]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: brcmstb-avs-cpufreq: properly retrieve P-state upon suspend
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
938d21a2
PL
42#define ATOM_RATIOS 0x66a
43#define ATOM_VIDS 0x66b
44#define ATOM_TURBO_RATIOS 0x66c
45#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 46
9522a2ff
SP
47#ifdef CONFIG_ACPI
48#include <acpi/processor.h>
17669006 49#include <acpi/cppc_acpi.h>
9522a2ff
SP
50#endif
51
f0fe3cd7 52#define FRAC_BITS 8
93f0822d
DB
53#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 55
a1c9787d
RW
56#define EXT_BITS 6
57#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
58#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 60
93f0822d
DB
61static inline int32_t mul_fp(int32_t x, int32_t y)
62{
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64}
65
7180dddf 66static inline int32_t div_fp(s64 x, s64 y)
93f0822d 67{
7180dddf 68 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
69}
70
d022a65e
DB
71static inline int ceiling_fp(int32_t x)
72{
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80}
81
a1c9787d
RW
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
eae48f04
SP
188/**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228};
229
13ad7701
SP
230/**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
2f1d407a 233 * @policy: CPUFreq policy value
13ad7701 234 * @update_util: CPUFreq utility callback information
4578ee7e 235 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
13ad7701
SP
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
eae48f04
SP
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
9522a2ff
SP
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
8442885f 256 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
13ad7701
SP
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
93f0822d
DB
264struct cpudata {
265 int cpu;
266
2f1d407a 267 unsigned int policy;
a4675fbc 268 struct update_util_data update_util;
4578ee7e 269 bool update_util_set;
93f0822d 270
93f0822d 271 struct pstate_data pstate;
007bea09 272 struct vid_data vid;
93f0822d 273 struct _pid pid;
93f0822d 274
09c448d3 275 u64 last_update;
a4675fbc 276 u64 last_sample_time;
93f0822d
DB
277 u64 prev_aperf;
278 u64 prev_mperf;
4055fad3 279 u64 prev_tsc;
63d1d656 280 u64 prev_cummulative_iowait;
d37e2b76 281 struct sample sample;
eae48f04 282 struct perf_limits *perf_limits;
9522a2ff
SP
283#ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286#endif
09c448d3 287 unsigned int iowait_boost;
984edbdc 288 s16 epp_powersave;
8442885f 289 s16 epp_policy;
984edbdc
SP
290 s16 epp_default;
291 s16 epp_saved;
93f0822d
DB
292};
293
294static struct cpudata **all_cpu_data;
13ad7701
SP
295
296/**
3954517e 297 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
93f0822d
DB
308struct pstate_adjust_policy {
309 int sample_rate_ms;
a4675fbc 310 s64 sample_rate_ns;
93f0822d
DB
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316};
317
13ad7701
SP
318/**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
016c8150
DB
332struct pstate_funcs {
333 int (*get_max)(void);
3bcc6fa9 334 int (*get_max_physical)(void);
016c8150
DB
335 int (*get_min)(void);
336 int (*get_turbo)(void);
b27580b0 337 int (*get_scaling)(void);
fdfdb2b1 338 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 339 void (*get_vid)(struct cpudata *);
157386b6 340 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
341};
342
13ad7701
SP
343/**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
016c8150
DB
348struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
93f0822d
DB
351};
352
157386b6 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 355
4a7cb7a9
JZ
356static struct pstate_adjust_policy pid_params __read_mostly;
357static struct pstate_funcs pstate_funcs __read_mostly;
358static int hwp_active __read_mostly;
eae48f04 359static bool per_cpu_limits __read_mostly;
016c8150 360
9522a2ff
SP
361#ifdef CONFIG_ACPI
362static bool acpi_ppc;
363#endif
13ad7701 364
51443fbf
PB
365static struct perf_limits performance_limits = {
366 .no_turbo = 0,
367 .turbo_disabled = 0,
368 .max_perf_pct = 100,
d5dd33d9 369 .max_perf = int_ext_tofp(1),
51443fbf 370 .min_perf_pct = 100,
d5dd33d9 371 .min_perf = int_ext_tofp(1),
51443fbf
PB
372 .max_policy_pct = 100,
373 .max_sysfs_pct = 100,
374 .min_policy_pct = 0,
375 .min_sysfs_pct = 0,
376};
377
378static struct perf_limits powersave_limits = {
93f0822d 379 .no_turbo = 0,
4521e1a0 380 .turbo_disabled = 0,
93f0822d 381 .max_perf_pct = 100,
d5dd33d9 382 .max_perf = int_ext_tofp(1),
93f0822d
DB
383 .min_perf_pct = 0,
384 .min_perf = 0,
d8f469e9
DB
385 .max_policy_pct = 100,
386 .max_sysfs_pct = 100,
a0475992
KCA
387 .min_policy_pct = 0,
388 .min_sysfs_pct = 0,
93f0822d
DB
389};
390
51443fbf
PB
391#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392static struct perf_limits *limits = &performance_limits;
393#else
394static struct perf_limits *limits = &powersave_limits;
395#endif
396
a410c03d
SP
397static DEFINE_MUTEX(intel_pstate_limits_lock);
398
9522a2ff 399#ifdef CONFIG_ACPI
2b3ec765
SP
400
401static bool intel_pstate_get_ppc_enable_status(void)
402{
403 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405 return true;
406
407 return acpi_ppc;
408}
409
17669006
RW
410#ifdef CONFIG_ACPI_CPPC_LIB
411
412/* The work item is needed to avoid CPU hotplug locking issues */
413static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414{
415 sched_set_itmt_support();
416}
417
418static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420static void intel_pstate_set_itmt_prio(int cpu)
421{
422 struct cppc_perf_caps cppc_perf;
423 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424 int ret;
425
426 ret = cppc_get_perf_caps(cpu, &cppc_perf);
427 if (ret)
428 return;
429
430 /*
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
434 */
435 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437 if (max_highest_perf <= min_highest_perf) {
438 if (cppc_perf.highest_perf > max_highest_perf)
439 max_highest_perf = cppc_perf.highest_perf;
440
441 if (cppc_perf.highest_perf < min_highest_perf)
442 min_highest_perf = cppc_perf.highest_perf;
443
444 if (max_highest_perf > min_highest_perf) {
445 /*
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
449 * to invoke it.
450 */
451 schedule_work(&sched_itmt_work);
452 }
453 }
454}
455#else
456static void intel_pstate_set_itmt_prio(int cpu)
457{
458}
459#endif
460
9522a2ff
SP
461static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462{
463 struct cpudata *cpu;
9522a2ff
SP
464 int ret;
465 int i;
466
17669006
RW
467 if (hwp_active) {
468 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 469 return;
17669006 470 }
e59a8f7f 471
2b3ec765 472 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
473 return;
474
475 cpu = all_cpu_data[policy->cpu];
476
477 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478 policy->cpu);
479 if (ret)
480 return;
481
482 /*
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
485 * list directly.
486 */
487 if (cpu->acpi_perf_data.control_register.space_id !=
488 ACPI_ADR_SPACE_FIXED_HARDWARE)
489 goto err;
490
491 /*
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
494 */
495 if (cpu->acpi_perf_data.state_count < 2)
496 goto err;
497
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502 (u32) cpu->acpi_perf_data.states[i].core_frequency,
503 (u32) cpu->acpi_perf_data.states[i].power,
504 (u32) cpu->acpi_perf_data.states[i].control);
505 }
506
507 /*
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
b00345d1 515 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
516 * Also need to convert to MHz as _PSS freq is in MHz.
517 */
b00345d1 518 if (!limits->turbo_disabled)
9522a2ff
SP
519 cpu->acpi_perf_data.states[0].core_frequency =
520 policy->cpuinfo.max_freq / 1000;
521 cpu->valid_pss_table = true;
6cacd115 522 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
523
524 return;
525
526 err:
527 cpu->valid_pss_table = false;
528 acpi_processor_unregister_performance(policy->cpu);
529}
530
531static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532{
533 struct cpudata *cpu;
534
535 cpu = all_cpu_data[policy->cpu];
536 if (!cpu->valid_pss_table)
537 return;
538
539 acpi_processor_unregister_performance(policy->cpu);
540}
541
542#else
7a3ba767 543static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
544{
545}
546
7a3ba767 547static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
548{
549}
550#endif
551
93f0822d 552static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 553 int deadband, int integral) {
b54a0dfd
PL
554 pid->setpoint = int_tofp(setpoint);
555 pid->deadband = int_tofp(deadband);
93f0822d 556 pid->integral = int_tofp(integral);
d98d099b 557 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
558}
559
560static inline void pid_p_gain_set(struct _pid *pid, int percent)
561{
22590efb 562 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
563}
564
565static inline void pid_i_gain_set(struct _pid *pid, int percent)
566{
22590efb 567 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
568}
569
570static inline void pid_d_gain_set(struct _pid *pid, int percent)
571{
22590efb 572 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
573}
574
d253d2a5 575static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 576{
d253d2a5 577 signed int result;
93f0822d
DB
578 int32_t pterm, dterm, fp_error;
579 int32_t integral_limit;
580
b54a0dfd 581 fp_error = pid->setpoint - busy;
93f0822d 582
b54a0dfd 583 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
584 return 0;
585
586 pterm = mul_fp(pid->p_gain, fp_error);
587
588 pid->integral += fp_error;
589
e0d4c8f8
KCA
590 /*
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
595 *
596 * The value of 30 was chosen through experimentation.
597 */
93f0822d
DB
598 integral_limit = int_tofp(30);
599 if (pid->integral > integral_limit)
600 pid->integral = integral_limit;
601 if (pid->integral < -integral_limit)
602 pid->integral = -integral_limit;
603
d253d2a5
BS
604 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605 pid->last_err = fp_error;
93f0822d
DB
606
607 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 608 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
609 return (signed int)fp_toint(result);
610}
611
612static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613{
016c8150
DB
614 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 617
2d8d1f18 618 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
619}
620
93f0822d
DB
621static inline void intel_pstate_reset_all_pid(void)
622{
623 unsigned int cpu;
845c1cbe 624
93f0822d
DB
625 for_each_online_cpu(cpu) {
626 if (all_cpu_data[cpu])
627 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628 }
629}
630
4521e1a0
GM
631static inline void update_turbo_state(void)
632{
633 u64 misc_en;
634 struct cpudata *cpu;
635
636 cpu = all_cpu_data[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 638 limits->turbo_disabled =
4521e1a0
GM
639 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641}
642
8442885f
SP
643static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644{
645 u64 epb;
646 int ret;
647
648 if (!static_cpu_has(X86_FEATURE_EPB))
649 return -ENXIO;
650
651 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652 if (ret)
653 return (s16)ret;
654
655 return (s16)(epb & 0x0f);
656}
657
658static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659{
660 s16 epp;
661
984edbdc
SP
662 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663 /*
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
666 */
667 if (!hwp_req_data) {
668 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669 &hwp_req_data);
670 if (epp)
671 return epp;
672 }
8442885f 673 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 674 } else {
8442885f
SP
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp = intel_pstate_get_epb(cpu_data);
984edbdc 677 }
8442885f
SP
678
679 return epp;
680}
681
984edbdc 682static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
683{
684 u64 epb;
984edbdc 685 int ret;
8442885f
SP
686
687 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 688 return -ENXIO;
8442885f 689
984edbdc
SP
690 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691 if (ret)
692 return ret;
8442885f
SP
693
694 epb = (epb & ~0x0f) | pref;
695 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
696
697 return 0;
8442885f
SP
698}
699
984edbdc
SP
700/*
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
703 * index String
704 *-------------------------------------
705 * 0 default
706 * 1 performance
707 * 2 balance_performance
708 * 3 balance_power
709 * 4 power
710 */
711static const char * const energy_perf_strings[] = {
712 "default",
713 "performance",
714 "balance_performance",
715 "balance_power",
716 "power",
717 NULL
718};
719
720static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721{
722 s16 epp;
723 int index = -EINVAL;
724
725 epp = intel_pstate_get_epp(cpu_data, 0);
726 if (epp < 0)
727 return epp;
728
729 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730 /*
731 * Range:
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
735 * 0xC0-0xFF : Power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB)) {
742 /*
743 * Range:
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
747 * 0x0C-0x0F : Power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
750 * effectively.
751 */
752 index = (epp >> 2) + 1;
753 }
754
755 return index;
756}
757
758static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759 int pref_index)
760{
761 int epp = -EINVAL;
762 int ret;
763
764 if (!pref_index)
765 epp = cpu_data->epp_default;
766
767 mutex_lock(&intel_pstate_limits_lock);
768
769 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770 u64 value;
771
772 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773 if (ret)
774 goto return_pref;
775
776 value &= ~GENMASK_ULL(31, 24);
777
778 /*
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
784 */
785 if (epp == -EINVAL)
786 epp = (pref_index - 1) << 6;
787
788 value |= (u64)epp << 24;
789 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790 } else {
791 if (epp == -EINVAL)
792 epp = (pref_index - 1) << 2;
793 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794 }
795return_pref:
796 mutex_unlock(&intel_pstate_limits_lock);
797
798 return ret;
799}
800
801static ssize_t show_energy_performance_available_preferences(
802 struct cpufreq_policy *policy, char *buf)
803{
804 int i = 0;
805 int ret = 0;
806
807 while (energy_perf_strings[i] != NULL)
808 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810 ret += sprintf(&buf[ret], "\n");
811
812 return ret;
813}
814
815cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817static ssize_t store_energy_performance_preference(
818 struct cpufreq_policy *policy, const char *buf, size_t count)
819{
820 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821 char str_preference[21];
822 int ret, i = 0;
823
824 ret = sscanf(buf, "%20s", str_preference);
825 if (ret != 1)
826 return -EINVAL;
827
828 while (energy_perf_strings[i] != NULL) {
829 if (!strcmp(str_preference, energy_perf_strings[i])) {
830 intel_pstate_set_energy_pref_index(cpu_data, i);
831 return count;
832 }
833 ++i;
834 }
835
836 return -EINVAL;
837}
838
839static ssize_t show_energy_performance_preference(
840 struct cpufreq_policy *policy, char *buf)
841{
842 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843 int preference;
844
845 preference = intel_pstate_get_energy_pref_index(cpu_data);
846 if (preference < 0)
847 return preference;
848
849 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
850}
851
852cpufreq_freq_attr_rw(energy_performance_preference);
853
854static struct freq_attr *hwp_cpufreq_attrs[] = {
855 &energy_performance_preference,
856 &energy_performance_available_preferences,
857 NULL,
858};
859
111b8b3f 860static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 861{
74da56ce 862 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 863 struct perf_limits *perf_limits = limits;
74da56ce
KCA
864 u64 value, cap;
865
111b8b3f 866 for_each_cpu(cpu, policy->cpus) {
eae48f04 867 int max_perf_pct, min_perf_pct;
8442885f
SP
868 struct cpudata *cpu_data = all_cpu_data[cpu];
869 s16 epp;
eae48f04
SP
870
871 if (per_cpu_limits)
872 perf_limits = all_cpu_data[cpu]->perf_limits;
873
f9f4872d
SP
874 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875 hw_min = HWP_LOWEST_PERF(cap);
876 hw_max = HWP_HIGHEST_PERF(cap);
877 range = hw_max - hw_min;
878
eae48f04
SP
879 max_perf_pct = perf_limits->max_perf_pct;
880 min_perf_pct = perf_limits->min_perf_pct;
881
2f86dc4c 882 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 883 adj_range = min_perf_pct * range / 100;
74da56ce 884 min = hw_min + adj_range;
2f86dc4c
DB
885 value &= ~HWP_MIN_PERF(~0L);
886 value |= HWP_MIN_PERF(min);
887
eae48f04 888 adj_range = max_perf_pct * range / 100;
74da56ce 889 max = hw_min + adj_range;
51443fbf 890 if (limits->no_turbo) {
74da56ce
KCA
891 hw_max = HWP_GUARANTEED_PERF(cap);
892 if (hw_max < max)
893 max = hw_max;
2f86dc4c
DB
894 }
895
896 value &= ~HWP_MAX_PERF(~0L);
897 value |= HWP_MAX_PERF(max);
8442885f
SP
898
899 if (cpu_data->epp_policy == cpu_data->policy)
900 goto skip_epp;
901
902 cpu_data->epp_policy = cpu_data->policy;
903
984edbdc
SP
904 if (cpu_data->epp_saved >= 0) {
905 epp = cpu_data->epp_saved;
906 cpu_data->epp_saved = -EINVAL;
907 goto update_epp;
908 }
909
8442885f
SP
910 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 912 cpu_data->epp_powersave = epp;
8442885f 913 /* If EPP read was failed, then don't try to write */
984edbdc 914 if (epp < 0)
8442885f 915 goto skip_epp;
8442885f 916
8442885f
SP
917
918 epp = 0;
919 } else {
920 /* skip setting EPP, when saved value is invalid */
984edbdc 921 if (cpu_data->epp_powersave < 0)
8442885f
SP
922 goto skip_epp;
923
924 /*
925 * No need to restore EPP when it is not zero. This
926 * means:
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
930 */
931 epp = intel_pstate_get_epp(cpu_data, value);
932 if (epp)
933 goto skip_epp;
934
984edbdc 935 epp = cpu_data->epp_powersave;
8442885f 936 }
984edbdc 937update_epp:
8442885f
SP
938 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939 value &= ~GENMASK_ULL(31, 24);
940 value |= (u64)epp << 24;
941 } else {
942 intel_pstate_set_epb(cpu, epp);
943 }
944skip_epp:
2f86dc4c
DB
945 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946 }
41cfd64c 947}
2f86dc4c 948
ba41e1bc
RW
949static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950{
951 if (hwp_active)
111b8b3f 952 intel_pstate_hwp_set(policy);
ba41e1bc
RW
953
954 return 0;
955}
956
984edbdc
SP
957static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958{
959 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961 if (!hwp_active)
962 return 0;
963
964 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966 return 0;
967}
968
8442885f
SP
969static int intel_pstate_resume(struct cpufreq_policy *policy)
970{
aa439248
RW
971 int ret;
972
8442885f
SP
973 if (!hwp_active)
974 return 0;
975
aa439248
RW
976 mutex_lock(&intel_pstate_limits_lock);
977
8442885f 978 all_cpu_data[policy->cpu]->epp_policy = 0;
8442885f 979
aa439248
RW
980 ret = intel_pstate_hwp_set_policy(policy);
981
982 mutex_unlock(&intel_pstate_limits_lock);
983
984 return ret;
8442885f
SP
985}
986
111b8b3f 987static void intel_pstate_update_policies(void)
41cfd64c 988{
111b8b3f
RW
989 int cpu;
990
991 for_each_possible_cpu(cpu)
992 cpufreq_update_policy(cpu);
2f86dc4c
DB
993}
994
93f0822d
DB
995/************************** debugfs begin ************************/
996static int pid_param_set(void *data, u64 val)
997{
998 *(u32 *)data = val;
999 intel_pstate_reset_all_pid();
1000 return 0;
1001}
845c1cbe 1002
93f0822d
DB
1003static int pid_param_get(void *data, u64 *val)
1004{
1005 *val = *(u32 *)data;
1006 return 0;
1007}
2d8d1f18 1008DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
1009
1010struct pid_param {
1011 char *name;
1012 void *value;
1013};
1014
1015static struct pid_param pid_files[] = {
016c8150
DB
1016 {"sample_rate_ms", &pid_params.sample_rate_ms},
1017 {"d_gain_pct", &pid_params.d_gain_pct},
1018 {"i_gain_pct", &pid_params.i_gain_pct},
1019 {"deadband", &pid_params.deadband},
1020 {"setpoint", &pid_params.setpoint},
1021 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
1022 {NULL, NULL}
1023};
1024
317dd50e 1025static void __init intel_pstate_debug_expose_params(void)
93f0822d 1026{
317dd50e 1027 struct dentry *debugfs_parent;
93f0822d
DB
1028 int i = 0;
1029
1030 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1031 if (IS_ERR_OR_NULL(debugfs_parent))
1032 return;
1033 while (pid_files[i].name) {
1034 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
1035 debugfs_parent, pid_files[i].value,
1036 &fops_pid_param);
93f0822d
DB
1037 i++;
1038 }
1039}
1040
1041/************************** debugfs end ************************/
1042
1043/************************** sysfs begin ************************/
1044#define show_one(file_name, object) \
1045 static ssize_t show_##file_name \
1046 (struct kobject *kobj, struct attribute *attr, char *buf) \
1047 { \
51443fbf 1048 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
1049 }
1050
d01b1f48
KCA
1051static ssize_t show_turbo_pct(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053{
1054 struct cpudata *cpu;
1055 int total, no_turbo, turbo_pct;
1056 uint32_t turbo_fp;
1057
1058 cpu = all_cpu_data[0];
1059
1060 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1061 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1062 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
1063 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1064 return sprintf(buf, "%u\n", turbo_pct);
1065}
1066
0522424e
KCA
1067static ssize_t show_num_pstates(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069{
1070 struct cpudata *cpu;
1071 int total;
1072
1073 cpu = all_cpu_data[0];
1074 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1075 return sprintf(buf, "%u\n", total);
1076}
1077
4521e1a0
GM
1078static ssize_t show_no_turbo(struct kobject *kobj,
1079 struct attribute *attr, char *buf)
1080{
1081 ssize_t ret;
1082
1083 update_turbo_state();
51443fbf
PB
1084 if (limits->turbo_disabled)
1085 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 1086 else
51443fbf 1087 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
1088
1089 return ret;
1090}
1091
93f0822d 1092static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1093 const char *buf, size_t count)
93f0822d
DB
1094{
1095 unsigned int input;
1096 int ret;
845c1cbe 1097
93f0822d
DB
1098 ret = sscanf(buf, "%u", &input);
1099 if (ret != 1)
1100 return -EINVAL;
4521e1a0 1101
a410c03d
SP
1102 mutex_lock(&intel_pstate_limits_lock);
1103
4521e1a0 1104 update_turbo_state();
51443fbf 1105 if (limits->turbo_disabled) {
4836df17 1106 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1107 mutex_unlock(&intel_pstate_limits_lock);
4521e1a0 1108 return -EPERM;
dd5fbf70 1109 }
2f86dc4c 1110
51443fbf 1111 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 1112
b59fe540
SP
1113 mutex_unlock(&intel_pstate_limits_lock);
1114
111b8b3f
RW
1115 intel_pstate_update_policies();
1116
93f0822d
DB
1117 return count;
1118}
1119
1120static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1121 const char *buf, size_t count)
93f0822d
DB
1122{
1123 unsigned int input;
1124 int ret;
845c1cbe 1125
93f0822d
DB
1126 ret = sscanf(buf, "%u", &input);
1127 if (ret != 1)
1128 return -EINVAL;
1129
a410c03d
SP
1130 mutex_lock(&intel_pstate_limits_lock);
1131
51443fbf
PB
1132 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1133 limits->max_perf_pct = min(limits->max_policy_pct,
1134 limits->max_sysfs_pct);
1135 limits->max_perf_pct = max(limits->min_policy_pct,
1136 limits->max_perf_pct);
1137 limits->max_perf_pct = max(limits->min_perf_pct,
1138 limits->max_perf_pct);
d5dd33d9 1139 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
845c1cbe 1140
b59fe540
SP
1141 mutex_unlock(&intel_pstate_limits_lock);
1142
111b8b3f
RW
1143 intel_pstate_update_policies();
1144
93f0822d
DB
1145 return count;
1146}
1147
1148static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1149 const char *buf, size_t count)
93f0822d
DB
1150{
1151 unsigned int input;
1152 int ret;
845c1cbe 1153
93f0822d
DB
1154 ret = sscanf(buf, "%u", &input);
1155 if (ret != 1)
1156 return -EINVAL;
a0475992 1157
a410c03d
SP
1158 mutex_lock(&intel_pstate_limits_lock);
1159
51443fbf
PB
1160 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1161 limits->min_perf_pct = max(limits->min_policy_pct,
1162 limits->min_sysfs_pct);
1163 limits->min_perf_pct = min(limits->max_policy_pct,
1164 limits->min_perf_pct);
1165 limits->min_perf_pct = min(limits->max_perf_pct,
1166 limits->min_perf_pct);
d5dd33d9 1167 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
93f0822d 1168
b59fe540
SP
1169 mutex_unlock(&intel_pstate_limits_lock);
1170
111b8b3f
RW
1171 intel_pstate_update_policies();
1172
93f0822d
DB
1173 return count;
1174}
1175
93f0822d
DB
1176show_one(max_perf_pct, max_perf_pct);
1177show_one(min_perf_pct, min_perf_pct);
1178
1179define_one_global_rw(no_turbo);
1180define_one_global_rw(max_perf_pct);
1181define_one_global_rw(min_perf_pct);
d01b1f48 1182define_one_global_ro(turbo_pct);
0522424e 1183define_one_global_ro(num_pstates);
93f0822d
DB
1184
1185static struct attribute *intel_pstate_attributes[] = {
1186 &no_turbo.attr,
d01b1f48 1187 &turbo_pct.attr,
0522424e 1188 &num_pstates.attr,
93f0822d
DB
1189 NULL
1190};
1191
1192static struct attribute_group intel_pstate_attr_group = {
1193 .attrs = intel_pstate_attributes,
1194};
93f0822d 1195
317dd50e 1196static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1197{
317dd50e 1198 struct kobject *intel_pstate_kobject;
93f0822d
DB
1199 int rc;
1200
1201 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1202 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1203 if (WARN_ON(!intel_pstate_kobject))
1204 return;
1205
2d8d1f18 1206 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1207 if (WARN_ON(rc))
1208 return;
1209
1210 /*
1211 * If per cpu limits are enforced there are no global limits, so
1212 * return without creating max/min_perf_pct attributes
1213 */
1214 if (per_cpu_limits)
1215 return;
1216
1217 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1218 WARN_ON(rc);
1219
1220 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1221 WARN_ON(rc);
1222
93f0822d 1223}
93f0822d 1224/************************** sysfs end ************************/
2f86dc4c 1225
ba88d433 1226static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1227{
f05c9665 1228 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1229 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1230 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1231
ba88d433 1232 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1233 cpudata->epp_policy = 0;
984edbdc
SP
1234 if (cpudata->epp_default == -EINVAL)
1235 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1236}
1237
938d21a2 1238static int atom_get_min_pstate(void)
19e77c28
DB
1239{
1240 u64 value;
845c1cbe 1241
938d21a2 1242 rdmsrl(ATOM_RATIOS, value);
c16ed060 1243 return (value >> 8) & 0x7F;
19e77c28
DB
1244}
1245
938d21a2 1246static int atom_get_max_pstate(void)
19e77c28
DB
1247{
1248 u64 value;
845c1cbe 1249
938d21a2 1250 rdmsrl(ATOM_RATIOS, value);
c16ed060 1251 return (value >> 16) & 0x7F;
19e77c28 1252}
93f0822d 1253
938d21a2 1254static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1255{
1256 u64 value;
845c1cbe 1257
938d21a2 1258 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 1259 return value & 0x7F;
61d8d2ab
DB
1260}
1261
fdfdb2b1 1262static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1263{
1264 u64 val;
1265 int32_t vid_fp;
1266 u32 vid;
1267
144c8e17 1268 val = (u64)pstate << 8;
51443fbf 1269 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
1270 val |= (u64)1 << 32;
1271
1272 vid_fp = cpudata->vid.min + mul_fp(
1273 int_tofp(pstate - cpudata->pstate.min_pstate),
1274 cpudata->vid.ratio);
1275
1276 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1277 vid = ceiling_fp(vid_fp);
007bea09 1278
21855ff5
DB
1279 if (pstate > cpudata->pstate.max_pstate)
1280 vid = cpudata->vid.turbo;
1281
fdfdb2b1 1282 return val | vid;
007bea09
DB
1283}
1284
1421df63 1285static int silvermont_get_scaling(void)
b27580b0
DB
1286{
1287 u64 value;
1288 int i;
1421df63
PL
1289 /* Defined in Table 35-6 from SDM (Sept 2015) */
1290 static int silvermont_freq_table[] = {
1291 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1292
1293 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1294 i = value & 0x7;
1295 WARN_ON(i > 4);
b27580b0 1296
1421df63
PL
1297 return silvermont_freq_table[i];
1298}
b27580b0 1299
1421df63
PL
1300static int airmont_get_scaling(void)
1301{
1302 u64 value;
1303 int i;
1304 /* Defined in Table 35-10 from SDM (Sept 2015) */
1305 static int airmont_freq_table[] = {
1306 83300, 100000, 133300, 116700, 80000,
1307 93300, 90000, 88900, 87500};
1308
1309 rdmsrl(MSR_FSB_FREQ, value);
1310 i = value & 0xF;
1311 WARN_ON(i > 8);
1312
1313 return airmont_freq_table[i];
b27580b0
DB
1314}
1315
938d21a2 1316static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1317{
1318 u64 value;
1319
938d21a2 1320 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
1321 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1322 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1323 cpudata->vid.ratio = div_fp(
1324 cpudata->vid.max - cpudata->vid.min,
1325 int_tofp(cpudata->pstate.max_pstate -
1326 cpudata->pstate.min_pstate));
21855ff5 1327
938d21a2 1328 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 1329 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1330}
1331
016c8150 1332static int core_get_min_pstate(void)
93f0822d
DB
1333{
1334 u64 value;
845c1cbe 1335
05e99c8c 1336 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1337 return (value >> 40) & 0xFF;
1338}
1339
3bcc6fa9 1340static int core_get_max_pstate_physical(void)
93f0822d
DB
1341{
1342 u64 value;
845c1cbe 1343
05e99c8c 1344 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1345 return (value >> 8) & 0xFF;
1346}
1347
016c8150 1348static int core_get_max_pstate(void)
93f0822d 1349{
6a35fc2d
SP
1350 u64 tar;
1351 u64 plat_info;
1352 int max_pstate;
1353 int err;
1354
1355 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1356 max_pstate = (plat_info >> 8) & 0xFF;
1357
1358 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1359 if (!err) {
1360 /* Do some sanity checking for safety */
1361 if (plat_info & 0x600000000) {
1362 u64 tdp_ctrl;
1363 u64 tdp_ratio;
1364 int tdp_msr;
1365
1366 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1367 if (err)
1368 goto skip_tar;
1369
5fc8f707 1370 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
1371 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1372 if (err)
1373 goto skip_tar;
1374
1becf035
SP
1375 /* For level 1 and 2, bits[23:16] contain the ratio */
1376 if (tdp_ctrl)
1377 tdp_ratio >>= 16;
1378
1379 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
1380 if (tdp_ratio - 1 == tar) {
1381 max_pstate = tar;
1382 pr_debug("max_pstate=TAC %x\n", max_pstate);
1383 } else {
1384 goto skip_tar;
1385 }
1386 }
1387 }
845c1cbe 1388
6a35fc2d
SP
1389skip_tar:
1390 return max_pstate;
93f0822d
DB
1391}
1392
016c8150 1393static int core_get_turbo_pstate(void)
93f0822d
DB
1394{
1395 u64 value;
1396 int nont, ret;
845c1cbe 1397
100cf6f2 1398 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1399 nont = core_get_max_pstate();
285cb990 1400 ret = (value) & 255;
93f0822d
DB
1401 if (ret <= nont)
1402 ret = nont;
1403 return ret;
1404}
1405
b27580b0
DB
1406static inline int core_get_scaling(void)
1407{
1408 return 100000;
1409}
1410
fdfdb2b1 1411static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1412{
1413 u64 val;
1414
144c8e17 1415 val = (u64)pstate << 8;
51443fbf 1416 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1417 val |= (u64)1 << 32;
1418
fdfdb2b1 1419 return val;
016c8150
DB
1420}
1421
b34ef932
DC
1422static int knl_get_turbo_pstate(void)
1423{
1424 u64 value;
1425 int nont, ret;
1426
100cf6f2 1427 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1428 nont = core_get_max_pstate();
1429 ret = (((value) >> 8) & 0xFF);
1430 if (ret <= nont)
1431 ret = nont;
1432 return ret;
1433}
1434
016c8150
DB
1435static struct cpu_defaults core_params = {
1436 .pid_policy = {
1437 .sample_rate_ms = 10,
1438 .deadband = 0,
1439 .setpoint = 97,
1440 .p_gain_pct = 20,
1441 .d_gain_pct = 0,
1442 .i_gain_pct = 0,
1443 },
1444 .funcs = {
1445 .get_max = core_get_max_pstate,
3bcc6fa9 1446 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1447 .get_min = core_get_min_pstate,
1448 .get_turbo = core_get_turbo_pstate,
b27580b0 1449 .get_scaling = core_get_scaling,
fdfdb2b1 1450 .get_val = core_get_val,
157386b6 1451 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1452 },
1453};
1454
42ce8921 1455static const struct cpu_defaults silvermont_params = {
1421df63
PL
1456 .pid_policy = {
1457 .sample_rate_ms = 10,
1458 .deadband = 0,
1459 .setpoint = 60,
1460 .p_gain_pct = 14,
1461 .d_gain_pct = 0,
1462 .i_gain_pct = 4,
1463 },
1464 .funcs = {
1465 .get_max = atom_get_max_pstate,
1466 .get_max_physical = atom_get_max_pstate,
1467 .get_min = atom_get_min_pstate,
1468 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1469 .get_val = atom_get_val,
1421df63
PL
1470 .get_scaling = silvermont_get_scaling,
1471 .get_vid = atom_get_vid,
e70eed2b 1472 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1473 },
1474};
1475
42ce8921 1476static const struct cpu_defaults airmont_params = {
19e77c28
DB
1477 .pid_policy = {
1478 .sample_rate_ms = 10,
1479 .deadband = 0,
6a82ba6d 1480 .setpoint = 60,
19e77c28
DB
1481 .p_gain_pct = 14,
1482 .d_gain_pct = 0,
1483 .i_gain_pct = 4,
1484 },
1485 .funcs = {
938d21a2
PL
1486 .get_max = atom_get_max_pstate,
1487 .get_max_physical = atom_get_max_pstate,
1488 .get_min = atom_get_min_pstate,
1489 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1490 .get_val = atom_get_val,
1421df63 1491 .get_scaling = airmont_get_scaling,
938d21a2 1492 .get_vid = atom_get_vid,
e70eed2b 1493 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1494 },
1495};
1496
42ce8921 1497static const struct cpu_defaults knl_params = {
b34ef932
DC
1498 .pid_policy = {
1499 .sample_rate_ms = 10,
1500 .deadband = 0,
1501 .setpoint = 97,
1502 .p_gain_pct = 20,
1503 .d_gain_pct = 0,
1504 .i_gain_pct = 0,
1505 },
1506 .funcs = {
1507 .get_max = core_get_max_pstate,
3bcc6fa9 1508 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1509 .get_min = core_get_min_pstate,
1510 .get_turbo = knl_get_turbo_pstate,
69cefc27 1511 .get_scaling = core_get_scaling,
fdfdb2b1 1512 .get_val = core_get_val,
157386b6 1513 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1514 },
1515};
1516
42ce8921 1517static const struct cpu_defaults bxt_params = {
41bad47f
SP
1518 .pid_policy = {
1519 .sample_rate_ms = 10,
1520 .deadband = 0,
1521 .setpoint = 60,
1522 .p_gain_pct = 14,
1523 .d_gain_pct = 0,
1524 .i_gain_pct = 4,
1525 },
1526 .funcs = {
1527 .get_max = core_get_max_pstate,
1528 .get_max_physical = core_get_max_pstate_physical,
1529 .get_min = core_get_min_pstate,
1530 .get_turbo = core_get_turbo_pstate,
1531 .get_scaling = core_get_scaling,
1532 .get_val = core_get_val,
1533 .get_target_pstate = get_target_pstate_use_cpu_load,
1534 },
1535};
1536
93f0822d
DB
1537static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1538{
1539 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1540 int max_perf_adj;
93f0822d 1541 int min_perf;
eae48f04 1542 struct perf_limits *perf_limits = limits;
845c1cbe 1543
51443fbf 1544 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1545 max_perf = cpu->pstate.max_pstate;
1546
eae48f04
SP
1547 if (per_cpu_limits)
1548 perf_limits = cpu->perf_limits;
1549
e0d4c8f8
KCA
1550 /*
1551 * performance can be limited by user through sysfs, by cpufreq
1552 * policy, or by cpu specific default values determined through
1553 * experimentation.
1554 */
d5dd33d9 1555 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1556 *max = clamp_t(int, max_perf_adj,
1557 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1558
d5dd33d9 1559 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
799281a3 1560 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1561}
1562
a6c6ead1 1563static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1564{
bc95a454
RW
1565 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1566 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1567 /*
1568 * Generally, there is no guarantee that this code will always run on
1569 * the CPU being updated, so force the register update to run on the
1570 * right CPU.
1571 */
1572 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1573 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1574}
1575
a6c6ead1
RW
1576static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1577{
1578 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1579}
1580
1581static void intel_pstate_max_within_limits(struct cpudata *cpu)
1582{
1583 int min_pstate, max_pstate;
1584
1585 update_turbo_state();
1586 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1587 intel_pstate_set_pstate(cpu, max_pstate);
1588}
1589
93f0822d
DB
1590static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1591{
016c8150
DB
1592 cpu->pstate.min_pstate = pstate_funcs.get_min();
1593 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1594 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1595 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1596 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1597 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1598 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1599
007bea09
DB
1600 if (pstate_funcs.get_vid)
1601 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1602
1603 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1604}
1605
a1c9787d 1606static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1607{
6b17ddb2 1608 struct sample *sample = &cpu->sample;
e66c1768 1609
a1c9787d 1610 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1611}
1612
4fec7ad5 1613static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1614{
93f0822d 1615 u64 aperf, mperf;
4ab60c3f 1616 unsigned long flags;
4055fad3 1617 u64 tsc;
93f0822d 1618
4ab60c3f 1619 local_irq_save(flags);
93f0822d
DB
1620 rdmsrl(MSR_IA32_APERF, aperf);
1621 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1622 tsc = rdtsc();
4fec7ad5 1623 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1624 local_irq_restore(flags);
4fec7ad5 1625 return false;
8e601a9f 1626 }
4ab60c3f 1627 local_irq_restore(flags);
b69880f9 1628
c4ee841f 1629 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1630 cpu->sample.time = time;
d37e2b76
DB
1631 cpu->sample.aperf = aperf;
1632 cpu->sample.mperf = mperf;
4055fad3 1633 cpu->sample.tsc = tsc;
d37e2b76
DB
1634 cpu->sample.aperf -= cpu->prev_aperf;
1635 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1636 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1637
93f0822d
DB
1638 cpu->prev_aperf = aperf;
1639 cpu->prev_mperf = mperf;
4055fad3 1640 cpu->prev_tsc = tsc;
febce40f
RW
1641 /*
1642 * First time this function is invoked in a given cycle, all of the
1643 * previous sample data fields are equal to zero or stale and they must
1644 * be populated with meaningful numbers for things to work, so assume
1645 * that sample.time will always be reset before setting the utilization
1646 * update hook and make the caller skip the sample then.
1647 */
1648 return !!cpu->last_sample_time;
93f0822d
DB
1649}
1650
8fa520af
PL
1651static inline int32_t get_avg_frequency(struct cpudata *cpu)
1652{
a1c9787d
RW
1653 return mul_ext_fp(cpu->sample.core_avg_perf,
1654 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1655}
1656
bdcaa23f
PL
1657static inline int32_t get_avg_pstate(struct cpudata *cpu)
1658{
8edb0a6e
RW
1659 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1660 cpu->sample.core_avg_perf);
bdcaa23f
PL
1661}
1662
e70eed2b
PL
1663static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1664{
1665 struct sample *sample = &cpu->sample;
09c448d3 1666 int32_t busy_frac, boost;
0843e83c 1667 int target, avg_pstate;
e70eed2b 1668
09c448d3 1669 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1670
09c448d3
RW
1671 boost = cpu->iowait_boost;
1672 cpu->iowait_boost >>= 1;
63d1d656 1673
09c448d3
RW
1674 if (busy_frac < boost)
1675 busy_frac = boost;
63d1d656 1676
09c448d3 1677 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1678
1679 target = limits->no_turbo || limits->turbo_disabled ?
1680 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1681 target += target >> 2;
1682 target = mul_fp(target, busy_frac);
1683 if (target < cpu->pstate.min_pstate)
1684 target = cpu->pstate.min_pstate;
1685
1686 /*
1687 * If the average P-state during the previous cycle was higher than the
1688 * current target, add 50% of the difference to the target to reduce
1689 * possible performance oscillations and offset possible performance
1690 * loss related to moving the workload from one CPU to another within
1691 * a package/module.
1692 */
1693 avg_pstate = get_avg_pstate(cpu);
1694 if (avg_pstate > target)
1695 target += (avg_pstate - target) >> 1;
1696
1697 return target;
e70eed2b
PL
1698}
1699
157386b6 1700static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1701{
1aa7a6e2 1702 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1703 u64 duration_ns;
93f0822d 1704
e0d4c8f8 1705 /*
f00593a4
RW
1706 * perf_scaled is the ratio of the average P-state during the last
1707 * sampling period to the P-state requested last time (in percent).
1708 *
1709 * That measures the system's response to the previous P-state
1710 * selection.
e0d4c8f8 1711 */
22590efb
RW
1712 max_pstate = cpu->pstate.max_pstate_physical;
1713 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1714 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1715 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1716
e0d4c8f8 1717 /*
a4675fbc
RW
1718 * Since our utilization update callback will not run unless we are
1719 * in C0, check if the actual elapsed time is significantly greater (3x)
1720 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1721 * enough period of time to adjust our performance metric.
e0d4c8f8 1722 */
a4675fbc 1723 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1724 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1725 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1726 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1727 } else {
1728 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1729 if (sample_ratio < int_tofp(1))
1aa7a6e2 1730 perf_scaled = 0;
c4ee841f
DB
1731 }
1732
1aa7a6e2
RW
1733 cpu->sample.busy_scaled = perf_scaled;
1734 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1735}
1736
001c76f0 1737static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1738{
1739 int max_perf, min_perf;
1740
fdfdb2b1
RW
1741 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1742 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1743 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
001c76f0
RW
1744 return pstate;
1745}
1746
1747static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1748{
1749 pstate = intel_pstate_prepare_request(cpu, pstate);
fdfdb2b1
RW
1750 if (pstate == cpu->pstate.current_pstate)
1751 return;
1752
bc95a454 1753 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1754 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1755}
1756
93f0822d
DB
1757static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1758{
157386b6 1759 int from, target_pstate;
4055fad3
DS
1760 struct sample *sample;
1761
1762 from = cpu->pstate.current_pstate;
93f0822d 1763
2f1d407a
RW
1764 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1765 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1766
001c76f0
RW
1767 update_turbo_state();
1768
fdfdb2b1 1769 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1770
1771 sample = &cpu->sample;
a1c9787d 1772 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1773 fp_toint(sample->busy_scaled),
4055fad3
DS
1774 from,
1775 cpu->pstate.current_pstate,
1776 sample->mperf,
1777 sample->aperf,
1778 sample->tsc,
3ba7bcaa
SP
1779 get_avg_frequency(cpu),
1780 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1781}
1782
a4675fbc 1783static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1784 unsigned int flags)
93f0822d 1785{
a4675fbc 1786 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1787 u64 delta_ns;
1788
1d29815e 1789 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1790 if (flags & SCHED_CPUFREQ_IOWAIT) {
1791 cpu->iowait_boost = int_tofp(1);
1792 } else if (cpu->iowait_boost) {
1793 /* Clear iowait_boost if the CPU may have been idle. */
1794 delta_ns = time - cpu->last_update;
1795 if (delta_ns > TICK_NSEC)
1796 cpu->iowait_boost = 0;
1797 }
1798 cpu->last_update = time;
1799 }
b69880f9 1800
09c448d3 1801 delta_ns = time - cpu->sample.time;
a4675fbc 1802 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1803 bool sample_taken = intel_pstate_sample(cpu, time);
1804
6d45b719 1805 if (sample_taken) {
a1c9787d 1806 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1807 if (!hwp_active)
1808 intel_pstate_adjust_busy_pstate(cpu);
1809 }
a4675fbc 1810 }
93f0822d
DB
1811}
1812
1813#define ICPU(model, policy) \
6cbd7ee1
DB
1814 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1815 (unsigned long)&policy }
93f0822d
DB
1816
1817static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1818 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1819 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1820 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1821 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1822 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1823 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1824 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1825 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1826 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1827 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1828 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1829 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1830 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1831 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1832 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1833 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1834 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1835 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1836 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1837 {}
1838};
1839MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1840
29327c84 1841static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1842 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1843 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1844 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1845 {}
1846};
1847
93f0822d
DB
1848static int intel_pstate_init_cpu(unsigned int cpunum)
1849{
93f0822d
DB
1850 struct cpudata *cpu;
1851
eae48f04
SP
1852 cpu = all_cpu_data[cpunum];
1853
1854 if (!cpu) {
1855 unsigned int size = sizeof(struct cpudata);
1856
1857 if (per_cpu_limits)
1858 size += sizeof(struct perf_limits);
1859
1860 cpu = kzalloc(size, GFP_KERNEL);
1861 if (!cpu)
1862 return -ENOMEM;
1863
1864 all_cpu_data[cpunum] = cpu;
1865 if (per_cpu_limits)
1866 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1867
984edbdc
SP
1868 cpu->epp_default = -EINVAL;
1869 cpu->epp_powersave = -EINVAL;
1870 cpu->epp_saved = -EINVAL;
eae48f04 1871 }
93f0822d
DB
1872
1873 cpu = all_cpu_data[cpunum];
1874
93f0822d 1875 cpu->cpu = cpunum;
ba88d433 1876
a4675fbc 1877 if (hwp_active) {
ba88d433 1878 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1879 pid_params.sample_rate_ms = 50;
1880 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1881 }
ba88d433 1882
179e8471 1883 intel_pstate_get_cpu_pstates(cpu);
016c8150 1884
93f0822d 1885 intel_pstate_busy_pid_reset(cpu);
93f0822d 1886
4836df17 1887 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1888
1889 return 0;
1890}
1891
1892static unsigned int intel_pstate_get(unsigned int cpu_num)
1893{
f96fd0c8 1894 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1895
f96fd0c8 1896 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1897}
1898
febce40f 1899static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1900{
febce40f
RW
1901 struct cpudata *cpu = all_cpu_data[cpu_num];
1902
5ab666e0
RW
1903 if (cpu->update_util_set)
1904 return;
1905
febce40f
RW
1906 /* Prevent intel_pstate_update_util() from using stale data. */
1907 cpu->sample.time = 0;
0bed612b
RW
1908 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1909 intel_pstate_update_util);
4578ee7e 1910 cpu->update_util_set = true;
bb6ab52f
RW
1911}
1912
1913static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1914{
4578ee7e
CY
1915 struct cpudata *cpu_data = all_cpu_data[cpu];
1916
1917 if (!cpu_data->update_util_set)
1918 return;
1919
0bed612b 1920 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1921 cpu_data->update_util_set = false;
bb6ab52f
RW
1922 synchronize_sched();
1923}
1924
30a39153
SP
1925static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1926{
1927 limits->no_turbo = 0;
1928 limits->turbo_disabled = 0;
1929 limits->max_perf_pct = 100;
d5dd33d9 1930 limits->max_perf = int_ext_tofp(1);
30a39153 1931 limits->min_perf_pct = 100;
d5dd33d9 1932 limits->min_perf = int_ext_tofp(1);
30a39153
SP
1933 limits->max_policy_pct = 100;
1934 limits->max_sysfs_pct = 100;
1935 limits->min_policy_pct = 0;
1936 limits->min_sysfs_pct = 0;
1937}
1938
eae48f04
SP
1939static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1940 struct perf_limits *limits)
1941{
a410c03d 1942
eae48f04
SP
1943 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1944 policy->cpuinfo.max_freq);
1945 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
1946 if (policy->max == policy->min) {
1947 limits->min_policy_pct = limits->max_policy_pct;
1948 } else {
46992d6b
SP
1949 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1950 policy->cpuinfo.max_freq);
5879f877
SP
1951 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1952 0, 100);
1953 }
eae48f04
SP
1954
1955 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1956 limits->min_perf_pct = max(limits->min_policy_pct,
1957 limits->min_sysfs_pct);
1958 limits->min_perf_pct = min(limits->max_policy_pct,
1959 limits->min_perf_pct);
1960 limits->max_perf_pct = min(limits->max_policy_pct,
1961 limits->max_sysfs_pct);
1962 limits->max_perf_pct = max(limits->min_policy_pct,
1963 limits->max_perf_pct);
1964
1965 /* Make sure min_perf_pct <= max_perf_pct */
1966 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1967
d5dd33d9
SP
1968 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1969 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1970 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
1971 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
eae48f04
SP
1972
1973 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1974 limits->max_perf_pct, limits->min_perf_pct);
1975}
1976
93f0822d
DB
1977static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1978{
3be9200d 1979 struct cpudata *cpu;
eae48f04 1980 struct perf_limits *perf_limits = NULL;
3be9200d 1981
d3929b83
DB
1982 if (!policy->cpuinfo.max_freq)
1983 return -ENODEV;
1984
2c2c1af4
SP
1985 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1986 policy->cpuinfo.max_freq, policy->max);
1987
a6c6ead1 1988 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
1989 cpu->policy = policy->policy;
1990
c749c64f
RW
1991 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1992 policy->max < policy->cpuinfo.max_freq &&
1993 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1994 pr_debug("policy->max > max non turbo frequency\n");
1995 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1996 }
1997
eae48f04
SP
1998 if (per_cpu_limits)
1999 perf_limits = cpu->perf_limits;
2000
b59fe540
SP
2001 mutex_lock(&intel_pstate_limits_lock);
2002
eae48f04
SP
2003 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2004 if (!perf_limits) {
2005 limits = &performance_limits;
2006 perf_limits = limits;
2007 }
30a39153 2008 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 2009 pr_debug("set performance\n");
eae48f04 2010 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
2011 goto out;
2012 }
2013 } else {
4836df17 2014 pr_debug("set powersave\n");
eae48f04
SP
2015 if (!perf_limits) {
2016 limits = &powersave_limits;
2017 perf_limits = limits;
2018 }
43717aad 2019
eae48f04 2020 }
93f0822d 2021
eae48f04 2022 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 2023 out:
2f1d407a 2024 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2025 /*
2026 * NOHZ_FULL CPUs need this as the governor callback may not
2027 * be invoked on them.
2028 */
2029 intel_pstate_clear_update_util_hook(policy->cpu);
2030 intel_pstate_max_within_limits(cpu);
2031 }
2032
bb6ab52f
RW
2033 intel_pstate_set_update_util_hook(policy->cpu);
2034
ba41e1bc 2035 intel_pstate_hwp_set_policy(policy);
2f86dc4c 2036
b59fe540
SP
2037 mutex_unlock(&intel_pstate_limits_lock);
2038
93f0822d
DB
2039 return 0;
2040}
2041
2042static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2043{
be49e346 2044 cpufreq_verify_within_cpu_limits(policy);
93f0822d 2045
285cb990 2046 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2047 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2048 return -EINVAL;
2049
2050 return 0;
2051}
2052
001c76f0
RW
2053static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2054{
2055 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2056}
2057
bb18008f 2058static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2059{
001c76f0 2060 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2061
001c76f0 2062 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2063 if (hwp_active)
2064 intel_pstate_hwp_save_state(policy);
2065 else
001c76f0
RW
2066 intel_cpufreq_stop_cpu(policy);
2067}
bb18008f 2068
001c76f0
RW
2069static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2070{
2071 intel_pstate_exit_perf_limits(policy);
a4675fbc 2072
001c76f0 2073 policy->fast_switch_possible = false;
2f86dc4c 2074
001c76f0 2075 return 0;
93f0822d
DB
2076}
2077
001c76f0 2078static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2079{
93f0822d 2080 struct cpudata *cpu;
52e0a509 2081 int rc;
93f0822d
DB
2082
2083 rc = intel_pstate_init_cpu(policy->cpu);
2084 if (rc)
2085 return rc;
2086
2087 cpu = all_cpu_data[policy->cpu];
2088
eae48f04
SP
2089 /*
2090 * We need sane value in the cpu->perf_limits, so inherit from global
2091 * perf_limits limits, which are seeded with values based on the
2092 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2093 */
2094 if (per_cpu_limits)
2095 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
93f0822d 2096
b27580b0
DB
2097 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2098 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2099
2100 /* cpuinfo and default policy values */
b27580b0 2101 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
2102 update_turbo_state();
2103 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2104 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2105 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2106
9522a2ff 2107 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2108 cpumask_set_cpu(policy->cpu, policy->cpus);
2109
001c76f0
RW
2110 policy->fast_switch_possible = true;
2111
93f0822d
DB
2112 return 0;
2113}
2114
001c76f0 2115static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2116{
001c76f0
RW
2117 int ret = __intel_pstate_cpu_init(policy);
2118
2119 if (ret)
2120 return ret;
2121
2122 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2123 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2124 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2125 else
2126 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2127
2128 return 0;
2129}
2130
001c76f0 2131static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2132 .flags = CPUFREQ_CONST_LOOPS,
2133 .verify = intel_pstate_verify_policy,
2134 .setpolicy = intel_pstate_set_policy,
984edbdc 2135 .suspend = intel_pstate_hwp_save_state,
8442885f 2136 .resume = intel_pstate_resume,
93f0822d
DB
2137 .get = intel_pstate_get,
2138 .init = intel_pstate_cpu_init,
9522a2ff 2139 .exit = intel_pstate_cpu_exit,
bb18008f 2140 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2141 .name = "intel_pstate",
93f0822d
DB
2142};
2143
001c76f0
RW
2144static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2145{
2146 struct cpudata *cpu = all_cpu_data[policy->cpu];
2147 struct perf_limits *perf_limits = limits;
2148
2149 update_turbo_state();
2150 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2151 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2152
2153 cpufreq_verify_within_cpu_limits(policy);
2154
2155 if (per_cpu_limits)
2156 perf_limits = cpu->perf_limits;
2157
cad30467
RW
2158 mutex_lock(&intel_pstate_limits_lock);
2159
001c76f0
RW
2160 intel_pstate_update_perf_limits(policy, perf_limits);
2161
cad30467
RW
2162 mutex_unlock(&intel_pstate_limits_lock);
2163
001c76f0
RW
2164 return 0;
2165}
2166
2167static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2168 struct cpufreq_policy *policy,
2169 unsigned int target_freq)
2170{
2171 unsigned int max_freq;
2172
2173 update_turbo_state();
2174
2175 max_freq = limits->no_turbo || limits->turbo_disabled ?
2176 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2177 policy->cpuinfo.max_freq = max_freq;
2178 if (policy->max > max_freq)
2179 policy->max = max_freq;
2180
2181 if (target_freq > max_freq)
2182 target_freq = max_freq;
2183
2184 return target_freq;
2185}
2186
2187static int intel_cpufreq_target(struct cpufreq_policy *policy,
2188 unsigned int target_freq,
2189 unsigned int relation)
2190{
2191 struct cpudata *cpu = all_cpu_data[policy->cpu];
2192 struct cpufreq_freqs freqs;
2193 int target_pstate;
2194
2195 freqs.old = policy->cur;
2196 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2197
2198 cpufreq_freq_transition_begin(policy, &freqs);
2199 switch (relation) {
2200 case CPUFREQ_RELATION_L:
2201 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2202 break;
2203 case CPUFREQ_RELATION_H:
2204 target_pstate = freqs.new / cpu->pstate.scaling;
2205 break;
2206 default:
2207 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2208 break;
2209 }
2210 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2211 if (target_pstate != cpu->pstate.current_pstate) {
2212 cpu->pstate.current_pstate = target_pstate;
2213 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2214 pstate_funcs.get_val(cpu, target_pstate));
2215 }
2216 cpufreq_freq_transition_end(policy, &freqs, false);
2217
2218 return 0;
2219}
2220
2221static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2222 unsigned int target_freq)
2223{
2224 struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 int target_pstate;
2226
2227 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2228 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2229 intel_pstate_update_pstate(cpu, target_pstate);
2230 return target_freq;
2231}
2232
2233static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234{
2235 int ret = __intel_pstate_cpu_init(policy);
2236
2237 if (ret)
2238 return ret;
2239
2240 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2242 policy->cur = policy->cpuinfo.min_freq;
2243
2244 return 0;
2245}
2246
2247static struct cpufreq_driver intel_cpufreq = {
2248 .flags = CPUFREQ_CONST_LOOPS,
2249 .verify = intel_cpufreq_verify_policy,
2250 .target = intel_cpufreq_target,
2251 .fast_switch = intel_cpufreq_fast_switch,
2252 .init = intel_cpufreq_cpu_init,
2253 .exit = intel_pstate_cpu_exit,
2254 .stop_cpu = intel_cpufreq_stop_cpu,
2255 .name = "intel_cpufreq",
2256};
2257
2258static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2259
eed43609
JZ
2260static int no_load __initdata;
2261static int no_hwp __initdata;
2262static int hwp_only __initdata;
29327c84 2263static unsigned int force_load __initdata;
6be26498 2264
29327c84 2265static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2266{
016c8150 2267 if (!pstate_funcs.get_max() ||
c410833a
SK
2268 !pstate_funcs.get_min() ||
2269 !pstate_funcs.get_turbo())
b563b4e3
DB
2270 return -ENODEV;
2271
b563b4e3
DB
2272 return 0;
2273}
016c8150 2274
29327c84 2275static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
2276{
2277 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 2278 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
2279 pid_params.p_gain_pct = policy->p_gain_pct;
2280 pid_params.i_gain_pct = policy->i_gain_pct;
2281 pid_params.d_gain_pct = policy->d_gain_pct;
2282 pid_params.deadband = policy->deadband;
2283 pid_params.setpoint = policy->setpoint;
2284}
2285
7f7a516e
SP
2286#ifdef CONFIG_ACPI
2287static void intel_pstate_use_acpi_profile(void)
2288{
2289 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2290 pstate_funcs.get_target_pstate =
2291 get_target_pstate_use_cpu_load;
2292}
2293#else
2294static void intel_pstate_use_acpi_profile(void)
2295{
2296}
2297#endif
2298
29327c84 2299static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2300{
2301 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2302 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2303 pstate_funcs.get_min = funcs->get_min;
2304 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2305 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2306 pstate_funcs.get_val = funcs->get_val;
007bea09 2307 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2308 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2309
7f7a516e 2310 intel_pstate_use_acpi_profile();
016c8150
DB
2311}
2312
9522a2ff 2313#ifdef CONFIG_ACPI
fbbcdc07 2314
29327c84 2315static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2316{
2317 int i;
2318
2319 for_each_possible_cpu(i) {
2320 acpi_status status;
2321 union acpi_object *pss;
2322 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2323 struct acpi_processor *pr = per_cpu(processors, i);
2324
2325 if (!pr)
2326 continue;
2327
2328 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2329 if (ACPI_FAILURE(status))
2330 continue;
2331
2332 pss = buffer.pointer;
2333 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2334 kfree(pss);
2335 return false;
2336 }
2337
2338 kfree(pss);
2339 }
2340
2341 return true;
2342}
2343
29327c84 2344static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2345{
2346 int i;
2347
2348 for_each_possible_cpu(i) {
2349 struct acpi_processor *pr = per_cpu(processors, i);
2350
2351 if (!pr)
2352 continue;
2353 if (acpi_has_method(pr->handle, "_PPC"))
2354 return true;
2355 }
2356 return false;
2357}
2358
2359enum {
2360 PSS,
2361 PPC,
2362};
2363
fbbcdc07
AH
2364struct hw_vendor_info {
2365 u16 valid;
2366 char oem_id[ACPI_OEM_ID_SIZE];
2367 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2368 int oem_pwr_table;
fbbcdc07
AH
2369};
2370
2371/* Hardware vendor-specific info that has its own power management modes */
29327c84 2372static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2373 {1, "HP ", "ProLiant", PSS},
2374 {1, "ORACLE", "X4-2 ", PPC},
2375 {1, "ORACLE", "X4-2L ", PPC},
2376 {1, "ORACLE", "X4-2B ", PPC},
2377 {1, "ORACLE", "X3-2 ", PPC},
2378 {1, "ORACLE", "X3-2L ", PPC},
2379 {1, "ORACLE", "X3-2B ", PPC},
2380 {1, "ORACLE", "X4470M2 ", PPC},
2381 {1, "ORACLE", "X4270M3 ", PPC},
2382 {1, "ORACLE", "X4270M2 ", PPC},
2383 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2384 {1, "ORACLE", "X4170 M3", PPC},
2385 {1, "ORACLE", "X4275 M3", PPC},
2386 {1, "ORACLE", "X6-2 ", PPC},
2387 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2388 {0, "", ""},
2389};
2390
29327c84 2391static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2392{
2393 struct acpi_table_header hdr;
2394 struct hw_vendor_info *v_info;
2f86dc4c
DB
2395 const struct x86_cpu_id *id;
2396 u64 misc_pwr;
2397
2398 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2399 if (id) {
2400 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2401 if ( misc_pwr & (1 << 8))
2402 return true;
2403 }
fbbcdc07 2404
c410833a
SK
2405 if (acpi_disabled ||
2406 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2407 return false;
2408
2409 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2410 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2411 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2412 ACPI_OEM_TABLE_ID_SIZE))
2413 switch (v_info->oem_pwr_table) {
2414 case PSS:
2415 return intel_pstate_no_acpi_pss();
2416 case PPC:
aa4ea34d
EZ
2417 return intel_pstate_has_acpi_ppc() &&
2418 (!force_load);
966916ea 2419 }
fbbcdc07
AH
2420 }
2421
2422 return false;
2423}
d0ea59e1
RW
2424
2425static void intel_pstate_request_control_from_smm(void)
2426{
2427 /*
2428 * It may be unsafe to request P-states control from SMM if _PPC support
2429 * has not been enabled.
2430 */
2431 if (acpi_ppc)
2432 acpi_processor_pstate_control();
2433}
fbbcdc07
AH
2434#else /* CONFIG_ACPI not enabled */
2435static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2436static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2437static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2438#endif /* CONFIG_ACPI */
2439
7791e4aa
SP
2440static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2441 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2442 {}
2443};
2444
93f0822d
DB
2445static int __init intel_pstate_init(void)
2446{
907cc908 2447 int cpu, rc = 0;
93f0822d 2448 const struct x86_cpu_id *id;
64df1fdf 2449 struct cpu_defaults *cpu_def;
93f0822d 2450
6be26498
DB
2451 if (no_load)
2452 return -ENODEV;
2453
7791e4aa
SP
2454 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2455 copy_cpu_funcs(&core_params.funcs);
2456 hwp_active++;
984edbdc 2457 intel_pstate.attr = hwp_cpufreq_attrs;
7791e4aa
SP
2458 goto hwp_cpu_matched;
2459 }
2460
93f0822d
DB
2461 id = x86_match_cpu(intel_pstate_cpu_ids);
2462 if (!id)
2463 return -ENODEV;
2464
64df1fdf 2465 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2466
64df1fdf
BP
2467 copy_pid_params(&cpu_def->pid_policy);
2468 copy_cpu_funcs(&cpu_def->funcs);
016c8150 2469
b563b4e3
DB
2470 if (intel_pstate_msrs_not_valid())
2471 return -ENODEV;
2472
7791e4aa
SP
2473hwp_cpu_matched:
2474 /*
2475 * The Intel pstate driver will be ignored if the platform
2476 * firmware has its own power management modes.
2477 */
2478 if (intel_pstate_platform_pwr_mgmt_exists())
2479 return -ENODEV;
2480
4836df17 2481 pr_info("Intel P-state driver initializing\n");
93f0822d 2482
b57ffac5 2483 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2484 if (!all_cpu_data)
2485 return -ENOMEM;
93f0822d 2486
d64c3b0b
KCA
2487 if (!hwp_active && hwp_only)
2488 goto out;
2489
d0ea59e1
RW
2490 intel_pstate_request_control_from_smm();
2491
001c76f0 2492 rc = cpufreq_register_driver(intel_pstate_driver);
93f0822d
DB
2493 if (rc)
2494 goto out;
2495
366430b5
RW
2496 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2497 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2498 intel_pstate_debug_expose_params();
2499
93f0822d 2500 intel_pstate_sysfs_expose_params();
b69880f9 2501
7791e4aa 2502 if (hwp_active)
4836df17 2503 pr_info("HWP enabled\n");
7791e4aa 2504
93f0822d
DB
2505 return rc;
2506out:
907cc908
DB
2507 get_online_cpus();
2508 for_each_online_cpu(cpu) {
2509 if (all_cpu_data[cpu]) {
001c76f0
RW
2510 if (intel_pstate_driver == &intel_pstate)
2511 intel_pstate_clear_update_util_hook(cpu);
2512
907cc908
DB
2513 kfree(all_cpu_data[cpu]);
2514 }
2515 }
2516
2517 put_online_cpus();
2518 vfree(all_cpu_data);
93f0822d
DB
2519 return -ENODEV;
2520}
2521device_initcall(intel_pstate_init);
2522
6be26498
DB
2523static int __init intel_pstate_setup(char *str)
2524{
2525 if (!str)
2526 return -EINVAL;
2527
001c76f0 2528 if (!strcmp(str, "disable")) {
6be26498 2529 no_load = 1;
001c76f0
RW
2530 } else if (!strcmp(str, "passive")) {
2531 pr_info("Passive mode enabled\n");
2532 intel_pstate_driver = &intel_cpufreq;
2533 no_hwp = 1;
2534 }
539342f6 2535 if (!strcmp(str, "no_hwp")) {
4836df17 2536 pr_info("HWP disabled\n");
2f86dc4c 2537 no_hwp = 1;
539342f6 2538 }
aa4ea34d
EZ
2539 if (!strcmp(str, "force"))
2540 force_load = 1;
d64c3b0b
KCA
2541 if (!strcmp(str, "hwp_only"))
2542 hwp_only = 1;
eae48f04
SP
2543 if (!strcmp(str, "per_cpu_perf_limits"))
2544 per_cpu_limits = true;
9522a2ff
SP
2545
2546#ifdef CONFIG_ACPI
2547 if (!strcmp(str, "support_acpi_ppc"))
2548 acpi_ppc = true;
2549#endif
2550
6be26498
DB
2551 return 0;
2552}
2553early_param("intel_pstate", intel_pstate_setup);
2554
93f0822d
DB
2555MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2556MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2557MODULE_LICENSE("GPL");