]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Use load-based P-state selection more widely
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
9522a2ff
SP
42#ifdef CONFIG_ACPI
43#include <acpi/processor.h>
17669006 44#include <acpi/cppc_acpi.h>
9522a2ff
SP
45#endif
46
f0fe3cd7 47#define FRAC_BITS 8
93f0822d
DB
48#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 50
a1c9787d
RW
51#define EXT_BITS 6
52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
e4c204ce
RW
87static inline int32_t percent_ext_fp(int percent)
88{
89 return div_ext_fp(percent, 100);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
eae48f04
SP
188/**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228};
229
13ad7701
SP
230/**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
2f1d407a 233 * @policy: CPUFreq policy value
13ad7701 234 * @update_util: CPUFreq utility callback information
4578ee7e 235 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
13ad7701
SP
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
eae48f04
SP
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
9522a2ff
SP
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
8442885f 256 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
13ad7701
SP
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
93f0822d
DB
264struct cpudata {
265 int cpu;
266
2f1d407a 267 unsigned int policy;
a4675fbc 268 struct update_util_data update_util;
4578ee7e 269 bool update_util_set;
93f0822d 270
93f0822d 271 struct pstate_data pstate;
007bea09 272 struct vid_data vid;
93f0822d 273 struct _pid pid;
93f0822d 274
09c448d3 275 u64 last_update;
a4675fbc 276 u64 last_sample_time;
93f0822d
DB
277 u64 prev_aperf;
278 u64 prev_mperf;
4055fad3 279 u64 prev_tsc;
63d1d656 280 u64 prev_cummulative_iowait;
d37e2b76 281 struct sample sample;
eae48f04 282 struct perf_limits *perf_limits;
9522a2ff
SP
283#ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286#endif
09c448d3 287 unsigned int iowait_boost;
984edbdc 288 s16 epp_powersave;
8442885f 289 s16 epp_policy;
984edbdc
SP
290 s16 epp_default;
291 s16 epp_saved;
93f0822d
DB
292};
293
294static struct cpudata **all_cpu_data;
13ad7701
SP
295
296/**
3954517e 297 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
93f0822d
DB
308struct pstate_adjust_policy {
309 int sample_rate_ms;
a4675fbc 310 s64 sample_rate_ns;
93f0822d
DB
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316};
317
13ad7701
SP
318/**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
016c8150
DB
332struct pstate_funcs {
333 int (*get_max)(void);
3bcc6fa9 334 int (*get_max_physical)(void);
016c8150
DB
335 int (*get_min)(void);
336 int (*get_turbo)(void);
b27580b0 337 int (*get_scaling)(void);
fdfdb2b1 338 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 339 void (*get_vid)(struct cpudata *);
157386b6 340 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
341};
342
13ad7701
SP
343/**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
016c8150
DB
348struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
93f0822d
DB
351};
352
157386b6 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 355
4a7cb7a9
JZ
356static struct pstate_adjust_policy pid_params __read_mostly;
357static struct pstate_funcs pstate_funcs __read_mostly;
358static int hwp_active __read_mostly;
eae48f04 359static bool per_cpu_limits __read_mostly;
016c8150 360
0c30b65b
RW
361static bool driver_registered __read_mostly;
362
9522a2ff
SP
363#ifdef CONFIG_ACPI
364static bool acpi_ppc;
365#endif
13ad7701 366
7de32556 367static struct perf_limits global;
51443fbf 368
c3a49c89
RW
369static void intel_pstate_init_limits(struct perf_limits *limits)
370{
371 memset(limits, 0, sizeof(*limits));
372 limits->max_perf_pct = 100;
373 limits->max_perf = int_ext_tofp(1);
374 limits->max_policy_pct = 100;
375 limits->max_sysfs_pct = 100;
376}
93f0822d 377
0c30b65b 378static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
379static DEFINE_MUTEX(intel_pstate_limits_lock);
380
9522a2ff 381#ifdef CONFIG_ACPI
2b3ec765
SP
382
383static bool intel_pstate_get_ppc_enable_status(void)
384{
385 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
386 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
387 return true;
388
389 return acpi_ppc;
390}
391
17669006
RW
392#ifdef CONFIG_ACPI_CPPC_LIB
393
394/* The work item is needed to avoid CPU hotplug locking issues */
395static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
396{
397 sched_set_itmt_support();
398}
399
400static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
401
402static void intel_pstate_set_itmt_prio(int cpu)
403{
404 struct cppc_perf_caps cppc_perf;
405 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
406 int ret;
407
408 ret = cppc_get_perf_caps(cpu, &cppc_perf);
409 if (ret)
410 return;
411
412 /*
413 * The priorities can be set regardless of whether or not
414 * sched_set_itmt_support(true) has been called and it is valid to
415 * update them at any time after it has been called.
416 */
417 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
418
419 if (max_highest_perf <= min_highest_perf) {
420 if (cppc_perf.highest_perf > max_highest_perf)
421 max_highest_perf = cppc_perf.highest_perf;
422
423 if (cppc_perf.highest_perf < min_highest_perf)
424 min_highest_perf = cppc_perf.highest_perf;
425
426 if (max_highest_perf > min_highest_perf) {
427 /*
428 * This code can be run during CPU online under the
429 * CPU hotplug locks, so sched_set_itmt_support()
430 * cannot be called from here. Queue up a work item
431 * to invoke it.
432 */
433 schedule_work(&sched_itmt_work);
434 }
435 }
436}
437#else
438static void intel_pstate_set_itmt_prio(int cpu)
439{
440}
441#endif
442
9522a2ff
SP
443static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444{
445 struct cpudata *cpu;
9522a2ff
SP
446 int ret;
447 int i;
448
17669006
RW
449 if (hwp_active) {
450 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 451 return;
17669006 452 }
e59a8f7f 453
2b3ec765 454 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
455 return;
456
457 cpu = all_cpu_data[policy->cpu];
458
459 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
460 policy->cpu);
461 if (ret)
462 return;
463
464 /*
465 * Check if the control value in _PSS is for PERF_CTL MSR, which should
466 * guarantee that the states returned by it map to the states in our
467 * list directly.
468 */
469 if (cpu->acpi_perf_data.control_register.space_id !=
470 ACPI_ADR_SPACE_FIXED_HARDWARE)
471 goto err;
472
473 /*
474 * If there is only one entry _PSS, simply ignore _PSS and continue as
475 * usual without taking _PSS into account
476 */
477 if (cpu->acpi_perf_data.state_count < 2)
478 goto err;
479
480 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
481 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
482 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
483 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
484 (u32) cpu->acpi_perf_data.states[i].core_frequency,
485 (u32) cpu->acpi_perf_data.states[i].power,
486 (u32) cpu->acpi_perf_data.states[i].control);
487 }
488
489 /*
490 * The _PSS table doesn't contain whole turbo frequency range.
491 * This just contains +1 MHZ above the max non turbo frequency,
492 * with control value corresponding to max turbo ratio. But
493 * when cpufreq set policy is called, it will call with this
494 * max frequency, which will cause a reduced performance as
495 * this driver uses real max turbo frequency as the max
496 * frequency. So correct this frequency in _PSS table to
b00345d1 497 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
498 * Also need to convert to MHz as _PSS freq is in MHz.
499 */
7de32556 500 if (!global.turbo_disabled)
9522a2ff
SP
501 cpu->acpi_perf_data.states[0].core_frequency =
502 policy->cpuinfo.max_freq / 1000;
503 cpu->valid_pss_table = true;
6cacd115 504 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
505
506 return;
507
508 err:
509 cpu->valid_pss_table = false;
510 acpi_processor_unregister_performance(policy->cpu);
511}
512
513static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514{
515 struct cpudata *cpu;
516
517 cpu = all_cpu_data[policy->cpu];
518 if (!cpu->valid_pss_table)
519 return;
520
521 acpi_processor_unregister_performance(policy->cpu);
522}
9522a2ff 523#else
7a3ba767 524static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
525{
526}
527
7a3ba767 528static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
529{
530}
531#endif
532
93f0822d 533static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 534 int deadband, int integral) {
b54a0dfd
PL
535 pid->setpoint = int_tofp(setpoint);
536 pid->deadband = int_tofp(deadband);
93f0822d 537 pid->integral = int_tofp(integral);
d98d099b 538 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
539}
540
541static inline void pid_p_gain_set(struct _pid *pid, int percent)
542{
22590efb 543 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
544}
545
546static inline void pid_i_gain_set(struct _pid *pid, int percent)
547{
22590efb 548 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
549}
550
551static inline void pid_d_gain_set(struct _pid *pid, int percent)
552{
22590efb 553 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
554}
555
d253d2a5 556static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 557{
d253d2a5 558 signed int result;
93f0822d
DB
559 int32_t pterm, dterm, fp_error;
560 int32_t integral_limit;
561
b54a0dfd 562 fp_error = pid->setpoint - busy;
93f0822d 563
b54a0dfd 564 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
565 return 0;
566
567 pterm = mul_fp(pid->p_gain, fp_error);
568
569 pid->integral += fp_error;
570
e0d4c8f8
KCA
571 /*
572 * We limit the integral here so that it will never
573 * get higher than 30. This prevents it from becoming
574 * too large an input over long periods of time and allows
575 * it to get factored out sooner.
576 *
577 * The value of 30 was chosen through experimentation.
578 */
93f0822d
DB
579 integral_limit = int_tofp(30);
580 if (pid->integral > integral_limit)
581 pid->integral = integral_limit;
582 if (pid->integral < -integral_limit)
583 pid->integral = -integral_limit;
584
d253d2a5
BS
585 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
586 pid->last_err = fp_error;
93f0822d
DB
587
588 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 589 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
590 return (signed int)fp_toint(result);
591}
592
593static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
594{
016c8150
DB
595 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
596 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
597 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 598
2d8d1f18 599 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
600}
601
93f0822d
DB
602static inline void intel_pstate_reset_all_pid(void)
603{
604 unsigned int cpu;
845c1cbe 605
93f0822d
DB
606 for_each_online_cpu(cpu) {
607 if (all_cpu_data[cpu])
608 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
609 }
610}
611
4521e1a0
GM
612static inline void update_turbo_state(void)
613{
614 u64 misc_en;
615 struct cpudata *cpu;
616
617 cpu = all_cpu_data[0];
618 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 619 global.turbo_disabled =
4521e1a0
GM
620 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
621 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
622}
623
8442885f
SP
624static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
625{
626 u64 epb;
627 int ret;
628
629 if (!static_cpu_has(X86_FEATURE_EPB))
630 return -ENXIO;
631
632 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 if (ret)
634 return (s16)ret;
635
636 return (s16)(epb & 0x0f);
637}
638
639static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
640{
641 s16 epp;
642
984edbdc
SP
643 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
644 /*
645 * When hwp_req_data is 0, means that caller didn't read
646 * MSR_HWP_REQUEST, so need to read and get EPP.
647 */
648 if (!hwp_req_data) {
649 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
650 &hwp_req_data);
651 if (epp)
652 return epp;
653 }
8442885f 654 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 655 } else {
8442885f
SP
656 /* When there is no EPP present, HWP uses EPB settings */
657 epp = intel_pstate_get_epb(cpu_data);
984edbdc 658 }
8442885f
SP
659
660 return epp;
661}
662
984edbdc 663static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
664{
665 u64 epb;
984edbdc 666 int ret;
8442885f
SP
667
668 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 669 return -ENXIO;
8442885f 670
984edbdc
SP
671 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
672 if (ret)
673 return ret;
8442885f
SP
674
675 epb = (epb & ~0x0f) | pref;
676 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
677
678 return 0;
8442885f
SP
679}
680
984edbdc
SP
681/*
682 * EPP/EPB display strings corresponding to EPP index in the
683 * energy_perf_strings[]
684 * index String
685 *-------------------------------------
686 * 0 default
687 * 1 performance
688 * 2 balance_performance
689 * 3 balance_power
690 * 4 power
691 */
692static const char * const energy_perf_strings[] = {
693 "default",
694 "performance",
695 "balance_performance",
696 "balance_power",
697 "power",
698 NULL
699};
700
701static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
702{
703 s16 epp;
704 int index = -EINVAL;
705
706 epp = intel_pstate_get_epp(cpu_data, 0);
707 if (epp < 0)
708 return epp;
709
710 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
711 /*
712 * Range:
713 * 0x00-0x3F : Performance
714 * 0x40-0x7F : Balance performance
715 * 0x80-0xBF : Balance power
716 * 0xC0-0xFF : Power
717 * The EPP is a 8 bit value, but our ranges restrict the
718 * value which can be set. Here only using top two bits
719 * effectively.
720 */
721 index = (epp >> 6) + 1;
722 } else if (static_cpu_has(X86_FEATURE_EPB)) {
723 /*
724 * Range:
725 * 0x00-0x03 : Performance
726 * 0x04-0x07 : Balance performance
727 * 0x08-0x0B : Balance power
728 * 0x0C-0x0F : Power
729 * The EPB is a 4 bit value, but our ranges restrict the
730 * value which can be set. Here only using top two bits
731 * effectively.
732 */
733 index = (epp >> 2) + 1;
734 }
735
736 return index;
737}
738
739static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
740 int pref_index)
741{
742 int epp = -EINVAL;
743 int ret;
744
745 if (!pref_index)
746 epp = cpu_data->epp_default;
747
748 mutex_lock(&intel_pstate_limits_lock);
749
750 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
751 u64 value;
752
753 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
754 if (ret)
755 goto return_pref;
756
757 value &= ~GENMASK_ULL(31, 24);
758
759 /*
760 * If epp is not default, convert from index into
761 * energy_perf_strings to epp value, by shifting 6
762 * bits left to use only top two bits in epp.
763 * The resultant epp need to shifted by 24 bits to
764 * epp position in MSR_HWP_REQUEST.
765 */
766 if (epp == -EINVAL)
767 epp = (pref_index - 1) << 6;
768
769 value |= (u64)epp << 24;
770 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
771 } else {
772 if (epp == -EINVAL)
773 epp = (pref_index - 1) << 2;
774 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775 }
776return_pref:
777 mutex_unlock(&intel_pstate_limits_lock);
778
779 return ret;
780}
781
782static ssize_t show_energy_performance_available_preferences(
783 struct cpufreq_policy *policy, char *buf)
784{
785 int i = 0;
786 int ret = 0;
787
788 while (energy_perf_strings[i] != NULL)
789 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
790
791 ret += sprintf(&buf[ret], "\n");
792
793 return ret;
794}
795
796cpufreq_freq_attr_ro(energy_performance_available_preferences);
797
798static ssize_t store_energy_performance_preference(
799 struct cpufreq_policy *policy, const char *buf, size_t count)
800{
801 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
802 char str_preference[21];
803 int ret, i = 0;
804
805 ret = sscanf(buf, "%20s", str_preference);
806 if (ret != 1)
807 return -EINVAL;
808
809 while (energy_perf_strings[i] != NULL) {
810 if (!strcmp(str_preference, energy_perf_strings[i])) {
811 intel_pstate_set_energy_pref_index(cpu_data, i);
812 return count;
813 }
814 ++i;
815 }
816
817 return -EINVAL;
818}
819
820static ssize_t show_energy_performance_preference(
821 struct cpufreq_policy *policy, char *buf)
822{
823 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
824 int preference;
825
826 preference = intel_pstate_get_energy_pref_index(cpu_data);
827 if (preference < 0)
828 return preference;
829
830 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
831}
832
833cpufreq_freq_attr_rw(energy_performance_preference);
834
835static struct freq_attr *hwp_cpufreq_attrs[] = {
836 &energy_performance_preference,
837 &energy_performance_available_preferences,
838 NULL,
839};
840
111b8b3f 841static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 842{
3f8ed54a 843 int min, hw_min, max, hw_max, cpu;
7de32556 844 struct perf_limits *perf_limits = &global;
74da56ce
KCA
845 u64 value, cap;
846
111b8b3f 847 for_each_cpu(cpu, policy->cpus) {
8442885f
SP
848 struct cpudata *cpu_data = all_cpu_data[cpu];
849 s16 epp;
eae48f04
SP
850
851 if (per_cpu_limits)
852 perf_limits = all_cpu_data[cpu]->perf_limits;
853
f9f4872d
SP
854 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
855 hw_min = HWP_LOWEST_PERF(cap);
7de32556 856 if (global.no_turbo)
4e5d3f71
SP
857 hw_max = HWP_GUARANTEED_PERF(cap);
858 else
859 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d 860
7de32556
RW
861 max = fp_ext_toint(hw_max * perf_limits->max_perf);
862 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
863 min = max;
864 else
865 min = fp_ext_toint(hw_max * perf_limits->min_perf);
eae48f04 866
2f86dc4c 867 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
3f8ed54a 868
2f86dc4c
DB
869 value &= ~HWP_MIN_PERF(~0L);
870 value |= HWP_MIN_PERF(min);
871
2f86dc4c
DB
872 value &= ~HWP_MAX_PERF(~0L);
873 value |= HWP_MAX_PERF(max);
8442885f
SP
874
875 if (cpu_data->epp_policy == cpu_data->policy)
876 goto skip_epp;
877
878 cpu_data->epp_policy = cpu_data->policy;
879
984edbdc
SP
880 if (cpu_data->epp_saved >= 0) {
881 epp = cpu_data->epp_saved;
882 cpu_data->epp_saved = -EINVAL;
883 goto update_epp;
884 }
885
8442885f
SP
886 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
887 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 888 cpu_data->epp_powersave = epp;
8442885f 889 /* If EPP read was failed, then don't try to write */
984edbdc 890 if (epp < 0)
8442885f 891 goto skip_epp;
8442885f 892
8442885f
SP
893
894 epp = 0;
895 } else {
896 /* skip setting EPP, when saved value is invalid */
984edbdc 897 if (cpu_data->epp_powersave < 0)
8442885f
SP
898 goto skip_epp;
899
900 /*
901 * No need to restore EPP when it is not zero. This
902 * means:
903 * - Policy is not changed
904 * - user has manually changed
905 * - Error reading EPB
906 */
907 epp = intel_pstate_get_epp(cpu_data, value);
908 if (epp)
909 goto skip_epp;
910
984edbdc 911 epp = cpu_data->epp_powersave;
8442885f 912 }
984edbdc 913update_epp:
8442885f
SP
914 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
915 value &= ~GENMASK_ULL(31, 24);
916 value |= (u64)epp << 24;
917 } else {
918 intel_pstate_set_epb(cpu, epp);
919 }
920skip_epp:
2f86dc4c
DB
921 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
922 }
41cfd64c 923}
2f86dc4c 924
984edbdc
SP
925static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
926{
927 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
928
929 if (!hwp_active)
930 return 0;
931
932 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
933
934 return 0;
935}
936
8442885f
SP
937static int intel_pstate_resume(struct cpufreq_policy *policy)
938{
939 if (!hwp_active)
940 return 0;
941
aa439248
RW
942 mutex_lock(&intel_pstate_limits_lock);
943
8442885f 944 all_cpu_data[policy->cpu]->epp_policy = 0;
5f98ced1 945 intel_pstate_hwp_set(policy);
aa439248
RW
946
947 mutex_unlock(&intel_pstate_limits_lock);
948
5f98ced1 949 return 0;
8442885f
SP
950}
951
111b8b3f 952static void intel_pstate_update_policies(void)
41cfd64c 953{
111b8b3f
RW
954 int cpu;
955
956 for_each_possible_cpu(cpu)
957 cpufreq_update_policy(cpu);
2f86dc4c
DB
958}
959
93f0822d
DB
960/************************** debugfs begin ************************/
961static int pid_param_set(void *data, u64 val)
962{
963 *(u32 *)data = val;
6e7408ac 964 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
93f0822d
DB
965 intel_pstate_reset_all_pid();
966 return 0;
967}
845c1cbe 968
93f0822d
DB
969static int pid_param_get(void *data, u64 *val)
970{
971 *val = *(u32 *)data;
972 return 0;
973}
2d8d1f18 974DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 975
fb1fe104
RW
976static struct dentry *debugfs_parent;
977
93f0822d
DB
978struct pid_param {
979 char *name;
980 void *value;
fb1fe104 981 struct dentry *dentry;
93f0822d
DB
982};
983
984static struct pid_param pid_files[] = {
fb1fe104
RW
985 {"sample_rate_ms", &pid_params.sample_rate_ms, },
986 {"d_gain_pct", &pid_params.d_gain_pct, },
987 {"i_gain_pct", &pid_params.i_gain_pct, },
988 {"deadband", &pid_params.deadband, },
989 {"setpoint", &pid_params.setpoint, },
990 {"p_gain_pct", &pid_params.p_gain_pct, },
991 {NULL, NULL, }
93f0822d
DB
992};
993
fb1fe104 994static void intel_pstate_debug_expose_params(void)
93f0822d 995{
fb1fe104 996 int i;
93f0822d
DB
997
998 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
999 if (IS_ERR_OR_NULL(debugfs_parent))
1000 return;
fb1fe104
RW
1001
1002 for (i = 0; pid_files[i].name; i++) {
1003 struct dentry *dentry;
1004
1005 dentry = debugfs_create_file(pid_files[i].name, 0660,
1006 debugfs_parent, pid_files[i].value,
1007 &fops_pid_param);
1008 if (!IS_ERR(dentry))
1009 pid_files[i].dentry = dentry;
93f0822d
DB
1010 }
1011}
1012
fb1fe104
RW
1013static void intel_pstate_debug_hide_params(void)
1014{
1015 int i;
1016
1017 if (IS_ERR_OR_NULL(debugfs_parent))
1018 return;
1019
1020 for (i = 0; pid_files[i].name; i++) {
1021 debugfs_remove(pid_files[i].dentry);
1022 pid_files[i].dentry = NULL;
93f0822d 1023 }
fb1fe104
RW
1024
1025 debugfs_remove(debugfs_parent);
1026 debugfs_parent = NULL;
93f0822d
DB
1027}
1028
1029/************************** debugfs end ************************/
1030
1031/************************** sysfs begin ************************/
1032#define show_one(file_name, object) \
1033 static ssize_t show_##file_name \
1034 (struct kobject *kobj, struct attribute *attr, char *buf) \
1035 { \
7de32556 1036 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
1037 }
1038
fb1fe104
RW
1039static ssize_t intel_pstate_show_status(char *buf);
1040static int intel_pstate_update_status(const char *buf, size_t size);
1041
1042static ssize_t show_status(struct kobject *kobj,
1043 struct attribute *attr, char *buf)
1044{
1045 ssize_t ret;
1046
1047 mutex_lock(&intel_pstate_driver_lock);
1048 ret = intel_pstate_show_status(buf);
1049 mutex_unlock(&intel_pstate_driver_lock);
1050
1051 return ret;
1052}
1053
1054static ssize_t store_status(struct kobject *a, struct attribute *b,
1055 const char *buf, size_t count)
1056{
1057 char *p = memchr(buf, '\n', count);
1058 int ret;
1059
1060 mutex_lock(&intel_pstate_driver_lock);
1061 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1062 mutex_unlock(&intel_pstate_driver_lock);
1063
1064 return ret < 0 ? ret : count;
1065}
1066
d01b1f48
KCA
1067static ssize_t show_turbo_pct(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069{
1070 struct cpudata *cpu;
1071 int total, no_turbo, turbo_pct;
1072 uint32_t turbo_fp;
1073
0c30b65b
RW
1074 mutex_lock(&intel_pstate_driver_lock);
1075
1076 if (!driver_registered) {
1077 mutex_unlock(&intel_pstate_driver_lock);
1078 return -EAGAIN;
1079 }
1080
d01b1f48
KCA
1081 cpu = all_cpu_data[0];
1082
1083 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1084 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1085 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1086 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1087
1088 mutex_unlock(&intel_pstate_driver_lock);
1089
d01b1f48
KCA
1090 return sprintf(buf, "%u\n", turbo_pct);
1091}
1092
0522424e
KCA
1093static ssize_t show_num_pstates(struct kobject *kobj,
1094 struct attribute *attr, char *buf)
1095{
1096 struct cpudata *cpu;
1097 int total;
1098
0c30b65b
RW
1099 mutex_lock(&intel_pstate_driver_lock);
1100
1101 if (!driver_registered) {
1102 mutex_unlock(&intel_pstate_driver_lock);
1103 return -EAGAIN;
1104 }
1105
0522424e
KCA
1106 cpu = all_cpu_data[0];
1107 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1108
1109 mutex_unlock(&intel_pstate_driver_lock);
1110
0522424e
KCA
1111 return sprintf(buf, "%u\n", total);
1112}
1113
4521e1a0
GM
1114static ssize_t show_no_turbo(struct kobject *kobj,
1115 struct attribute *attr, char *buf)
1116{
1117 ssize_t ret;
1118
0c30b65b
RW
1119 mutex_lock(&intel_pstate_driver_lock);
1120
1121 if (!driver_registered) {
1122 mutex_unlock(&intel_pstate_driver_lock);
1123 return -EAGAIN;
1124 }
1125
4521e1a0 1126 update_turbo_state();
7de32556
RW
1127 if (global.turbo_disabled)
1128 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1129 else
7de32556 1130 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1131
0c30b65b
RW
1132 mutex_unlock(&intel_pstate_driver_lock);
1133
4521e1a0
GM
1134 return ret;
1135}
1136
93f0822d 1137static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1138 const char *buf, size_t count)
93f0822d
DB
1139{
1140 unsigned int input;
1141 int ret;
845c1cbe 1142
93f0822d
DB
1143 ret = sscanf(buf, "%u", &input);
1144 if (ret != 1)
1145 return -EINVAL;
4521e1a0 1146
0c30b65b
RW
1147 mutex_lock(&intel_pstate_driver_lock);
1148
1149 if (!driver_registered) {
1150 mutex_unlock(&intel_pstate_driver_lock);
1151 return -EAGAIN;
1152 }
1153
a410c03d
SP
1154 mutex_lock(&intel_pstate_limits_lock);
1155
4521e1a0 1156 update_turbo_state();
7de32556 1157 if (global.turbo_disabled) {
4836df17 1158 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1159 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1160 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1161 return -EPERM;
dd5fbf70 1162 }
2f86dc4c 1163
7de32556 1164 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1165
cd59b4be
RW
1166 mutex_unlock(&intel_pstate_limits_lock);
1167
7de32556
RW
1168 intel_pstate_update_policies();
1169
0c30b65b
RW
1170 mutex_unlock(&intel_pstate_driver_lock);
1171
93f0822d
DB
1172 return count;
1173}
1174
1175static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1176 const char *buf, size_t count)
93f0822d
DB
1177{
1178 unsigned int input;
1179 int ret;
845c1cbe 1180
93f0822d
DB
1181 ret = sscanf(buf, "%u", &input);
1182 if (ret != 1)
1183 return -EINVAL;
1184
0c30b65b
RW
1185 mutex_lock(&intel_pstate_driver_lock);
1186
1187 if (!driver_registered) {
1188 mutex_unlock(&intel_pstate_driver_lock);
1189 return -EAGAIN;
1190 }
1191
a410c03d
SP
1192 mutex_lock(&intel_pstate_limits_lock);
1193
7de32556
RW
1194 global.max_sysfs_pct = clamp_t(int, input, 0 , 100);
1195 global.max_perf_pct = min(global.max_policy_pct, global.max_sysfs_pct);
1196 global.max_perf_pct = max(global.min_policy_pct, global.max_perf_pct);
1197 global.max_perf_pct = max(global.min_perf_pct, global.max_perf_pct);
1198 global.max_perf = percent_ext_fp(global.max_perf_pct);
111b8b3f 1199
cd59b4be
RW
1200 mutex_unlock(&intel_pstate_limits_lock);
1201
7de32556
RW
1202 intel_pstate_update_policies();
1203
0c30b65b
RW
1204 mutex_unlock(&intel_pstate_driver_lock);
1205
93f0822d
DB
1206 return count;
1207}
1208
1209static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1210 const char *buf, size_t count)
93f0822d
DB
1211{
1212 unsigned int input;
1213 int ret;
845c1cbe 1214
93f0822d
DB
1215 ret = sscanf(buf, "%u", &input);
1216 if (ret != 1)
1217 return -EINVAL;
a0475992 1218
0c30b65b
RW
1219 mutex_lock(&intel_pstate_driver_lock);
1220
1221 if (!driver_registered) {
1222 mutex_unlock(&intel_pstate_driver_lock);
1223 return -EAGAIN;
1224 }
1225
a410c03d
SP
1226 mutex_lock(&intel_pstate_limits_lock);
1227
7de32556
RW
1228 global.min_sysfs_pct = clamp_t(int, input, 0 , 100);
1229 global.min_perf_pct = max(global.min_policy_pct, global.min_sysfs_pct);
1230 global.min_perf_pct = min(global.max_policy_pct, global.min_perf_pct);
1231 global.min_perf_pct = min(global.max_perf_pct, global.min_perf_pct);
1232 global.min_perf = percent_ext_fp(global.min_perf_pct);
111b8b3f 1233
cd59b4be
RW
1234 mutex_unlock(&intel_pstate_limits_lock);
1235
7de32556
RW
1236 intel_pstate_update_policies();
1237
0c30b65b
RW
1238 mutex_unlock(&intel_pstate_driver_lock);
1239
93f0822d
DB
1240 return count;
1241}
1242
93f0822d
DB
1243show_one(max_perf_pct, max_perf_pct);
1244show_one(min_perf_pct, min_perf_pct);
1245
fb1fe104 1246define_one_global_rw(status);
93f0822d
DB
1247define_one_global_rw(no_turbo);
1248define_one_global_rw(max_perf_pct);
1249define_one_global_rw(min_perf_pct);
d01b1f48 1250define_one_global_ro(turbo_pct);
0522424e 1251define_one_global_ro(num_pstates);
93f0822d
DB
1252
1253static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1254 &status.attr,
93f0822d 1255 &no_turbo.attr,
d01b1f48 1256 &turbo_pct.attr,
0522424e 1257 &num_pstates.attr,
93f0822d
DB
1258 NULL
1259};
1260
1261static struct attribute_group intel_pstate_attr_group = {
1262 .attrs = intel_pstate_attributes,
1263};
93f0822d 1264
317dd50e 1265static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1266{
317dd50e 1267 struct kobject *intel_pstate_kobject;
93f0822d
DB
1268 int rc;
1269
1270 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1271 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1272 if (WARN_ON(!intel_pstate_kobject))
1273 return;
1274
2d8d1f18 1275 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1276 if (WARN_ON(rc))
1277 return;
1278
1279 /*
1280 * If per cpu limits are enforced there are no global limits, so
1281 * return without creating max/min_perf_pct attributes
1282 */
1283 if (per_cpu_limits)
1284 return;
1285
1286 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1287 WARN_ON(rc);
1288
1289 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1290 WARN_ON(rc);
1291
93f0822d 1292}
93f0822d 1293/************************** sysfs end ************************/
2f86dc4c 1294
ba88d433 1295static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1296{
f05c9665 1297 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1298 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1299 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1300
ba88d433 1301 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1302 cpudata->epp_policy = 0;
984edbdc
SP
1303 if (cpudata->epp_default == -EINVAL)
1304 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1305}
1306
6e978b22
SP
1307#define MSR_IA32_POWER_CTL_BIT_EE 19
1308
1309/* Disable energy efficiency optimization */
1310static void intel_pstate_disable_ee(int cpu)
1311{
1312 u64 power_ctl;
1313 int ret;
1314
1315 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1316 if (ret)
1317 return;
1318
1319 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1320 pr_info("Disabling energy efficiency optimization\n");
1321 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1322 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1323 }
1324}
1325
938d21a2 1326static int atom_get_min_pstate(void)
19e77c28
DB
1327{
1328 u64 value;
845c1cbe 1329
92134bdb 1330 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1331 return (value >> 8) & 0x7F;
19e77c28
DB
1332}
1333
938d21a2 1334static int atom_get_max_pstate(void)
19e77c28
DB
1335{
1336 u64 value;
845c1cbe 1337
92134bdb 1338 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1339 return (value >> 16) & 0x7F;
19e77c28 1340}
93f0822d 1341
938d21a2 1342static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1343{
1344 u64 value;
845c1cbe 1345
92134bdb 1346 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1347 return value & 0x7F;
61d8d2ab
DB
1348}
1349
fdfdb2b1 1350static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1351{
1352 u64 val;
1353 int32_t vid_fp;
1354 u32 vid;
1355
144c8e17 1356 val = (u64)pstate << 8;
7de32556 1357 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1358 val |= (u64)1 << 32;
1359
1360 vid_fp = cpudata->vid.min + mul_fp(
1361 int_tofp(pstate - cpudata->pstate.min_pstate),
1362 cpudata->vid.ratio);
1363
1364 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1365 vid = ceiling_fp(vid_fp);
007bea09 1366
21855ff5
DB
1367 if (pstate > cpudata->pstate.max_pstate)
1368 vid = cpudata->vid.turbo;
1369
fdfdb2b1 1370 return val | vid;
007bea09
DB
1371}
1372
1421df63 1373static int silvermont_get_scaling(void)
b27580b0
DB
1374{
1375 u64 value;
1376 int i;
1421df63
PL
1377 /* Defined in Table 35-6 from SDM (Sept 2015) */
1378 static int silvermont_freq_table[] = {
1379 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1380
1381 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1382 i = value & 0x7;
1383 WARN_ON(i > 4);
b27580b0 1384
1421df63
PL
1385 return silvermont_freq_table[i];
1386}
b27580b0 1387
1421df63
PL
1388static int airmont_get_scaling(void)
1389{
1390 u64 value;
1391 int i;
1392 /* Defined in Table 35-10 from SDM (Sept 2015) */
1393 static int airmont_freq_table[] = {
1394 83300, 100000, 133300, 116700, 80000,
1395 93300, 90000, 88900, 87500};
1396
1397 rdmsrl(MSR_FSB_FREQ, value);
1398 i = value & 0xF;
1399 WARN_ON(i > 8);
1400
1401 return airmont_freq_table[i];
b27580b0
DB
1402}
1403
938d21a2 1404static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1405{
1406 u64 value;
1407
92134bdb 1408 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1409 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1410 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1411 cpudata->vid.ratio = div_fp(
1412 cpudata->vid.max - cpudata->vid.min,
1413 int_tofp(cpudata->pstate.max_pstate -
1414 cpudata->pstate.min_pstate));
21855ff5 1415
92134bdb 1416 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1417 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1418}
1419
016c8150 1420static int core_get_min_pstate(void)
93f0822d
DB
1421{
1422 u64 value;
845c1cbe 1423
05e99c8c 1424 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1425 return (value >> 40) & 0xFF;
1426}
1427
3bcc6fa9 1428static int core_get_max_pstate_physical(void)
93f0822d
DB
1429{
1430 u64 value;
845c1cbe 1431
05e99c8c 1432 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1433 return (value >> 8) & 0xFF;
1434}
1435
8fc7554a
SP
1436static int core_get_tdp_ratio(u64 plat_info)
1437{
1438 /* Check how many TDP levels present */
1439 if (plat_info & 0x600000000) {
1440 u64 tdp_ctrl;
1441 u64 tdp_ratio;
1442 int tdp_msr;
1443 int err;
1444
1445 /* Get the TDP level (0, 1, 2) to get ratios */
1446 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1447 if (err)
1448 return err;
1449
1450 /* TDP MSR are continuous starting at 0x648 */
1451 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1452 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1453 if (err)
1454 return err;
1455
1456 /* For level 1 and 2, bits[23:16] contain the ratio */
1457 if (tdp_ctrl & 0x03)
1458 tdp_ratio >>= 16;
1459
1460 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1461 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1462
1463 return (int)tdp_ratio;
1464 }
1465
1466 return -ENXIO;
1467}
1468
016c8150 1469static int core_get_max_pstate(void)
93f0822d 1470{
6a35fc2d
SP
1471 u64 tar;
1472 u64 plat_info;
1473 int max_pstate;
8fc7554a 1474 int tdp_ratio;
6a35fc2d
SP
1475 int err;
1476
1477 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1478 max_pstate = (plat_info >> 8) & 0xFF;
1479
8fc7554a
SP
1480 tdp_ratio = core_get_tdp_ratio(plat_info);
1481 if (tdp_ratio <= 0)
1482 return max_pstate;
1483
1484 if (hwp_active) {
1485 /* Turbo activation ratio is not used on HWP platforms */
1486 return tdp_ratio;
1487 }
1488
6a35fc2d
SP
1489 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1490 if (!err) {
8fc7554a
SP
1491 int tar_levels;
1492
6a35fc2d 1493 /* Do some sanity checking for safety */
8fc7554a
SP
1494 tar_levels = tar & 0xff;
1495 if (tdp_ratio - 1 == tar_levels) {
1496 max_pstate = tar_levels;
1497 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1498 }
1499 }
845c1cbe 1500
6a35fc2d 1501 return max_pstate;
93f0822d
DB
1502}
1503
016c8150 1504static int core_get_turbo_pstate(void)
93f0822d
DB
1505{
1506 u64 value;
1507 int nont, ret;
845c1cbe 1508
100cf6f2 1509 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1510 nont = core_get_max_pstate();
285cb990 1511 ret = (value) & 255;
93f0822d
DB
1512 if (ret <= nont)
1513 ret = nont;
1514 return ret;
1515}
1516
b27580b0
DB
1517static inline int core_get_scaling(void)
1518{
1519 return 100000;
1520}
1521
fdfdb2b1 1522static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1523{
1524 u64 val;
1525
144c8e17 1526 val = (u64)pstate << 8;
7de32556 1527 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1528 val |= (u64)1 << 32;
1529
fdfdb2b1 1530 return val;
016c8150
DB
1531}
1532
b34ef932
DC
1533static int knl_get_turbo_pstate(void)
1534{
1535 u64 value;
1536 int nont, ret;
1537
100cf6f2 1538 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1539 nont = core_get_max_pstate();
1540 ret = (((value) >> 8) & 0xFF);
1541 if (ret <= nont)
1542 ret = nont;
1543 return ret;
1544}
1545
016c8150
DB
1546static struct cpu_defaults core_params = {
1547 .pid_policy = {
1548 .sample_rate_ms = 10,
1549 .deadband = 0,
1550 .setpoint = 97,
1551 .p_gain_pct = 20,
1552 .d_gain_pct = 0,
1553 .i_gain_pct = 0,
1554 },
1555 .funcs = {
1556 .get_max = core_get_max_pstate,
3bcc6fa9 1557 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1558 .get_min = core_get_min_pstate,
1559 .get_turbo = core_get_turbo_pstate,
b27580b0 1560 .get_scaling = core_get_scaling,
fdfdb2b1 1561 .get_val = core_get_val,
157386b6 1562 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1563 },
1564};
1565
42ce8921 1566static const struct cpu_defaults silvermont_params = {
1421df63
PL
1567 .pid_policy = {
1568 .sample_rate_ms = 10,
1569 .deadband = 0,
1570 .setpoint = 60,
1571 .p_gain_pct = 14,
1572 .d_gain_pct = 0,
1573 .i_gain_pct = 4,
1574 },
1575 .funcs = {
1576 .get_max = atom_get_max_pstate,
1577 .get_max_physical = atom_get_max_pstate,
1578 .get_min = atom_get_min_pstate,
1579 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1580 .get_val = atom_get_val,
1421df63
PL
1581 .get_scaling = silvermont_get_scaling,
1582 .get_vid = atom_get_vid,
e70eed2b 1583 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1584 },
1585};
1586
42ce8921 1587static const struct cpu_defaults airmont_params = {
19e77c28
DB
1588 .pid_policy = {
1589 .sample_rate_ms = 10,
1590 .deadband = 0,
6a82ba6d 1591 .setpoint = 60,
19e77c28
DB
1592 .p_gain_pct = 14,
1593 .d_gain_pct = 0,
1594 .i_gain_pct = 4,
1595 },
1596 .funcs = {
938d21a2
PL
1597 .get_max = atom_get_max_pstate,
1598 .get_max_physical = atom_get_max_pstate,
1599 .get_min = atom_get_min_pstate,
1600 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1601 .get_val = atom_get_val,
1421df63 1602 .get_scaling = airmont_get_scaling,
938d21a2 1603 .get_vid = atom_get_vid,
e70eed2b 1604 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1605 },
1606};
1607
42ce8921 1608static const struct cpu_defaults knl_params = {
b34ef932
DC
1609 .pid_policy = {
1610 .sample_rate_ms = 10,
1611 .deadband = 0,
1612 .setpoint = 97,
1613 .p_gain_pct = 20,
1614 .d_gain_pct = 0,
1615 .i_gain_pct = 0,
1616 },
1617 .funcs = {
1618 .get_max = core_get_max_pstate,
3bcc6fa9 1619 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1620 .get_min = core_get_min_pstate,
1621 .get_turbo = knl_get_turbo_pstate,
69cefc27 1622 .get_scaling = core_get_scaling,
fdfdb2b1 1623 .get_val = core_get_val,
157386b6 1624 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1625 },
1626};
1627
42ce8921 1628static const struct cpu_defaults bxt_params = {
41bad47f
SP
1629 .pid_policy = {
1630 .sample_rate_ms = 10,
1631 .deadband = 0,
1632 .setpoint = 60,
1633 .p_gain_pct = 14,
1634 .d_gain_pct = 0,
1635 .i_gain_pct = 4,
1636 },
1637 .funcs = {
1638 .get_max = core_get_max_pstate,
1639 .get_max_physical = core_get_max_pstate_physical,
1640 .get_min = core_get_min_pstate,
1641 .get_turbo = core_get_turbo_pstate,
1642 .get_scaling = core_get_scaling,
1643 .get_val = core_get_val,
1644 .get_target_pstate = get_target_pstate_use_cpu_load,
1645 },
1646};
1647
93f0822d
DB
1648static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1649{
1650 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1651 int max_perf_adj;
93f0822d 1652 int min_perf;
7de32556 1653 struct perf_limits *perf_limits = &global;
845c1cbe 1654
7de32556 1655 if (global.no_turbo || global.turbo_disabled)
93f0822d
DB
1656 max_perf = cpu->pstate.max_pstate;
1657
eae48f04
SP
1658 if (per_cpu_limits)
1659 perf_limits = cpu->perf_limits;
1660
e0d4c8f8
KCA
1661 /*
1662 * performance can be limited by user through sysfs, by cpufreq
1663 * policy, or by cpu specific default values determined through
1664 * experimentation.
1665 */
d5dd33d9 1666 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1667 *max = clamp_t(int, max_perf_adj,
1668 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1669
d5dd33d9 1670 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
799281a3 1671 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1672}
1673
a6c6ead1 1674static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1675{
bc95a454
RW
1676 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1677 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1678 /*
1679 * Generally, there is no guarantee that this code will always run on
1680 * the CPU being updated, so force the register update to run on the
1681 * right CPU.
1682 */
1683 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1684 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1685}
1686
a6c6ead1
RW
1687static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1688{
1689 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1690}
1691
1692static void intel_pstate_max_within_limits(struct cpudata *cpu)
1693{
1694 int min_pstate, max_pstate;
1695
1696 update_turbo_state();
1697 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1698 intel_pstate_set_pstate(cpu, max_pstate);
1699}
1700
93f0822d
DB
1701static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1702{
016c8150
DB
1703 cpu->pstate.min_pstate = pstate_funcs.get_min();
1704 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1705 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1706 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1707 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1708 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1709 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1710
007bea09
DB
1711 if (pstate_funcs.get_vid)
1712 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1713
1714 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1715}
1716
a1c9787d 1717static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1718{
6b17ddb2 1719 struct sample *sample = &cpu->sample;
e66c1768 1720
a1c9787d 1721 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1722}
1723
4fec7ad5 1724static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1725{
93f0822d 1726 u64 aperf, mperf;
4ab60c3f 1727 unsigned long flags;
4055fad3 1728 u64 tsc;
93f0822d 1729
4ab60c3f 1730 local_irq_save(flags);
93f0822d
DB
1731 rdmsrl(MSR_IA32_APERF, aperf);
1732 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1733 tsc = rdtsc();
4fec7ad5 1734 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1735 local_irq_restore(flags);
4fec7ad5 1736 return false;
8e601a9f 1737 }
4ab60c3f 1738 local_irq_restore(flags);
b69880f9 1739
c4ee841f 1740 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1741 cpu->sample.time = time;
d37e2b76
DB
1742 cpu->sample.aperf = aperf;
1743 cpu->sample.mperf = mperf;
4055fad3 1744 cpu->sample.tsc = tsc;
d37e2b76
DB
1745 cpu->sample.aperf -= cpu->prev_aperf;
1746 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1747 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1748
93f0822d
DB
1749 cpu->prev_aperf = aperf;
1750 cpu->prev_mperf = mperf;
4055fad3 1751 cpu->prev_tsc = tsc;
febce40f
RW
1752 /*
1753 * First time this function is invoked in a given cycle, all of the
1754 * previous sample data fields are equal to zero or stale and they must
1755 * be populated with meaningful numbers for things to work, so assume
1756 * that sample.time will always be reset before setting the utilization
1757 * update hook and make the caller skip the sample then.
1758 */
1759 return !!cpu->last_sample_time;
93f0822d
DB
1760}
1761
8fa520af
PL
1762static inline int32_t get_avg_frequency(struct cpudata *cpu)
1763{
a1c9787d
RW
1764 return mul_ext_fp(cpu->sample.core_avg_perf,
1765 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1766}
1767
bdcaa23f
PL
1768static inline int32_t get_avg_pstate(struct cpudata *cpu)
1769{
8edb0a6e
RW
1770 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1771 cpu->sample.core_avg_perf);
bdcaa23f
PL
1772}
1773
e70eed2b
PL
1774static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1775{
1776 struct sample *sample = &cpu->sample;
09c448d3 1777 int32_t busy_frac, boost;
0843e83c 1778 int target, avg_pstate;
e70eed2b 1779
09c448d3 1780 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1781
09c448d3
RW
1782 boost = cpu->iowait_boost;
1783 cpu->iowait_boost >>= 1;
63d1d656 1784
09c448d3
RW
1785 if (busy_frac < boost)
1786 busy_frac = boost;
63d1d656 1787
09c448d3 1788 sample->busy_scaled = busy_frac * 100;
0843e83c 1789
7de32556 1790 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1791 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1792 target += target >> 2;
1793 target = mul_fp(target, busy_frac);
1794 if (target < cpu->pstate.min_pstate)
1795 target = cpu->pstate.min_pstate;
1796
1797 /*
1798 * If the average P-state during the previous cycle was higher than the
1799 * current target, add 50% of the difference to the target to reduce
1800 * possible performance oscillations and offset possible performance
1801 * loss related to moving the workload from one CPU to another within
1802 * a package/module.
1803 */
1804 avg_pstate = get_avg_pstate(cpu);
1805 if (avg_pstate > target)
1806 target += (avg_pstate - target) >> 1;
1807
1808 return target;
e70eed2b
PL
1809}
1810
157386b6 1811static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1812{
1aa7a6e2 1813 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1814 u64 duration_ns;
93f0822d 1815
e0d4c8f8 1816 /*
f00593a4
RW
1817 * perf_scaled is the ratio of the average P-state during the last
1818 * sampling period to the P-state requested last time (in percent).
1819 *
1820 * That measures the system's response to the previous P-state
1821 * selection.
e0d4c8f8 1822 */
22590efb
RW
1823 max_pstate = cpu->pstate.max_pstate_physical;
1824 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1825 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1826 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1827
e0d4c8f8 1828 /*
a4675fbc
RW
1829 * Since our utilization update callback will not run unless we are
1830 * in C0, check if the actual elapsed time is significantly greater (3x)
1831 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1832 * enough period of time to adjust our performance metric.
e0d4c8f8 1833 */
a4675fbc 1834 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1835 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1836 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1837 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1838 } else {
1839 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1840 if (sample_ratio < int_tofp(1))
1aa7a6e2 1841 perf_scaled = 0;
c4ee841f
DB
1842 }
1843
1aa7a6e2
RW
1844 cpu->sample.busy_scaled = perf_scaled;
1845 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1846}
1847
001c76f0 1848static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1849{
1850 int max_perf, min_perf;
1851
fdfdb2b1
RW
1852 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1853 pstate = clamp_t(int, pstate, min_perf, max_perf);
001c76f0
RW
1854 return pstate;
1855}
1856
1857static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1858{
fdfdb2b1
RW
1859 if (pstate == cpu->pstate.current_pstate)
1860 return;
1861
bc95a454 1862 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1863 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1864}
1865
93f0822d
DB
1866static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1867{
157386b6 1868 int from, target_pstate;
4055fad3
DS
1869 struct sample *sample;
1870
1871 from = cpu->pstate.current_pstate;
93f0822d 1872
2f1d407a
RW
1873 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1874 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1875
001c76f0
RW
1876 update_turbo_state();
1877
64078299
RW
1878 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1879 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1880 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1881
1882 sample = &cpu->sample;
a1c9787d 1883 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1884 fp_toint(sample->busy_scaled),
4055fad3
DS
1885 from,
1886 cpu->pstate.current_pstate,
1887 sample->mperf,
1888 sample->aperf,
1889 sample->tsc,
3ba7bcaa
SP
1890 get_avg_frequency(cpu),
1891 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1892}
1893
a4675fbc 1894static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1895 unsigned int flags)
93f0822d 1896{
a4675fbc 1897 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1898 u64 delta_ns;
1899
1d29815e 1900 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1901 if (flags & SCHED_CPUFREQ_IOWAIT) {
1902 cpu->iowait_boost = int_tofp(1);
1903 } else if (cpu->iowait_boost) {
1904 /* Clear iowait_boost if the CPU may have been idle. */
1905 delta_ns = time - cpu->last_update;
1906 if (delta_ns > TICK_NSEC)
1907 cpu->iowait_boost = 0;
1908 }
1909 cpu->last_update = time;
1910 }
b69880f9 1911
09c448d3 1912 delta_ns = time - cpu->sample.time;
a4675fbc 1913 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1914 bool sample_taken = intel_pstate_sample(cpu, time);
1915
6d45b719 1916 if (sample_taken) {
a1c9787d 1917 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1918 if (!hwp_active)
1919 intel_pstate_adjust_busy_pstate(cpu);
1920 }
a4675fbc 1921 }
93f0822d
DB
1922}
1923
1924#define ICPU(model, policy) \
6cbd7ee1
DB
1925 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1926 (unsigned long)&policy }
93f0822d
DB
1927
1928static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1929 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1930 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1931 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1932 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1933 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1934 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1935 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1936 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1937 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1938 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1939 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1940 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1941 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1942 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1943 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1944 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1945 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1946 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1947 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1948 {}
1949};
1950MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1951
29327c84 1952static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1953 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1954 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1955 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1956 {}
1957};
1958
6e978b22
SP
1959static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1960 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1961 {}
1962};
1963
93f0822d
DB
1964static int intel_pstate_init_cpu(unsigned int cpunum)
1965{
93f0822d
DB
1966 struct cpudata *cpu;
1967
eae48f04
SP
1968 cpu = all_cpu_data[cpunum];
1969
1970 if (!cpu) {
1971 unsigned int size = sizeof(struct cpudata);
1972
1973 if (per_cpu_limits)
1974 size += sizeof(struct perf_limits);
1975
1976 cpu = kzalloc(size, GFP_KERNEL);
1977 if (!cpu)
1978 return -ENOMEM;
1979
1980 all_cpu_data[cpunum] = cpu;
1981 if (per_cpu_limits)
1982 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1983
984edbdc
SP
1984 cpu->epp_default = -EINVAL;
1985 cpu->epp_powersave = -EINVAL;
1986 cpu->epp_saved = -EINVAL;
eae48f04 1987 }
93f0822d
DB
1988
1989 cpu = all_cpu_data[cpunum];
1990
93f0822d 1991 cpu->cpu = cpunum;
ba88d433 1992
a4675fbc 1993 if (hwp_active) {
6e978b22
SP
1994 const struct x86_cpu_id *id;
1995
1996 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1997 if (id)
1998 intel_pstate_disable_ee(cpunum);
1999
ba88d433 2000 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
2001 pid_params.sample_rate_ms = 50;
2002 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2003 }
ba88d433 2004
179e8471 2005 intel_pstate_get_cpu_pstates(cpu);
016c8150 2006
93f0822d 2007 intel_pstate_busy_pid_reset(cpu);
93f0822d 2008
4836df17 2009 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
2010
2011 return 0;
2012}
2013
2014static unsigned int intel_pstate_get(unsigned int cpu_num)
2015{
f96fd0c8 2016 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 2017
f96fd0c8 2018 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
2019}
2020
febce40f 2021static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 2022{
febce40f
RW
2023 struct cpudata *cpu = all_cpu_data[cpu_num];
2024
5ab666e0
RW
2025 if (cpu->update_util_set)
2026 return;
2027
febce40f
RW
2028 /* Prevent intel_pstate_update_util() from using stale data. */
2029 cpu->sample.time = 0;
0bed612b
RW
2030 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2031 intel_pstate_update_util);
4578ee7e 2032 cpu->update_util_set = true;
bb6ab52f
RW
2033}
2034
2035static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2036{
4578ee7e
CY
2037 struct cpudata *cpu_data = all_cpu_data[cpu];
2038
2039 if (!cpu_data->update_util_set)
2040 return;
2041
0bed612b 2042 cpufreq_remove_update_util_hook(cpu);
4578ee7e 2043 cpu_data->update_util_set = false;
bb6ab52f
RW
2044 synchronize_sched();
2045}
2046
eae48f04
SP
2047static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2048 struct perf_limits *limits)
2049{
e4c204ce 2050 int32_t max_policy_perf, min_policy_perf;
a410c03d 2051
e4c204ce
RW
2052 max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2053 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 2054 if (policy->max == policy->min) {
e4c204ce 2055 min_policy_perf = max_policy_perf;
5879f877 2056 } else {
e4c204ce
RW
2057 min_policy_perf = div_ext_fp(policy->min,
2058 policy->cpuinfo.max_freq);
2059 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2060 0, max_policy_perf);
5879f877 2061 }
eae48f04 2062
e4c204ce
RW
2063 /* Normalize user input to [min_perf, max_perf] */
2064 limits->min_perf = max(min_policy_perf,
2065 percent_ext_fp(limits->min_sysfs_pct));
2066 limits->min_perf = min(limits->min_perf, max_policy_perf);
2067 limits->max_perf = min(max_policy_perf,
2068 percent_ext_fp(limits->max_sysfs_pct));
2069 limits->max_perf = max(min_policy_perf, limits->max_perf);
eae48f04 2070
e4c204ce
RW
2071 /* Make sure min_perf <= max_perf */
2072 limits->min_perf = min(limits->min_perf, limits->max_perf);
eae48f04 2073
d5dd33d9
SP
2074 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2075 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
e4c204ce
RW
2076 limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
2077 limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
eae48f04
SP
2078
2079 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2080 limits->max_perf_pct, limits->min_perf_pct);
2081}
2082
93f0822d
DB
2083static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2084{
3be9200d 2085 struct cpudata *cpu;
7de32556 2086 struct perf_limits *perf_limits = &global;
3be9200d 2087
d3929b83
DB
2088 if (!policy->cpuinfo.max_freq)
2089 return -ENODEV;
2090
2c2c1af4
SP
2091 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2092 policy->cpuinfo.max_freq, policy->max);
2093
a6c6ead1 2094 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2095 cpu->policy = policy->policy;
2096
c749c64f
RW
2097 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2098 policy->max < policy->cpuinfo.max_freq &&
2099 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2100 pr_debug("policy->max > max non turbo frequency\n");
2101 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
2102 }
2103
eae48f04
SP
2104 if (per_cpu_limits)
2105 perf_limits = cpu->perf_limits;
2106
b59fe540
SP
2107 mutex_lock(&intel_pstate_limits_lock);
2108
eae48f04 2109 intel_pstate_update_perf_limits(policy, perf_limits);
a240c4aa 2110
2f1d407a 2111 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2112 /*
2113 * NOHZ_FULL CPUs need this as the governor callback may not
2114 * be invoked on them.
2115 */
2116 intel_pstate_clear_update_util_hook(policy->cpu);
2117 intel_pstate_max_within_limits(cpu);
2118 }
2119
bb6ab52f
RW
2120 intel_pstate_set_update_util_hook(policy->cpu);
2121
5f98ced1
RW
2122 if (hwp_active)
2123 intel_pstate_hwp_set(policy);
2f86dc4c 2124
b59fe540
SP
2125 mutex_unlock(&intel_pstate_limits_lock);
2126
93f0822d
DB
2127 return 0;
2128}
2129
2130static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2131{
7d9a8a9f 2132 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2133
2134 update_turbo_state();
7de32556 2135 policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
7d9a8a9f
SP
2136 cpu->pstate.max_freq :
2137 cpu->pstate.turbo_freq;
2138
be49e346 2139 cpufreq_verify_within_cpu_limits(policy);
93f0822d 2140
285cb990 2141 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2142 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2143 return -EINVAL;
2144
1443ebba
SP
2145 /* When per-CPU limits are used, sysfs limits are not used */
2146 if (!per_cpu_limits) {
2147 unsigned int max_freq, min_freq;
2148
2149 max_freq = policy->cpuinfo.max_freq *
7de32556 2150 global.max_sysfs_pct / 100;
1443ebba 2151 min_freq = policy->cpuinfo.max_freq *
7de32556 2152 global.min_sysfs_pct / 100;
1443ebba
SP
2153 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2154 }
2155
93f0822d
DB
2156 return 0;
2157}
2158
001c76f0
RW
2159static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2160{
2161 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2162}
2163
bb18008f 2164static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2165{
001c76f0 2166 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2167
001c76f0 2168 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2169 if (hwp_active)
2170 intel_pstate_hwp_save_state(policy);
2171 else
001c76f0
RW
2172 intel_cpufreq_stop_cpu(policy);
2173}
bb18008f 2174
001c76f0
RW
2175static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2176{
2177 intel_pstate_exit_perf_limits(policy);
a4675fbc 2178
001c76f0 2179 policy->fast_switch_possible = false;
2f86dc4c 2180
001c76f0 2181 return 0;
93f0822d
DB
2182}
2183
001c76f0 2184static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2185{
93f0822d 2186 struct cpudata *cpu;
52e0a509 2187 int rc;
93f0822d
DB
2188
2189 rc = intel_pstate_init_cpu(policy->cpu);
2190 if (rc)
2191 return rc;
2192
2193 cpu = all_cpu_data[policy->cpu];
2194
eae48f04 2195 if (per_cpu_limits)
a240c4aa 2196 intel_pstate_init_limits(cpu->perf_limits);
93f0822d 2197
b27580b0
DB
2198 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2199 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2200
2201 /* cpuinfo and default policy values */
b27580b0 2202 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2203 update_turbo_state();
7de32556 2204 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2205 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2207
9522a2ff 2208 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2209 cpumask_set_cpu(policy->cpu, policy->cpus);
2210
001c76f0
RW
2211 policy->fast_switch_possible = true;
2212
93f0822d
DB
2213 return 0;
2214}
2215
001c76f0 2216static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2217{
001c76f0
RW
2218 int ret = __intel_pstate_cpu_init(policy);
2219
2220 if (ret)
2221 return ret;
2222
2223 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2224 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2225 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2226 else
2227 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2228
2229 return 0;
2230}
2231
001c76f0 2232static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2233 .flags = CPUFREQ_CONST_LOOPS,
2234 .verify = intel_pstate_verify_policy,
2235 .setpolicy = intel_pstate_set_policy,
984edbdc 2236 .suspend = intel_pstate_hwp_save_state,
8442885f 2237 .resume = intel_pstate_resume,
93f0822d
DB
2238 .get = intel_pstate_get,
2239 .init = intel_pstate_cpu_init,
9522a2ff 2240 .exit = intel_pstate_cpu_exit,
bb18008f 2241 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2242 .name = "intel_pstate",
93f0822d
DB
2243};
2244
001c76f0
RW
2245static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2246{
2247 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2248
2249 update_turbo_state();
64897b20 2250 policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
001c76f0
RW
2251 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2252
2253 cpufreq_verify_within_cpu_limits(policy);
2254
001c76f0
RW
2255 return 0;
2256}
2257
001c76f0
RW
2258static int intel_cpufreq_target(struct cpufreq_policy *policy,
2259 unsigned int target_freq,
2260 unsigned int relation)
2261{
2262 struct cpudata *cpu = all_cpu_data[policy->cpu];
2263 struct cpufreq_freqs freqs;
2264 int target_pstate;
2265
64897b20
RW
2266 update_turbo_state();
2267
001c76f0 2268 freqs.old = policy->cur;
64897b20 2269 freqs.new = target_freq;
001c76f0
RW
2270
2271 cpufreq_freq_transition_begin(policy, &freqs);
2272 switch (relation) {
2273 case CPUFREQ_RELATION_L:
2274 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2275 break;
2276 case CPUFREQ_RELATION_H:
2277 target_pstate = freqs.new / cpu->pstate.scaling;
2278 break;
2279 default:
2280 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2281 break;
2282 }
2283 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2284 if (target_pstate != cpu->pstate.current_pstate) {
2285 cpu->pstate.current_pstate = target_pstate;
2286 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2287 pstate_funcs.get_val(cpu, target_pstate));
2288 }
64078299 2289 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2290 cpufreq_freq_transition_end(policy, &freqs, false);
2291
2292 return 0;
2293}
2294
2295static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2296 unsigned int target_freq)
2297{
2298 struct cpudata *cpu = all_cpu_data[policy->cpu];
2299 int target_pstate;
2300
64897b20
RW
2301 update_turbo_state();
2302
001c76f0 2303 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2304 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2305 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2306 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2307}
2308
2309static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2310{
2311 int ret = __intel_pstate_cpu_init(policy);
2312
2313 if (ret)
2314 return ret;
2315
2316 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2317 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2318 policy->cur = policy->cpuinfo.min_freq;
2319
2320 return 0;
2321}
2322
2323static struct cpufreq_driver intel_cpufreq = {
2324 .flags = CPUFREQ_CONST_LOOPS,
2325 .verify = intel_cpufreq_verify_policy,
2326 .target = intel_cpufreq_target,
2327 .fast_switch = intel_cpufreq_fast_switch,
2328 .init = intel_cpufreq_cpu_init,
2329 .exit = intel_pstate_cpu_exit,
2330 .stop_cpu = intel_cpufreq_stop_cpu,
2331 .name = "intel_cpufreq",
2332};
2333
2334static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2335
fb1fe104
RW
2336static void intel_pstate_driver_cleanup(void)
2337{
2338 unsigned int cpu;
2339
2340 get_online_cpus();
2341 for_each_online_cpu(cpu) {
2342 if (all_cpu_data[cpu]) {
2343 if (intel_pstate_driver == &intel_pstate)
2344 intel_pstate_clear_update_util_hook(cpu);
2345
2346 kfree(all_cpu_data[cpu]);
2347 all_cpu_data[cpu] = NULL;
2348 }
2349 }
2350 put_online_cpus();
2351}
2352
2353static int intel_pstate_register_driver(void)
2354{
2355 int ret;
2356
7de32556 2357 intel_pstate_init_limits(&global);
c3a49c89 2358
fb1fe104
RW
2359 ret = cpufreq_register_driver(intel_pstate_driver);
2360 if (ret) {
2361 intel_pstate_driver_cleanup();
2362 return ret;
2363 }
2364
2365 mutex_lock(&intel_pstate_limits_lock);
2366 driver_registered = true;
2367 mutex_unlock(&intel_pstate_limits_lock);
2368
2369 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2370 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2371 intel_pstate_debug_expose_params();
2372
2373 return 0;
2374}
2375
2376static int intel_pstate_unregister_driver(void)
2377{
2378 if (hwp_active)
2379 return -EBUSY;
2380
2381 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2382 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2383 intel_pstate_debug_hide_params();
2384
2385 mutex_lock(&intel_pstate_limits_lock);
2386 driver_registered = false;
2387 mutex_unlock(&intel_pstate_limits_lock);
2388
2389 cpufreq_unregister_driver(intel_pstate_driver);
2390 intel_pstate_driver_cleanup();
2391
2392 return 0;
2393}
2394
2395static ssize_t intel_pstate_show_status(char *buf)
2396{
2397 if (!driver_registered)
2398 return sprintf(buf, "off\n");
2399
2400 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2401 "active" : "passive");
2402}
2403
2404static int intel_pstate_update_status(const char *buf, size_t size)
2405{
2406 int ret;
2407
2408 if (size == 3 && !strncmp(buf, "off", size))
2409 return driver_registered ?
2410 intel_pstate_unregister_driver() : -EINVAL;
2411
2412 if (size == 6 && !strncmp(buf, "active", size)) {
2413 if (driver_registered) {
2414 if (intel_pstate_driver == &intel_pstate)
2415 return 0;
2416
2417 ret = intel_pstate_unregister_driver();
2418 if (ret)
2419 return ret;
2420 }
2421
2422 intel_pstate_driver = &intel_pstate;
2423 return intel_pstate_register_driver();
2424 }
2425
2426 if (size == 7 && !strncmp(buf, "passive", size)) {
2427 if (driver_registered) {
2428 if (intel_pstate_driver != &intel_pstate)
2429 return 0;
2430
2431 ret = intel_pstate_unregister_driver();
2432 if (ret)
2433 return ret;
2434 }
2435
2436 intel_pstate_driver = &intel_cpufreq;
2437 return intel_pstate_register_driver();
2438 }
2439
2440 return -EINVAL;
2441}
2442
eed43609
JZ
2443static int no_load __initdata;
2444static int no_hwp __initdata;
2445static int hwp_only __initdata;
29327c84 2446static unsigned int force_load __initdata;
6be26498 2447
29327c84 2448static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2449{
016c8150 2450 if (!pstate_funcs.get_max() ||
c410833a
SK
2451 !pstate_funcs.get_min() ||
2452 !pstate_funcs.get_turbo())
b563b4e3
DB
2453 return -ENODEV;
2454
b563b4e3
DB
2455 return 0;
2456}
016c8150 2457
29327c84 2458static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
2459{
2460 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 2461 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
2462 pid_params.p_gain_pct = policy->p_gain_pct;
2463 pid_params.i_gain_pct = policy->i_gain_pct;
2464 pid_params.d_gain_pct = policy->d_gain_pct;
2465 pid_params.deadband = policy->deadband;
2466 pid_params.setpoint = policy->setpoint;
2467}
2468
7f7a516e
SP
2469#ifdef CONFIG_ACPI
2470static void intel_pstate_use_acpi_profile(void)
2471{
55395345
RW
2472 switch (acpi_gbl_FADT.preferred_profile) {
2473 case PM_MOBILE:
2474 case PM_TABLET:
2475 case PM_APPLIANCE_PC:
2476 case PM_DESKTOP:
2477 case PM_WORKSTATION:
7f7a516e
SP
2478 pstate_funcs.get_target_pstate =
2479 get_target_pstate_use_cpu_load;
55395345 2480 }
7f7a516e
SP
2481}
2482#else
2483static void intel_pstate_use_acpi_profile(void)
2484{
2485}
2486#endif
2487
29327c84 2488static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2489{
2490 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2491 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2492 pstate_funcs.get_min = funcs->get_min;
2493 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2494 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2495 pstate_funcs.get_val = funcs->get_val;
007bea09 2496 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2497 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2498
7f7a516e 2499 intel_pstate_use_acpi_profile();
016c8150
DB
2500}
2501
9522a2ff 2502#ifdef CONFIG_ACPI
fbbcdc07 2503
29327c84 2504static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2505{
2506 int i;
2507
2508 for_each_possible_cpu(i) {
2509 acpi_status status;
2510 union acpi_object *pss;
2511 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2512 struct acpi_processor *pr = per_cpu(processors, i);
2513
2514 if (!pr)
2515 continue;
2516
2517 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2518 if (ACPI_FAILURE(status))
2519 continue;
2520
2521 pss = buffer.pointer;
2522 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2523 kfree(pss);
2524 return false;
2525 }
2526
2527 kfree(pss);
2528 }
2529
2530 return true;
2531}
2532
29327c84 2533static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2534{
2535 int i;
2536
2537 for_each_possible_cpu(i) {
2538 struct acpi_processor *pr = per_cpu(processors, i);
2539
2540 if (!pr)
2541 continue;
2542 if (acpi_has_method(pr->handle, "_PPC"))
2543 return true;
2544 }
2545 return false;
2546}
2547
2548enum {
2549 PSS,
2550 PPC,
2551};
2552
fbbcdc07
AH
2553struct hw_vendor_info {
2554 u16 valid;
2555 char oem_id[ACPI_OEM_ID_SIZE];
2556 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2557 int oem_pwr_table;
fbbcdc07
AH
2558};
2559
2560/* Hardware vendor-specific info that has its own power management modes */
29327c84 2561static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2562 {1, "HP ", "ProLiant", PSS},
2563 {1, "ORACLE", "X4-2 ", PPC},
2564 {1, "ORACLE", "X4-2L ", PPC},
2565 {1, "ORACLE", "X4-2B ", PPC},
2566 {1, "ORACLE", "X3-2 ", PPC},
2567 {1, "ORACLE", "X3-2L ", PPC},
2568 {1, "ORACLE", "X3-2B ", PPC},
2569 {1, "ORACLE", "X4470M2 ", PPC},
2570 {1, "ORACLE", "X4270M3 ", PPC},
2571 {1, "ORACLE", "X4270M2 ", PPC},
2572 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2573 {1, "ORACLE", "X4170 M3", PPC},
2574 {1, "ORACLE", "X4275 M3", PPC},
2575 {1, "ORACLE", "X6-2 ", PPC},
2576 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2577 {0, "", ""},
2578};
2579
29327c84 2580static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2581{
2582 struct acpi_table_header hdr;
2583 struct hw_vendor_info *v_info;
2f86dc4c
DB
2584 const struct x86_cpu_id *id;
2585 u64 misc_pwr;
2586
2587 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2588 if (id) {
2589 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2590 if ( misc_pwr & (1 << 8))
2591 return true;
2592 }
fbbcdc07 2593
c410833a
SK
2594 if (acpi_disabled ||
2595 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2596 return false;
2597
2598 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2599 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2600 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2601 ACPI_OEM_TABLE_ID_SIZE))
2602 switch (v_info->oem_pwr_table) {
2603 case PSS:
2604 return intel_pstate_no_acpi_pss();
2605 case PPC:
aa4ea34d
EZ
2606 return intel_pstate_has_acpi_ppc() &&
2607 (!force_load);
966916ea 2608 }
fbbcdc07
AH
2609 }
2610
2611 return false;
2612}
d0ea59e1
RW
2613
2614static void intel_pstate_request_control_from_smm(void)
2615{
2616 /*
2617 * It may be unsafe to request P-states control from SMM if _PPC support
2618 * has not been enabled.
2619 */
2620 if (acpi_ppc)
2621 acpi_processor_pstate_control();
2622}
fbbcdc07
AH
2623#else /* CONFIG_ACPI not enabled */
2624static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2625static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2626static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2627#endif /* CONFIG_ACPI */
2628
7791e4aa
SP
2629static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2630 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2631 {}
2632};
2633
93f0822d
DB
2634static int __init intel_pstate_init(void)
2635{
eb5139d1 2636 int rc;
93f0822d 2637
6be26498
DB
2638 if (no_load)
2639 return -ENODEV;
2640
eb5139d1 2641 if (x86_match_cpu(hwp_support_ids)) {
7791e4aa 2642 copy_cpu_funcs(&core_params.funcs);
eb5139d1
RW
2643 if (no_hwp) {
2644 pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2645 } else {
2646 hwp_active++;
2647 intel_pstate.attr = hwp_cpufreq_attrs;
2648 goto hwp_cpu_matched;
2649 }
2650 } else {
2651 const struct x86_cpu_id *id;
2652 struct cpu_defaults *cpu_def;
7791e4aa 2653
eb5139d1
RW
2654 id = x86_match_cpu(intel_pstate_cpu_ids);
2655 if (!id)
2656 return -ENODEV;
93f0822d 2657
eb5139d1 2658 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2659
eb5139d1
RW
2660 copy_pid_params(&cpu_def->pid_policy);
2661 copy_cpu_funcs(&cpu_def->funcs);
2662 }
016c8150 2663
b563b4e3
DB
2664 if (intel_pstate_msrs_not_valid())
2665 return -ENODEV;
2666
7791e4aa
SP
2667hwp_cpu_matched:
2668 /*
2669 * The Intel pstate driver will be ignored if the platform
2670 * firmware has its own power management modes.
2671 */
2672 if (intel_pstate_platform_pwr_mgmt_exists())
2673 return -ENODEV;
2674
fb1fe104
RW
2675 if (!hwp_active && hwp_only)
2676 return -ENOTSUPP;
2677
4836df17 2678 pr_info("Intel P-state driver initializing\n");
93f0822d 2679
b57ffac5 2680 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2681 if (!all_cpu_data)
2682 return -ENOMEM;
93f0822d 2683
d0ea59e1
RW
2684 intel_pstate_request_control_from_smm();
2685
93f0822d 2686 intel_pstate_sysfs_expose_params();
b69880f9 2687
0c30b65b 2688 mutex_lock(&intel_pstate_driver_lock);
fb1fe104 2689 rc = intel_pstate_register_driver();
0c30b65b 2690 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2691 if (rc)
2692 return rc;
366430b5 2693
7791e4aa 2694 if (hwp_active)
4836df17 2695 pr_info("HWP enabled\n");
7791e4aa 2696
fb1fe104 2697 return 0;
93f0822d
DB
2698}
2699device_initcall(intel_pstate_init);
2700
6be26498
DB
2701static int __init intel_pstate_setup(char *str)
2702{
2703 if (!str)
2704 return -EINVAL;
2705
001c76f0 2706 if (!strcmp(str, "disable")) {
6be26498 2707 no_load = 1;
001c76f0
RW
2708 } else if (!strcmp(str, "passive")) {
2709 pr_info("Passive mode enabled\n");
2710 intel_pstate_driver = &intel_cpufreq;
2711 no_hwp = 1;
2712 }
539342f6 2713 if (!strcmp(str, "no_hwp")) {
4836df17 2714 pr_info("HWP disabled\n");
2f86dc4c 2715 no_hwp = 1;
539342f6 2716 }
aa4ea34d
EZ
2717 if (!strcmp(str, "force"))
2718 force_load = 1;
d64c3b0b
KCA
2719 if (!strcmp(str, "hwp_only"))
2720 hwp_only = 1;
eae48f04
SP
2721 if (!strcmp(str, "per_cpu_perf_limits"))
2722 per_cpu_limits = true;
9522a2ff
SP
2723
2724#ifdef CONFIG_ACPI
2725 if (!strcmp(str, "support_acpi_ppc"))
2726 acpi_ppc = true;
2727#endif
2728
6be26498
DB
2729 return 0;
2730}
2731early_param("intel_pstate", intel_pstate_setup);
2732
93f0822d
DB
2733MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2734MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2735MODULE_LICENSE("GPL");