]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: schedutil: Improve prints messages with pr_fmt
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
93f0822d 38
938d21a2
PL
39#define ATOM_RATIOS 0x66a
40#define ATOM_VIDS 0x66b
41#define ATOM_TURBO_RATIOS 0x66c
42#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#endif
47
f0fe3cd7 48#define FRAC_BITS 8
93f0822d
DB
49#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 51
a1c9787d
RW
52#define EXT_BITS 6
53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54
93f0822d
DB
55static inline int32_t mul_fp(int32_t x, int32_t y)
56{
57 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58}
59
7180dddf 60static inline int32_t div_fp(s64 x, s64 y)
93f0822d 61{
7180dddf 62 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
63}
64
d022a65e
DB
65static inline int ceiling_fp(int32_t x)
66{
67 int mask, ret;
68
69 ret = fp_toint(x);
70 mask = (1 << FRAC_BITS) - 1;
71 if (x & mask)
72 ret += 1;
73 return ret;
74}
75
a1c9787d
RW
76static inline u64 mul_ext_fp(u64 x, u64 y)
77{
78 return (x * y) >> EXT_FRAC_BITS;
79}
80
81static inline u64 div_ext_fp(u64 x, u64 y)
82{
83 return div64_u64(x << EXT_FRAC_BITS, y);
84}
85
13ad7701
SP
86/**
87 * struct sample - Store performance sample
a1c9787d 88 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
89 * performance during last sample period
90 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 91 * P state. This can be different than core_avg_perf
13ad7701
SP
92 * to account for cpu idle period
93 * @aperf: Difference of actual performance frequency clock count
94 * read from APERF MSR between last and current sample
95 * @mperf: Difference of maximum performance frequency clock count
96 * read from MPERF MSR between last and current sample
97 * @tsc: Difference of time stamp counter between last and
98 * current sample
99 * @freq: Effective frequency calculated from APERF/MPERF
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
93f0822d 111 int freq;
a4675fbc 112 u64 time;
93f0822d
DB
113};
114
13ad7701
SP
115/**
116 * struct pstate_data - Store P state data
117 * @current_pstate: Current requested P state
118 * @min_pstate: Min P state possible for this platform
119 * @max_pstate: Max P state possible for this platform
120 * @max_pstate_physical:This is physical Max P state for a processor
121 * This can be higher than the max_pstate which can
122 * be limited by platform thermal design power limits
123 * @scaling: Scaling factor to convert frequency to cpufreq
124 * frequency units
125 * @turbo_pstate: Max Turbo P state possible for this platform
126 *
127 * Stores the per cpu model P state limits and current P state.
128 */
93f0822d
DB
129struct pstate_data {
130 int current_pstate;
131 int min_pstate;
132 int max_pstate;
3bcc6fa9 133 int max_pstate_physical;
b27580b0 134 int scaling;
93f0822d
DB
135 int turbo_pstate;
136};
137
13ad7701
SP
138/**
139 * struct vid_data - Stores voltage information data
140 * @min: VID data for this platform corresponding to
141 * the lowest P state
142 * @max: VID data corresponding to the highest P State.
143 * @turbo: VID data for turbo P state
144 * @ratio: Ratio of (vid max - vid min) /
145 * (max P state - Min P State)
146 *
147 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148 * This data is used in Atom platforms, where in addition to target P state,
149 * the voltage data needs to be specified to select next P State.
150 */
007bea09 151struct vid_data {
21855ff5
DB
152 int min;
153 int max;
154 int turbo;
007bea09
DB
155 int32_t ratio;
156};
157
13ad7701
SP
158/**
159 * struct _pid - Stores PID data
160 * @setpoint: Target set point for busyness or performance
161 * @integral: Storage for accumulated error values
162 * @p_gain: PID proportional gain
163 * @i_gain: PID integral gain
164 * @d_gain: PID derivative gain
165 * @deadband: PID deadband
166 * @last_err: Last error storage for integral part of PID calculation
167 *
168 * Stores PID coefficients and last error for PID controller.
169 */
93f0822d
DB
170struct _pid {
171 int setpoint;
172 int32_t integral;
173 int32_t p_gain;
174 int32_t i_gain;
175 int32_t d_gain;
176 int deadband;
d253d2a5 177 int32_t last_err;
93f0822d
DB
178};
179
13ad7701
SP
180/**
181 * struct cpudata - Per CPU instance data storage
182 * @cpu: CPU number for this instance data
183 * @update_util: CPUFreq utility callback information
4578ee7e 184 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
185 * @pstate: Stores P state limits for this CPU
186 * @vid: Stores VID limits for this CPU
187 * @pid: Stores PID parameters for this CPU
188 * @last_sample_time: Last Sample time
189 * @prev_aperf: Last APERF value read from APERF MSR
190 * @prev_mperf: Last MPERF value read from MPERF MSR
191 * @prev_tsc: Last timestamp counter (TSC) value
192 * @prev_cummulative_iowait: IO Wait time difference from last and
193 * current sample
194 * @sample: Storage for storing last Sample data
9522a2ff
SP
195 * @acpi_perf_data: Stores ACPI perf information read from _PSS
196 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
197 *
198 * This structure stores per CPU instance data for all CPUs.
199 */
93f0822d
DB
200struct cpudata {
201 int cpu;
202
a4675fbc 203 struct update_util_data update_util;
4578ee7e 204 bool update_util_set;
93f0822d 205
93f0822d 206 struct pstate_data pstate;
007bea09 207 struct vid_data vid;
93f0822d 208 struct _pid pid;
93f0822d 209
a4675fbc 210 u64 last_sample_time;
93f0822d
DB
211 u64 prev_aperf;
212 u64 prev_mperf;
4055fad3 213 u64 prev_tsc;
63d1d656 214 u64 prev_cummulative_iowait;
d37e2b76 215 struct sample sample;
9522a2ff
SP
216#ifdef CONFIG_ACPI
217 struct acpi_processor_performance acpi_perf_data;
218 bool valid_pss_table;
219#endif
93f0822d
DB
220};
221
222static struct cpudata **all_cpu_data;
13ad7701
SP
223
224/**
225 * struct pid_adjust_policy - Stores static PID configuration data
226 * @sample_rate_ms: PID calculation sample rate in ms
227 * @sample_rate_ns: Sample rate calculation in ns
228 * @deadband: PID deadband
229 * @setpoint: PID Setpoint
230 * @p_gain_pct: PID proportional gain
231 * @i_gain_pct: PID integral gain
232 * @d_gain_pct: PID derivative gain
233 *
234 * Stores per CPU model static PID configuration data.
235 */
93f0822d
DB
236struct pstate_adjust_policy {
237 int sample_rate_ms;
a4675fbc 238 s64 sample_rate_ns;
93f0822d
DB
239 int deadband;
240 int setpoint;
241 int p_gain_pct;
242 int d_gain_pct;
243 int i_gain_pct;
244};
245
13ad7701
SP
246/**
247 * struct pstate_funcs - Per CPU model specific callbacks
248 * @get_max: Callback to get maximum non turbo effective P state
249 * @get_max_physical: Callback to get maximum non turbo physical P state
250 * @get_min: Callback to get minimum P state
251 * @get_turbo: Callback to get turbo P state
252 * @get_scaling: Callback to get frequency scaling factor
253 * @get_val: Callback to convert P state to actual MSR write value
254 * @get_vid: Callback to get VID data for Atom platforms
255 * @get_target_pstate: Callback to a function to calculate next P state to use
256 *
257 * Core and Atom CPU models have different way to get P State limits. This
258 * structure is used to store those callbacks.
259 */
016c8150
DB
260struct pstate_funcs {
261 int (*get_max)(void);
3bcc6fa9 262 int (*get_max_physical)(void);
016c8150
DB
263 int (*get_min)(void);
264 int (*get_turbo)(void);
b27580b0 265 int (*get_scaling)(void);
fdfdb2b1 266 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 267 void (*get_vid)(struct cpudata *);
157386b6 268 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
269};
270
13ad7701
SP
271/**
272 * struct cpu_defaults- Per CPU model default config data
273 * @pid_policy: PID config data
274 * @funcs: Callback function data
275 */
016c8150
DB
276struct cpu_defaults {
277 struct pstate_adjust_policy pid_policy;
278 struct pstate_funcs funcs;
93f0822d
DB
279};
280
157386b6 281static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 282static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 283
016c8150
DB
284static struct pstate_adjust_policy pid_params;
285static struct pstate_funcs pstate_funcs;
2f86dc4c 286static int hwp_active;
016c8150 287
9522a2ff
SP
288#ifdef CONFIG_ACPI
289static bool acpi_ppc;
290#endif
13ad7701
SP
291
292/**
293 * struct perf_limits - Store user and policy limits
294 * @no_turbo: User requested turbo state from intel_pstate sysfs
295 * @turbo_disabled: Platform turbo status either from msr
296 * MSR_IA32_MISC_ENABLE or when maximum available pstate
297 * matches the maximum turbo pstate
298 * @max_perf_pct: Effective maximum performance limit in percentage, this
299 * is minimum of either limits enforced by cpufreq policy
300 * or limits from user set limits via intel_pstate sysfs
301 * @min_perf_pct: Effective minimum performance limit in percentage, this
302 * is maximum of either limits enforced by cpufreq policy
303 * or limits from user set limits via intel_pstate sysfs
304 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
305 * This value is used to limit max pstate
306 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
307 * This value is used to limit min pstate
308 * @max_policy_pct: The maximum performance in percentage enforced by
309 * cpufreq setpolicy interface
310 * @max_sysfs_pct: The maximum performance in percentage enforced by
311 * intel pstate sysfs interface
312 * @min_policy_pct: The minimum performance in percentage enforced by
313 * cpufreq setpolicy interface
314 * @min_sysfs_pct: The minimum performance in percentage enforced by
315 * intel pstate sysfs interface
316 *
317 * Storage for user and policy defined limits.
318 */
93f0822d
DB
319struct perf_limits {
320 int no_turbo;
dd5fbf70 321 int turbo_disabled;
93f0822d
DB
322 int max_perf_pct;
323 int min_perf_pct;
324 int32_t max_perf;
325 int32_t min_perf;
d8f469e9
DB
326 int max_policy_pct;
327 int max_sysfs_pct;
a0475992
KCA
328 int min_policy_pct;
329 int min_sysfs_pct;
93f0822d
DB
330};
331
51443fbf
PB
332static struct perf_limits performance_limits = {
333 .no_turbo = 0,
334 .turbo_disabled = 0,
335 .max_perf_pct = 100,
336 .max_perf = int_tofp(1),
337 .min_perf_pct = 100,
338 .min_perf = int_tofp(1),
339 .max_policy_pct = 100,
340 .max_sysfs_pct = 100,
341 .min_policy_pct = 0,
342 .min_sysfs_pct = 0,
343};
344
345static struct perf_limits powersave_limits = {
93f0822d 346 .no_turbo = 0,
4521e1a0 347 .turbo_disabled = 0,
93f0822d
DB
348 .max_perf_pct = 100,
349 .max_perf = int_tofp(1),
350 .min_perf_pct = 0,
351 .min_perf = 0,
d8f469e9
DB
352 .max_policy_pct = 100,
353 .max_sysfs_pct = 100,
a0475992
KCA
354 .min_policy_pct = 0,
355 .min_sysfs_pct = 0,
93f0822d
DB
356};
357
51443fbf
PB
358#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359static struct perf_limits *limits = &performance_limits;
360#else
361static struct perf_limits *limits = &powersave_limits;
362#endif
363
9522a2ff 364#ifdef CONFIG_ACPI
2b3ec765
SP
365
366static bool intel_pstate_get_ppc_enable_status(void)
367{
368 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 return true;
371
372 return acpi_ppc;
373}
374
9522a2ff
SP
375/*
376 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
377 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
378 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
379 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
380 * target ratio 0x17. The _PSS control value stores in a format which can be
381 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
382 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
383 * This function converts the _PSS control value to intel pstate driver format
384 * for comparison and assignment.
385 */
386static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
387{
388 return cpu->acpi_perf_data.states[index].control >> 8;
389}
390
391static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
392{
393 struct cpudata *cpu;
394 int turbo_pss_ctl;
395 int ret;
396 int i;
397
e59a8f7f
SP
398 if (hwp_active)
399 return;
400
2b3ec765 401 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
402 return;
403
404 cpu = all_cpu_data[policy->cpu];
405
406 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
407 policy->cpu);
408 if (ret)
409 return;
410
411 /*
412 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 * guarantee that the states returned by it map to the states in our
414 * list directly.
415 */
416 if (cpu->acpi_perf_data.control_register.space_id !=
417 ACPI_ADR_SPACE_FIXED_HARDWARE)
418 goto err;
419
420 /*
421 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 * usual without taking _PSS into account
423 */
424 if (cpu->acpi_perf_data.state_count < 2)
425 goto err;
426
427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
428 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
430 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
431 (u32) cpu->acpi_perf_data.states[i].core_frequency,
432 (u32) cpu->acpi_perf_data.states[i].power,
433 (u32) cpu->acpi_perf_data.states[i].control);
434 }
435
436 /*
437 * The _PSS table doesn't contain whole turbo frequency range.
438 * This just contains +1 MHZ above the max non turbo frequency,
439 * with control value corresponding to max turbo ratio. But
440 * when cpufreq set policy is called, it will call with this
441 * max frequency, which will cause a reduced performance as
442 * this driver uses real max turbo frequency as the max
443 * frequency. So correct this frequency in _PSS table to
444 * correct max turbo frequency based on the turbo ratio.
445 * Also need to convert to MHz as _PSS freq is in MHz.
446 */
447 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
448 if (turbo_pss_ctl > cpu->pstate.max_pstate)
449 cpu->acpi_perf_data.states[0].core_frequency =
450 policy->cpuinfo.max_freq / 1000;
451 cpu->valid_pss_table = true;
452 pr_info("_PPC limits will be enforced\n");
453
454 return;
455
456 err:
457 cpu->valid_pss_table = false;
458 acpi_processor_unregister_performance(policy->cpu);
459}
460
461static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
462{
463 struct cpudata *cpu;
464
465 cpu = all_cpu_data[policy->cpu];
466 if (!cpu->valid_pss_table)
467 return;
468
469 acpi_processor_unregister_performance(policy->cpu);
470}
471
472#else
473static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
474{
475}
476
477static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
478{
479}
480#endif
481
93f0822d 482static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 483 int deadband, int integral) {
b54a0dfd
PL
484 pid->setpoint = int_tofp(setpoint);
485 pid->deadband = int_tofp(deadband);
93f0822d 486 pid->integral = int_tofp(integral);
d98d099b 487 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
488}
489
490static inline void pid_p_gain_set(struct _pid *pid, int percent)
491{
22590efb 492 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
493}
494
495static inline void pid_i_gain_set(struct _pid *pid, int percent)
496{
22590efb 497 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
498}
499
500static inline void pid_d_gain_set(struct _pid *pid, int percent)
501{
22590efb 502 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
503}
504
d253d2a5 505static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 506{
d253d2a5 507 signed int result;
93f0822d
DB
508 int32_t pterm, dterm, fp_error;
509 int32_t integral_limit;
510
b54a0dfd 511 fp_error = pid->setpoint - busy;
93f0822d 512
b54a0dfd 513 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
514 return 0;
515
516 pterm = mul_fp(pid->p_gain, fp_error);
517
518 pid->integral += fp_error;
519
e0d4c8f8
KCA
520 /*
521 * We limit the integral here so that it will never
522 * get higher than 30. This prevents it from becoming
523 * too large an input over long periods of time and allows
524 * it to get factored out sooner.
525 *
526 * The value of 30 was chosen through experimentation.
527 */
93f0822d
DB
528 integral_limit = int_tofp(30);
529 if (pid->integral > integral_limit)
530 pid->integral = integral_limit;
531 if (pid->integral < -integral_limit)
532 pid->integral = -integral_limit;
533
d253d2a5
BS
534 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
535 pid->last_err = fp_error;
93f0822d
DB
536
537 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 538 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
539 return (signed int)fp_toint(result);
540}
541
542static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
543{
016c8150
DB
544 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
545 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
546 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 547
2d8d1f18 548 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
549}
550
93f0822d
DB
551static inline void intel_pstate_reset_all_pid(void)
552{
553 unsigned int cpu;
845c1cbe 554
93f0822d
DB
555 for_each_online_cpu(cpu) {
556 if (all_cpu_data[cpu])
557 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
558 }
559}
560
4521e1a0
GM
561static inline void update_turbo_state(void)
562{
563 u64 misc_en;
564 struct cpudata *cpu;
565
566 cpu = all_cpu_data[0];
567 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 568 limits->turbo_disabled =
4521e1a0
GM
569 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
570 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
571}
572
41cfd64c 573static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 574{
74da56ce
KCA
575 int min, hw_min, max, hw_max, cpu, range, adj_range;
576 u64 value, cap;
577
578 rdmsrl(MSR_HWP_CAPABILITIES, cap);
579 hw_min = HWP_LOWEST_PERF(cap);
580 hw_max = HWP_HIGHEST_PERF(cap);
581 range = hw_max - hw_min;
2f86dc4c 582
41cfd64c 583 for_each_cpu(cpu, cpumask) {
2f86dc4c 584 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 585 adj_range = limits->min_perf_pct * range / 100;
74da56ce 586 min = hw_min + adj_range;
2f86dc4c
DB
587 value &= ~HWP_MIN_PERF(~0L);
588 value |= HWP_MIN_PERF(min);
589
51443fbf 590 adj_range = limits->max_perf_pct * range / 100;
74da56ce 591 max = hw_min + adj_range;
51443fbf 592 if (limits->no_turbo) {
74da56ce
KCA
593 hw_max = HWP_GUARANTEED_PERF(cap);
594 if (hw_max < max)
595 max = hw_max;
2f86dc4c
DB
596 }
597
598 value &= ~HWP_MAX_PERF(~0L);
599 value |= HWP_MAX_PERF(max);
600 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
601 }
41cfd64c 602}
2f86dc4c 603
ba41e1bc
RW
604static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
605{
606 if (hwp_active)
607 intel_pstate_hwp_set(policy->cpus);
608
609 return 0;
610}
611
41cfd64c
VK
612static void intel_pstate_hwp_set_online_cpus(void)
613{
614 get_online_cpus();
615 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
616 put_online_cpus();
617}
618
93f0822d
DB
619/************************** debugfs begin ************************/
620static int pid_param_set(void *data, u64 val)
621{
622 *(u32 *)data = val;
623 intel_pstate_reset_all_pid();
624 return 0;
625}
845c1cbe 626
93f0822d
DB
627static int pid_param_get(void *data, u64 *val)
628{
629 *val = *(u32 *)data;
630 return 0;
631}
2d8d1f18 632DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
633
634struct pid_param {
635 char *name;
636 void *value;
637};
638
639static struct pid_param pid_files[] = {
016c8150
DB
640 {"sample_rate_ms", &pid_params.sample_rate_ms},
641 {"d_gain_pct", &pid_params.d_gain_pct},
642 {"i_gain_pct", &pid_params.i_gain_pct},
643 {"deadband", &pid_params.deadband},
644 {"setpoint", &pid_params.setpoint},
645 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
646 {NULL, NULL}
647};
648
317dd50e 649static void __init intel_pstate_debug_expose_params(void)
93f0822d 650{
317dd50e 651 struct dentry *debugfs_parent;
93f0822d
DB
652 int i = 0;
653
2f86dc4c
DB
654 if (hwp_active)
655 return;
93f0822d
DB
656 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
657 if (IS_ERR_OR_NULL(debugfs_parent))
658 return;
659 while (pid_files[i].name) {
660 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
661 debugfs_parent, pid_files[i].value,
662 &fops_pid_param);
93f0822d
DB
663 i++;
664 }
665}
666
667/************************** debugfs end ************************/
668
669/************************** sysfs begin ************************/
670#define show_one(file_name, object) \
671 static ssize_t show_##file_name \
672 (struct kobject *kobj, struct attribute *attr, char *buf) \
673 { \
51443fbf 674 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
675 }
676
d01b1f48
KCA
677static ssize_t show_turbo_pct(struct kobject *kobj,
678 struct attribute *attr, char *buf)
679{
680 struct cpudata *cpu;
681 int total, no_turbo, turbo_pct;
682 uint32_t turbo_fp;
683
684 cpu = all_cpu_data[0];
685
686 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
687 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 688 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
689 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
690 return sprintf(buf, "%u\n", turbo_pct);
691}
692
0522424e
KCA
693static ssize_t show_num_pstates(struct kobject *kobj,
694 struct attribute *attr, char *buf)
695{
696 struct cpudata *cpu;
697 int total;
698
699 cpu = all_cpu_data[0];
700 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
701 return sprintf(buf, "%u\n", total);
702}
703
4521e1a0
GM
704static ssize_t show_no_turbo(struct kobject *kobj,
705 struct attribute *attr, char *buf)
706{
707 ssize_t ret;
708
709 update_turbo_state();
51443fbf
PB
710 if (limits->turbo_disabled)
711 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 712 else
51443fbf 713 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
714
715 return ret;
716}
717
93f0822d 718static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 719 const char *buf, size_t count)
93f0822d
DB
720{
721 unsigned int input;
722 int ret;
845c1cbe 723
93f0822d
DB
724 ret = sscanf(buf, "%u", &input);
725 if (ret != 1)
726 return -EINVAL;
4521e1a0
GM
727
728 update_turbo_state();
51443fbf 729 if (limits->turbo_disabled) {
4836df17 730 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 731 return -EPERM;
dd5fbf70 732 }
2f86dc4c 733
51443fbf 734 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 735
2f86dc4c 736 if (hwp_active)
41cfd64c 737 intel_pstate_hwp_set_online_cpus();
2f86dc4c 738
93f0822d
DB
739 return count;
740}
741
742static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 743 const char *buf, size_t count)
93f0822d
DB
744{
745 unsigned int input;
746 int ret;
845c1cbe 747
93f0822d
DB
748 ret = sscanf(buf, "%u", &input);
749 if (ret != 1)
750 return -EINVAL;
751
51443fbf
PB
752 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
753 limits->max_perf_pct = min(limits->max_policy_pct,
754 limits->max_sysfs_pct);
755 limits->max_perf_pct = max(limits->min_policy_pct,
756 limits->max_perf_pct);
757 limits->max_perf_pct = max(limits->min_perf_pct,
758 limits->max_perf_pct);
22590efb 759 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 760
2f86dc4c 761 if (hwp_active)
41cfd64c 762 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
763 return count;
764}
765
766static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 767 const char *buf, size_t count)
93f0822d
DB
768{
769 unsigned int input;
770 int ret;
845c1cbe 771
93f0822d
DB
772 ret = sscanf(buf, "%u", &input);
773 if (ret != 1)
774 return -EINVAL;
a0475992 775
51443fbf
PB
776 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
777 limits->min_perf_pct = max(limits->min_policy_pct,
778 limits->min_sysfs_pct);
779 limits->min_perf_pct = min(limits->max_policy_pct,
780 limits->min_perf_pct);
781 limits->min_perf_pct = min(limits->max_perf_pct,
782 limits->min_perf_pct);
22590efb 783 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 784
2f86dc4c 785 if (hwp_active)
41cfd64c 786 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
787 return count;
788}
789
93f0822d
DB
790show_one(max_perf_pct, max_perf_pct);
791show_one(min_perf_pct, min_perf_pct);
792
793define_one_global_rw(no_turbo);
794define_one_global_rw(max_perf_pct);
795define_one_global_rw(min_perf_pct);
d01b1f48 796define_one_global_ro(turbo_pct);
0522424e 797define_one_global_ro(num_pstates);
93f0822d
DB
798
799static struct attribute *intel_pstate_attributes[] = {
800 &no_turbo.attr,
801 &max_perf_pct.attr,
802 &min_perf_pct.attr,
d01b1f48 803 &turbo_pct.attr,
0522424e 804 &num_pstates.attr,
93f0822d
DB
805 NULL
806};
807
808static struct attribute_group intel_pstate_attr_group = {
809 .attrs = intel_pstate_attributes,
810};
93f0822d 811
317dd50e 812static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 813{
317dd50e 814 struct kobject *intel_pstate_kobject;
93f0822d
DB
815 int rc;
816
817 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
818 &cpu_subsys.dev_root->kobj);
819 BUG_ON(!intel_pstate_kobject);
2d8d1f18 820 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
821 BUG_ON(rc);
822}
93f0822d 823/************************** sysfs end ************************/
2f86dc4c 824
ba88d433 825static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 826{
f05c9665
SP
827 /* First disable HWP notification interrupt as we don't process them */
828 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
829
ba88d433 830 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
831}
832
938d21a2 833static int atom_get_min_pstate(void)
19e77c28
DB
834{
835 u64 value;
845c1cbe 836
938d21a2 837 rdmsrl(ATOM_RATIOS, value);
c16ed060 838 return (value >> 8) & 0x7F;
19e77c28
DB
839}
840
938d21a2 841static int atom_get_max_pstate(void)
19e77c28
DB
842{
843 u64 value;
845c1cbe 844
938d21a2 845 rdmsrl(ATOM_RATIOS, value);
c16ed060 846 return (value >> 16) & 0x7F;
19e77c28 847}
93f0822d 848
938d21a2 849static int atom_get_turbo_pstate(void)
61d8d2ab
DB
850{
851 u64 value;
845c1cbe 852
938d21a2 853 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 854 return value & 0x7F;
61d8d2ab
DB
855}
856
fdfdb2b1 857static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
858{
859 u64 val;
860 int32_t vid_fp;
861 u32 vid;
862
144c8e17 863 val = (u64)pstate << 8;
51443fbf 864 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
865 val |= (u64)1 << 32;
866
867 vid_fp = cpudata->vid.min + mul_fp(
868 int_tofp(pstate - cpudata->pstate.min_pstate),
869 cpudata->vid.ratio);
870
871 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 872 vid = ceiling_fp(vid_fp);
007bea09 873
21855ff5
DB
874 if (pstate > cpudata->pstate.max_pstate)
875 vid = cpudata->vid.turbo;
876
fdfdb2b1 877 return val | vid;
007bea09
DB
878}
879
1421df63 880static int silvermont_get_scaling(void)
b27580b0
DB
881{
882 u64 value;
883 int i;
1421df63
PL
884 /* Defined in Table 35-6 from SDM (Sept 2015) */
885 static int silvermont_freq_table[] = {
886 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
887
888 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
889 i = value & 0x7;
890 WARN_ON(i > 4);
b27580b0 891
1421df63
PL
892 return silvermont_freq_table[i];
893}
b27580b0 894
1421df63
PL
895static int airmont_get_scaling(void)
896{
897 u64 value;
898 int i;
899 /* Defined in Table 35-10 from SDM (Sept 2015) */
900 static int airmont_freq_table[] = {
901 83300, 100000, 133300, 116700, 80000,
902 93300, 90000, 88900, 87500};
903
904 rdmsrl(MSR_FSB_FREQ, value);
905 i = value & 0xF;
906 WARN_ON(i > 8);
907
908 return airmont_freq_table[i];
b27580b0
DB
909}
910
938d21a2 911static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
912{
913 u64 value;
914
938d21a2 915 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
916 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
917 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
918 cpudata->vid.ratio = div_fp(
919 cpudata->vid.max - cpudata->vid.min,
920 int_tofp(cpudata->pstate.max_pstate -
921 cpudata->pstate.min_pstate));
21855ff5 922
938d21a2 923 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 924 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
925}
926
016c8150 927static int core_get_min_pstate(void)
93f0822d
DB
928{
929 u64 value;
845c1cbe 930
05e99c8c 931 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
932 return (value >> 40) & 0xFF;
933}
934
3bcc6fa9 935static int core_get_max_pstate_physical(void)
93f0822d
DB
936{
937 u64 value;
845c1cbe 938
05e99c8c 939 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
940 return (value >> 8) & 0xFF;
941}
942
016c8150 943static int core_get_max_pstate(void)
93f0822d 944{
6a35fc2d
SP
945 u64 tar;
946 u64 plat_info;
947 int max_pstate;
948 int err;
949
950 rdmsrl(MSR_PLATFORM_INFO, plat_info);
951 max_pstate = (plat_info >> 8) & 0xFF;
952
953 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
954 if (!err) {
955 /* Do some sanity checking for safety */
956 if (plat_info & 0x600000000) {
957 u64 tdp_ctrl;
958 u64 tdp_ratio;
959 int tdp_msr;
960
961 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
962 if (err)
963 goto skip_tar;
964
965 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
966 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
967 if (err)
968 goto skip_tar;
969
1becf035
SP
970 /* For level 1 and 2, bits[23:16] contain the ratio */
971 if (tdp_ctrl)
972 tdp_ratio >>= 16;
973
974 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
975 if (tdp_ratio - 1 == tar) {
976 max_pstate = tar;
977 pr_debug("max_pstate=TAC %x\n", max_pstate);
978 } else {
979 goto skip_tar;
980 }
981 }
982 }
845c1cbe 983
6a35fc2d
SP
984skip_tar:
985 return max_pstate;
93f0822d
DB
986}
987
016c8150 988static int core_get_turbo_pstate(void)
93f0822d
DB
989{
990 u64 value;
991 int nont, ret;
845c1cbe 992
05e99c8c 993 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 994 nont = core_get_max_pstate();
285cb990 995 ret = (value) & 255;
93f0822d
DB
996 if (ret <= nont)
997 ret = nont;
998 return ret;
999}
1000
b27580b0
DB
1001static inline int core_get_scaling(void)
1002{
1003 return 100000;
1004}
1005
fdfdb2b1 1006static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1007{
1008 u64 val;
1009
144c8e17 1010 val = (u64)pstate << 8;
51443fbf 1011 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1012 val |= (u64)1 << 32;
1013
fdfdb2b1 1014 return val;
016c8150
DB
1015}
1016
b34ef932
DC
1017static int knl_get_turbo_pstate(void)
1018{
1019 u64 value;
1020 int nont, ret;
1021
1022 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1023 nont = core_get_max_pstate();
1024 ret = (((value) >> 8) & 0xFF);
1025 if (ret <= nont)
1026 ret = nont;
1027 return ret;
1028}
1029
016c8150
DB
1030static struct cpu_defaults core_params = {
1031 .pid_policy = {
1032 .sample_rate_ms = 10,
1033 .deadband = 0,
1034 .setpoint = 97,
1035 .p_gain_pct = 20,
1036 .d_gain_pct = 0,
1037 .i_gain_pct = 0,
1038 },
1039 .funcs = {
1040 .get_max = core_get_max_pstate,
3bcc6fa9 1041 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1042 .get_min = core_get_min_pstate,
1043 .get_turbo = core_get_turbo_pstate,
b27580b0 1044 .get_scaling = core_get_scaling,
fdfdb2b1 1045 .get_val = core_get_val,
157386b6 1046 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1047 },
1048};
1049
1421df63
PL
1050static struct cpu_defaults silvermont_params = {
1051 .pid_policy = {
1052 .sample_rate_ms = 10,
1053 .deadband = 0,
1054 .setpoint = 60,
1055 .p_gain_pct = 14,
1056 .d_gain_pct = 0,
1057 .i_gain_pct = 4,
1058 },
1059 .funcs = {
1060 .get_max = atom_get_max_pstate,
1061 .get_max_physical = atom_get_max_pstate,
1062 .get_min = atom_get_min_pstate,
1063 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1064 .get_val = atom_get_val,
1421df63
PL
1065 .get_scaling = silvermont_get_scaling,
1066 .get_vid = atom_get_vid,
e70eed2b 1067 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1068 },
1069};
1070
1071static struct cpu_defaults airmont_params = {
19e77c28
DB
1072 .pid_policy = {
1073 .sample_rate_ms = 10,
1074 .deadband = 0,
6a82ba6d 1075 .setpoint = 60,
19e77c28
DB
1076 .p_gain_pct = 14,
1077 .d_gain_pct = 0,
1078 .i_gain_pct = 4,
1079 },
1080 .funcs = {
938d21a2
PL
1081 .get_max = atom_get_max_pstate,
1082 .get_max_physical = atom_get_max_pstate,
1083 .get_min = atom_get_min_pstate,
1084 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1085 .get_val = atom_get_val,
1421df63 1086 .get_scaling = airmont_get_scaling,
938d21a2 1087 .get_vid = atom_get_vid,
e70eed2b 1088 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1089 },
1090};
1091
b34ef932
DC
1092static struct cpu_defaults knl_params = {
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
1096 .setpoint = 97,
1097 .p_gain_pct = 20,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 0,
1100 },
1101 .funcs = {
1102 .get_max = core_get_max_pstate,
3bcc6fa9 1103 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1104 .get_min = core_get_min_pstate,
1105 .get_turbo = knl_get_turbo_pstate,
69cefc27 1106 .get_scaling = core_get_scaling,
fdfdb2b1 1107 .get_val = core_get_val,
157386b6 1108 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1109 },
1110};
1111
93f0822d
DB
1112static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1113{
1114 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1115 int max_perf_adj;
93f0822d 1116 int min_perf;
845c1cbe 1117
51443fbf 1118 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1119 max_perf = cpu->pstate.max_pstate;
1120
e0d4c8f8
KCA
1121 /*
1122 * performance can be limited by user through sysfs, by cpufreq
1123 * policy, or by cpu specific default values determined through
1124 * experimentation.
1125 */
a158bed5 1126 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1127 *max = clamp_t(int, max_perf_adj,
1128 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1129
a158bed5 1130 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1131 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1132}
1133
fdfdb2b1 1134static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1135{
b27580b0 1136 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1137 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1138}
93f0822d 1139
fdfdb2b1
RW
1140static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1141{
1142 int pstate = cpu->pstate.min_pstate;
1143
1144 intel_pstate_record_pstate(cpu, pstate);
1145 /*
1146 * Generally, there is no guarantee that this code will always run on
1147 * the CPU being updated, so force the register update to run on the
1148 * right CPU.
1149 */
1150 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1151 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1152}
1153
93f0822d
DB
1154static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1155{
016c8150
DB
1156 cpu->pstate.min_pstate = pstate_funcs.get_min();
1157 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1158 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1159 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1160 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1161
007bea09
DB
1162 if (pstate_funcs.get_vid)
1163 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1164
1165 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1166}
1167
a1c9787d 1168static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1169{
6b17ddb2 1170 struct sample *sample = &cpu->sample;
e66c1768 1171
a1c9787d 1172 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1173}
1174
4fec7ad5 1175static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1176{
93f0822d 1177 u64 aperf, mperf;
4ab60c3f 1178 unsigned long flags;
4055fad3 1179 u64 tsc;
93f0822d 1180
4ab60c3f 1181 local_irq_save(flags);
93f0822d
DB
1182 rdmsrl(MSR_IA32_APERF, aperf);
1183 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1184 tsc = rdtsc();
4fec7ad5 1185 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1186 local_irq_restore(flags);
4fec7ad5 1187 return false;
8e601a9f 1188 }
4ab60c3f 1189 local_irq_restore(flags);
b69880f9 1190
c4ee841f 1191 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1192 cpu->sample.time = time;
d37e2b76
DB
1193 cpu->sample.aperf = aperf;
1194 cpu->sample.mperf = mperf;
4055fad3 1195 cpu->sample.tsc = tsc;
d37e2b76
DB
1196 cpu->sample.aperf -= cpu->prev_aperf;
1197 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1198 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1199
93f0822d
DB
1200 cpu->prev_aperf = aperf;
1201 cpu->prev_mperf = mperf;
4055fad3 1202 cpu->prev_tsc = tsc;
febce40f
RW
1203 /*
1204 * First time this function is invoked in a given cycle, all of the
1205 * previous sample data fields are equal to zero or stale and they must
1206 * be populated with meaningful numbers for things to work, so assume
1207 * that sample.time will always be reset before setting the utilization
1208 * update hook and make the caller skip the sample then.
1209 */
1210 return !!cpu->last_sample_time;
93f0822d
DB
1211}
1212
8fa520af
PL
1213static inline int32_t get_avg_frequency(struct cpudata *cpu)
1214{
a1c9787d
RW
1215 return mul_ext_fp(cpu->sample.core_avg_perf,
1216 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1217}
1218
bdcaa23f
PL
1219static inline int32_t get_avg_pstate(struct cpudata *cpu)
1220{
8edb0a6e
RW
1221 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1222 cpu->sample.core_avg_perf);
bdcaa23f
PL
1223}
1224
e70eed2b
PL
1225static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1226{
1227 struct sample *sample = &cpu->sample;
63d1d656
PL
1228 u64 cummulative_iowait, delta_iowait_us;
1229 u64 delta_iowait_mperf;
1230 u64 mperf, now;
e70eed2b
PL
1231 int32_t cpu_load;
1232
63d1d656
PL
1233 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1234
1235 /*
1236 * Convert iowait time into number of IO cycles spent at max_freq.
1237 * IO is considered as busy only for the cpu_load algorithm. For
1238 * performance this is not needed since we always try to reach the
1239 * maximum P-State, so we are already boosting the IOs.
1240 */
1241 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1242 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1243 cpu->pstate.max_pstate, MSEC_PER_SEC);
1244
1245 mperf = cpu->sample.mperf + delta_iowait_mperf;
1246 cpu->prev_cummulative_iowait = cummulative_iowait;
1247
e70eed2b
PL
1248 /*
1249 * The load can be estimated as the ratio of the mperf counter
1250 * running at a constant frequency during active periods
1251 * (C0) and the time stamp counter running at the same frequency
1252 * also during C-states.
1253 */
63d1d656 1254 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1255 cpu->sample.busy_scaled = cpu_load;
1256
bdcaa23f 1257 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1258}
1259
157386b6 1260static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1261{
1aa7a6e2 1262 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1263 u64 duration_ns;
93f0822d 1264
e0d4c8f8 1265 /*
1aa7a6e2
RW
1266 * perf_scaled is the average performance during the last sampling
1267 * period scaled by the ratio of the maximum P-state to the P-state
1268 * requested last time (in percent). That measures the system's
1269 * response to the previous P-state selection.
e0d4c8f8 1270 */
22590efb
RW
1271 max_pstate = cpu->pstate.max_pstate_physical;
1272 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1273 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1274 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1275
e0d4c8f8 1276 /*
a4675fbc
RW
1277 * Since our utilization update callback will not run unless we are
1278 * in C0, check if the actual elapsed time is significantly greater (3x)
1279 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1280 * enough period of time to adjust our performance metric.
e0d4c8f8 1281 */
a4675fbc 1282 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1283 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1284 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1285 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1286 } else {
1287 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1288 if (sample_ratio < int_tofp(1))
1aa7a6e2 1289 perf_scaled = 0;
c4ee841f
DB
1290 }
1291
1aa7a6e2
RW
1292 cpu->sample.busy_scaled = perf_scaled;
1293 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1294}
1295
fdfdb2b1
RW
1296static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1297{
1298 int max_perf, min_perf;
1299
1300 update_turbo_state();
1301
1302 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1303 pstate = clamp_t(int, pstate, min_perf, max_perf);
1304 if (pstate == cpu->pstate.current_pstate)
1305 return;
1306
1307 intel_pstate_record_pstate(cpu, pstate);
1308 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1309}
1310
93f0822d
DB
1311static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1312{
157386b6 1313 int from, target_pstate;
4055fad3
DS
1314 struct sample *sample;
1315
1316 from = cpu->pstate.current_pstate;
93f0822d 1317
157386b6 1318 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1319
fdfdb2b1 1320 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1321
1322 sample = &cpu->sample;
a1c9787d 1323 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1324 fp_toint(sample->busy_scaled),
4055fad3
DS
1325 from,
1326 cpu->pstate.current_pstate,
1327 sample->mperf,
1328 sample->aperf,
1329 sample->tsc,
8fa520af 1330 get_avg_frequency(cpu));
93f0822d
DB
1331}
1332
a4675fbc
RW
1333static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1334 unsigned long util, unsigned long max)
93f0822d 1335{
a4675fbc
RW
1336 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1337 u64 delta_ns = time - cpu->sample.time;
b69880f9 1338
a4675fbc 1339 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1340 bool sample_taken = intel_pstate_sample(cpu, time);
1341
6d45b719 1342 if (sample_taken) {
a1c9787d 1343 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1344 if (!hwp_active)
1345 intel_pstate_adjust_busy_pstate(cpu);
1346 }
a4675fbc 1347 }
93f0822d
DB
1348}
1349
1350#define ICPU(model, policy) \
6cbd7ee1
DB
1351 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1352 (unsigned long)&policy }
93f0822d
DB
1353
1354static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1355 ICPU(0x2a, core_params),
1356 ICPU(0x2d, core_params),
1421df63 1357 ICPU(0x37, silvermont_params),
016c8150
DB
1358 ICPU(0x3a, core_params),
1359 ICPU(0x3c, core_params),
c7e241df 1360 ICPU(0x3d, core_params),
016c8150
DB
1361 ICPU(0x3e, core_params),
1362 ICPU(0x3f, core_params),
1363 ICPU(0x45, core_params),
1364 ICPU(0x46, core_params),
43f8a966 1365 ICPU(0x47, core_params),
1421df63 1366 ICPU(0x4c, airmont_params),
7ab0256e 1367 ICPU(0x4e, core_params),
c7e241df 1368 ICPU(0x4f, core_params),
1c939123 1369 ICPU(0x5e, core_params),
c7e241df 1370 ICPU(0x56, core_params),
b34ef932 1371 ICPU(0x57, knl_params),
93f0822d
DB
1372 {}
1373};
1374MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1375
2f86dc4c
DB
1376static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1377 ICPU(0x56, core_params),
1378 {}
1379};
1380
93f0822d
DB
1381static int intel_pstate_init_cpu(unsigned int cpunum)
1382{
93f0822d
DB
1383 struct cpudata *cpu;
1384
c0348717
DB
1385 if (!all_cpu_data[cpunum])
1386 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1387 GFP_KERNEL);
93f0822d
DB
1388 if (!all_cpu_data[cpunum])
1389 return -ENOMEM;
1390
1391 cpu = all_cpu_data[cpunum];
1392
93f0822d 1393 cpu->cpu = cpunum;
ba88d433 1394
a4675fbc 1395 if (hwp_active) {
ba88d433 1396 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1397 pid_params.sample_rate_ms = 50;
1398 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1399 }
ba88d433 1400
179e8471 1401 intel_pstate_get_cpu_pstates(cpu);
016c8150 1402
93f0822d 1403 intel_pstate_busy_pid_reset(cpu);
93f0822d 1404
4836df17 1405 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1406
1407 return 0;
1408}
1409
1410static unsigned int intel_pstate_get(unsigned int cpu_num)
1411{
f96fd0c8 1412 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1413
f96fd0c8 1414 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1415}
1416
febce40f 1417static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1418{
febce40f
RW
1419 struct cpudata *cpu = all_cpu_data[cpu_num];
1420
1421 /* Prevent intel_pstate_update_util() from using stale data. */
1422 cpu->sample.time = 0;
0bed612b
RW
1423 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424 intel_pstate_update_util);
4578ee7e 1425 cpu->update_util_set = true;
bb6ab52f
RW
1426}
1427
1428static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1429{
4578ee7e
CY
1430 struct cpudata *cpu_data = all_cpu_data[cpu];
1431
1432 if (!cpu_data->update_util_set)
1433 return;
1434
0bed612b 1435 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1436 cpu_data->update_util_set = false;
bb6ab52f
RW
1437 synchronize_sched();
1438}
1439
30a39153
SP
1440static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1441{
1442 limits->no_turbo = 0;
1443 limits->turbo_disabled = 0;
1444 limits->max_perf_pct = 100;
1445 limits->max_perf = int_tofp(1);
1446 limits->min_perf_pct = 100;
1447 limits->min_perf = int_tofp(1);
1448 limits->max_policy_pct = 100;
1449 limits->max_sysfs_pct = 100;
1450 limits->min_policy_pct = 0;
1451 limits->min_sysfs_pct = 0;
1452}
1453
93f0822d
DB
1454static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1455{
3be9200d
SP
1456 struct cpudata *cpu;
1457
d3929b83
DB
1458 if (!policy->cpuinfo.max_freq)
1459 return -ENODEV;
1460
bb6ab52f
RW
1461 intel_pstate_clear_update_util_hook(policy->cpu);
1462
3be9200d 1463 cpu = all_cpu_data[0];
c749c64f
RW
1464 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1465 policy->max < policy->cpuinfo.max_freq &&
1466 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1467 pr_debug("policy->max > max non turbo frequency\n");
1468 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1469 }
1470
30a39153 1471 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1472 limits = &performance_limits;
30a39153 1473 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1474 pr_debug("set performance\n");
30a39153
SP
1475 intel_pstate_set_performance_limits(limits);
1476 goto out;
1477 }
1478 } else {
4836df17 1479 pr_debug("set powersave\n");
30a39153 1480 limits = &powersave_limits;
93f0822d 1481 }
2f86dc4c 1482
51443fbf
PB
1483 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1484 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1485 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1486 policy->cpuinfo.max_freq);
51443fbf 1487 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1488
1489 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1490 limits->min_perf_pct = max(limits->min_policy_pct,
1491 limits->min_sysfs_pct);
1492 limits->min_perf_pct = min(limits->max_policy_pct,
1493 limits->min_perf_pct);
1494 limits->max_perf_pct = min(limits->max_policy_pct,
1495 limits->max_sysfs_pct);
1496 limits->max_perf_pct = max(limits->min_policy_pct,
1497 limits->max_perf_pct);
88b7b7c0 1498 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1499
1500 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1501 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1502
22590efb
RW
1503 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1504 limits->max_perf = div_fp(limits->max_perf_pct, 100);
93f0822d 1505
bb6ab52f
RW
1506 out:
1507 intel_pstate_set_update_util_hook(policy->cpu);
1508
ba41e1bc 1509 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1510
93f0822d
DB
1511 return 0;
1512}
1513
1514static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1515{
be49e346 1516 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1517
285cb990 1518 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1519 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1520 return -EINVAL;
1521
1522 return 0;
1523}
1524
bb18008f 1525static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1526{
bb18008f
DB
1527 int cpu_num = policy->cpu;
1528 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1529
4836df17 1530 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1531
bb6ab52f 1532 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1533
2f86dc4c
DB
1534 if (hwp_active)
1535 return;
1536
fdfdb2b1 1537 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1538}
1539
2760984f 1540static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1541{
93f0822d 1542 struct cpudata *cpu;
52e0a509 1543 int rc;
93f0822d
DB
1544
1545 rc = intel_pstate_init_cpu(policy->cpu);
1546 if (rc)
1547 return rc;
1548
1549 cpu = all_cpu_data[policy->cpu];
1550
51443fbf 1551 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1552 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1553 else
1554 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1555
b27580b0
DB
1556 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1557 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1558
1559 /* cpuinfo and default policy values */
b27580b0
DB
1560 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1561 policy->cpuinfo.max_freq =
1562 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
9522a2ff 1563 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1564 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1565 cpumask_set_cpu(policy->cpu, policy->cpus);
1566
1567 return 0;
1568}
1569
9522a2ff
SP
1570static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1571{
1572 intel_pstate_exit_perf_limits(policy);
1573
1574 return 0;
1575}
1576
93f0822d
DB
1577static struct cpufreq_driver intel_pstate_driver = {
1578 .flags = CPUFREQ_CONST_LOOPS,
1579 .verify = intel_pstate_verify_policy,
1580 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1581 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1582 .get = intel_pstate_get,
1583 .init = intel_pstate_cpu_init,
9522a2ff 1584 .exit = intel_pstate_cpu_exit,
bb18008f 1585 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1586 .name = "intel_pstate",
93f0822d
DB
1587};
1588
6be26498 1589static int __initdata no_load;
2f86dc4c 1590static int __initdata no_hwp;
d64c3b0b 1591static int __initdata hwp_only;
aa4ea34d 1592static unsigned int force_load;
6be26498 1593
b563b4e3
DB
1594static int intel_pstate_msrs_not_valid(void)
1595{
016c8150 1596 if (!pstate_funcs.get_max() ||
c410833a
SK
1597 !pstate_funcs.get_min() ||
1598 !pstate_funcs.get_turbo())
b563b4e3
DB
1599 return -ENODEV;
1600
b563b4e3
DB
1601 return 0;
1602}
016c8150 1603
e0a261a2 1604static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1605{
1606 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1607 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1608 pid_params.p_gain_pct = policy->p_gain_pct;
1609 pid_params.i_gain_pct = policy->i_gain_pct;
1610 pid_params.d_gain_pct = policy->d_gain_pct;
1611 pid_params.deadband = policy->deadband;
1612 pid_params.setpoint = policy->setpoint;
1613}
1614
e0a261a2 1615static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1616{
1617 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1618 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1619 pstate_funcs.get_min = funcs->get_min;
1620 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1621 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1622 pstate_funcs.get_val = funcs->get_val;
007bea09 1623 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1624 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1625
016c8150
DB
1626}
1627
9522a2ff 1628#ifdef CONFIG_ACPI
fbbcdc07
AH
1629
1630static bool intel_pstate_no_acpi_pss(void)
1631{
1632 int i;
1633
1634 for_each_possible_cpu(i) {
1635 acpi_status status;
1636 union acpi_object *pss;
1637 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1638 struct acpi_processor *pr = per_cpu(processors, i);
1639
1640 if (!pr)
1641 continue;
1642
1643 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1644 if (ACPI_FAILURE(status))
1645 continue;
1646
1647 pss = buffer.pointer;
1648 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1649 kfree(pss);
1650 return false;
1651 }
1652
1653 kfree(pss);
1654 }
1655
1656 return true;
1657}
1658
966916ea 1659static bool intel_pstate_has_acpi_ppc(void)
1660{
1661 int i;
1662
1663 for_each_possible_cpu(i) {
1664 struct acpi_processor *pr = per_cpu(processors, i);
1665
1666 if (!pr)
1667 continue;
1668 if (acpi_has_method(pr->handle, "_PPC"))
1669 return true;
1670 }
1671 return false;
1672}
1673
1674enum {
1675 PSS,
1676 PPC,
1677};
1678
fbbcdc07
AH
1679struct hw_vendor_info {
1680 u16 valid;
1681 char oem_id[ACPI_OEM_ID_SIZE];
1682 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1683 int oem_pwr_table;
fbbcdc07
AH
1684};
1685
1686/* Hardware vendor-specific info that has its own power management modes */
1687static struct hw_vendor_info vendor_info[] = {
966916ea 1688 {1, "HP ", "ProLiant", PSS},
1689 {1, "ORACLE", "X4-2 ", PPC},
1690 {1, "ORACLE", "X4-2L ", PPC},
1691 {1, "ORACLE", "X4-2B ", PPC},
1692 {1, "ORACLE", "X3-2 ", PPC},
1693 {1, "ORACLE", "X3-2L ", PPC},
1694 {1, "ORACLE", "X3-2B ", PPC},
1695 {1, "ORACLE", "X4470M2 ", PPC},
1696 {1, "ORACLE", "X4270M3 ", PPC},
1697 {1, "ORACLE", "X4270M2 ", PPC},
1698 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1699 {1, "ORACLE", "X4170 M3", PPC},
1700 {1, "ORACLE", "X4275 M3", PPC},
1701 {1, "ORACLE", "X6-2 ", PPC},
1702 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1703 {0, "", ""},
1704};
1705
1706static bool intel_pstate_platform_pwr_mgmt_exists(void)
1707{
1708 struct acpi_table_header hdr;
1709 struct hw_vendor_info *v_info;
2f86dc4c
DB
1710 const struct x86_cpu_id *id;
1711 u64 misc_pwr;
1712
1713 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1714 if (id) {
1715 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1716 if ( misc_pwr & (1 << 8))
1717 return true;
1718 }
fbbcdc07 1719
c410833a
SK
1720 if (acpi_disabled ||
1721 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1722 return false;
1723
1724 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1725 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1726 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1727 ACPI_OEM_TABLE_ID_SIZE))
1728 switch (v_info->oem_pwr_table) {
1729 case PSS:
1730 return intel_pstate_no_acpi_pss();
1731 case PPC:
aa4ea34d
EZ
1732 return intel_pstate_has_acpi_ppc() &&
1733 (!force_load);
966916ea 1734 }
fbbcdc07
AH
1735 }
1736
1737 return false;
1738}
1739#else /* CONFIG_ACPI not enabled */
1740static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1741static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1742#endif /* CONFIG_ACPI */
1743
7791e4aa
SP
1744static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1745 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1746 {}
1747};
1748
93f0822d
DB
1749static int __init intel_pstate_init(void)
1750{
907cc908 1751 int cpu, rc = 0;
93f0822d 1752 const struct x86_cpu_id *id;
64df1fdf 1753 struct cpu_defaults *cpu_def;
93f0822d 1754
6be26498
DB
1755 if (no_load)
1756 return -ENODEV;
1757
7791e4aa
SP
1758 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1759 copy_cpu_funcs(&core_params.funcs);
1760 hwp_active++;
1761 goto hwp_cpu_matched;
1762 }
1763
93f0822d
DB
1764 id = x86_match_cpu(intel_pstate_cpu_ids);
1765 if (!id)
1766 return -ENODEV;
1767
64df1fdf 1768 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1769
64df1fdf
BP
1770 copy_pid_params(&cpu_def->pid_policy);
1771 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1772
b563b4e3
DB
1773 if (intel_pstate_msrs_not_valid())
1774 return -ENODEV;
1775
7791e4aa
SP
1776hwp_cpu_matched:
1777 /*
1778 * The Intel pstate driver will be ignored if the platform
1779 * firmware has its own power management modes.
1780 */
1781 if (intel_pstate_platform_pwr_mgmt_exists())
1782 return -ENODEV;
1783
4836df17 1784 pr_info("Intel P-state driver initializing\n");
93f0822d 1785
b57ffac5 1786 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1787 if (!all_cpu_data)
1788 return -ENOMEM;
93f0822d 1789
d64c3b0b
KCA
1790 if (!hwp_active && hwp_only)
1791 goto out;
1792
93f0822d
DB
1793 rc = cpufreq_register_driver(&intel_pstate_driver);
1794 if (rc)
1795 goto out;
1796
1797 intel_pstate_debug_expose_params();
1798 intel_pstate_sysfs_expose_params();
b69880f9 1799
7791e4aa 1800 if (hwp_active)
4836df17 1801 pr_info("HWP enabled\n");
7791e4aa 1802
93f0822d
DB
1803 return rc;
1804out:
907cc908
DB
1805 get_online_cpus();
1806 for_each_online_cpu(cpu) {
1807 if (all_cpu_data[cpu]) {
bb6ab52f 1808 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1809 kfree(all_cpu_data[cpu]);
1810 }
1811 }
1812
1813 put_online_cpus();
1814 vfree(all_cpu_data);
93f0822d
DB
1815 return -ENODEV;
1816}
1817device_initcall(intel_pstate_init);
1818
6be26498
DB
1819static int __init intel_pstate_setup(char *str)
1820{
1821 if (!str)
1822 return -EINVAL;
1823
1824 if (!strcmp(str, "disable"))
1825 no_load = 1;
539342f6 1826 if (!strcmp(str, "no_hwp")) {
4836df17 1827 pr_info("HWP disabled\n");
2f86dc4c 1828 no_hwp = 1;
539342f6 1829 }
aa4ea34d
EZ
1830 if (!strcmp(str, "force"))
1831 force_load = 1;
d64c3b0b
KCA
1832 if (!strcmp(str, "hwp_only"))
1833 hwp_only = 1;
9522a2ff
SP
1834
1835#ifdef CONFIG_ACPI
1836 if (!strcmp(str, "support_acpi_ppc"))
1837 acpi_ppc = true;
1838#endif
1839
6be26498
DB
1840 return 0;
1841}
1842early_param("intel_pstate", intel_pstate_setup);
1843
93f0822d
DB
1844MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1845MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1846MODULE_LICENSE("GPL");