]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/intel_pstate.c
Merge branch 'intel_pstate' into pm-cpufreq-sched
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
eabd22c6
RW
40#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
001c76f0
RW
43#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
17669006 47#include <acpi/cppc_acpi.h>
9522a2ff
SP
48#endif
49
f0fe3cd7 50#define FRAC_BITS 8
93f0822d
DB
51#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 53
a1c9787d
RW
54#define EXT_BITS 6
55#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
56#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 58
93f0822d
DB
59static inline int32_t mul_fp(int32_t x, int32_t y)
60{
61 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62}
63
7180dddf 64static inline int32_t div_fp(s64 x, s64 y)
93f0822d 65{
7180dddf 66 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
67}
68
d022a65e
DB
69static inline int ceiling_fp(int32_t x)
70{
71 int mask, ret;
72
73 ret = fp_toint(x);
74 mask = (1 << FRAC_BITS) - 1;
75 if (x & mask)
76 ret += 1;
77 return ret;
78}
79
ff35f02e
RW
80static inline int32_t percent_fp(int percent)
81{
82 return div_fp(percent, 100);
83}
84
a1c9787d
RW
85static inline u64 mul_ext_fp(u64 x, u64 y)
86{
87 return (x * y) >> EXT_FRAC_BITS;
88}
89
90static inline u64 div_ext_fp(u64 x, u64 y)
91{
92 return div64_u64(x << EXT_FRAC_BITS, y);
93}
94
e4c204ce
RW
95static inline int32_t percent_ext_fp(int percent)
96{
97 return div_ext_fp(percent, 100);
98}
99
13ad7701
SP
100/**
101 * struct sample - Store performance sample
a1c9787d 102 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
103 * performance during last sample period
104 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 105 * P state. This can be different than core_avg_perf
13ad7701
SP
106 * to account for cpu idle period
107 * @aperf: Difference of actual performance frequency clock count
108 * read from APERF MSR between last and current sample
109 * @mperf: Difference of maximum performance frequency clock count
110 * read from MPERF MSR between last and current sample
111 * @tsc: Difference of time stamp counter between last and
112 * current sample
13ad7701
SP
113 * @time: Current time from scheduler
114 *
115 * This structure is used in the cpudata structure to store performance sample
116 * data for choosing next P State.
117 */
93f0822d 118struct sample {
a1c9787d 119 int32_t core_avg_perf;
157386b6 120 int32_t busy_scaled;
93f0822d
DB
121 u64 aperf;
122 u64 mperf;
4055fad3 123 u64 tsc;
a4675fbc 124 u64 time;
93f0822d
DB
125};
126
13ad7701
SP
127/**
128 * struct pstate_data - Store P state data
129 * @current_pstate: Current requested P state
130 * @min_pstate: Min P state possible for this platform
131 * @max_pstate: Max P state possible for this platform
132 * @max_pstate_physical:This is physical Max P state for a processor
133 * This can be higher than the max_pstate which can
134 * be limited by platform thermal design power limits
135 * @scaling: Scaling factor to convert frequency to cpufreq
136 * frequency units
137 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
138 * @max_freq: @max_pstate frequency in cpufreq units
139 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
140 *
141 * Stores the per cpu model P state limits and current P state.
142 */
93f0822d
DB
143struct pstate_data {
144 int current_pstate;
145 int min_pstate;
146 int max_pstate;
3bcc6fa9 147 int max_pstate_physical;
b27580b0 148 int scaling;
93f0822d 149 int turbo_pstate;
001c76f0
RW
150 unsigned int max_freq;
151 unsigned int turbo_freq;
93f0822d
DB
152};
153
13ad7701
SP
154/**
155 * struct vid_data - Stores voltage information data
156 * @min: VID data for this platform corresponding to
157 * the lowest P state
158 * @max: VID data corresponding to the highest P State.
159 * @turbo: VID data for turbo P state
160 * @ratio: Ratio of (vid max - vid min) /
161 * (max P state - Min P State)
162 *
163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164 * This data is used in Atom platforms, where in addition to target P state,
165 * the voltage data needs to be specified to select next P State.
166 */
007bea09 167struct vid_data {
21855ff5
DB
168 int min;
169 int max;
170 int turbo;
007bea09
DB
171 int32_t ratio;
172};
173
13ad7701
SP
174/**
175 * struct _pid - Stores PID data
176 * @setpoint: Target set point for busyness or performance
177 * @integral: Storage for accumulated error values
178 * @p_gain: PID proportional gain
179 * @i_gain: PID integral gain
180 * @d_gain: PID derivative gain
181 * @deadband: PID deadband
182 * @last_err: Last error storage for integral part of PID calculation
183 *
184 * Stores PID coefficients and last error for PID controller.
185 */
93f0822d
DB
186struct _pid {
187 int setpoint;
188 int32_t integral;
189 int32_t p_gain;
190 int32_t i_gain;
191 int32_t d_gain;
192 int deadband;
d253d2a5 193 int32_t last_err;
93f0822d
DB
194};
195
c5a2ee7d
RW
196/**
197 * struct global_params - Global parameters, mostly tunable via sysfs.
198 * @no_turbo: Whether or not to use turbo P-states.
199 * @turbo_disabled: Whethet or not turbo P-states are available at all,
200 * based on the MSR_IA32_MISC_ENABLE value and whether or
201 * not the maximum reported turbo P-state is different from
202 * the maximum reported non-turbo one.
203 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
204 * P-state capacity.
205 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
206 * P-state capacity.
207 */
208struct global_params {
209 bool no_turbo;
210 bool turbo_disabled;
211 int max_perf_pct;
212 int min_perf_pct;
eae48f04
SP
213};
214
13ad7701
SP
215/**
216 * struct cpudata - Per CPU instance data storage
217 * @cpu: CPU number for this instance data
2f1d407a 218 * @policy: CPUFreq policy value
13ad7701 219 * @update_util: CPUFreq utility callback information
4578ee7e 220 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
221 * @iowait_boost: iowait-related boost fraction
222 * @last_update: Time of the last update.
13ad7701
SP
223 * @pstate: Stores P state limits for this CPU
224 * @vid: Stores VID limits for this CPU
225 * @pid: Stores PID parameters for this CPU
226 * @last_sample_time: Last Sample time
227 * @prev_aperf: Last APERF value read from APERF MSR
228 * @prev_mperf: Last MPERF value read from MPERF MSR
229 * @prev_tsc: Last timestamp counter (TSC) value
230 * @prev_cummulative_iowait: IO Wait time difference from last and
231 * current sample
232 * @sample: Storage for storing last Sample data
e14cf885
RW
233 * @min_perf: Minimum capacity limit as a fraction of the maximum
234 * turbo P-state capacity.
235 * @max_perf: Maximum capacity limit as a fraction of the maximum
236 * turbo P-state capacity.
9522a2ff
SP
237 * @acpi_perf_data: Stores ACPI perf information read from _PSS
238 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
239 * @epp_powersave: Last saved HWP energy performance preference
240 * (EPP) or energy performance bias (EPB),
241 * when policy switched to performance
8442885f 242 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
243 * @epp_default: Power on default HWP energy performance
244 * preference/bias
245 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
246 * operation
13ad7701
SP
247 *
248 * This structure stores per CPU instance data for all CPUs.
249 */
93f0822d
DB
250struct cpudata {
251 int cpu;
252
2f1d407a 253 unsigned int policy;
a4675fbc 254 struct update_util_data update_util;
4578ee7e 255 bool update_util_set;
93f0822d 256
93f0822d 257 struct pstate_data pstate;
007bea09 258 struct vid_data vid;
93f0822d 259 struct _pid pid;
93f0822d 260
09c448d3 261 u64 last_update;
a4675fbc 262 u64 last_sample_time;
93f0822d
DB
263 u64 prev_aperf;
264 u64 prev_mperf;
4055fad3 265 u64 prev_tsc;
63d1d656 266 u64 prev_cummulative_iowait;
d37e2b76 267 struct sample sample;
e14cf885
RW
268 int32_t min_perf;
269 int32_t max_perf;
9522a2ff
SP
270#ifdef CONFIG_ACPI
271 struct acpi_processor_performance acpi_perf_data;
272 bool valid_pss_table;
273#endif
09c448d3 274 unsigned int iowait_boost;
984edbdc 275 s16 epp_powersave;
8442885f 276 s16 epp_policy;
984edbdc
SP
277 s16 epp_default;
278 s16 epp_saved;
93f0822d
DB
279};
280
281static struct cpudata **all_cpu_data;
13ad7701
SP
282
283/**
3954517e 284 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
285 * @sample_rate_ms: PID calculation sample rate in ms
286 * @sample_rate_ns: Sample rate calculation in ns
287 * @deadband: PID deadband
288 * @setpoint: PID Setpoint
289 * @p_gain_pct: PID proportional gain
290 * @i_gain_pct: PID integral gain
291 * @d_gain_pct: PID derivative gain
292 *
293 * Stores per CPU model static PID configuration data.
294 */
93f0822d
DB
295struct pstate_adjust_policy {
296 int sample_rate_ms;
a4675fbc 297 s64 sample_rate_ns;
93f0822d
DB
298 int deadband;
299 int setpoint;
300 int p_gain_pct;
301 int d_gain_pct;
302 int i_gain_pct;
303};
304
13ad7701
SP
305/**
306 * struct pstate_funcs - Per CPU model specific callbacks
307 * @get_max: Callback to get maximum non turbo effective P state
308 * @get_max_physical: Callback to get maximum non turbo physical P state
309 * @get_min: Callback to get minimum P state
310 * @get_turbo: Callback to get turbo P state
311 * @get_scaling: Callback to get frequency scaling factor
312 * @get_val: Callback to convert P state to actual MSR write value
313 * @get_vid: Callback to get VID data for Atom platforms
67dd9bf4 314 * @update_util: Active mode utilization update callback.
13ad7701
SP
315 *
316 * Core and Atom CPU models have different way to get P State limits. This
317 * structure is used to store those callbacks.
318 */
016c8150
DB
319struct pstate_funcs {
320 int (*get_max)(void);
3bcc6fa9 321 int (*get_max_physical)(void);
016c8150
DB
322 int (*get_min)(void);
323 int (*get_turbo)(void);
b27580b0 324 int (*get_scaling)(void);
fdfdb2b1 325 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 326 void (*get_vid)(struct cpudata *);
67dd9bf4
RW
327 void (*update_util)(struct update_util_data *data, u64 time,
328 unsigned int flags);
93f0822d
DB
329};
330
4a7cb7a9 331static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
332static struct pstate_adjust_policy pid_params __read_mostly = {
333 .sample_rate_ms = 10,
334 .sample_rate_ns = 10 * NSEC_PER_MSEC,
335 .deadband = 0,
336 .setpoint = 97,
337 .p_gain_pct = 20,
338 .d_gain_pct = 0,
339 .i_gain_pct = 0,
340};
341
4a7cb7a9 342static int hwp_active __read_mostly;
eae48f04 343static bool per_cpu_limits __read_mostly;
016c8150 344
ee8df89a 345static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 346
9522a2ff
SP
347#ifdef CONFIG_ACPI
348static bool acpi_ppc;
349#endif
13ad7701 350
c5a2ee7d 351static struct global_params global;
93f0822d 352
0c30b65b 353static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
354static DEFINE_MUTEX(intel_pstate_limits_lock);
355
9522a2ff 356#ifdef CONFIG_ACPI
2b3ec765
SP
357
358static bool intel_pstate_get_ppc_enable_status(void)
359{
360 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
361 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
362 return true;
363
364 return acpi_ppc;
365}
366
17669006
RW
367#ifdef CONFIG_ACPI_CPPC_LIB
368
369/* The work item is needed to avoid CPU hotplug locking issues */
370static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
371{
372 sched_set_itmt_support();
373}
374
375static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
376
377static void intel_pstate_set_itmt_prio(int cpu)
378{
379 struct cppc_perf_caps cppc_perf;
380 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
381 int ret;
382
383 ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 if (ret)
385 return;
386
387 /*
388 * The priorities can be set regardless of whether or not
389 * sched_set_itmt_support(true) has been called and it is valid to
390 * update them at any time after it has been called.
391 */
392 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
393
394 if (max_highest_perf <= min_highest_perf) {
395 if (cppc_perf.highest_perf > max_highest_perf)
396 max_highest_perf = cppc_perf.highest_perf;
397
398 if (cppc_perf.highest_perf < min_highest_perf)
399 min_highest_perf = cppc_perf.highest_perf;
400
401 if (max_highest_perf > min_highest_perf) {
402 /*
403 * This code can be run during CPU online under the
404 * CPU hotplug locks, so sched_set_itmt_support()
405 * cannot be called from here. Queue up a work item
406 * to invoke it.
407 */
408 schedule_work(&sched_itmt_work);
409 }
410 }
411}
412#else
413static void intel_pstate_set_itmt_prio(int cpu)
414{
415}
416#endif
417
9522a2ff
SP
418static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
419{
420 struct cpudata *cpu;
9522a2ff
SP
421 int ret;
422 int i;
423
17669006
RW
424 if (hwp_active) {
425 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 426 return;
17669006 427 }
e59a8f7f 428
2b3ec765 429 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
430 return;
431
432 cpu = all_cpu_data[policy->cpu];
433
434 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
435 policy->cpu);
436 if (ret)
437 return;
438
439 /*
440 * Check if the control value in _PSS is for PERF_CTL MSR, which should
441 * guarantee that the states returned by it map to the states in our
442 * list directly.
443 */
444 if (cpu->acpi_perf_data.control_register.space_id !=
445 ACPI_ADR_SPACE_FIXED_HARDWARE)
446 goto err;
447
448 /*
449 * If there is only one entry _PSS, simply ignore _PSS and continue as
450 * usual without taking _PSS into account
451 */
452 if (cpu->acpi_perf_data.state_count < 2)
453 goto err;
454
455 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
456 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
457 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
458 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
459 (u32) cpu->acpi_perf_data.states[i].core_frequency,
460 (u32) cpu->acpi_perf_data.states[i].power,
461 (u32) cpu->acpi_perf_data.states[i].control);
462 }
463
464 /*
465 * The _PSS table doesn't contain whole turbo frequency range.
466 * This just contains +1 MHZ above the max non turbo frequency,
467 * with control value corresponding to max turbo ratio. But
468 * when cpufreq set policy is called, it will call with this
469 * max frequency, which will cause a reduced performance as
470 * this driver uses real max turbo frequency as the max
471 * frequency. So correct this frequency in _PSS table to
b00345d1 472 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
473 * Also need to convert to MHz as _PSS freq is in MHz.
474 */
7de32556 475 if (!global.turbo_disabled)
9522a2ff
SP
476 cpu->acpi_perf_data.states[0].core_frequency =
477 policy->cpuinfo.max_freq / 1000;
478 cpu->valid_pss_table = true;
6cacd115 479 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
480
481 return;
482
483 err:
484 cpu->valid_pss_table = false;
485 acpi_processor_unregister_performance(policy->cpu);
486}
487
488static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
489{
490 struct cpudata *cpu;
491
492 cpu = all_cpu_data[policy->cpu];
493 if (!cpu->valid_pss_table)
494 return;
495
496 acpi_processor_unregister_performance(policy->cpu);
497}
9522a2ff 498#else
7a3ba767 499static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
500{
501}
502
7a3ba767 503static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
504{
505}
506#endif
507
d253d2a5 508static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 509{
d253d2a5 510 signed int result;
93f0822d
DB
511 int32_t pterm, dterm, fp_error;
512 int32_t integral_limit;
513
b54a0dfd 514 fp_error = pid->setpoint - busy;
93f0822d 515
b54a0dfd 516 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
517 return 0;
518
519 pterm = mul_fp(pid->p_gain, fp_error);
520
521 pid->integral += fp_error;
522
e0d4c8f8
KCA
523 /*
524 * We limit the integral here so that it will never
525 * get higher than 30. This prevents it from becoming
526 * too large an input over long periods of time and allows
527 * it to get factored out sooner.
528 *
529 * The value of 30 was chosen through experimentation.
530 */
93f0822d
DB
531 integral_limit = int_tofp(30);
532 if (pid->integral > integral_limit)
533 pid->integral = integral_limit;
534 if (pid->integral < -integral_limit)
535 pid->integral = -integral_limit;
536
d253d2a5
BS
537 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
538 pid->last_err = fp_error;
93f0822d
DB
539
540 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 541 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
542 return (signed int)fp_toint(result);
543}
544
ff35f02e 545static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 546{
ff35f02e 547 struct _pid *pid = &cpu->pid;
93f0822d 548
ff35f02e
RW
549 pid->p_gain = percent_fp(pid_params.p_gain_pct);
550 pid->d_gain = percent_fp(pid_params.d_gain_pct);
551 pid->i_gain = percent_fp(pid_params.i_gain_pct);
552 pid->setpoint = int_tofp(pid_params.setpoint);
553 pid->last_err = pid->setpoint - int_tofp(100);
554 pid->deadband = int_tofp(pid_params.deadband);
555 pid->integral = 0;
93f0822d
DB
556}
557
4521e1a0
GM
558static inline void update_turbo_state(void)
559{
560 u64 misc_en;
561 struct cpudata *cpu;
562
563 cpu = all_cpu_data[0];
564 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 565 global.turbo_disabled =
4521e1a0
GM
566 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
567 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
568}
569
c5a2ee7d
RW
570static int min_perf_pct_min(void)
571{
572 struct cpudata *cpu = all_cpu_data[0];
573
574 return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
575 cpu->pstate.turbo_pstate);
576}
577
8442885f
SP
578static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579{
580 u64 epb;
581 int ret;
582
583 if (!static_cpu_has(X86_FEATURE_EPB))
584 return -ENXIO;
585
586 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 if (ret)
588 return (s16)ret;
589
590 return (s16)(epb & 0x0f);
591}
592
593static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594{
595 s16 epp;
596
984edbdc
SP
597 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 /*
599 * When hwp_req_data is 0, means that caller didn't read
600 * MSR_HWP_REQUEST, so need to read and get EPP.
601 */
602 if (!hwp_req_data) {
603 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 &hwp_req_data);
605 if (epp)
606 return epp;
607 }
8442885f 608 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 609 } else {
8442885f
SP
610 /* When there is no EPP present, HWP uses EPB settings */
611 epp = intel_pstate_get_epb(cpu_data);
984edbdc 612 }
8442885f
SP
613
614 return epp;
615}
616
984edbdc 617static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
618{
619 u64 epb;
984edbdc 620 int ret;
8442885f
SP
621
622 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 623 return -ENXIO;
8442885f 624
984edbdc
SP
625 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return ret;
8442885f
SP
628
629 epb = (epb & ~0x0f) | pref;
630 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
631
632 return 0;
8442885f
SP
633}
634
984edbdc
SP
635/*
636 * EPP/EPB display strings corresponding to EPP index in the
637 * energy_perf_strings[]
638 * index String
639 *-------------------------------------
640 * 0 default
641 * 1 performance
642 * 2 balance_performance
643 * 3 balance_power
644 * 4 power
645 */
646static const char * const energy_perf_strings[] = {
647 "default",
648 "performance",
649 "balance_performance",
650 "balance_power",
651 "power",
652 NULL
653};
654
655static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
656{
657 s16 epp;
658 int index = -EINVAL;
659
660 epp = intel_pstate_get_epp(cpu_data, 0);
661 if (epp < 0)
662 return epp;
663
664 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 /*
666 * Range:
667 * 0x00-0x3F : Performance
668 * 0x40-0x7F : Balance performance
669 * 0x80-0xBF : Balance power
670 * 0xC0-0xFF : Power
671 * The EPP is a 8 bit value, but our ranges restrict the
672 * value which can be set. Here only using top two bits
673 * effectively.
674 */
675 index = (epp >> 6) + 1;
676 } else if (static_cpu_has(X86_FEATURE_EPB)) {
677 /*
678 * Range:
679 * 0x00-0x03 : Performance
680 * 0x04-0x07 : Balance performance
681 * 0x08-0x0B : Balance power
682 * 0x0C-0x0F : Power
683 * The EPB is a 4 bit value, but our ranges restrict the
684 * value which can be set. Here only using top two bits
685 * effectively.
686 */
687 index = (epp >> 2) + 1;
688 }
689
690 return index;
691}
692
693static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
694 int pref_index)
695{
696 int epp = -EINVAL;
697 int ret;
698
699 if (!pref_index)
700 epp = cpu_data->epp_default;
701
702 mutex_lock(&intel_pstate_limits_lock);
703
704 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
705 u64 value;
706
707 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
708 if (ret)
709 goto return_pref;
710
711 value &= ~GENMASK_ULL(31, 24);
712
713 /*
714 * If epp is not default, convert from index into
715 * energy_perf_strings to epp value, by shifting 6
716 * bits left to use only top two bits in epp.
717 * The resultant epp need to shifted by 24 bits to
718 * epp position in MSR_HWP_REQUEST.
719 */
720 if (epp == -EINVAL)
721 epp = (pref_index - 1) << 6;
722
723 value |= (u64)epp << 24;
724 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
725 } else {
726 if (epp == -EINVAL)
727 epp = (pref_index - 1) << 2;
728 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
729 }
730return_pref:
731 mutex_unlock(&intel_pstate_limits_lock);
732
733 return ret;
734}
735
736static ssize_t show_energy_performance_available_preferences(
737 struct cpufreq_policy *policy, char *buf)
738{
739 int i = 0;
740 int ret = 0;
741
742 while (energy_perf_strings[i] != NULL)
743 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
744
745 ret += sprintf(&buf[ret], "\n");
746
747 return ret;
748}
749
750cpufreq_freq_attr_ro(energy_performance_available_preferences);
751
752static ssize_t store_energy_performance_preference(
753 struct cpufreq_policy *policy, const char *buf, size_t count)
754{
755 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
756 char str_preference[21];
757 int ret, i = 0;
758
759 ret = sscanf(buf, "%20s", str_preference);
760 if (ret != 1)
761 return -EINVAL;
762
763 while (energy_perf_strings[i] != NULL) {
764 if (!strcmp(str_preference, energy_perf_strings[i])) {
765 intel_pstate_set_energy_pref_index(cpu_data, i);
766 return count;
767 }
768 ++i;
769 }
770
771 return -EINVAL;
772}
773
774static ssize_t show_energy_performance_preference(
775 struct cpufreq_policy *policy, char *buf)
776{
777 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
778 int preference;
779
780 preference = intel_pstate_get_energy_pref_index(cpu_data);
781 if (preference < 0)
782 return preference;
783
784 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
785}
786
787cpufreq_freq_attr_rw(energy_performance_preference);
788
789static struct freq_attr *hwp_cpufreq_attrs[] = {
790 &energy_performance_preference,
791 &energy_performance_available_preferences,
792 NULL,
793};
794
2bfc4cbb 795static void intel_pstate_hwp_set(unsigned int cpu)
2f86dc4c 796{
2bfc4cbb
RW
797 struct cpudata *cpu_data = all_cpu_data[cpu];
798 int min, hw_min, max, hw_max;
74da56ce 799 u64 value, cap;
2bfc4cbb 800 s16 epp;
74da56ce 801
2bfc4cbb
RW
802 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
803 hw_min = HWP_LOWEST_PERF(cap);
804 if (global.no_turbo)
805 hw_max = HWP_GUARANTEED_PERF(cap);
806 else
807 hw_max = HWP_HIGHEST_PERF(cap);
eae48f04 808
2bfc4cbb
RW
809 max = fp_ext_toint(hw_max * cpu_data->max_perf);
810 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
811 min = max;
812 else
813 min = fp_ext_toint(hw_max * cpu_data->min_perf);
3f8ed54a 814
2bfc4cbb 815 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
2f86dc4c 816
2bfc4cbb
RW
817 value &= ~HWP_MIN_PERF(~0L);
818 value |= HWP_MIN_PERF(min);
8442885f 819
2bfc4cbb
RW
820 value &= ~HWP_MAX_PERF(~0L);
821 value |= HWP_MAX_PERF(max);
8442885f 822
2bfc4cbb
RW
823 if (cpu_data->epp_policy == cpu_data->policy)
824 goto skip_epp;
8442885f 825
2bfc4cbb 826 cpu_data->epp_policy = cpu_data->policy;
984edbdc 827
2bfc4cbb
RW
828 if (cpu_data->epp_saved >= 0) {
829 epp = cpu_data->epp_saved;
830 cpu_data->epp_saved = -EINVAL;
831 goto update_epp;
832 }
8442885f 833
2bfc4cbb
RW
834 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
835 epp = intel_pstate_get_epp(cpu_data, value);
836 cpu_data->epp_powersave = epp;
837 /* If EPP read was failed, then don't try to write */
838 if (epp < 0)
839 goto skip_epp;
8442885f 840
2bfc4cbb
RW
841 epp = 0;
842 } else {
843 /* skip setting EPP, when saved value is invalid */
844 if (cpu_data->epp_powersave < 0)
845 goto skip_epp;
8442885f 846
2bfc4cbb
RW
847 /*
848 * No need to restore EPP when it is not zero. This
849 * means:
850 * - Policy is not changed
851 * - user has manually changed
852 * - Error reading EPB
853 */
854 epp = intel_pstate_get_epp(cpu_data, value);
855 if (epp)
856 goto skip_epp;
8442885f 857
2bfc4cbb
RW
858 epp = cpu_data->epp_powersave;
859 }
984edbdc 860update_epp:
2bfc4cbb
RW
861 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
862 value &= ~GENMASK_ULL(31, 24);
863 value |= (u64)epp << 24;
864 } else {
865 intel_pstate_set_epb(cpu, epp);
2f86dc4c 866 }
2bfc4cbb
RW
867skip_epp:
868 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
41cfd64c 869}
2f86dc4c 870
984edbdc
SP
871static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
872{
873 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
874
875 if (!hwp_active)
876 return 0;
877
878 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
879
880 return 0;
881}
882
8442885f
SP
883static int intel_pstate_resume(struct cpufreq_policy *policy)
884{
885 if (!hwp_active)
886 return 0;
887
aa439248
RW
888 mutex_lock(&intel_pstate_limits_lock);
889
8442885f 890 all_cpu_data[policy->cpu]->epp_policy = 0;
2bfc4cbb 891 intel_pstate_hwp_set(policy->cpu);
aa439248
RW
892
893 mutex_unlock(&intel_pstate_limits_lock);
894
5f98ced1 895 return 0;
8442885f
SP
896}
897
111b8b3f 898static void intel_pstate_update_policies(void)
41cfd64c 899{
111b8b3f
RW
900 int cpu;
901
902 for_each_possible_cpu(cpu)
903 cpufreq_update_policy(cpu);
2f86dc4c
DB
904}
905
93f0822d
DB
906/************************** debugfs begin ************************/
907static int pid_param_set(void *data, u64 val)
908{
4ddd0146
RW
909 unsigned int cpu;
910
93f0822d 911 *(u32 *)data = val;
6e7408ac 912 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
913 for_each_possible_cpu(cpu)
914 if (all_cpu_data[cpu])
ff35f02e 915 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 916
93f0822d
DB
917 return 0;
918}
845c1cbe 919
93f0822d
DB
920static int pid_param_get(void *data, u64 *val)
921{
922 *val = *(u32 *)data;
923 return 0;
924}
2d8d1f18 925DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 926
fb1fe104
RW
927static struct dentry *debugfs_parent;
928
93f0822d
DB
929struct pid_param {
930 char *name;
931 void *value;
fb1fe104 932 struct dentry *dentry;
93f0822d
DB
933};
934
935static struct pid_param pid_files[] = {
fb1fe104
RW
936 {"sample_rate_ms", &pid_params.sample_rate_ms, },
937 {"d_gain_pct", &pid_params.d_gain_pct, },
938 {"i_gain_pct", &pid_params.i_gain_pct, },
939 {"deadband", &pid_params.deadband, },
940 {"setpoint", &pid_params.setpoint, },
941 {"p_gain_pct", &pid_params.p_gain_pct, },
942 {NULL, NULL, }
93f0822d
DB
943};
944
fb1fe104 945static void intel_pstate_debug_expose_params(void)
93f0822d 946{
fb1fe104 947 int i;
93f0822d
DB
948
949 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
950 if (IS_ERR_OR_NULL(debugfs_parent))
951 return;
fb1fe104
RW
952
953 for (i = 0; pid_files[i].name; i++) {
954 struct dentry *dentry;
955
956 dentry = debugfs_create_file(pid_files[i].name, 0660,
957 debugfs_parent, pid_files[i].value,
958 &fops_pid_param);
959 if (!IS_ERR(dentry))
960 pid_files[i].dentry = dentry;
93f0822d
DB
961 }
962}
963
fb1fe104
RW
964static void intel_pstate_debug_hide_params(void)
965{
966 int i;
967
968 if (IS_ERR_OR_NULL(debugfs_parent))
969 return;
970
971 for (i = 0; pid_files[i].name; i++) {
972 debugfs_remove(pid_files[i].dentry);
973 pid_files[i].dentry = NULL;
93f0822d 974 }
fb1fe104
RW
975
976 debugfs_remove(debugfs_parent);
977 debugfs_parent = NULL;
93f0822d
DB
978}
979
980/************************** debugfs end ************************/
981
982/************************** sysfs begin ************************/
983#define show_one(file_name, object) \
984 static ssize_t show_##file_name \
985 (struct kobject *kobj, struct attribute *attr, char *buf) \
986 { \
7de32556 987 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
988 }
989
fb1fe104
RW
990static ssize_t intel_pstate_show_status(char *buf);
991static int intel_pstate_update_status(const char *buf, size_t size);
992
993static ssize_t show_status(struct kobject *kobj,
994 struct attribute *attr, char *buf)
995{
996 ssize_t ret;
997
998 mutex_lock(&intel_pstate_driver_lock);
999 ret = intel_pstate_show_status(buf);
1000 mutex_unlock(&intel_pstate_driver_lock);
1001
1002 return ret;
1003}
1004
1005static ssize_t store_status(struct kobject *a, struct attribute *b,
1006 const char *buf, size_t count)
1007{
1008 char *p = memchr(buf, '\n', count);
1009 int ret;
1010
1011 mutex_lock(&intel_pstate_driver_lock);
1012 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1013 mutex_unlock(&intel_pstate_driver_lock);
1014
1015 return ret < 0 ? ret : count;
1016}
1017
d01b1f48
KCA
1018static ssize_t show_turbo_pct(struct kobject *kobj,
1019 struct attribute *attr, char *buf)
1020{
1021 struct cpudata *cpu;
1022 int total, no_turbo, turbo_pct;
1023 uint32_t turbo_fp;
1024
0c30b65b
RW
1025 mutex_lock(&intel_pstate_driver_lock);
1026
ee8df89a 1027 if (!intel_pstate_driver) {
0c30b65b
RW
1028 mutex_unlock(&intel_pstate_driver_lock);
1029 return -EAGAIN;
1030 }
1031
d01b1f48
KCA
1032 cpu = all_cpu_data[0];
1033
1034 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1035 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1036 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1037 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1038
1039 mutex_unlock(&intel_pstate_driver_lock);
1040
d01b1f48
KCA
1041 return sprintf(buf, "%u\n", turbo_pct);
1042}
1043
0522424e
KCA
1044static ssize_t show_num_pstates(struct kobject *kobj,
1045 struct attribute *attr, char *buf)
1046{
1047 struct cpudata *cpu;
1048 int total;
1049
0c30b65b
RW
1050 mutex_lock(&intel_pstate_driver_lock);
1051
ee8df89a 1052 if (!intel_pstate_driver) {
0c30b65b
RW
1053 mutex_unlock(&intel_pstate_driver_lock);
1054 return -EAGAIN;
1055 }
1056
0522424e
KCA
1057 cpu = all_cpu_data[0];
1058 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1059
1060 mutex_unlock(&intel_pstate_driver_lock);
1061
0522424e
KCA
1062 return sprintf(buf, "%u\n", total);
1063}
1064
4521e1a0
GM
1065static ssize_t show_no_turbo(struct kobject *kobj,
1066 struct attribute *attr, char *buf)
1067{
1068 ssize_t ret;
1069
0c30b65b
RW
1070 mutex_lock(&intel_pstate_driver_lock);
1071
ee8df89a 1072 if (!intel_pstate_driver) {
0c30b65b
RW
1073 mutex_unlock(&intel_pstate_driver_lock);
1074 return -EAGAIN;
1075 }
1076
4521e1a0 1077 update_turbo_state();
7de32556
RW
1078 if (global.turbo_disabled)
1079 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1080 else
7de32556 1081 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1082
0c30b65b
RW
1083 mutex_unlock(&intel_pstate_driver_lock);
1084
4521e1a0
GM
1085 return ret;
1086}
1087
93f0822d 1088static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1089 const char *buf, size_t count)
93f0822d
DB
1090{
1091 unsigned int input;
1092 int ret;
845c1cbe 1093
93f0822d
DB
1094 ret = sscanf(buf, "%u", &input);
1095 if (ret != 1)
1096 return -EINVAL;
4521e1a0 1097
0c30b65b
RW
1098 mutex_lock(&intel_pstate_driver_lock);
1099
ee8df89a 1100 if (!intel_pstate_driver) {
0c30b65b
RW
1101 mutex_unlock(&intel_pstate_driver_lock);
1102 return -EAGAIN;
1103 }
1104
a410c03d
SP
1105 mutex_lock(&intel_pstate_limits_lock);
1106
4521e1a0 1107 update_turbo_state();
7de32556 1108 if (global.turbo_disabled) {
4836df17 1109 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1110 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1111 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1112 return -EPERM;
dd5fbf70 1113 }
2f86dc4c 1114
7de32556 1115 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1116
c5a2ee7d
RW
1117 if (global.no_turbo) {
1118 struct cpudata *cpu = all_cpu_data[0];
1119 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1120
1121 /* Squash the global minimum into the permitted range. */
1122 if (global.min_perf_pct > pct)
1123 global.min_perf_pct = pct;
1124 }
1125
cd59b4be
RW
1126 mutex_unlock(&intel_pstate_limits_lock);
1127
7de32556
RW
1128 intel_pstate_update_policies();
1129
0c30b65b
RW
1130 mutex_unlock(&intel_pstate_driver_lock);
1131
93f0822d
DB
1132 return count;
1133}
1134
1135static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1136 const char *buf, size_t count)
93f0822d
DB
1137{
1138 unsigned int input;
1139 int ret;
845c1cbe 1140
93f0822d
DB
1141 ret = sscanf(buf, "%u", &input);
1142 if (ret != 1)
1143 return -EINVAL;
1144
0c30b65b
RW
1145 mutex_lock(&intel_pstate_driver_lock);
1146
ee8df89a 1147 if (!intel_pstate_driver) {
0c30b65b
RW
1148 mutex_unlock(&intel_pstate_driver_lock);
1149 return -EAGAIN;
1150 }
1151
a410c03d
SP
1152 mutex_lock(&intel_pstate_limits_lock);
1153
c5a2ee7d 1154 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1155
cd59b4be
RW
1156 mutex_unlock(&intel_pstate_limits_lock);
1157
7de32556
RW
1158 intel_pstate_update_policies();
1159
0c30b65b
RW
1160 mutex_unlock(&intel_pstate_driver_lock);
1161
93f0822d
DB
1162 return count;
1163}
1164
1165static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1166 const char *buf, size_t count)
93f0822d
DB
1167{
1168 unsigned int input;
1169 int ret;
845c1cbe 1170
93f0822d
DB
1171 ret = sscanf(buf, "%u", &input);
1172 if (ret != 1)
1173 return -EINVAL;
a0475992 1174
0c30b65b
RW
1175 mutex_lock(&intel_pstate_driver_lock);
1176
ee8df89a 1177 if (!intel_pstate_driver) {
0c30b65b
RW
1178 mutex_unlock(&intel_pstate_driver_lock);
1179 return -EAGAIN;
1180 }
1181
a410c03d
SP
1182 mutex_lock(&intel_pstate_limits_lock);
1183
c5a2ee7d
RW
1184 global.min_perf_pct = clamp_t(int, input,
1185 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1186
cd59b4be
RW
1187 mutex_unlock(&intel_pstate_limits_lock);
1188
7de32556
RW
1189 intel_pstate_update_policies();
1190
0c30b65b
RW
1191 mutex_unlock(&intel_pstate_driver_lock);
1192
93f0822d
DB
1193 return count;
1194}
1195
93f0822d
DB
1196show_one(max_perf_pct, max_perf_pct);
1197show_one(min_perf_pct, min_perf_pct);
1198
fb1fe104 1199define_one_global_rw(status);
93f0822d
DB
1200define_one_global_rw(no_turbo);
1201define_one_global_rw(max_perf_pct);
1202define_one_global_rw(min_perf_pct);
d01b1f48 1203define_one_global_ro(turbo_pct);
0522424e 1204define_one_global_ro(num_pstates);
93f0822d
DB
1205
1206static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1207 &status.attr,
93f0822d 1208 &no_turbo.attr,
d01b1f48 1209 &turbo_pct.attr,
0522424e 1210 &num_pstates.attr,
93f0822d
DB
1211 NULL
1212};
1213
1214static struct attribute_group intel_pstate_attr_group = {
1215 .attrs = intel_pstate_attributes,
1216};
93f0822d 1217
317dd50e 1218static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1219{
317dd50e 1220 struct kobject *intel_pstate_kobject;
93f0822d
DB
1221 int rc;
1222
1223 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1224 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1225 if (WARN_ON(!intel_pstate_kobject))
1226 return;
1227
2d8d1f18 1228 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1229 if (WARN_ON(rc))
1230 return;
1231
1232 /*
1233 * If per cpu limits are enforced there are no global limits, so
1234 * return without creating max/min_perf_pct attributes
1235 */
1236 if (per_cpu_limits)
1237 return;
1238
1239 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1240 WARN_ON(rc);
1241
1242 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1243 WARN_ON(rc);
1244
93f0822d 1245}
93f0822d 1246/************************** sysfs end ************************/
2f86dc4c 1247
ba88d433 1248static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1249{
f05c9665 1250 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1251 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1252 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1253
ba88d433 1254 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1255 cpudata->epp_policy = 0;
984edbdc
SP
1256 if (cpudata->epp_default == -EINVAL)
1257 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1258}
1259
6e978b22
SP
1260#define MSR_IA32_POWER_CTL_BIT_EE 19
1261
1262/* Disable energy efficiency optimization */
1263static void intel_pstate_disable_ee(int cpu)
1264{
1265 u64 power_ctl;
1266 int ret;
1267
1268 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1269 if (ret)
1270 return;
1271
1272 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1273 pr_info("Disabling energy efficiency optimization\n");
1274 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1275 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1276 }
1277}
1278
938d21a2 1279static int atom_get_min_pstate(void)
19e77c28
DB
1280{
1281 u64 value;
845c1cbe 1282
92134bdb 1283 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1284 return (value >> 8) & 0x7F;
19e77c28
DB
1285}
1286
938d21a2 1287static int atom_get_max_pstate(void)
19e77c28
DB
1288{
1289 u64 value;
845c1cbe 1290
92134bdb 1291 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1292 return (value >> 16) & 0x7F;
19e77c28 1293}
93f0822d 1294
938d21a2 1295static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1296{
1297 u64 value;
845c1cbe 1298
92134bdb 1299 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1300 return value & 0x7F;
61d8d2ab
DB
1301}
1302
fdfdb2b1 1303static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1304{
1305 u64 val;
1306 int32_t vid_fp;
1307 u32 vid;
1308
144c8e17 1309 val = (u64)pstate << 8;
7de32556 1310 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1311 val |= (u64)1 << 32;
1312
1313 vid_fp = cpudata->vid.min + mul_fp(
1314 int_tofp(pstate - cpudata->pstate.min_pstate),
1315 cpudata->vid.ratio);
1316
1317 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1318 vid = ceiling_fp(vid_fp);
007bea09 1319
21855ff5
DB
1320 if (pstate > cpudata->pstate.max_pstate)
1321 vid = cpudata->vid.turbo;
1322
fdfdb2b1 1323 return val | vid;
007bea09
DB
1324}
1325
1421df63 1326static int silvermont_get_scaling(void)
b27580b0
DB
1327{
1328 u64 value;
1329 int i;
1421df63
PL
1330 /* Defined in Table 35-6 from SDM (Sept 2015) */
1331 static int silvermont_freq_table[] = {
1332 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1333
1334 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1335 i = value & 0x7;
1336 WARN_ON(i > 4);
b27580b0 1337
1421df63
PL
1338 return silvermont_freq_table[i];
1339}
b27580b0 1340
1421df63
PL
1341static int airmont_get_scaling(void)
1342{
1343 u64 value;
1344 int i;
1345 /* Defined in Table 35-10 from SDM (Sept 2015) */
1346 static int airmont_freq_table[] = {
1347 83300, 100000, 133300, 116700, 80000,
1348 93300, 90000, 88900, 87500};
1349
1350 rdmsrl(MSR_FSB_FREQ, value);
1351 i = value & 0xF;
1352 WARN_ON(i > 8);
1353
1354 return airmont_freq_table[i];
b27580b0
DB
1355}
1356
938d21a2 1357static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1358{
1359 u64 value;
1360
92134bdb 1361 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1362 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1363 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1364 cpudata->vid.ratio = div_fp(
1365 cpudata->vid.max - cpudata->vid.min,
1366 int_tofp(cpudata->pstate.max_pstate -
1367 cpudata->pstate.min_pstate));
21855ff5 1368
92134bdb 1369 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1370 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1371}
1372
016c8150 1373static int core_get_min_pstate(void)
93f0822d
DB
1374{
1375 u64 value;
845c1cbe 1376
05e99c8c 1377 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1378 return (value >> 40) & 0xFF;
1379}
1380
3bcc6fa9 1381static int core_get_max_pstate_physical(void)
93f0822d
DB
1382{
1383 u64 value;
845c1cbe 1384
05e99c8c 1385 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1386 return (value >> 8) & 0xFF;
1387}
1388
8fc7554a
SP
1389static int core_get_tdp_ratio(u64 plat_info)
1390{
1391 /* Check how many TDP levels present */
1392 if (plat_info & 0x600000000) {
1393 u64 tdp_ctrl;
1394 u64 tdp_ratio;
1395 int tdp_msr;
1396 int err;
1397
1398 /* Get the TDP level (0, 1, 2) to get ratios */
1399 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1400 if (err)
1401 return err;
1402
1403 /* TDP MSR are continuous starting at 0x648 */
1404 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1405 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1406 if (err)
1407 return err;
1408
1409 /* For level 1 and 2, bits[23:16] contain the ratio */
1410 if (tdp_ctrl & 0x03)
1411 tdp_ratio >>= 16;
1412
1413 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1414 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1415
1416 return (int)tdp_ratio;
1417 }
1418
1419 return -ENXIO;
1420}
1421
016c8150 1422static int core_get_max_pstate(void)
93f0822d 1423{
6a35fc2d
SP
1424 u64 tar;
1425 u64 plat_info;
1426 int max_pstate;
8fc7554a 1427 int tdp_ratio;
6a35fc2d
SP
1428 int err;
1429
1430 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1431 max_pstate = (plat_info >> 8) & 0xFF;
1432
8fc7554a
SP
1433 tdp_ratio = core_get_tdp_ratio(plat_info);
1434 if (tdp_ratio <= 0)
1435 return max_pstate;
1436
1437 if (hwp_active) {
1438 /* Turbo activation ratio is not used on HWP platforms */
1439 return tdp_ratio;
1440 }
1441
6a35fc2d
SP
1442 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1443 if (!err) {
8fc7554a
SP
1444 int tar_levels;
1445
6a35fc2d 1446 /* Do some sanity checking for safety */
8fc7554a
SP
1447 tar_levels = tar & 0xff;
1448 if (tdp_ratio - 1 == tar_levels) {
1449 max_pstate = tar_levels;
1450 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1451 }
1452 }
845c1cbe 1453
6a35fc2d 1454 return max_pstate;
93f0822d
DB
1455}
1456
016c8150 1457static int core_get_turbo_pstate(void)
93f0822d
DB
1458{
1459 u64 value;
1460 int nont, ret;
845c1cbe 1461
100cf6f2 1462 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1463 nont = core_get_max_pstate();
285cb990 1464 ret = (value) & 255;
93f0822d
DB
1465 if (ret <= nont)
1466 ret = nont;
1467 return ret;
1468}
1469
b27580b0
DB
1470static inline int core_get_scaling(void)
1471{
1472 return 100000;
1473}
1474
fdfdb2b1 1475static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1476{
1477 u64 val;
1478
144c8e17 1479 val = (u64)pstate << 8;
7de32556 1480 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1481 val |= (u64)1 << 32;
1482
fdfdb2b1 1483 return val;
016c8150
DB
1484}
1485
b34ef932
DC
1486static int knl_get_turbo_pstate(void)
1487{
1488 u64 value;
1489 int nont, ret;
1490
100cf6f2 1491 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1492 nont = core_get_max_pstate();
1493 ret = (((value) >> 8) & 0xFF);
1494 if (ret <= nont)
1495 ret = nont;
1496 return ret;
1497}
1498
b02aabe8 1499static int intel_pstate_get_base_pstate(struct cpudata *cpu)
93f0822d 1500{
b02aabe8
RW
1501 return global.no_turbo || global.turbo_disabled ?
1502 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
93f0822d
DB
1503}
1504
a6c6ead1 1505static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1506{
bc95a454
RW
1507 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1508 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1509 /*
1510 * Generally, there is no guarantee that this code will always run on
1511 * the CPU being updated, so force the register update to run on the
1512 * right CPU.
1513 */
1514 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1515 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1516}
1517
a6c6ead1
RW
1518static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1519{
1520 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1521}
1522
1523static void intel_pstate_max_within_limits(struct cpudata *cpu)
1524{
b02aabe8 1525 int pstate;
a6c6ead1
RW
1526
1527 update_turbo_state();
b02aabe8
RW
1528 pstate = intel_pstate_get_base_pstate(cpu);
1529 pstate = max(cpu->pstate.min_pstate,
1530 fp_ext_toint(pstate * cpu->max_perf));
1531 intel_pstate_set_pstate(cpu, pstate);
a6c6ead1
RW
1532}
1533
93f0822d
DB
1534static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1535{
016c8150
DB
1536 cpu->pstate.min_pstate = pstate_funcs.get_min();
1537 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1538 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1539 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1540 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1541 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1542 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1543
007bea09
DB
1544 if (pstate_funcs.get_vid)
1545 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1546
1547 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1548}
1549
a1c9787d 1550static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1551{
6b17ddb2 1552 struct sample *sample = &cpu->sample;
e66c1768 1553
a1c9787d 1554 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1555}
1556
4fec7ad5 1557static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1558{
93f0822d 1559 u64 aperf, mperf;
4ab60c3f 1560 unsigned long flags;
4055fad3 1561 u64 tsc;
93f0822d 1562
4ab60c3f 1563 local_irq_save(flags);
93f0822d
DB
1564 rdmsrl(MSR_IA32_APERF, aperf);
1565 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1566 tsc = rdtsc();
4fec7ad5 1567 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1568 local_irq_restore(flags);
4fec7ad5 1569 return false;
8e601a9f 1570 }
4ab60c3f 1571 local_irq_restore(flags);
b69880f9 1572
c4ee841f 1573 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1574 cpu->sample.time = time;
d37e2b76
DB
1575 cpu->sample.aperf = aperf;
1576 cpu->sample.mperf = mperf;
4055fad3 1577 cpu->sample.tsc = tsc;
d37e2b76
DB
1578 cpu->sample.aperf -= cpu->prev_aperf;
1579 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1580 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1581
93f0822d
DB
1582 cpu->prev_aperf = aperf;
1583 cpu->prev_mperf = mperf;
4055fad3 1584 cpu->prev_tsc = tsc;
febce40f
RW
1585 /*
1586 * First time this function is invoked in a given cycle, all of the
1587 * previous sample data fields are equal to zero or stale and they must
1588 * be populated with meaningful numbers for things to work, so assume
1589 * that sample.time will always be reset before setting the utilization
1590 * update hook and make the caller skip the sample then.
1591 */
eabd22c6
RW
1592 if (cpu->last_sample_time) {
1593 intel_pstate_calc_avg_perf(cpu);
1594 return true;
1595 }
1596 return false;
93f0822d
DB
1597}
1598
8fa520af
PL
1599static inline int32_t get_avg_frequency(struct cpudata *cpu)
1600{
a1c9787d
RW
1601 return mul_ext_fp(cpu->sample.core_avg_perf,
1602 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1603}
1604
bdcaa23f
PL
1605static inline int32_t get_avg_pstate(struct cpudata *cpu)
1606{
8edb0a6e
RW
1607 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1608 cpu->sample.core_avg_perf);
bdcaa23f
PL
1609}
1610
e70eed2b
PL
1611static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1612{
1613 struct sample *sample = &cpu->sample;
09c448d3 1614 int32_t busy_frac, boost;
0843e83c 1615 int target, avg_pstate;
e70eed2b 1616
67dd9bf4
RW
1617 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1618 return cpu->pstate.turbo_pstate;
1619
09c448d3 1620 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1621
09c448d3
RW
1622 boost = cpu->iowait_boost;
1623 cpu->iowait_boost >>= 1;
63d1d656 1624
09c448d3
RW
1625 if (busy_frac < boost)
1626 busy_frac = boost;
63d1d656 1627
09c448d3 1628 sample->busy_scaled = busy_frac * 100;
0843e83c 1629
7de32556 1630 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1631 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1632 target += target >> 2;
1633 target = mul_fp(target, busy_frac);
1634 if (target < cpu->pstate.min_pstate)
1635 target = cpu->pstate.min_pstate;
1636
1637 /*
1638 * If the average P-state during the previous cycle was higher than the
1639 * current target, add 50% of the difference to the target to reduce
1640 * possible performance oscillations and offset possible performance
1641 * loss related to moving the workload from one CPU to another within
1642 * a package/module.
1643 */
1644 avg_pstate = get_avg_pstate(cpu);
1645 if (avg_pstate > target)
1646 target += (avg_pstate - target) >> 1;
1647
1648 return target;
e70eed2b
PL
1649}
1650
157386b6 1651static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1652{
1aa7a6e2 1653 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1654 u64 duration_ns;
93f0822d 1655
67dd9bf4
RW
1656 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1657 return cpu->pstate.turbo_pstate;
1658
e0d4c8f8 1659 /*
f00593a4
RW
1660 * perf_scaled is the ratio of the average P-state during the last
1661 * sampling period to the P-state requested last time (in percent).
1662 *
1663 * That measures the system's response to the previous P-state
1664 * selection.
e0d4c8f8 1665 */
22590efb
RW
1666 max_pstate = cpu->pstate.max_pstate_physical;
1667 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1668 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1669 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1670
e0d4c8f8 1671 /*
a4675fbc
RW
1672 * Since our utilization update callback will not run unless we are
1673 * in C0, check if the actual elapsed time is significantly greater (3x)
1674 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1675 * enough period of time to adjust our performance metric.
e0d4c8f8 1676 */
a4675fbc 1677 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1678 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1679 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1680 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1681 } else {
1682 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1683 if (sample_ratio < int_tofp(1))
1aa7a6e2 1684 perf_scaled = 0;
c4ee841f
DB
1685 }
1686
1aa7a6e2
RW
1687 cpu->sample.busy_scaled = perf_scaled;
1688 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1689}
1690
001c76f0 1691static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1 1692{
b02aabe8
RW
1693 int max_pstate = intel_pstate_get_base_pstate(cpu);
1694 int min_pstate;
fdfdb2b1 1695
b02aabe8
RW
1696 min_pstate = max(cpu->pstate.min_pstate,
1697 fp_ext_toint(max_pstate * cpu->min_perf));
1698 max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1699 return clamp_t(int, pstate, min_pstate, max_pstate);
001c76f0
RW
1700}
1701
1702static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1703{
fdfdb2b1
RW
1704 if (pstate == cpu->pstate.current_pstate)
1705 return;
1706
bc95a454 1707 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1708 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1709}
1710
67dd9bf4 1711static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
93f0822d 1712{
67dd9bf4 1713 int from = cpu->pstate.current_pstate;
4055fad3
DS
1714 struct sample *sample;
1715
001c76f0
RW
1716 update_turbo_state();
1717
64078299
RW
1718 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1719 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1720 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1721
1722 sample = &cpu->sample;
a1c9787d 1723 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1724 fp_toint(sample->busy_scaled),
4055fad3
DS
1725 from,
1726 cpu->pstate.current_pstate,
1727 sample->mperf,
1728 sample->aperf,
1729 sample->tsc,
3ba7bcaa
SP
1730 get_avg_frequency(cpu),
1731 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1732}
1733
eabd22c6
RW
1734static void intel_pstate_update_util_hwp(struct update_util_data *data,
1735 u64 time, unsigned int flags)
1736{
1737 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1738 u64 delta_ns = time - cpu->sample.time;
1739
1740 if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1741 intel_pstate_sample(cpu, time);
1742}
1743
1744static void intel_pstate_update_util_pid(struct update_util_data *data,
1745 u64 time, unsigned int flags)
1746{
1747 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1748 u64 delta_ns = time - cpu->sample.time;
1749
1750 if ((s64)delta_ns < pid_params.sample_rate_ns)
1751 return;
1752
67dd9bf4
RW
1753 if (intel_pstate_sample(cpu, time)) {
1754 int target_pstate;
1755
1756 target_pstate = get_target_pstate_use_performance(cpu);
1757 intel_pstate_adjust_pstate(cpu, target_pstate);
1758 }
eabd22c6
RW
1759}
1760
a4675fbc 1761static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1762 unsigned int flags)
93f0822d 1763{
a4675fbc 1764 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1765 u64 delta_ns;
1766
eabd22c6
RW
1767 if (flags & SCHED_CPUFREQ_IOWAIT) {
1768 cpu->iowait_boost = int_tofp(1);
1769 } else if (cpu->iowait_boost) {
1770 /* Clear iowait_boost if the CPU may have been idle. */
1771 delta_ns = time - cpu->last_update;
1772 if (delta_ns > TICK_NSEC)
1773 cpu->iowait_boost = 0;
09c448d3 1774 }
eabd22c6 1775 cpu->last_update = time;
09c448d3 1776 delta_ns = time - cpu->sample.time;
eabd22c6
RW
1777 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1778 return;
4fec7ad5 1779
67dd9bf4
RW
1780 if (intel_pstate_sample(cpu, time)) {
1781 int target_pstate;
93f0822d 1782
67dd9bf4
RW
1783 target_pstate = get_target_pstate_use_cpu_load(cpu);
1784 intel_pstate_adjust_pstate(cpu, target_pstate);
1785 }
1786}
eabd22c6 1787
2f49afc2
RW
1788static struct pstate_funcs core_funcs = {
1789 .get_max = core_get_max_pstate,
1790 .get_max_physical = core_get_max_pstate_physical,
1791 .get_min = core_get_min_pstate,
1792 .get_turbo = core_get_turbo_pstate,
1793 .get_scaling = core_get_scaling,
1794 .get_val = core_get_val,
1795 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1796};
1797
2f49afc2
RW
1798static const struct pstate_funcs silvermont_funcs = {
1799 .get_max = atom_get_max_pstate,
1800 .get_max_physical = atom_get_max_pstate,
1801 .get_min = atom_get_min_pstate,
1802 .get_turbo = atom_get_turbo_pstate,
1803 .get_val = atom_get_val,
1804 .get_scaling = silvermont_get_scaling,
1805 .get_vid = atom_get_vid,
1806 .update_util = intel_pstate_update_util,
de4a76cb
RW
1807};
1808
2f49afc2
RW
1809static const struct pstate_funcs airmont_funcs = {
1810 .get_max = atom_get_max_pstate,
1811 .get_max_physical = atom_get_max_pstate,
1812 .get_min = atom_get_min_pstate,
1813 .get_turbo = atom_get_turbo_pstate,
1814 .get_val = atom_get_val,
1815 .get_scaling = airmont_get_scaling,
1816 .get_vid = atom_get_vid,
1817 .update_util = intel_pstate_update_util,
de4a76cb
RW
1818};
1819
2f49afc2
RW
1820static const struct pstate_funcs knl_funcs = {
1821 .get_max = core_get_max_pstate,
1822 .get_max_physical = core_get_max_pstate_physical,
1823 .get_min = core_get_min_pstate,
1824 .get_turbo = knl_get_turbo_pstate,
1825 .get_scaling = core_get_scaling,
1826 .get_val = core_get_val,
1827 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1828};
1829
2f49afc2
RW
1830static const struct pstate_funcs bxt_funcs = {
1831 .get_max = core_get_max_pstate,
1832 .get_max_physical = core_get_max_pstate_physical,
1833 .get_min = core_get_min_pstate,
1834 .get_turbo = core_get_turbo_pstate,
1835 .get_scaling = core_get_scaling,
1836 .get_val = core_get_val,
1837 .update_util = intel_pstate_update_util,
de4a76cb
RW
1838};
1839
93f0822d 1840#define ICPU(model, policy) \
6cbd7ee1
DB
1841 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1842 (unsigned long)&policy }
93f0822d
DB
1843
1844static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2f49afc2
RW
1845 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1846 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1847 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1848 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1849 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1850 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1851 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1852 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1853 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1854 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1855 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1856 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1857 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1858 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1859 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1860 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1861 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1862 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1863 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
630e5757 1864 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
93f0822d
DB
1865 {}
1866};
1867MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1868
29327c84 1869static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2f49afc2
RW
1870 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1871 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1872 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
2f86dc4c
DB
1873 {}
1874};
1875
6e978b22 1876static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2f49afc2 1877 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
6e978b22
SP
1878 {}
1879};
1880
8ca6ce37
RW
1881static bool pid_in_use(void);
1882
93f0822d
DB
1883static int intel_pstate_init_cpu(unsigned int cpunum)
1884{
93f0822d
DB
1885 struct cpudata *cpu;
1886
eae48f04
SP
1887 cpu = all_cpu_data[cpunum];
1888
1889 if (!cpu) {
c5a2ee7d 1890 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1891 if (!cpu)
1892 return -ENOMEM;
1893
1894 all_cpu_data[cpunum] = cpu;
eae48f04 1895
984edbdc
SP
1896 cpu->epp_default = -EINVAL;
1897 cpu->epp_powersave = -EINVAL;
1898 cpu->epp_saved = -EINVAL;
eae48f04 1899 }
93f0822d
DB
1900
1901 cpu = all_cpu_data[cpunum];
1902
93f0822d 1903 cpu->cpu = cpunum;
ba88d433 1904
a4675fbc 1905 if (hwp_active) {
6e978b22
SP
1906 const struct x86_cpu_id *id;
1907
1908 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1909 if (id)
1910 intel_pstate_disable_ee(cpunum);
1911
ba88d433 1912 intel_pstate_hwp_enable(cpu);
8ca6ce37 1913 } else if (pid_in_use()) {
694cb173 1914 intel_pstate_pid_reset(cpu);
a4675fbc 1915 }
ba88d433 1916
179e8471 1917 intel_pstate_get_cpu_pstates(cpu);
016c8150 1918
4836df17 1919 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1920
1921 return 0;
1922}
1923
1924static unsigned int intel_pstate_get(unsigned int cpu_num)
1925{
f96fd0c8 1926 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1927
f96fd0c8 1928 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1929}
1930
febce40f 1931static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1932{
febce40f
RW
1933 struct cpudata *cpu = all_cpu_data[cpu_num];
1934
5ab666e0
RW
1935 if (cpu->update_util_set)
1936 return;
1937
febce40f
RW
1938 /* Prevent intel_pstate_update_util() from using stale data. */
1939 cpu->sample.time = 0;
67dd9bf4
RW
1940 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1941 pstate_funcs.update_util);
4578ee7e 1942 cpu->update_util_set = true;
bb6ab52f
RW
1943}
1944
1945static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1946{
4578ee7e
CY
1947 struct cpudata *cpu_data = all_cpu_data[cpu];
1948
1949 if (!cpu_data->update_util_set)
1950 return;
1951
0bed612b 1952 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1953 cpu_data->update_util_set = false;
bb6ab52f
RW
1954 synchronize_sched();
1955}
1956
80b120ca
RW
1957static int intel_pstate_get_max_freq(struct cpudata *cpu)
1958{
1959 return global.turbo_disabled || global.no_turbo ?
1960 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1961}
1962
eae48f04 1963static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1964 struct cpudata *cpu)
eae48f04 1965{
80b120ca 1966 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1967 int32_t max_policy_perf, min_policy_perf;
a410c03d 1968
80b120ca 1969 max_policy_perf = div_ext_fp(policy->max, max_freq);
e4c204ce 1970 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 1971 if (policy->max == policy->min) {
e4c204ce 1972 min_policy_perf = max_policy_perf;
5879f877 1973 } else {
80b120ca 1974 min_policy_perf = div_ext_fp(policy->min, max_freq);
e4c204ce
RW
1975 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1976 0, max_policy_perf);
5879f877 1977 }
eae48f04 1978
e4c204ce 1979 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1980 if (per_cpu_limits) {
e14cf885
RW
1981 cpu->min_perf = min_policy_perf;
1982 cpu->max_perf = max_policy_perf;
c5a2ee7d
RW
1983 } else {
1984 int32_t global_min, global_max;
1985
1986 /* Global limits are in percent of the maximum turbo P-state. */
1987 global_max = percent_ext_fp(global.max_perf_pct);
1988 global_min = percent_ext_fp(global.min_perf_pct);
80b120ca 1989 if (max_freq != cpu->pstate.turbo_freq) {
c5a2ee7d
RW
1990 int32_t turbo_factor;
1991
1992 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1993 cpu->pstate.max_pstate);
1994 global_min = mul_ext_fp(global_min, turbo_factor);
1995 global_max = mul_ext_fp(global_max, turbo_factor);
1996 }
1997 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 1998
e14cf885
RW
1999 cpu->min_perf = max(min_policy_perf, global_min);
2000 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2001 cpu->max_perf = min(max_policy_perf, global_max);
2002 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
c5a2ee7d
RW
2003
2004 /* Make sure min_perf <= max_perf */
e14cf885 2005 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
c5a2ee7d 2006 }
eae48f04 2007
e14cf885
RW
2008 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2009 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2010
2011 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
e14cf885
RW
2012 fp_ext_toint(cpu->max_perf * 100),
2013 fp_ext_toint(cpu->min_perf * 100));
eae48f04
SP
2014}
2015
93f0822d
DB
2016static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2017{
3be9200d
SP
2018 struct cpudata *cpu;
2019
d3929b83
DB
2020 if (!policy->cpuinfo.max_freq)
2021 return -ENODEV;
2022
2c2c1af4
SP
2023 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2024 policy->cpuinfo.max_freq, policy->max);
2025
a6c6ead1 2026 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2027 cpu->policy = policy->policy;
2028
b59fe540
SP
2029 mutex_lock(&intel_pstate_limits_lock);
2030
c5a2ee7d 2031 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2032
2f1d407a 2033 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2034 /*
2035 * NOHZ_FULL CPUs need this as the governor callback may not
2036 * be invoked on them.
2037 */
2038 intel_pstate_clear_update_util_hook(policy->cpu);
2039 intel_pstate_max_within_limits(cpu);
2040 }
2041
bb6ab52f
RW
2042 intel_pstate_set_update_util_hook(policy->cpu);
2043
5f98ced1 2044 if (hwp_active)
2bfc4cbb 2045 intel_pstate_hwp_set(policy->cpu);
2f86dc4c 2046
b59fe540
SP
2047 mutex_unlock(&intel_pstate_limits_lock);
2048
93f0822d
DB
2049 return 0;
2050}
2051
80b120ca
RW
2052static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2053 struct cpudata *cpu)
2054{
2055 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2056 policy->max < policy->cpuinfo.max_freq &&
2057 policy->max > cpu->pstate.max_freq) {
2058 pr_debug("policy->max > max non turbo frequency\n");
2059 policy->max = policy->cpuinfo.max_freq;
2060 }
2061}
2062
93f0822d
DB
2063static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2064{
7d9a8a9f 2065 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2066
2067 update_turbo_state();
80b120ca
RW
2068 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2069 intel_pstate_get_max_freq(cpu));
93f0822d 2070
285cb990 2071 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2072 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2073 return -EINVAL;
2074
80b120ca
RW
2075 intel_pstate_adjust_policy_max(policy, cpu);
2076
93f0822d
DB
2077 return 0;
2078}
2079
001c76f0
RW
2080static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2081{
2082 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2083}
2084
bb18008f 2085static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2086{
001c76f0 2087 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2088
001c76f0 2089 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2090 if (hwp_active)
2091 intel_pstate_hwp_save_state(policy);
2092 else
001c76f0
RW
2093 intel_cpufreq_stop_cpu(policy);
2094}
bb18008f 2095
001c76f0
RW
2096static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2097{
2098 intel_pstate_exit_perf_limits(policy);
a4675fbc 2099
001c76f0 2100 policy->fast_switch_possible = false;
2f86dc4c 2101
001c76f0 2102 return 0;
93f0822d
DB
2103}
2104
001c76f0 2105static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2106{
93f0822d 2107 struct cpudata *cpu;
52e0a509 2108 int rc;
93f0822d
DB
2109
2110 rc = intel_pstate_init_cpu(policy->cpu);
2111 if (rc)
2112 return rc;
2113
2114 cpu = all_cpu_data[policy->cpu];
2115
e14cf885
RW
2116 cpu->max_perf = int_ext_tofp(1);
2117 cpu->min_perf = 0;
93f0822d 2118
b27580b0
DB
2119 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2120 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2121
2122 /* cpuinfo and default policy values */
b27580b0 2123 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2124 update_turbo_state();
7de32556 2125 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2126 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2127 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2128
9522a2ff 2129 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2130 cpumask_set_cpu(policy->cpu, policy->cpus);
2131
001c76f0
RW
2132 policy->fast_switch_possible = true;
2133
93f0822d
DB
2134 return 0;
2135}
2136
001c76f0 2137static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2138{
001c76f0
RW
2139 int ret = __intel_pstate_cpu_init(policy);
2140
2141 if (ret)
2142 return ret;
2143
2144 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2145 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2146 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2147 else
2148 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2149
2150 return 0;
2151}
2152
001c76f0 2153static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2154 .flags = CPUFREQ_CONST_LOOPS,
2155 .verify = intel_pstate_verify_policy,
2156 .setpolicy = intel_pstate_set_policy,
984edbdc 2157 .suspend = intel_pstate_hwp_save_state,
8442885f 2158 .resume = intel_pstate_resume,
93f0822d
DB
2159 .get = intel_pstate_get,
2160 .init = intel_pstate_cpu_init,
9522a2ff 2161 .exit = intel_pstate_cpu_exit,
bb18008f 2162 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2163 .name = "intel_pstate",
93f0822d
DB
2164};
2165
001c76f0
RW
2166static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2167{
2168 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2169
2170 update_turbo_state();
80b120ca
RW
2171 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2172 intel_pstate_get_max_freq(cpu));
001c76f0 2173
80b120ca 2174 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2175
c5a2ee7d
RW
2176 intel_pstate_update_perf_limits(policy, cpu);
2177
001c76f0
RW
2178 return 0;
2179}
2180
001c76f0
RW
2181static int intel_cpufreq_target(struct cpufreq_policy *policy,
2182 unsigned int target_freq,
2183 unsigned int relation)
2184{
2185 struct cpudata *cpu = all_cpu_data[policy->cpu];
2186 struct cpufreq_freqs freqs;
2187 int target_pstate;
2188
64897b20
RW
2189 update_turbo_state();
2190
001c76f0 2191 freqs.old = policy->cur;
64897b20 2192 freqs.new = target_freq;
001c76f0
RW
2193
2194 cpufreq_freq_transition_begin(policy, &freqs);
2195 switch (relation) {
2196 case CPUFREQ_RELATION_L:
2197 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2198 break;
2199 case CPUFREQ_RELATION_H:
2200 target_pstate = freqs.new / cpu->pstate.scaling;
2201 break;
2202 default:
2203 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2204 break;
2205 }
2206 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2207 if (target_pstate != cpu->pstate.current_pstate) {
2208 cpu->pstate.current_pstate = target_pstate;
2209 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2210 pstate_funcs.get_val(cpu, target_pstate));
2211 }
64078299 2212 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2213 cpufreq_freq_transition_end(policy, &freqs, false);
2214
2215 return 0;
2216}
2217
2218static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2219 unsigned int target_freq)
2220{
2221 struct cpudata *cpu = all_cpu_data[policy->cpu];
2222 int target_pstate;
2223
64897b20
RW
2224 update_turbo_state();
2225
001c76f0 2226 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2227 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2228 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2229 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2230}
2231
2232static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2233{
2234 int ret = __intel_pstate_cpu_init(policy);
2235
2236 if (ret)
2237 return ret;
2238
2239 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2240 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2241 policy->cur = policy->cpuinfo.min_freq;
2242
2243 return 0;
2244}
2245
2246static struct cpufreq_driver intel_cpufreq = {
2247 .flags = CPUFREQ_CONST_LOOPS,
2248 .verify = intel_cpufreq_verify_policy,
2249 .target = intel_cpufreq_target,
2250 .fast_switch = intel_cpufreq_fast_switch,
2251 .init = intel_cpufreq_cpu_init,
2252 .exit = intel_pstate_cpu_exit,
2253 .stop_cpu = intel_cpufreq_stop_cpu,
2254 .name = "intel_cpufreq",
2255};
2256
ee8df89a 2257static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2258
8ca6ce37
RW
2259static bool pid_in_use(void)
2260{
2261 return intel_pstate_driver == &intel_pstate &&
2262 pstate_funcs.update_util == intel_pstate_update_util_pid;
2263}
2264
fb1fe104
RW
2265static void intel_pstate_driver_cleanup(void)
2266{
2267 unsigned int cpu;
2268
2269 get_online_cpus();
2270 for_each_online_cpu(cpu) {
2271 if (all_cpu_data[cpu]) {
2272 if (intel_pstate_driver == &intel_pstate)
2273 intel_pstate_clear_update_util_hook(cpu);
2274
2275 kfree(all_cpu_data[cpu]);
2276 all_cpu_data[cpu] = NULL;
2277 }
2278 }
2279 put_online_cpus();
ee8df89a 2280 intel_pstate_driver = NULL;
fb1fe104
RW
2281}
2282
ee8df89a 2283static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2284{
2285 int ret;
2286
c5a2ee7d
RW
2287 memset(&global, 0, sizeof(global));
2288 global.max_perf_pct = 100;
c3a49c89 2289
ee8df89a 2290 intel_pstate_driver = driver;
fb1fe104
RW
2291 ret = cpufreq_register_driver(intel_pstate_driver);
2292 if (ret) {
2293 intel_pstate_driver_cleanup();
2294 return ret;
2295 }
2296
c5a2ee7d
RW
2297 global.min_perf_pct = min_perf_pct_min();
2298
8ca6ce37 2299 if (pid_in_use())
fb1fe104
RW
2300 intel_pstate_debug_expose_params();
2301
2302 return 0;
2303}
2304
2305static int intel_pstate_unregister_driver(void)
2306{
2307 if (hwp_active)
2308 return -EBUSY;
2309
8ca6ce37 2310 if (pid_in_use())
fb1fe104
RW
2311 intel_pstate_debug_hide_params();
2312
fb1fe104
RW
2313 cpufreq_unregister_driver(intel_pstate_driver);
2314 intel_pstate_driver_cleanup();
2315
2316 return 0;
2317}
2318
2319static ssize_t intel_pstate_show_status(char *buf)
2320{
ee8df89a 2321 if (!intel_pstate_driver)
fb1fe104
RW
2322 return sprintf(buf, "off\n");
2323
2324 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2325 "active" : "passive");
2326}
2327
2328static int intel_pstate_update_status(const char *buf, size_t size)
2329{
2330 int ret;
2331
2332 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2333 return intel_pstate_driver ?
fb1fe104
RW
2334 intel_pstate_unregister_driver() : -EINVAL;
2335
2336 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2337 if (intel_pstate_driver) {
fb1fe104
RW
2338 if (intel_pstate_driver == &intel_pstate)
2339 return 0;
2340
2341 ret = intel_pstate_unregister_driver();
2342 if (ret)
2343 return ret;
2344 }
2345
ee8df89a 2346 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2347 }
2348
2349 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2350 if (intel_pstate_driver) {
0042b2c0 2351 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2352 return 0;
2353
2354 ret = intel_pstate_unregister_driver();
2355 if (ret)
2356 return ret;
2357 }
2358
ee8df89a 2359 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2360 }
2361
2362 return -EINVAL;
2363}
2364
eed43609
JZ
2365static int no_load __initdata;
2366static int no_hwp __initdata;
2367static int hwp_only __initdata;
29327c84 2368static unsigned int force_load __initdata;
6be26498 2369
29327c84 2370static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2371{
016c8150 2372 if (!pstate_funcs.get_max() ||
c410833a
SK
2373 !pstate_funcs.get_min() ||
2374 !pstate_funcs.get_turbo())
b563b4e3
DB
2375 return -ENODEV;
2376
b563b4e3
DB
2377 return 0;
2378}
016c8150 2379
7f7a516e
SP
2380#ifdef CONFIG_ACPI
2381static void intel_pstate_use_acpi_profile(void)
2382{
55395345
RW
2383 switch (acpi_gbl_FADT.preferred_profile) {
2384 case PM_MOBILE:
2385 case PM_TABLET:
2386 case PM_APPLIANCE_PC:
2387 case PM_DESKTOP:
2388 case PM_WORKSTATION:
67dd9bf4 2389 pstate_funcs.update_util = intel_pstate_update_util;
55395345 2390 }
7f7a516e
SP
2391}
2392#else
2393static void intel_pstate_use_acpi_profile(void)
2394{
2395}
2396#endif
2397
29327c84 2398static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2399{
2400 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2401 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2402 pstate_funcs.get_min = funcs->get_min;
2403 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2404 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2405 pstate_funcs.get_val = funcs->get_val;
007bea09 2406 pstate_funcs.get_vid = funcs->get_vid;
67dd9bf4 2407 pstate_funcs.update_util = funcs->update_util;
157386b6 2408
7f7a516e 2409 intel_pstate_use_acpi_profile();
016c8150
DB
2410}
2411
9522a2ff 2412#ifdef CONFIG_ACPI
fbbcdc07 2413
29327c84 2414static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2415{
2416 int i;
2417
2418 for_each_possible_cpu(i) {
2419 acpi_status status;
2420 union acpi_object *pss;
2421 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2422 struct acpi_processor *pr = per_cpu(processors, i);
2423
2424 if (!pr)
2425 continue;
2426
2427 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2428 if (ACPI_FAILURE(status))
2429 continue;
2430
2431 pss = buffer.pointer;
2432 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2433 kfree(pss);
2434 return false;
2435 }
2436
2437 kfree(pss);
2438 }
2439
2440 return true;
2441}
2442
29327c84 2443static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2444{
2445 int i;
2446
2447 for_each_possible_cpu(i) {
2448 struct acpi_processor *pr = per_cpu(processors, i);
2449
2450 if (!pr)
2451 continue;
2452 if (acpi_has_method(pr->handle, "_PPC"))
2453 return true;
2454 }
2455 return false;
2456}
2457
2458enum {
2459 PSS,
2460 PPC,
2461};
2462
fbbcdc07
AH
2463struct hw_vendor_info {
2464 u16 valid;
2465 char oem_id[ACPI_OEM_ID_SIZE];
2466 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2467 int oem_pwr_table;
fbbcdc07
AH
2468};
2469
2470/* Hardware vendor-specific info that has its own power management modes */
29327c84 2471static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2472 {1, "HP ", "ProLiant", PSS},
2473 {1, "ORACLE", "X4-2 ", PPC},
2474 {1, "ORACLE", "X4-2L ", PPC},
2475 {1, "ORACLE", "X4-2B ", PPC},
2476 {1, "ORACLE", "X3-2 ", PPC},
2477 {1, "ORACLE", "X3-2L ", PPC},
2478 {1, "ORACLE", "X3-2B ", PPC},
2479 {1, "ORACLE", "X4470M2 ", PPC},
2480 {1, "ORACLE", "X4270M3 ", PPC},
2481 {1, "ORACLE", "X4270M2 ", PPC},
2482 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2483 {1, "ORACLE", "X4170 M3", PPC},
2484 {1, "ORACLE", "X4275 M3", PPC},
2485 {1, "ORACLE", "X6-2 ", PPC},
2486 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2487 {0, "", ""},
2488};
2489
29327c84 2490static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2491{
2492 struct acpi_table_header hdr;
2493 struct hw_vendor_info *v_info;
2f86dc4c
DB
2494 const struct x86_cpu_id *id;
2495 u64 misc_pwr;
2496
2497 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2498 if (id) {
2499 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2500 if ( misc_pwr & (1 << 8))
2501 return true;
2502 }
fbbcdc07 2503
c410833a
SK
2504 if (acpi_disabled ||
2505 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2506 return false;
2507
2508 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2509 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2510 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2511 ACPI_OEM_TABLE_ID_SIZE))
2512 switch (v_info->oem_pwr_table) {
2513 case PSS:
2514 return intel_pstate_no_acpi_pss();
2515 case PPC:
aa4ea34d
EZ
2516 return intel_pstate_has_acpi_ppc() &&
2517 (!force_load);
966916ea 2518 }
fbbcdc07
AH
2519 }
2520
2521 return false;
2522}
d0ea59e1
RW
2523
2524static void intel_pstate_request_control_from_smm(void)
2525{
2526 /*
2527 * It may be unsafe to request P-states control from SMM if _PPC support
2528 * has not been enabled.
2529 */
2530 if (acpi_ppc)
2531 acpi_processor_pstate_control();
2532}
fbbcdc07
AH
2533#else /* CONFIG_ACPI not enabled */
2534static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2535static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2536static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2537#endif /* CONFIG_ACPI */
2538
7791e4aa
SP
2539static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2540 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2541 {}
2542};
2543
93f0822d
DB
2544static int __init intel_pstate_init(void)
2545{
eb5139d1 2546 int rc;
93f0822d 2547
6be26498
DB
2548 if (no_load)
2549 return -ENODEV;
2550
eb5139d1 2551 if (x86_match_cpu(hwp_support_ids)) {
2f49afc2 2552 copy_cpu_funcs(&core_funcs);
eb5139d1 2553 if (no_hwp) {
67dd9bf4 2554 pstate_funcs.update_util = intel_pstate_update_util;
eb5139d1
RW
2555 } else {
2556 hwp_active++;
2557 intel_pstate.attr = hwp_cpufreq_attrs;
67dd9bf4 2558 pstate_funcs.update_util = intel_pstate_update_util_hwp;
eb5139d1
RW
2559 goto hwp_cpu_matched;
2560 }
2561 } else {
2562 const struct x86_cpu_id *id;
7791e4aa 2563
eb5139d1
RW
2564 id = x86_match_cpu(intel_pstate_cpu_ids);
2565 if (!id)
2566 return -ENODEV;
93f0822d 2567
2f49afc2 2568 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
eb5139d1 2569 }
016c8150 2570
b563b4e3
DB
2571 if (intel_pstate_msrs_not_valid())
2572 return -ENODEV;
2573
7791e4aa
SP
2574hwp_cpu_matched:
2575 /*
2576 * The Intel pstate driver will be ignored if the platform
2577 * firmware has its own power management modes.
2578 */
2579 if (intel_pstate_platform_pwr_mgmt_exists())
2580 return -ENODEV;
2581
fb1fe104
RW
2582 if (!hwp_active && hwp_only)
2583 return -ENOTSUPP;
2584
4836df17 2585 pr_info("Intel P-state driver initializing\n");
93f0822d 2586
b57ffac5 2587 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2588 if (!all_cpu_data)
2589 return -ENOMEM;
93f0822d 2590
d0ea59e1
RW
2591 intel_pstate_request_control_from_smm();
2592
93f0822d 2593 intel_pstate_sysfs_expose_params();
b69880f9 2594
0c30b65b 2595 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2596 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2597 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2598 if (rc)
2599 return rc;
366430b5 2600
7791e4aa 2601 if (hwp_active)
4836df17 2602 pr_info("HWP enabled\n");
7791e4aa 2603
fb1fe104 2604 return 0;
93f0822d
DB
2605}
2606device_initcall(intel_pstate_init);
2607
6be26498
DB
2608static int __init intel_pstate_setup(char *str)
2609{
2610 if (!str)
2611 return -EINVAL;
2612
001c76f0 2613 if (!strcmp(str, "disable")) {
6be26498 2614 no_load = 1;
001c76f0
RW
2615 } else if (!strcmp(str, "passive")) {
2616 pr_info("Passive mode enabled\n");
ee8df89a 2617 default_driver = &intel_cpufreq;
001c76f0
RW
2618 no_hwp = 1;
2619 }
539342f6 2620 if (!strcmp(str, "no_hwp")) {
4836df17 2621 pr_info("HWP disabled\n");
2f86dc4c 2622 no_hwp = 1;
539342f6 2623 }
aa4ea34d
EZ
2624 if (!strcmp(str, "force"))
2625 force_load = 1;
d64c3b0b
KCA
2626 if (!strcmp(str, "hwp_only"))
2627 hwp_only = 1;
eae48f04
SP
2628 if (!strcmp(str, "per_cpu_perf_limits"))
2629 per_cpu_limits = true;
9522a2ff
SP
2630
2631#ifdef CONFIG_ACPI
2632 if (!strcmp(str, "support_acpi_ppc"))
2633 acpi_ppc = true;
2634#endif
2635
6be26498
DB
2636 return 0;
2637}
2638early_param("intel_pstate", intel_pstate_setup);
2639
93f0822d
DB
2640MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2641MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2642MODULE_LICENSE("GPL");