]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/cpufreq/intel_pstate.c
Merge branch 'pm-tools' into pm-cpu
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @freq: Effective frequency calculated from APERF/MPERF
101 * @time: Current time from scheduler
102 *
103 * This structure is used in the cpudata structure to store performance sample
104 * data for choosing next P State.
105 */
93f0822d 106struct sample {
a1c9787d 107 int32_t core_avg_perf;
157386b6 108 int32_t busy_scaled;
93f0822d
DB
109 u64 aperf;
110 u64 mperf;
4055fad3 111 u64 tsc;
93f0822d 112 int freq;
a4675fbc 113 u64 time;
93f0822d
DB
114};
115
13ad7701
SP
116/**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
125 * frequency units
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 *
128 * Stores the per cpu model P state limits and current P state.
129 */
93f0822d
DB
130struct pstate_data {
131 int current_pstate;
132 int min_pstate;
133 int max_pstate;
3bcc6fa9 134 int max_pstate_physical;
b27580b0 135 int scaling;
93f0822d
DB
136 int turbo_pstate;
137};
138
13ad7701
SP
139/**
140 * struct vid_data - Stores voltage information data
141 * @min: VID data for this platform corresponding to
142 * the lowest P state
143 * @max: VID data corresponding to the highest P State.
144 * @turbo: VID data for turbo P state
145 * @ratio: Ratio of (vid max - vid min) /
146 * (max P state - Min P State)
147 *
148 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149 * This data is used in Atom platforms, where in addition to target P state,
150 * the voltage data needs to be specified to select next P State.
151 */
007bea09 152struct vid_data {
21855ff5
DB
153 int min;
154 int max;
155 int turbo;
007bea09
DB
156 int32_t ratio;
157};
158
13ad7701
SP
159/**
160 * struct _pid - Stores PID data
161 * @setpoint: Target set point for busyness or performance
162 * @integral: Storage for accumulated error values
163 * @p_gain: PID proportional gain
164 * @i_gain: PID integral gain
165 * @d_gain: PID derivative gain
166 * @deadband: PID deadband
167 * @last_err: Last error storage for integral part of PID calculation
168 *
169 * Stores PID coefficients and last error for PID controller.
170 */
93f0822d
DB
171struct _pid {
172 int setpoint;
173 int32_t integral;
174 int32_t p_gain;
175 int32_t i_gain;
176 int32_t d_gain;
177 int deadband;
d253d2a5 178 int32_t last_err;
93f0822d
DB
179};
180
13ad7701
SP
181/**
182 * struct cpudata - Per CPU instance data storage
183 * @cpu: CPU number for this instance data
184 * @update_util: CPUFreq utility callback information
4578ee7e 185 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
186 * @pstate: Stores P state limits for this CPU
187 * @vid: Stores VID limits for this CPU
188 * @pid: Stores PID parameters for this CPU
189 * @last_sample_time: Last Sample time
190 * @prev_aperf: Last APERF value read from APERF MSR
191 * @prev_mperf: Last MPERF value read from MPERF MSR
192 * @prev_tsc: Last timestamp counter (TSC) value
193 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * current sample
195 * @sample: Storage for storing last Sample data
9522a2ff
SP
196 * @acpi_perf_data: Stores ACPI perf information read from _PSS
197 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
198 *
199 * This structure stores per CPU instance data for all CPUs.
200 */
93f0822d
DB
201struct cpudata {
202 int cpu;
203
a4675fbc 204 struct update_util_data update_util;
4578ee7e 205 bool update_util_set;
93f0822d 206
93f0822d 207 struct pstate_data pstate;
007bea09 208 struct vid_data vid;
93f0822d 209 struct _pid pid;
93f0822d 210
a4675fbc 211 u64 last_sample_time;
93f0822d
DB
212 u64 prev_aperf;
213 u64 prev_mperf;
4055fad3 214 u64 prev_tsc;
63d1d656 215 u64 prev_cummulative_iowait;
d37e2b76 216 struct sample sample;
9522a2ff
SP
217#ifdef CONFIG_ACPI
218 struct acpi_processor_performance acpi_perf_data;
219 bool valid_pss_table;
220#endif
93f0822d
DB
221};
222
223static struct cpudata **all_cpu_data;
13ad7701
SP
224
225/**
226 * struct pid_adjust_policy - Stores static PID configuration data
227 * @sample_rate_ms: PID calculation sample rate in ms
228 * @sample_rate_ns: Sample rate calculation in ns
229 * @deadband: PID deadband
230 * @setpoint: PID Setpoint
231 * @p_gain_pct: PID proportional gain
232 * @i_gain_pct: PID integral gain
233 * @d_gain_pct: PID derivative gain
234 *
235 * Stores per CPU model static PID configuration data.
236 */
93f0822d
DB
237struct pstate_adjust_policy {
238 int sample_rate_ms;
a4675fbc 239 s64 sample_rate_ns;
93f0822d
DB
240 int deadband;
241 int setpoint;
242 int p_gain_pct;
243 int d_gain_pct;
244 int i_gain_pct;
245};
246
13ad7701
SP
247/**
248 * struct pstate_funcs - Per CPU model specific callbacks
249 * @get_max: Callback to get maximum non turbo effective P state
250 * @get_max_physical: Callback to get maximum non turbo physical P state
251 * @get_min: Callback to get minimum P state
252 * @get_turbo: Callback to get turbo P state
253 * @get_scaling: Callback to get frequency scaling factor
254 * @get_val: Callback to convert P state to actual MSR write value
255 * @get_vid: Callback to get VID data for Atom platforms
256 * @get_target_pstate: Callback to a function to calculate next P state to use
257 *
258 * Core and Atom CPU models have different way to get P State limits. This
259 * structure is used to store those callbacks.
260 */
016c8150
DB
261struct pstate_funcs {
262 int (*get_max)(void);
3bcc6fa9 263 int (*get_max_physical)(void);
016c8150
DB
264 int (*get_min)(void);
265 int (*get_turbo)(void);
b27580b0 266 int (*get_scaling)(void);
fdfdb2b1 267 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 268 void (*get_vid)(struct cpudata *);
157386b6 269 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
270};
271
13ad7701
SP
272/**
273 * struct cpu_defaults- Per CPU model default config data
274 * @pid_policy: PID config data
275 * @funcs: Callback function data
276 */
016c8150
DB
277struct cpu_defaults {
278 struct pstate_adjust_policy pid_policy;
279 struct pstate_funcs funcs;
93f0822d
DB
280};
281
157386b6 282static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 283static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 284
4a7cb7a9
JZ
285static struct pstate_adjust_policy pid_params __read_mostly;
286static struct pstate_funcs pstate_funcs __read_mostly;
287static int hwp_active __read_mostly;
016c8150 288
9522a2ff
SP
289#ifdef CONFIG_ACPI
290static bool acpi_ppc;
291#endif
13ad7701
SP
292
293/**
294 * struct perf_limits - Store user and policy limits
295 * @no_turbo: User requested turbo state from intel_pstate sysfs
296 * @turbo_disabled: Platform turbo status either from msr
297 * MSR_IA32_MISC_ENABLE or when maximum available pstate
298 * matches the maximum turbo pstate
299 * @max_perf_pct: Effective maximum performance limit in percentage, this
300 * is minimum of either limits enforced by cpufreq policy
301 * or limits from user set limits via intel_pstate sysfs
302 * @min_perf_pct: Effective minimum performance limit in percentage, this
303 * is maximum of either limits enforced by cpufreq policy
304 * or limits from user set limits via intel_pstate sysfs
305 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
306 * This value is used to limit max pstate
307 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
308 * This value is used to limit min pstate
309 * @max_policy_pct: The maximum performance in percentage enforced by
310 * cpufreq setpolicy interface
311 * @max_sysfs_pct: The maximum performance in percentage enforced by
312 * intel pstate sysfs interface
313 * @min_policy_pct: The minimum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @min_sysfs_pct: The minimum performance in percentage enforced by
316 * intel pstate sysfs interface
317 *
318 * Storage for user and policy defined limits.
319 */
93f0822d
DB
320struct perf_limits {
321 int no_turbo;
dd5fbf70 322 int turbo_disabled;
93f0822d
DB
323 int max_perf_pct;
324 int min_perf_pct;
325 int32_t max_perf;
326 int32_t min_perf;
d8f469e9
DB
327 int max_policy_pct;
328 int max_sysfs_pct;
a0475992
KCA
329 int min_policy_pct;
330 int min_sysfs_pct;
93f0822d
DB
331};
332
51443fbf
PB
333static struct perf_limits performance_limits = {
334 .no_turbo = 0,
335 .turbo_disabled = 0,
336 .max_perf_pct = 100,
337 .max_perf = int_tofp(1),
338 .min_perf_pct = 100,
339 .min_perf = int_tofp(1),
340 .max_policy_pct = 100,
341 .max_sysfs_pct = 100,
342 .min_policy_pct = 0,
343 .min_sysfs_pct = 0,
344};
345
346static struct perf_limits powersave_limits = {
93f0822d 347 .no_turbo = 0,
4521e1a0 348 .turbo_disabled = 0,
93f0822d
DB
349 .max_perf_pct = 100,
350 .max_perf = int_tofp(1),
351 .min_perf_pct = 0,
352 .min_perf = 0,
d8f469e9
DB
353 .max_policy_pct = 100,
354 .max_sysfs_pct = 100,
a0475992
KCA
355 .min_policy_pct = 0,
356 .min_sysfs_pct = 0,
93f0822d
DB
357};
358
51443fbf
PB
359#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360static struct perf_limits *limits = &performance_limits;
361#else
362static struct perf_limits *limits = &powersave_limits;
363#endif
364
9522a2ff 365#ifdef CONFIG_ACPI
2b3ec765
SP
366
367static bool intel_pstate_get_ppc_enable_status(void)
368{
369 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371 return true;
372
373 return acpi_ppc;
374}
375
9522a2ff
SP
376static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377{
378 struct cpudata *cpu;
9522a2ff
SP
379 int ret;
380 int i;
381
e59a8f7f
SP
382 if (hwp_active)
383 return;
384
2b3ec765 385 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
386 return;
387
388 cpu = all_cpu_data[policy->cpu];
389
390 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391 policy->cpu);
392 if (ret)
393 return;
394
395 /*
396 * Check if the control value in _PSS is for PERF_CTL MSR, which should
397 * guarantee that the states returned by it map to the states in our
398 * list directly.
399 */
400 if (cpu->acpi_perf_data.control_register.space_id !=
401 ACPI_ADR_SPACE_FIXED_HARDWARE)
402 goto err;
403
404 /*
405 * If there is only one entry _PSS, simply ignore _PSS and continue as
406 * usual without taking _PSS into account
407 */
408 if (cpu->acpi_perf_data.state_count < 2)
409 goto err;
410
411 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
414 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415 (u32) cpu->acpi_perf_data.states[i].core_frequency,
416 (u32) cpu->acpi_perf_data.states[i].power,
417 (u32) cpu->acpi_perf_data.states[i].control);
418 }
419
420 /*
421 * The _PSS table doesn't contain whole turbo frequency range.
422 * This just contains +1 MHZ above the max non turbo frequency,
423 * with control value corresponding to max turbo ratio. But
424 * when cpufreq set policy is called, it will call with this
425 * max frequency, which will cause a reduced performance as
426 * this driver uses real max turbo frequency as the max
427 * frequency. So correct this frequency in _PSS table to
b00345d1 428 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
429 * Also need to convert to MHz as _PSS freq is in MHz.
430 */
b00345d1 431 if (!limits->turbo_disabled)
9522a2ff
SP
432 cpu->acpi_perf_data.states[0].core_frequency =
433 policy->cpuinfo.max_freq / 1000;
434 cpu->valid_pss_table = true;
6cacd115 435 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
436
437 return;
438
439 err:
440 cpu->valid_pss_table = false;
441 acpi_processor_unregister_performance(policy->cpu);
442}
443
444static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445{
446 struct cpudata *cpu;
447
448 cpu = all_cpu_data[policy->cpu];
449 if (!cpu->valid_pss_table)
450 return;
451
452 acpi_processor_unregister_performance(policy->cpu);
453}
454
455#else
456static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
457{
458}
459
460static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
461{
462}
463#endif
464
93f0822d 465static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 466 int deadband, int integral) {
b54a0dfd
PL
467 pid->setpoint = int_tofp(setpoint);
468 pid->deadband = int_tofp(deadband);
93f0822d 469 pid->integral = int_tofp(integral);
d98d099b 470 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
471}
472
473static inline void pid_p_gain_set(struct _pid *pid, int percent)
474{
22590efb 475 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
476}
477
478static inline void pid_i_gain_set(struct _pid *pid, int percent)
479{
22590efb 480 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
481}
482
483static inline void pid_d_gain_set(struct _pid *pid, int percent)
484{
22590efb 485 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
486}
487
d253d2a5 488static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 489{
d253d2a5 490 signed int result;
93f0822d
DB
491 int32_t pterm, dterm, fp_error;
492 int32_t integral_limit;
493
b54a0dfd 494 fp_error = pid->setpoint - busy;
93f0822d 495
b54a0dfd 496 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
497 return 0;
498
499 pterm = mul_fp(pid->p_gain, fp_error);
500
501 pid->integral += fp_error;
502
e0d4c8f8
KCA
503 /*
504 * We limit the integral here so that it will never
505 * get higher than 30. This prevents it from becoming
506 * too large an input over long periods of time and allows
507 * it to get factored out sooner.
508 *
509 * The value of 30 was chosen through experimentation.
510 */
93f0822d
DB
511 integral_limit = int_tofp(30);
512 if (pid->integral > integral_limit)
513 pid->integral = integral_limit;
514 if (pid->integral < -integral_limit)
515 pid->integral = -integral_limit;
516
d253d2a5
BS
517 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
518 pid->last_err = fp_error;
93f0822d
DB
519
520 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 521 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
522 return (signed int)fp_toint(result);
523}
524
525static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
526{
016c8150
DB
527 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
528 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
529 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 530
2d8d1f18 531 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
532}
533
93f0822d
DB
534static inline void intel_pstate_reset_all_pid(void)
535{
536 unsigned int cpu;
845c1cbe 537
93f0822d
DB
538 for_each_online_cpu(cpu) {
539 if (all_cpu_data[cpu])
540 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
541 }
542}
543
4521e1a0
GM
544static inline void update_turbo_state(void)
545{
546 u64 misc_en;
547 struct cpudata *cpu;
548
549 cpu = all_cpu_data[0];
550 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 551 limits->turbo_disabled =
4521e1a0
GM
552 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
553 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
554}
555
41cfd64c 556static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 557{
74da56ce
KCA
558 int min, hw_min, max, hw_max, cpu, range, adj_range;
559 u64 value, cap;
560
561 rdmsrl(MSR_HWP_CAPABILITIES, cap);
562 hw_min = HWP_LOWEST_PERF(cap);
563 hw_max = HWP_HIGHEST_PERF(cap);
564 range = hw_max - hw_min;
2f86dc4c 565
41cfd64c 566 for_each_cpu(cpu, cpumask) {
2f86dc4c 567 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 568 adj_range = limits->min_perf_pct * range / 100;
74da56ce 569 min = hw_min + adj_range;
2f86dc4c
DB
570 value &= ~HWP_MIN_PERF(~0L);
571 value |= HWP_MIN_PERF(min);
572
51443fbf 573 adj_range = limits->max_perf_pct * range / 100;
74da56ce 574 max = hw_min + adj_range;
51443fbf 575 if (limits->no_turbo) {
74da56ce
KCA
576 hw_max = HWP_GUARANTEED_PERF(cap);
577 if (hw_max < max)
578 max = hw_max;
2f86dc4c
DB
579 }
580
581 value &= ~HWP_MAX_PERF(~0L);
582 value |= HWP_MAX_PERF(max);
583 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
584 }
41cfd64c 585}
2f86dc4c 586
ba41e1bc
RW
587static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
588{
589 if (hwp_active)
590 intel_pstate_hwp_set(policy->cpus);
591
592 return 0;
593}
594
41cfd64c
VK
595static void intel_pstate_hwp_set_online_cpus(void)
596{
597 get_online_cpus();
598 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
599 put_online_cpus();
600}
601
93f0822d
DB
602/************************** debugfs begin ************************/
603static int pid_param_set(void *data, u64 val)
604{
605 *(u32 *)data = val;
606 intel_pstate_reset_all_pid();
607 return 0;
608}
845c1cbe 609
93f0822d
DB
610static int pid_param_get(void *data, u64 *val)
611{
612 *val = *(u32 *)data;
613 return 0;
614}
2d8d1f18 615DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
616
617struct pid_param {
618 char *name;
619 void *value;
620};
621
622static struct pid_param pid_files[] = {
016c8150
DB
623 {"sample_rate_ms", &pid_params.sample_rate_ms},
624 {"d_gain_pct", &pid_params.d_gain_pct},
625 {"i_gain_pct", &pid_params.i_gain_pct},
626 {"deadband", &pid_params.deadband},
627 {"setpoint", &pid_params.setpoint},
628 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
629 {NULL, NULL}
630};
631
317dd50e 632static void __init intel_pstate_debug_expose_params(void)
93f0822d 633{
317dd50e 634 struct dentry *debugfs_parent;
93f0822d
DB
635 int i = 0;
636
2f86dc4c
DB
637 if (hwp_active)
638 return;
93f0822d
DB
639 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
640 if (IS_ERR_OR_NULL(debugfs_parent))
641 return;
642 while (pid_files[i].name) {
643 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
644 debugfs_parent, pid_files[i].value,
645 &fops_pid_param);
93f0822d
DB
646 i++;
647 }
648}
649
650/************************** debugfs end ************************/
651
652/************************** sysfs begin ************************/
653#define show_one(file_name, object) \
654 static ssize_t show_##file_name \
655 (struct kobject *kobj, struct attribute *attr, char *buf) \
656 { \
51443fbf 657 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
658 }
659
d01b1f48
KCA
660static ssize_t show_turbo_pct(struct kobject *kobj,
661 struct attribute *attr, char *buf)
662{
663 struct cpudata *cpu;
664 int total, no_turbo, turbo_pct;
665 uint32_t turbo_fp;
666
667 cpu = all_cpu_data[0];
668
669 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
670 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 671 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
672 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
673 return sprintf(buf, "%u\n", turbo_pct);
674}
675
0522424e
KCA
676static ssize_t show_num_pstates(struct kobject *kobj,
677 struct attribute *attr, char *buf)
678{
679 struct cpudata *cpu;
680 int total;
681
682 cpu = all_cpu_data[0];
683 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
684 return sprintf(buf, "%u\n", total);
685}
686
4521e1a0
GM
687static ssize_t show_no_turbo(struct kobject *kobj,
688 struct attribute *attr, char *buf)
689{
690 ssize_t ret;
691
692 update_turbo_state();
51443fbf
PB
693 if (limits->turbo_disabled)
694 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 695 else
51443fbf 696 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
697
698 return ret;
699}
700
93f0822d 701static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 702 const char *buf, size_t count)
93f0822d
DB
703{
704 unsigned int input;
705 int ret;
845c1cbe 706
93f0822d
DB
707 ret = sscanf(buf, "%u", &input);
708 if (ret != 1)
709 return -EINVAL;
4521e1a0
GM
710
711 update_turbo_state();
51443fbf 712 if (limits->turbo_disabled) {
4836df17 713 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 714 return -EPERM;
dd5fbf70 715 }
2f86dc4c 716
51443fbf 717 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 718
2f86dc4c 719 if (hwp_active)
41cfd64c 720 intel_pstate_hwp_set_online_cpus();
2f86dc4c 721
93f0822d
DB
722 return count;
723}
724
725static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 726 const char *buf, size_t count)
93f0822d
DB
727{
728 unsigned int input;
729 int ret;
845c1cbe 730
93f0822d
DB
731 ret = sscanf(buf, "%u", &input);
732 if (ret != 1)
733 return -EINVAL;
734
51443fbf
PB
735 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
736 limits->max_perf_pct = min(limits->max_policy_pct,
737 limits->max_sysfs_pct);
738 limits->max_perf_pct = max(limits->min_policy_pct,
739 limits->max_perf_pct);
740 limits->max_perf_pct = max(limits->min_perf_pct,
741 limits->max_perf_pct);
22590efb 742 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 743
2f86dc4c 744 if (hwp_active)
41cfd64c 745 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
746 return count;
747}
748
749static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 750 const char *buf, size_t count)
93f0822d
DB
751{
752 unsigned int input;
753 int ret;
845c1cbe 754
93f0822d
DB
755 ret = sscanf(buf, "%u", &input);
756 if (ret != 1)
757 return -EINVAL;
a0475992 758
51443fbf
PB
759 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
760 limits->min_perf_pct = max(limits->min_policy_pct,
761 limits->min_sysfs_pct);
762 limits->min_perf_pct = min(limits->max_policy_pct,
763 limits->min_perf_pct);
764 limits->min_perf_pct = min(limits->max_perf_pct,
765 limits->min_perf_pct);
22590efb 766 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 767
2f86dc4c 768 if (hwp_active)
41cfd64c 769 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
770 return count;
771}
772
93f0822d
DB
773show_one(max_perf_pct, max_perf_pct);
774show_one(min_perf_pct, min_perf_pct);
775
776define_one_global_rw(no_turbo);
777define_one_global_rw(max_perf_pct);
778define_one_global_rw(min_perf_pct);
d01b1f48 779define_one_global_ro(turbo_pct);
0522424e 780define_one_global_ro(num_pstates);
93f0822d
DB
781
782static struct attribute *intel_pstate_attributes[] = {
783 &no_turbo.attr,
784 &max_perf_pct.attr,
785 &min_perf_pct.attr,
d01b1f48 786 &turbo_pct.attr,
0522424e 787 &num_pstates.attr,
93f0822d
DB
788 NULL
789};
790
791static struct attribute_group intel_pstate_attr_group = {
792 .attrs = intel_pstate_attributes,
793};
93f0822d 794
317dd50e 795static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 796{
317dd50e 797 struct kobject *intel_pstate_kobject;
93f0822d
DB
798 int rc;
799
800 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
801 &cpu_subsys.dev_root->kobj);
802 BUG_ON(!intel_pstate_kobject);
2d8d1f18 803 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
804 BUG_ON(rc);
805}
93f0822d 806/************************** sysfs end ************************/
2f86dc4c 807
ba88d433 808static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 809{
f05c9665
SP
810 /* First disable HWP notification interrupt as we don't process them */
811 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
812
ba88d433 813 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
814}
815
938d21a2 816static int atom_get_min_pstate(void)
19e77c28
DB
817{
818 u64 value;
845c1cbe 819
938d21a2 820 rdmsrl(ATOM_RATIOS, value);
c16ed060 821 return (value >> 8) & 0x7F;
19e77c28
DB
822}
823
938d21a2 824static int atom_get_max_pstate(void)
19e77c28
DB
825{
826 u64 value;
845c1cbe 827
938d21a2 828 rdmsrl(ATOM_RATIOS, value);
c16ed060 829 return (value >> 16) & 0x7F;
19e77c28 830}
93f0822d 831
938d21a2 832static int atom_get_turbo_pstate(void)
61d8d2ab
DB
833{
834 u64 value;
845c1cbe 835
938d21a2 836 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 837 return value & 0x7F;
61d8d2ab
DB
838}
839
fdfdb2b1 840static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
841{
842 u64 val;
843 int32_t vid_fp;
844 u32 vid;
845
144c8e17 846 val = (u64)pstate << 8;
51443fbf 847 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
848 val |= (u64)1 << 32;
849
850 vid_fp = cpudata->vid.min + mul_fp(
851 int_tofp(pstate - cpudata->pstate.min_pstate),
852 cpudata->vid.ratio);
853
854 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 855 vid = ceiling_fp(vid_fp);
007bea09 856
21855ff5
DB
857 if (pstate > cpudata->pstate.max_pstate)
858 vid = cpudata->vid.turbo;
859
fdfdb2b1 860 return val | vid;
007bea09
DB
861}
862
1421df63 863static int silvermont_get_scaling(void)
b27580b0
DB
864{
865 u64 value;
866 int i;
1421df63
PL
867 /* Defined in Table 35-6 from SDM (Sept 2015) */
868 static int silvermont_freq_table[] = {
869 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
870
871 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
872 i = value & 0x7;
873 WARN_ON(i > 4);
b27580b0 874
1421df63
PL
875 return silvermont_freq_table[i];
876}
b27580b0 877
1421df63
PL
878static int airmont_get_scaling(void)
879{
880 u64 value;
881 int i;
882 /* Defined in Table 35-10 from SDM (Sept 2015) */
883 static int airmont_freq_table[] = {
884 83300, 100000, 133300, 116700, 80000,
885 93300, 90000, 88900, 87500};
886
887 rdmsrl(MSR_FSB_FREQ, value);
888 i = value & 0xF;
889 WARN_ON(i > 8);
890
891 return airmont_freq_table[i];
b27580b0
DB
892}
893
938d21a2 894static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
895{
896 u64 value;
897
938d21a2 898 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
899 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
900 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
901 cpudata->vid.ratio = div_fp(
902 cpudata->vid.max - cpudata->vid.min,
903 int_tofp(cpudata->pstate.max_pstate -
904 cpudata->pstate.min_pstate));
21855ff5 905
938d21a2 906 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 907 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
908}
909
016c8150 910static int core_get_min_pstate(void)
93f0822d
DB
911{
912 u64 value;
845c1cbe 913
05e99c8c 914 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
915 return (value >> 40) & 0xFF;
916}
917
3bcc6fa9 918static int core_get_max_pstate_physical(void)
93f0822d
DB
919{
920 u64 value;
845c1cbe 921
05e99c8c 922 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
923 return (value >> 8) & 0xFF;
924}
925
016c8150 926static int core_get_max_pstate(void)
93f0822d 927{
6a35fc2d
SP
928 u64 tar;
929 u64 plat_info;
930 int max_pstate;
931 int err;
932
933 rdmsrl(MSR_PLATFORM_INFO, plat_info);
934 max_pstate = (plat_info >> 8) & 0xFF;
935
936 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
937 if (!err) {
938 /* Do some sanity checking for safety */
939 if (plat_info & 0x600000000) {
940 u64 tdp_ctrl;
941 u64 tdp_ratio;
942 int tdp_msr;
943
944 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
945 if (err)
946 goto skip_tar;
947
948 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
949 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
950 if (err)
951 goto skip_tar;
952
1becf035
SP
953 /* For level 1 and 2, bits[23:16] contain the ratio */
954 if (tdp_ctrl)
955 tdp_ratio >>= 16;
956
957 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
958 if (tdp_ratio - 1 == tar) {
959 max_pstate = tar;
960 pr_debug("max_pstate=TAC %x\n", max_pstate);
961 } else {
962 goto skip_tar;
963 }
964 }
965 }
845c1cbe 966
6a35fc2d
SP
967skip_tar:
968 return max_pstate;
93f0822d
DB
969}
970
016c8150 971static int core_get_turbo_pstate(void)
93f0822d
DB
972{
973 u64 value;
974 int nont, ret;
845c1cbe 975
05e99c8c 976 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 977 nont = core_get_max_pstate();
285cb990 978 ret = (value) & 255;
93f0822d
DB
979 if (ret <= nont)
980 ret = nont;
981 return ret;
982}
983
b27580b0
DB
984static inline int core_get_scaling(void)
985{
986 return 100000;
987}
988
fdfdb2b1 989static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
990{
991 u64 val;
992
144c8e17 993 val = (u64)pstate << 8;
51443fbf 994 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
995 val |= (u64)1 << 32;
996
fdfdb2b1 997 return val;
016c8150
DB
998}
999
b34ef932
DC
1000static int knl_get_turbo_pstate(void)
1001{
1002 u64 value;
1003 int nont, ret;
1004
1005 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1006 nont = core_get_max_pstate();
1007 ret = (((value) >> 8) & 0xFF);
1008 if (ret <= nont)
1009 ret = nont;
1010 return ret;
1011}
1012
016c8150
DB
1013static struct cpu_defaults core_params = {
1014 .pid_policy = {
1015 .sample_rate_ms = 10,
1016 .deadband = 0,
1017 .setpoint = 97,
1018 .p_gain_pct = 20,
1019 .d_gain_pct = 0,
1020 .i_gain_pct = 0,
1021 },
1022 .funcs = {
1023 .get_max = core_get_max_pstate,
3bcc6fa9 1024 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1025 .get_min = core_get_min_pstate,
1026 .get_turbo = core_get_turbo_pstate,
b27580b0 1027 .get_scaling = core_get_scaling,
fdfdb2b1 1028 .get_val = core_get_val,
157386b6 1029 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1030 },
1031};
1032
1421df63
PL
1033static struct cpu_defaults silvermont_params = {
1034 .pid_policy = {
1035 .sample_rate_ms = 10,
1036 .deadband = 0,
1037 .setpoint = 60,
1038 .p_gain_pct = 14,
1039 .d_gain_pct = 0,
1040 .i_gain_pct = 4,
1041 },
1042 .funcs = {
1043 .get_max = atom_get_max_pstate,
1044 .get_max_physical = atom_get_max_pstate,
1045 .get_min = atom_get_min_pstate,
1046 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1047 .get_val = atom_get_val,
1421df63
PL
1048 .get_scaling = silvermont_get_scaling,
1049 .get_vid = atom_get_vid,
e70eed2b 1050 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1051 },
1052};
1053
1054static struct cpu_defaults airmont_params = {
19e77c28
DB
1055 .pid_policy = {
1056 .sample_rate_ms = 10,
1057 .deadband = 0,
6a82ba6d 1058 .setpoint = 60,
19e77c28
DB
1059 .p_gain_pct = 14,
1060 .d_gain_pct = 0,
1061 .i_gain_pct = 4,
1062 },
1063 .funcs = {
938d21a2
PL
1064 .get_max = atom_get_max_pstate,
1065 .get_max_physical = atom_get_max_pstate,
1066 .get_min = atom_get_min_pstate,
1067 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1068 .get_val = atom_get_val,
1421df63 1069 .get_scaling = airmont_get_scaling,
938d21a2 1070 .get_vid = atom_get_vid,
e70eed2b 1071 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1072 },
1073};
1074
b34ef932
DC
1075static struct cpu_defaults knl_params = {
1076 .pid_policy = {
1077 .sample_rate_ms = 10,
1078 .deadband = 0,
1079 .setpoint = 97,
1080 .p_gain_pct = 20,
1081 .d_gain_pct = 0,
1082 .i_gain_pct = 0,
1083 },
1084 .funcs = {
1085 .get_max = core_get_max_pstate,
3bcc6fa9 1086 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1087 .get_min = core_get_min_pstate,
1088 .get_turbo = knl_get_turbo_pstate,
69cefc27 1089 .get_scaling = core_get_scaling,
fdfdb2b1 1090 .get_val = core_get_val,
157386b6 1091 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1092 },
1093};
1094
41bad47f
SP
1095static struct cpu_defaults bxt_params = {
1096 .pid_policy = {
1097 .sample_rate_ms = 10,
1098 .deadband = 0,
1099 .setpoint = 60,
1100 .p_gain_pct = 14,
1101 .d_gain_pct = 0,
1102 .i_gain_pct = 4,
1103 },
1104 .funcs = {
1105 .get_max = core_get_max_pstate,
1106 .get_max_physical = core_get_max_pstate_physical,
1107 .get_min = core_get_min_pstate,
1108 .get_turbo = core_get_turbo_pstate,
1109 .get_scaling = core_get_scaling,
1110 .get_val = core_get_val,
1111 .get_target_pstate = get_target_pstate_use_cpu_load,
1112 },
1113};
1114
93f0822d
DB
1115static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1116{
1117 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1118 int max_perf_adj;
93f0822d 1119 int min_perf;
845c1cbe 1120
51443fbf 1121 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1122 max_perf = cpu->pstate.max_pstate;
1123
e0d4c8f8
KCA
1124 /*
1125 * performance can be limited by user through sysfs, by cpufreq
1126 * policy, or by cpu specific default values determined through
1127 * experimentation.
1128 */
a158bed5 1129 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1130 *max = clamp_t(int, max_perf_adj,
1131 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1132
a158bed5 1133 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1134 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1135}
1136
fdfdb2b1 1137static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1138{
b27580b0 1139 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1140 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1141}
93f0822d 1142
fdfdb2b1
RW
1143static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1144{
1145 int pstate = cpu->pstate.min_pstate;
1146
1147 intel_pstate_record_pstate(cpu, pstate);
1148 /*
1149 * Generally, there is no guarantee that this code will always run on
1150 * the CPU being updated, so force the register update to run on the
1151 * right CPU.
1152 */
1153 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1154 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1155}
1156
93f0822d
DB
1157static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1158{
016c8150
DB
1159 cpu->pstate.min_pstate = pstate_funcs.get_min();
1160 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1161 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1162 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1163 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1164
007bea09
DB
1165 if (pstate_funcs.get_vid)
1166 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1167
1168 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1169}
1170
a1c9787d 1171static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1172{
6b17ddb2 1173 struct sample *sample = &cpu->sample;
e66c1768 1174
a1c9787d 1175 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1176}
1177
4fec7ad5 1178static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1179{
93f0822d 1180 u64 aperf, mperf;
4ab60c3f 1181 unsigned long flags;
4055fad3 1182 u64 tsc;
93f0822d 1183
4ab60c3f 1184 local_irq_save(flags);
93f0822d
DB
1185 rdmsrl(MSR_IA32_APERF, aperf);
1186 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1187 tsc = rdtsc();
4fec7ad5 1188 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1189 local_irq_restore(flags);
4fec7ad5 1190 return false;
8e601a9f 1191 }
4ab60c3f 1192 local_irq_restore(flags);
b69880f9 1193
c4ee841f 1194 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1195 cpu->sample.time = time;
d37e2b76
DB
1196 cpu->sample.aperf = aperf;
1197 cpu->sample.mperf = mperf;
4055fad3 1198 cpu->sample.tsc = tsc;
d37e2b76
DB
1199 cpu->sample.aperf -= cpu->prev_aperf;
1200 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1201 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1202
93f0822d
DB
1203 cpu->prev_aperf = aperf;
1204 cpu->prev_mperf = mperf;
4055fad3 1205 cpu->prev_tsc = tsc;
febce40f
RW
1206 /*
1207 * First time this function is invoked in a given cycle, all of the
1208 * previous sample data fields are equal to zero or stale and they must
1209 * be populated with meaningful numbers for things to work, so assume
1210 * that sample.time will always be reset before setting the utilization
1211 * update hook and make the caller skip the sample then.
1212 */
1213 return !!cpu->last_sample_time;
93f0822d
DB
1214}
1215
8fa520af
PL
1216static inline int32_t get_avg_frequency(struct cpudata *cpu)
1217{
a1c9787d
RW
1218 return mul_ext_fp(cpu->sample.core_avg_perf,
1219 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1220}
1221
bdcaa23f
PL
1222static inline int32_t get_avg_pstate(struct cpudata *cpu)
1223{
8edb0a6e
RW
1224 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1225 cpu->sample.core_avg_perf);
bdcaa23f
PL
1226}
1227
e70eed2b
PL
1228static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1229{
1230 struct sample *sample = &cpu->sample;
63d1d656
PL
1231 u64 cummulative_iowait, delta_iowait_us;
1232 u64 delta_iowait_mperf;
1233 u64 mperf, now;
e70eed2b
PL
1234 int32_t cpu_load;
1235
63d1d656
PL
1236 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1237
1238 /*
1239 * Convert iowait time into number of IO cycles spent at max_freq.
1240 * IO is considered as busy only for the cpu_load algorithm. For
1241 * performance this is not needed since we always try to reach the
1242 * maximum P-State, so we are already boosting the IOs.
1243 */
1244 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1245 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1246 cpu->pstate.max_pstate, MSEC_PER_SEC);
1247
1248 mperf = cpu->sample.mperf + delta_iowait_mperf;
1249 cpu->prev_cummulative_iowait = cummulative_iowait;
1250
e70eed2b
PL
1251 /*
1252 * The load can be estimated as the ratio of the mperf counter
1253 * running at a constant frequency during active periods
1254 * (C0) and the time stamp counter running at the same frequency
1255 * also during C-states.
1256 */
63d1d656 1257 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1258 cpu->sample.busy_scaled = cpu_load;
1259
bdcaa23f 1260 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1261}
1262
157386b6 1263static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1264{
1aa7a6e2 1265 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1266 u64 duration_ns;
93f0822d 1267
e0d4c8f8 1268 /*
1aa7a6e2
RW
1269 * perf_scaled is the average performance during the last sampling
1270 * period scaled by the ratio of the maximum P-state to the P-state
1271 * requested last time (in percent). That measures the system's
1272 * response to the previous P-state selection.
e0d4c8f8 1273 */
22590efb
RW
1274 max_pstate = cpu->pstate.max_pstate_physical;
1275 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1276 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1277 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1278
e0d4c8f8 1279 /*
a4675fbc
RW
1280 * Since our utilization update callback will not run unless we are
1281 * in C0, check if the actual elapsed time is significantly greater (3x)
1282 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1283 * enough period of time to adjust our performance metric.
e0d4c8f8 1284 */
a4675fbc 1285 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1286 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1287 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1288 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1289 } else {
1290 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1291 if (sample_ratio < int_tofp(1))
1aa7a6e2 1292 perf_scaled = 0;
c4ee841f
DB
1293 }
1294
1aa7a6e2
RW
1295 cpu->sample.busy_scaled = perf_scaled;
1296 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1297}
1298
fdfdb2b1
RW
1299static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1300{
1301 int max_perf, min_perf;
1302
1303 update_turbo_state();
1304
1305 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1306 pstate = clamp_t(int, pstate, min_perf, max_perf);
1307 if (pstate == cpu->pstate.current_pstate)
1308 return;
1309
1310 intel_pstate_record_pstate(cpu, pstate);
1311 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1312}
1313
93f0822d
DB
1314static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1315{
157386b6 1316 int from, target_pstate;
4055fad3
DS
1317 struct sample *sample;
1318
1319 from = cpu->pstate.current_pstate;
93f0822d 1320
157386b6 1321 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1322
fdfdb2b1 1323 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1324
1325 sample = &cpu->sample;
a1c9787d 1326 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1327 fp_toint(sample->busy_scaled),
4055fad3
DS
1328 from,
1329 cpu->pstate.current_pstate,
1330 sample->mperf,
1331 sample->aperf,
1332 sample->tsc,
8fa520af 1333 get_avg_frequency(cpu));
93f0822d
DB
1334}
1335
a4675fbc
RW
1336static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1337 unsigned long util, unsigned long max)
93f0822d 1338{
a4675fbc
RW
1339 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1340 u64 delta_ns = time - cpu->sample.time;
b69880f9 1341
a4675fbc 1342 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1343 bool sample_taken = intel_pstate_sample(cpu, time);
1344
6d45b719 1345 if (sample_taken) {
a1c9787d 1346 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1347 if (!hwp_active)
1348 intel_pstate_adjust_busy_pstate(cpu);
1349 }
a4675fbc 1350 }
93f0822d
DB
1351}
1352
1353#define ICPU(model, policy) \
6cbd7ee1
DB
1354 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1355 (unsigned long)&policy }
93f0822d
DB
1356
1357static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1358 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1359 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1360 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1361 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1362 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1363 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1364 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1365 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1366 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1367 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1368 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1369 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1370 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1371 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1372 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1373 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1374 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1375 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1376 {}
1377};
1378MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1379
29327c84 1380static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1381 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
2f86dc4c
DB
1382 {}
1383};
1384
93f0822d
DB
1385static int intel_pstate_init_cpu(unsigned int cpunum)
1386{
93f0822d
DB
1387 struct cpudata *cpu;
1388
c0348717
DB
1389 if (!all_cpu_data[cpunum])
1390 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1391 GFP_KERNEL);
93f0822d
DB
1392 if (!all_cpu_data[cpunum])
1393 return -ENOMEM;
1394
1395 cpu = all_cpu_data[cpunum];
1396
93f0822d 1397 cpu->cpu = cpunum;
ba88d433 1398
a4675fbc 1399 if (hwp_active) {
ba88d433 1400 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1401 pid_params.sample_rate_ms = 50;
1402 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1403 }
ba88d433 1404
179e8471 1405 intel_pstate_get_cpu_pstates(cpu);
016c8150 1406
93f0822d 1407 intel_pstate_busy_pid_reset(cpu);
93f0822d 1408
4836df17 1409 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1410
1411 return 0;
1412}
1413
1414static unsigned int intel_pstate_get(unsigned int cpu_num)
1415{
f96fd0c8 1416 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1417
f96fd0c8 1418 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1419}
1420
febce40f 1421static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1422{
febce40f
RW
1423 struct cpudata *cpu = all_cpu_data[cpu_num];
1424
5ab666e0
RW
1425 if (cpu->update_util_set)
1426 return;
1427
febce40f
RW
1428 /* Prevent intel_pstate_update_util() from using stale data. */
1429 cpu->sample.time = 0;
0bed612b
RW
1430 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1431 intel_pstate_update_util);
4578ee7e 1432 cpu->update_util_set = true;
bb6ab52f
RW
1433}
1434
1435static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1436{
4578ee7e
CY
1437 struct cpudata *cpu_data = all_cpu_data[cpu];
1438
1439 if (!cpu_data->update_util_set)
1440 return;
1441
0bed612b 1442 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1443 cpu_data->update_util_set = false;
bb6ab52f
RW
1444 synchronize_sched();
1445}
1446
30a39153
SP
1447static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1448{
1449 limits->no_turbo = 0;
1450 limits->turbo_disabled = 0;
1451 limits->max_perf_pct = 100;
1452 limits->max_perf = int_tofp(1);
1453 limits->min_perf_pct = 100;
1454 limits->min_perf = int_tofp(1);
1455 limits->max_policy_pct = 100;
1456 limits->max_sysfs_pct = 100;
1457 limits->min_policy_pct = 0;
1458 limits->min_sysfs_pct = 0;
1459}
1460
93f0822d
DB
1461static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1462{
3be9200d
SP
1463 struct cpudata *cpu;
1464
d3929b83
DB
1465 if (!policy->cpuinfo.max_freq)
1466 return -ENODEV;
1467
2c2c1af4
SP
1468 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1469 policy->cpuinfo.max_freq, policy->max);
1470
3be9200d 1471 cpu = all_cpu_data[0];
c749c64f
RW
1472 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1473 policy->max < policy->cpuinfo.max_freq &&
1474 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1475 pr_debug("policy->max > max non turbo frequency\n");
1476 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1477 }
1478
30a39153 1479 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1480 limits = &performance_limits;
30a39153 1481 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1482 pr_debug("set performance\n");
30a39153
SP
1483 intel_pstate_set_performance_limits(limits);
1484 goto out;
1485 }
1486 } else {
4836df17 1487 pr_debug("set powersave\n");
30a39153 1488 limits = &powersave_limits;
93f0822d 1489 }
2f86dc4c 1490
51443fbf
PB
1491 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1492 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1493 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1494 policy->cpuinfo.max_freq);
51443fbf 1495 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1496
1497 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1498 limits->min_perf_pct = max(limits->min_policy_pct,
1499 limits->min_sysfs_pct);
1500 limits->min_perf_pct = min(limits->max_policy_pct,
1501 limits->min_perf_pct);
1502 limits->max_perf_pct = min(limits->max_policy_pct,
1503 limits->max_sysfs_pct);
1504 limits->max_perf_pct = max(limits->min_policy_pct,
1505 limits->max_perf_pct);
43717aad
CY
1506
1507 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1508 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1509
22590efb
RW
1510 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1511 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1512 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1513
bb6ab52f
RW
1514 out:
1515 intel_pstate_set_update_util_hook(policy->cpu);
1516
ba41e1bc 1517 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1518
93f0822d
DB
1519 return 0;
1520}
1521
1522static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1523{
be49e346 1524 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1525
285cb990 1526 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1527 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1528 return -EINVAL;
1529
1530 return 0;
1531}
1532
bb18008f 1533static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1534{
bb18008f
DB
1535 int cpu_num = policy->cpu;
1536 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1537
4836df17 1538 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1539
bb6ab52f 1540 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1541
2f86dc4c
DB
1542 if (hwp_active)
1543 return;
1544
fdfdb2b1 1545 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1546}
1547
2760984f 1548static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1549{
93f0822d 1550 struct cpudata *cpu;
52e0a509 1551 int rc;
93f0822d
DB
1552
1553 rc = intel_pstate_init_cpu(policy->cpu);
1554 if (rc)
1555 return rc;
1556
1557 cpu = all_cpu_data[policy->cpu];
1558
51443fbf 1559 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1560 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1561 else
1562 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1563
b27580b0
DB
1564 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1565 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1566
1567 /* cpuinfo and default policy values */
b27580b0 1568 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1569 update_turbo_state();
1570 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1571 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1572 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1573
9522a2ff 1574 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1575 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1576 cpumask_set_cpu(policy->cpu, policy->cpus);
1577
1578 return 0;
1579}
1580
9522a2ff
SP
1581static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1582{
1583 intel_pstate_exit_perf_limits(policy);
1584
1585 return 0;
1586}
1587
93f0822d
DB
1588static struct cpufreq_driver intel_pstate_driver = {
1589 .flags = CPUFREQ_CONST_LOOPS,
1590 .verify = intel_pstate_verify_policy,
1591 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1592 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1593 .get = intel_pstate_get,
1594 .init = intel_pstate_cpu_init,
9522a2ff 1595 .exit = intel_pstate_cpu_exit,
bb18008f 1596 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1597 .name = "intel_pstate",
93f0822d
DB
1598};
1599
eed43609
JZ
1600static int no_load __initdata;
1601static int no_hwp __initdata;
1602static int hwp_only __initdata;
29327c84 1603static unsigned int force_load __initdata;
6be26498 1604
29327c84 1605static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1606{
016c8150 1607 if (!pstate_funcs.get_max() ||
c410833a
SK
1608 !pstate_funcs.get_min() ||
1609 !pstate_funcs.get_turbo())
b563b4e3
DB
1610 return -ENODEV;
1611
b563b4e3
DB
1612 return 0;
1613}
016c8150 1614
29327c84 1615static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1616{
1617 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1618 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1619 pid_params.p_gain_pct = policy->p_gain_pct;
1620 pid_params.i_gain_pct = policy->i_gain_pct;
1621 pid_params.d_gain_pct = policy->d_gain_pct;
1622 pid_params.deadband = policy->deadband;
1623 pid_params.setpoint = policy->setpoint;
1624}
1625
29327c84 1626static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1627{
1628 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1629 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1630 pstate_funcs.get_min = funcs->get_min;
1631 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1632 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1633 pstate_funcs.get_val = funcs->get_val;
007bea09 1634 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1635 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1636
016c8150
DB
1637}
1638
9522a2ff 1639#ifdef CONFIG_ACPI
fbbcdc07 1640
29327c84 1641static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1642{
1643 int i;
1644
1645 for_each_possible_cpu(i) {
1646 acpi_status status;
1647 union acpi_object *pss;
1648 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1649 struct acpi_processor *pr = per_cpu(processors, i);
1650
1651 if (!pr)
1652 continue;
1653
1654 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1655 if (ACPI_FAILURE(status))
1656 continue;
1657
1658 pss = buffer.pointer;
1659 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1660 kfree(pss);
1661 return false;
1662 }
1663
1664 kfree(pss);
1665 }
1666
1667 return true;
1668}
1669
29327c84 1670static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1671{
1672 int i;
1673
1674 for_each_possible_cpu(i) {
1675 struct acpi_processor *pr = per_cpu(processors, i);
1676
1677 if (!pr)
1678 continue;
1679 if (acpi_has_method(pr->handle, "_PPC"))
1680 return true;
1681 }
1682 return false;
1683}
1684
1685enum {
1686 PSS,
1687 PPC,
1688};
1689
fbbcdc07
AH
1690struct hw_vendor_info {
1691 u16 valid;
1692 char oem_id[ACPI_OEM_ID_SIZE];
1693 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1694 int oem_pwr_table;
fbbcdc07
AH
1695};
1696
1697/* Hardware vendor-specific info that has its own power management modes */
29327c84 1698static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1699 {1, "HP ", "ProLiant", PSS},
1700 {1, "ORACLE", "X4-2 ", PPC},
1701 {1, "ORACLE", "X4-2L ", PPC},
1702 {1, "ORACLE", "X4-2B ", PPC},
1703 {1, "ORACLE", "X3-2 ", PPC},
1704 {1, "ORACLE", "X3-2L ", PPC},
1705 {1, "ORACLE", "X3-2B ", PPC},
1706 {1, "ORACLE", "X4470M2 ", PPC},
1707 {1, "ORACLE", "X4270M3 ", PPC},
1708 {1, "ORACLE", "X4270M2 ", PPC},
1709 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1710 {1, "ORACLE", "X4170 M3", PPC},
1711 {1, "ORACLE", "X4275 M3", PPC},
1712 {1, "ORACLE", "X6-2 ", PPC},
1713 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1714 {0, "", ""},
1715};
1716
29327c84 1717static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1718{
1719 struct acpi_table_header hdr;
1720 struct hw_vendor_info *v_info;
2f86dc4c
DB
1721 const struct x86_cpu_id *id;
1722 u64 misc_pwr;
1723
1724 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1725 if (id) {
1726 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1727 if ( misc_pwr & (1 << 8))
1728 return true;
1729 }
fbbcdc07 1730
c410833a
SK
1731 if (acpi_disabled ||
1732 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1733 return false;
1734
1735 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1736 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1737 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1738 ACPI_OEM_TABLE_ID_SIZE))
1739 switch (v_info->oem_pwr_table) {
1740 case PSS:
1741 return intel_pstate_no_acpi_pss();
1742 case PPC:
aa4ea34d
EZ
1743 return intel_pstate_has_acpi_ppc() &&
1744 (!force_load);
966916ea 1745 }
fbbcdc07
AH
1746 }
1747
1748 return false;
1749}
1750#else /* CONFIG_ACPI not enabled */
1751static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1752static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1753#endif /* CONFIG_ACPI */
1754
7791e4aa
SP
1755static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1756 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1757 {}
1758};
1759
93f0822d
DB
1760static int __init intel_pstate_init(void)
1761{
907cc908 1762 int cpu, rc = 0;
93f0822d 1763 const struct x86_cpu_id *id;
64df1fdf 1764 struct cpu_defaults *cpu_def;
93f0822d 1765
6be26498
DB
1766 if (no_load)
1767 return -ENODEV;
1768
7791e4aa
SP
1769 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1770 copy_cpu_funcs(&core_params.funcs);
1771 hwp_active++;
1772 goto hwp_cpu_matched;
1773 }
1774
93f0822d
DB
1775 id = x86_match_cpu(intel_pstate_cpu_ids);
1776 if (!id)
1777 return -ENODEV;
1778
64df1fdf 1779 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1780
64df1fdf
BP
1781 copy_pid_params(&cpu_def->pid_policy);
1782 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1783
b563b4e3
DB
1784 if (intel_pstate_msrs_not_valid())
1785 return -ENODEV;
1786
7791e4aa
SP
1787hwp_cpu_matched:
1788 /*
1789 * The Intel pstate driver will be ignored if the platform
1790 * firmware has its own power management modes.
1791 */
1792 if (intel_pstate_platform_pwr_mgmt_exists())
1793 return -ENODEV;
1794
4836df17 1795 pr_info("Intel P-state driver initializing\n");
93f0822d 1796
b57ffac5 1797 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1798 if (!all_cpu_data)
1799 return -ENOMEM;
93f0822d 1800
d64c3b0b
KCA
1801 if (!hwp_active && hwp_only)
1802 goto out;
1803
93f0822d
DB
1804 rc = cpufreq_register_driver(&intel_pstate_driver);
1805 if (rc)
1806 goto out;
1807
1808 intel_pstate_debug_expose_params();
1809 intel_pstate_sysfs_expose_params();
b69880f9 1810
7791e4aa 1811 if (hwp_active)
4836df17 1812 pr_info("HWP enabled\n");
7791e4aa 1813
93f0822d
DB
1814 return rc;
1815out:
907cc908
DB
1816 get_online_cpus();
1817 for_each_online_cpu(cpu) {
1818 if (all_cpu_data[cpu]) {
bb6ab52f 1819 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1820 kfree(all_cpu_data[cpu]);
1821 }
1822 }
1823
1824 put_online_cpus();
1825 vfree(all_cpu_data);
93f0822d
DB
1826 return -ENODEV;
1827}
1828device_initcall(intel_pstate_init);
1829
6be26498
DB
1830static int __init intel_pstate_setup(char *str)
1831{
1832 if (!str)
1833 return -EINVAL;
1834
1835 if (!strcmp(str, "disable"))
1836 no_load = 1;
539342f6 1837 if (!strcmp(str, "no_hwp")) {
4836df17 1838 pr_info("HWP disabled\n");
2f86dc4c 1839 no_hwp = 1;
539342f6 1840 }
aa4ea34d
EZ
1841 if (!strcmp(str, "force"))
1842 force_load = 1;
d64c3b0b
KCA
1843 if (!strcmp(str, "hwp_only"))
1844 hwp_only = 1;
9522a2ff
SP
1845
1846#ifdef CONFIG_ACPI
1847 if (!strcmp(str, "support_acpi_ppc"))
1848 acpi_ppc = true;
1849#endif
1850
6be26498
DB
1851 return 0;
1852}
1853early_param("intel_pstate", intel_pstate_setup);
1854
93f0822d
DB
1855MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1856MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1857MODULE_LICENSE("GPL");