0d4c8f8
KCA
1080 /*
1081 * performance can be limited by user through sysfs, by cpufreq
1082 * policy, or by cpu specific default values determined through
1083 * experimentation.
1084 */
a158bed5 1085 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1086 *max = clamp_t(int, max_perf_adj,
1087 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1088
a158bed5 1089 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1090 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1091}
1092
fdfdb2b1 1093static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1094{
b27580b0 1095 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1096 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1097}
93f0822d 1098
fdfdb2b1
RW
1099static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1100{
1101 int pstate = cpu->pstate.min_pstate;
1102
1103 intel_pstate_record_pstate(cpu, pstate);
1104 /*
1105 * Generally, there is no guarantee that this code will always run on
1106 * the CPU being updated, so force the register update to run on the
1107 * right CPU.
1108 */
1109 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1110 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1111}
1112
93f0822d
DB
1113static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1114{
016c8150
DB
1115 cpu->pstate.min_pstate = pstate_funcs.get_min();
1116 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1117 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1118 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1119 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1120
007bea09
DB
1121 if (pstate_funcs.get_vid)
1122 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1123
1124 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1125}
1126
6b17ddb2 1127static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 1128{
6b17ddb2 1129 struct sample *sample = &cpu->sample;
bf810222 1130 int64_t core_pct;
93f0822d 1131
22590efb
RW
1132 core_pct = sample->aperf * int_tofp(100);
1133 core_pct = div64_u64(core_pct, sample->mperf);
e66c1768 1134
bf810222 1135 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
1136}
1137
4fec7ad5 1138static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1139{
93f0822d 1140 u64 aperf, mperf;
4ab60c3f 1141 unsigned long flags;
4055fad3 1142 u64 tsc;
93f0822d 1143
4ab60c3f 1144 local_irq_save(flags);
93f0822d
DB
1145 rdmsrl(MSR_IA32_APERF, aperf);
1146 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1147 tsc = rdtsc();
4fec7ad5 1148 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1149 local_irq_restore(flags);
4fec7ad5 1150 return false;
8e601a9f 1151 }
4ab60c3f 1152 local_irq_restore(flags);
b69880f9 1153
c4ee841f 1154 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1155 cpu->sample.time = time;
d37e2b76
DB
1156 cpu->sample.aperf = aperf;
1157 cpu->sample.mperf = mperf;
4055fad3 1158 cpu->sample.tsc = tsc;
d37e2b76
DB
1159 cpu->sample.aperf -= cpu->prev_aperf;
1160 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1161 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1162
93f0822d
DB
1163 cpu->prev_aperf = aperf;
1164 cpu->prev_mperf = mperf;
4055fad3 1165 cpu->prev_tsc = tsc;
febce40f
RW
1166 /*
1167 * First time this function is invoked in a given cycle, all of the
1168 * previous sample data fields are equal to zero or stale and they must
1169 * be populated with meaningful numbers for things to work, so assume
1170 * that sample.time will always be reset before setting the utilization
1171 * update hook and make the caller skip the sample then.
1172 */
1173 return !!cpu->last_sample_time;
93f0822d
DB
1174}
1175
8fa520af
PL
1176static inline int32_t get_avg_frequency(struct cpudata *cpu)
1177{
1178 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1179 cpu->pstate.scaling, cpu->sample.mperf);
1180}
1181
bdcaa23f
PL
1182static inline int32_t get_avg_pstate(struct cpudata *cpu)
1183{
1184 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1185 cpu->sample.mperf);
1186}
1187
e70eed2b
PL
1188static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1189{
1190 struct sample *sample = &cpu->sample;
63d1d656
PL
1191 u64 cummulative_iowait, delta_iowait_us;
1192 u64 delta_iowait_mperf;
1193 u64 mperf, now;
e70eed2b
PL
1194 int32_t cpu_load;
1195
63d1d656
PL
1196 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1197
1198 /*
1199 * Convert iowait time into number of IO cycles spent at max_freq.
1200 * IO is considered as busy only for the cpu_load algorithm. For
1201 * performance this is not needed since we always try to reach the
1202 * maximum P-State, so we are already boosting the IOs.
1203 */
1204 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1205 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1206 cpu->pstate.max_pstate, MSEC_PER_SEC);
1207
1208 mperf = cpu->sample.mperf + delta_iowait_mperf;
1209 cpu->prev_cummulative_iowait = cummulative_iowait;
1210
e70eed2b
PL
1211 /*
1212 * The load can be estimated as the ratio of the mperf counter
1213 * running at a constant frequency during active periods
1214 * (C0) and the time stamp counter running at the same frequency
1215 * also during C-states.
1216 */
63d1d656 1217 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1218 cpu->sample.busy_scaled = cpu_load;
1219
bdcaa23f 1220 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1221}
1222
157386b6 1223static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1224{
c4ee841f 1225 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 1226 u64 duration_ns;
93f0822d 1227
7349ec04
PL
1228 intel_pstate_calc_busy(cpu);
1229
e0d4c8f8
KCA
1230 /*
1231 * core_busy is the ratio of actual performance to max
1232 * max_pstate is the max non turbo pstate available
1233 * current_pstate was the pstate that was requested during
1234 * the last sample period.
1235 *
1236 * We normalize core_busy, which was our actual percent
1237 * performance to what we requested during the last sample
1238 * period. The result will be a percentage of busy at a
1239 * specified pstate.
1240 */
d37e2b76 1241 core_busy = cpu->sample.core_pct_busy;
22590efb
RW
1242 max_pstate = cpu->pstate.max_pstate_physical;
1243 current_pstate = cpu->pstate.current_pstate;
e66c1768 1244 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 1245
e0d4c8f8 1246 /*
a4675fbc
RW
1247 * Since our utilization update callback will not run unless we are
1248 * in C0, check if the actual elapsed time is significantly greater (3x)
1249 * than our sample interval. If it is, then we were idle for a long
1250 * enough period of time to adjust our busyness.
e0d4c8f8 1251 */
a4675fbc 1252 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1253 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1254 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
c4ee841f 1255 core_busy = mul_fp(core_busy, sample_ratio);
ffb81056
RW
1256 } else {
1257 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1258 if (sample_ratio < int_tofp(1))
1259 core_busy = 0;
c4ee841f
DB
1260 }
1261
157386b6
PL
1262 cpu->sample.busy_scaled = core_busy;
1263 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
1264}
1265
fdfdb2b1
RW
1266static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1267{
1268 int max_perf, min_perf;
1269
1270 update_turbo_state();
1271
1272 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1273 pstate = clamp_t(int, pstate, min_perf, max_perf);
1274 if (pstate == cpu->pstate.current_pstate)
1275 return;
1276
1277 intel_pstate_record_pstate(cpu, pstate);
1278 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1279}
1280
93f0822d
DB
1281static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1282{
157386b6 1283 int from, target_pstate;
4055fad3
DS
1284 struct sample *sample;
1285
1286 from = cpu->pstate.current_pstate;
93f0822d 1287
157386b6 1288 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1289
fdfdb2b1 1290 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1291
1292 sample = &cpu->sample;
1293 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1294 fp_toint(sample->busy_scaled),
4055fad3
DS
1295 from,
1296 cpu->pstate.current_pstate,
1297 sample->mperf,
1298 sample->aperf,
1299 sample->tsc,
8fa520af 1300 get_avg_frequency(cpu));
93f0822d
DB
1301}
1302
a4675fbc
RW
1303static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1304 unsigned long util, unsigned long max)
93f0822d 1305{
a4675fbc
RW
1306 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1307 u64 delta_ns = time - cpu->sample.time;
b69880f9 1308
a4675fbc 1309 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1310 bool sample_taken = intel_pstate_sample(cpu, time);
1311
1312 if (sample_taken && !hwp_active)
a4675fbc
RW
1313 intel_pstate_adjust_busy_pstate(cpu);
1314 }
93f0822d
DB
1315}
1316
1317#define ICPU(model, policy) \
6cbd7ee1
DB
1318 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1319 (unsigned long)&policy }
93f0822d
DB
1320
1321static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1322 ICPU(0x2a, core_params),
1323 ICPU(0x2d, core_params),
1421df63 1324 ICPU(0x37, silvermont_params),
016c8150
DB
1325 ICPU(0x3a, core_params),
1326 ICPU(0x3c, core_params),
c7e241df 1327 ICPU(0x3d, core_params),
016c8150
DB
1328 ICPU(0x3e, core_params),
1329 ICPU(0x3f, core_params),
1330 ICPU(0x45, core_params),
1331 ICPU(0x46, core_params),
43f8a966 1332 ICPU(0x47, core_params),
1421df63 1333 ICPU(0x4c, airmont_params),
7ab0256e 1334 ICPU(0x4e, core_params),
c7e241df 1335 ICPU(0x4f, core_params),
1c939123 1336 ICPU(0x5e, core_params),
c7e241df 1337 ICPU(0x56, core_params),
b34ef932 1338 ICPU(0x57, knl_params),
93f0822d
DB
1339 {}
1340};
1341MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1342
2f86dc4c
DB
1343static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1344 ICPU(0x56, core_params),
1345 {}
1346};
1347
93f0822d
DB
1348static int intel_pstate_init_cpu(unsigned int cpunum)
1349{
93f0822d
DB
1350 struct cpudata *cpu;
1351
c0348717
DB
1352 if (!all_cpu_data[cpunum])
1353 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1354 GFP_KERNEL);
93f0822d
DB
1355 if (!all_cpu_data[cpunum])
1356 return -ENOMEM;
1357
1358 cpu = all_cpu_data[cpunum];
1359
93f0822d 1360 cpu->cpu = cpunum;
ba88d433 1361
a4675fbc 1362 if (hwp_active) {
ba88d433 1363 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1364 pid_params.sample_rate_ms = 50;
1365 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1366 }
ba88d433 1367
179e8471 1368 intel_pstate_get_cpu_pstates(cpu);
016c8150 1369
93f0822d 1370 intel_pstate_busy_pid_reset(cpu);
93f0822d 1371
4836df17 1372 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1373
1374 return 0;
1375}
1376
1377static unsigned int intel_pstate_get(unsigned int cpu_num)
1378{
1379 struct sample *sample;
1380 struct cpudata *cpu;
1381
1382 cpu = all_cpu_data[cpu_num];
1383 if (!cpu)
1384 return 0;
d37e2b76 1385 sample = &cpu->sample;
8fa520af 1386 return get_avg_frequency(cpu);
93f0822d
DB
1387}
1388
febce40f 1389static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1390{
febce40f
RW
1391 struct cpudata *cpu = all_cpu_data[cpu_num];
1392
1393 /* Prevent intel_pstate_update_util() from using stale data. */
1394 cpu->sample.time = 0;
0bed612b
RW
1395 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1396 intel_pstate_update_util);
bb6ab52f
RW
1397}
1398
1399static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1400{
0bed612b 1401 cpufreq_remove_update_util_hook(cpu);
bb6ab52f
RW
1402 synchronize_sched();
1403}
1404
30a39153
SP
1405static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1406{
1407 limits->no_turbo = 0;
1408 limits->turbo_disabled = 0;
1409 limits->max_perf_pct = 100;
1410 limits->max_perf = int_tofp(1);
1411 limits->min_perf_pct = 100;
1412 limits->min_perf = int_tofp(1);
1413 limits->max_policy_pct = 100;
1414 limits->max_sysfs_pct = 100;
1415 limits->min_policy_pct = 0;
1416 limits->min_sysfs_pct = 0;
1417}
1418
93f0822d
DB
1419static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1420{
3be9200d
SP
1421 struct cpudata *cpu;
1422
d3929b83
DB
1423 if (!policy->cpuinfo.max_freq)
1424 return -ENODEV;
1425
bb6ab52f
RW
1426 intel_pstate_clear_update_util_hook(policy->cpu);
1427
3be9200d
SP
1428 cpu = all_cpu_data[0];
1429 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1430 if (policy->max < policy->cpuinfo.max_freq &&
1431 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1432 pr_debug("policy->max > max non turbo frequency\n");
1433 policy->max = policy->cpuinfo.max_freq;
1434 }
1435 }
1436
30a39153 1437 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1438 limits = &performance_limits;
30a39153 1439 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1440 pr_debug("set performance\n");
30a39153
SP
1441 intel_pstate_set_performance_limits(limits);
1442 goto out;
1443 }
1444 } else {
4836df17 1445 pr_debug("set powersave\n");
30a39153 1446 limits = &powersave_limits;
93f0822d 1447 }
2f86dc4c 1448
51443fbf
PB
1449 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1450 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1451 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1452 policy->cpuinfo.max_freq);
51443fbf 1453 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1454
1455 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1456 limits->min_perf_pct = max(limits->min_policy_pct,
1457 limits->min_sysfs_pct);
1458 limits->min_perf_pct = min(limits->max_policy_pct,
1459 limits->min_perf_pct);
1460 limits->max_perf_pct = min(limits->max_policy_pct,
1461 limits->max_sysfs_pct);
1462 limits->max_perf_pct = max(limits->min_policy_pct,
1463 limits->max_perf_pct);
88b7b7c0 1464 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1465
1466 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1467 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1468
22590efb
RW
1469 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1470 limits->max_perf = div_fp(limits->max_perf_pct, 100);
93f0822d 1471
bb6ab52f
RW
1472 out:
1473 intel_pstate_set_update_util_hook(policy->cpu);
1474
2f86dc4c 1475 if (hwp_active)
41cfd64c 1476 intel_pstate_hwp_set(policy->cpus);
2f86dc4c 1477
93f0822d
DB
1478 return 0;
1479}
1480
1481static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1482{
be49e346 1483 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1484
285cb990 1485 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1486 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1487 return -EINVAL;
1488
1489 return 0;
1490}
1491
bb18008f 1492static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1493{
bb18008f
DB
1494 int cpu_num = policy->cpu;
1495 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1496
4836df17 1497 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1498
bb6ab52f 1499 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1500
2f86dc4c
DB
1501 if (hwp_active)
1502 return;
1503
fdfdb2b1 1504 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1505}
1506
2760984f 1507static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1508{
93f0822d 1509 struct cpudata *cpu;
52e0a509 1510 int rc;
93f0822d
DB
1511
1512 rc = intel_pstate_init_cpu(policy->cpu);
1513 if (rc)
1514 return rc;
1515
1516 cpu = all_cpu_data[policy->cpu];
1517
51443fbf 1518 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1519 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1520 else
1521 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1522
b27580b0
DB
1523 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1524 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1525
1526 /* cpuinfo and default policy values */
b27580b0
DB
1527 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1528 policy->cpuinfo.max_freq =
1529 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
9522a2ff 1530 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1531 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1532 cpumask_set_cpu(policy->cpu, policy->cpus);
1533
1534 return 0;
1535}
1536
9522a2ff
SP
1537static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1538{
1539 intel_pstate_exit_perf_limits(policy);
1540
1541 return 0;
1542}
1543
93f0822d
DB
1544static struct cpufreq_driver intel_pstate_driver = {
1545 .flags = CPUFREQ_CONST_LOOPS,
1546 .verify = intel_pstate_verify_policy,
1547 .setpolicy = intel_pstate_set_policy,
1548 .get = intel_pstate_get,
1549 .init = intel_pstate_cpu_init,
9522a2ff 1550 .exit = intel_pstate_cpu_exit,
bb18008f 1551 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1552 .name = "intel_pstate",
93f0822d
DB
1553};
1554
6be26498 1555static int __initdata no_load;
2f86dc4c 1556static int __initdata no_hwp;
d64c3b0b 1557static int __initdata hwp_only;
aa4ea34d 1558static unsigned int force_load;
6be26498 1559
b563b4e3
DB
1560static int intel_pstate_msrs_not_valid(void)
1561{
016c8150 1562 if (!pstate_funcs.get_max() ||
c410833a
SK
1563 !pstate_funcs.get_min() ||
1564 !pstate_funcs.get_turbo())
b563b4e3
DB
1565 return -ENODEV;
1566
b563b4e3
DB
1567 return 0;
1568}
016c8150 1569
e0a261a2 1570static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1571{
1572 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1573 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1574 pid_params.p_gain_pct = policy->p_gain_pct;
1575 pid_params.i_gain_pct = policy->i_gain_pct;
1576 pid_params.d_gain_pct = policy->d_gain_pct;
1577 pid_params.deadband = policy->deadband;
1578 pid_params.setpoint = policy->setpoint;
1579}
1580
e0a261a2 1581static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1582{
1583 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1584 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1585 pstate_funcs.get_min = funcs->get_min;
1586 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1587 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1588 pstate_funcs.get_val = funcs->get_val;
007bea09 1589 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1590 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1591
016c8150
DB
1592}
1593
9522a2ff 1594#ifdef CONFIG_ACPI
fbbcdc07
AH
1595
1596static bool intel_pstate_no_acpi_pss(void)
1597{
1598 int i;
1599
1600 for_each_possible_cpu(i) {
1601 acpi_status status;
1602 union acpi_object *pss;
1603 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1604 struct acpi_processor *pr = per_cpu(processors, i);
1605
1606 if (!pr)
1607 continue;
1608
1609 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1610 if (ACPI_FAILURE(status))
1611 continue;
1612
1613 pss = buffer.pointer;
1614 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1615 kfree(pss);
1616 return false;
1617 }
1618
1619 kfree(pss);
1620 }
1621
1622 return true;
1623}
1624
966916ea 1625static bool intel_pstate_has_acpi_ppc(void)
1626{
1627 int i;
1628
1629 for_each_possible_cpu(i) {
1630 struct acpi_processor *pr = per_cpu(processors, i);
1631
1632 if (!pr)
1633 continue;
1634 if (acpi_has_method(pr->handle, "_PPC"))
1635 return true;
1636 }
1637 return false;
1638}
1639
1640enum {
1641 PSS,
1642 PPC,
1643};
1644
fbbcdc07
AH
1645struct hw_vendor_info {
1646 u16 valid;
1647 char oem_id[ACPI_OEM_ID_SIZE];
1648 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1649 int oem_pwr_table;
fbbcdc07
AH
1650};
1651
1652/* Hardware vendor-specific info that has its own power management modes */
1653static struct hw_vendor_info vendor_info[] = {
966916ea 1654 {1, "HP ", "ProLiant", PSS},
1655 {1, "ORACLE", "X4-2 ", PPC},
1656 {1, "ORACLE", "X4-2L ", PPC},
1657 {1, "ORACLE", "X4-2B ", PPC},
1658 {1, "ORACLE", "X3-2 ", PPC},
1659 {1, "ORACLE", "X3-2L ", PPC},
1660 {1, "ORACLE", "X3-2B ", PPC},
1661 {1, "ORACLE", "X4470M2 ", PPC},
1662 {1, "ORACLE", "X4270M3 ", PPC},
1663 {1, "ORACLE", "X4270M2 ", PPC},
1664 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1665 {1, "ORACLE", "X4170 M3", PPC},
1666 {1, "ORACLE", "X4275 M3", PPC},
1667 {1, "ORACLE", "X6-2 ", PPC},
1668 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1669 {0, "", ""},
1670};
1671
1672static bool intel_pstate_platform_pwr_mgmt_exists(void)
1673{
1674 struct acpi_table_header hdr;
1675 struct hw_vendor_info *v_info;
2f86dc4c
DB
1676 const struct x86_cpu_id *id;
1677 u64 misc_pwr;
1678
1679 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1680 if (id) {
1681 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1682 if ( misc_pwr & (1 << 8))
1683 return true;
1684 }
fbbcdc07 1685
c410833a
SK
1686 if (acpi_disabled ||
1687 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1688 return false;
1689
1690 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1691 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1692 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1693 ACPI_OEM_TABLE_ID_SIZE))
1694 switch (v_info->oem_pwr_table) {
1695 case PSS:
1696 return intel_pstate_no_acpi_pss();
1697 case PPC:
aa4ea34d
EZ
1698 return intel_pstate_has_acpi_ppc() &&
1699 (!force_load);
966916ea 1700 }
fbbcdc07
AH
1701 }
1702
1703 return false;
1704}
1705#else /* CONFIG_ACPI not enabled */
1706static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1707static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1708#endif /* CONFIG_ACPI */
1709
7791e4aa
SP
1710static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1711 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1712 {}
1713};
1714
93f0822d
DB
1715static int __init intel_pstate_init(void)
1716{
907cc908 1717 int cpu, rc = 0;
93f0822d 1718 const struct x86_cpu_id *id;
64df1fdf 1719 struct cpu_defaults *cpu_def;
93f0822d 1720
6be26498
DB
1721 if (no_load)
1722 return -ENODEV;
1723
7791e4aa
SP
1724 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1725 copy_cpu_funcs(&core_params.funcs);
1726 hwp_active++;
1727 goto hwp_cpu_matched;
1728 }
1729
93f0822d
DB
1730 id = x86_match_cpu(intel_pstate_cpu_ids);
1731 if (!id)
1732 return -ENODEV;
1733
64df1fdf 1734 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1735
64df1fdf
BP
1736 copy_pid_params(&cpu_def->pid_policy);
1737 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1738
b563b4e3
DB
1739 if (intel_pstate_msrs_not_valid())
1740 return -ENODEV;
1741
7791e4aa
SP
1742hwp_cpu_matched:
1743 /*
1744 * The Intel pstate driver will be ignored if the platform
1745 * firmware has its own power management modes.
1746 */
1747 if (intel_pstate_platform_pwr_mgmt_exists())
1748 return -ENODEV;
1749
4836df17 1750 pr_info("Intel P-state driver initializing\n");
93f0822d 1751
b57ffac5 1752 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1753 if (!all_cpu_data)
1754 return -ENOMEM;
93f0822d 1755
d64c3b0b
KCA
1756 if (!hwp_active && hwp_only)
1757 goto out;
1758
93f0822d
DB
1759 rc = cpufreq_register_driver(&intel_pstate_driver);
1760 if (rc)
1761 goto out;
1762
1763 intel_pstate_debug_expose_params();
1764 intel_pstate_sysfs_expose_params();
b69880f9 1765
7791e4aa 1766 if (hwp_active)
4836df17 1767 pr_info("HWP enabled\n");
7791e4aa 1768
93f0822d
DB
1769 return rc;
1770out:
907cc908
DB
1771 get_online_cpus();
1772 for_each_online_cpu(cpu) {
1773 if (all_cpu_data[cpu]) {
bb6ab52f 1774 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1775 kfree(all_cpu_data[cpu]);
1776 }
1777 }
1778
1779 put_online_cpus();
1780 vfree(all_cpu_data);
93f0822d
DB
1781 return -ENODEV;
1782}
1783device_initcall(intel_pstate_init);
1784
6be26498
DB
1785static int __init intel_pstate_setup(char *str)
1786{
1787 if (!str)
1788 return -EINVAL;
1789
1790 if (!strcmp(str, "disable"))
1791 no_load = 1;
539342f6 1792 if (!strcmp(str, "no_hwp")) {
4836df17 1793 pr_info("HWP disabled\n");
2f86dc4c 1794 no_hwp = 1;
539342f6 1795 }
aa4ea34d
EZ
1796 if (!strcmp(str, "force"))
1797 force_load = 1;
d64c3b0b
KCA
1798 if (!strcmp(str, "hwp_only"))
1799 hwp_only = 1;
9522a2ff
SP
1800
1801#ifdef CONFIG_ACPI
1802 if (!strcmp(str, "support_acpi_ppc"))
1803 acpi_ppc = true;
1804#endif
1805
6be26498
DB
1806 return 0;
1807}
1808early_param("intel_pstate", intel_pstate_setup);
1809
93f0822d
DB
1810MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1811MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1812MODULE_LICENSE("GPL");