]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
intel_pstate: delete scheduler hook in HWP mode
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
eabd22c6
RW
40#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
001c76f0 43#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
1b72e7fd 44#define INTEL_CPUFREQ_TRANSITION_DELAY 500
001c76f0 45
9522a2ff
SP
46#ifdef CONFIG_ACPI
47#include <acpi/processor.h>
17669006 48#include <acpi/cppc_acpi.h>
9522a2ff
SP
49#endif
50
f0fe3cd7 51#define FRAC_BITS 8
93f0822d
DB
52#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 54
a1c9787d
RW
55#define EXT_BITS 6
56#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
57#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 59
93f0822d
DB
60static inline int32_t mul_fp(int32_t x, int32_t y)
61{
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63}
64
7180dddf 65static inline int32_t div_fp(s64 x, s64 y)
93f0822d 66{
7180dddf 67 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
68}
69
d022a65e
DB
70static inline int ceiling_fp(int32_t x)
71{
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79}
80
ff35f02e
RW
81static inline int32_t percent_fp(int percent)
82{
83 return div_fp(percent, 100);
84}
85
a1c9787d
RW
86static inline u64 mul_ext_fp(u64 x, u64 y)
87{
88 return (x * y) >> EXT_FRAC_BITS;
89}
90
91static inline u64 div_ext_fp(u64 x, u64 y)
92{
93 return div64_u64(x << EXT_FRAC_BITS, y);
94}
95
e4c204ce
RW
96static inline int32_t percent_ext_fp(int percent)
97{
98 return div_ext_fp(percent, 100);
99}
100
13ad7701
SP
101/**
102 * struct sample - Store performance sample
a1c9787d 103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 106 * P state. This can be different than core_avg_perf
13ad7701
SP
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
13ad7701
SP
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
93f0822d 119struct sample {
a1c9787d 120 int32_t core_avg_perf;
157386b6 121 int32_t busy_scaled;
93f0822d
DB
122 u64 aperf;
123 u64 mperf;
4055fad3 124 u64 tsc;
a4675fbc 125 u64 time;
93f0822d
DB
126};
127
13ad7701
SP
128/**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
93f0822d
DB
144struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
3bcc6fa9 148 int max_pstate_physical;
b27580b0 149 int scaling;
93f0822d 150 int turbo_pstate;
001c76f0
RW
151 unsigned int max_freq;
152 unsigned int turbo_freq;
93f0822d
DB
153};
154
13ad7701
SP
155/**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
007bea09 168struct vid_data {
21855ff5
DB
169 int min;
170 int max;
171 int turbo;
007bea09
DB
172 int32_t ratio;
173};
174
13ad7701
SP
175/**
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
184 *
185 * Stores PID coefficients and last error for PID controller.
186 */
93f0822d
DB
187struct _pid {
188 int setpoint;
189 int32_t integral;
190 int32_t p_gain;
191 int32_t i_gain;
192 int32_t d_gain;
193 int deadband;
d253d2a5 194 int32_t last_err;
93f0822d
DB
195};
196
c5a2ee7d
RW
197/**
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
205 * P-state capacity.
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
207 * P-state capacity.
208 */
209struct global_params {
210 bool no_turbo;
211 bool turbo_disabled;
212 int max_perf_pct;
213 int min_perf_pct;
eae48f04
SP
214};
215
13ad7701
SP
216/**
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
2f1d407a 219 * @policy: CPUFreq policy value
13ad7701 220 * @update_util: CPUFreq utility callback information
4578ee7e 221 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
13ad7701
SP
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
232 * current sample
233 * @sample: Storage for storing last Sample data
1a4fe38a
SP
234 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
235 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
9522a2ff
SP
236 * @acpi_perf_data: Stores ACPI perf information read from _PSS
237 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
238 * @epp_powersave: Last saved HWP energy performance preference
239 * (EPP) or energy performance bias (EPB),
240 * when policy switched to performance
8442885f 241 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
242 * @epp_default: Power on default HWP energy performance
243 * preference/bias
244 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
245 * operation
13ad7701
SP
246 *
247 * This structure stores per CPU instance data for all CPUs.
248 */
93f0822d
DB
249struct cpudata {
250 int cpu;
251
2f1d407a 252 unsigned int policy;
a4675fbc 253 struct update_util_data update_util;
4578ee7e 254 bool update_util_set;
93f0822d 255
93f0822d 256 struct pstate_data pstate;
007bea09 257 struct vid_data vid;
93f0822d 258 struct _pid pid;
93f0822d 259
09c448d3 260 u64 last_update;
a4675fbc 261 u64 last_sample_time;
93f0822d
DB
262 u64 prev_aperf;
263 u64 prev_mperf;
4055fad3 264 u64 prev_tsc;
63d1d656 265 u64 prev_cummulative_iowait;
d37e2b76 266 struct sample sample;
1a4fe38a
SP
267 int32_t min_perf_ratio;
268 int32_t max_perf_ratio;
9522a2ff
SP
269#ifdef CONFIG_ACPI
270 struct acpi_processor_performance acpi_perf_data;
271 bool valid_pss_table;
272#endif
09c448d3 273 unsigned int iowait_boost;
984edbdc 274 s16 epp_powersave;
8442885f 275 s16 epp_policy;
984edbdc
SP
276 s16 epp_default;
277 s16 epp_saved;
93f0822d
DB
278};
279
280static struct cpudata **all_cpu_data;
13ad7701
SP
281
282/**
3954517e 283 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
284 * @sample_rate_ms: PID calculation sample rate in ms
285 * @sample_rate_ns: Sample rate calculation in ns
286 * @deadband: PID deadband
287 * @setpoint: PID Setpoint
288 * @p_gain_pct: PID proportional gain
289 * @i_gain_pct: PID integral gain
290 * @d_gain_pct: PID derivative gain
291 *
292 * Stores per CPU model static PID configuration data.
293 */
93f0822d
DB
294struct pstate_adjust_policy {
295 int sample_rate_ms;
a4675fbc 296 s64 sample_rate_ns;
93f0822d
DB
297 int deadband;
298 int setpoint;
299 int p_gain_pct;
300 int d_gain_pct;
301 int i_gain_pct;
302};
303
13ad7701
SP
304/**
305 * struct pstate_funcs - Per CPU model specific callbacks
306 * @get_max: Callback to get maximum non turbo effective P state
307 * @get_max_physical: Callback to get maximum non turbo physical P state
308 * @get_min: Callback to get minimum P state
309 * @get_turbo: Callback to get turbo P state
310 * @get_scaling: Callback to get frequency scaling factor
311 * @get_val: Callback to convert P state to actual MSR write value
312 * @get_vid: Callback to get VID data for Atom platforms
67dd9bf4 313 * @update_util: Active mode utilization update callback.
13ad7701
SP
314 *
315 * Core and Atom CPU models have different way to get P State limits. This
316 * structure is used to store those callbacks.
317 */
016c8150
DB
318struct pstate_funcs {
319 int (*get_max)(void);
3bcc6fa9 320 int (*get_max_physical)(void);
016c8150
DB
321 int (*get_min)(void);
322 int (*get_turbo)(void);
b27580b0 323 int (*get_scaling)(void);
fdfdb2b1 324 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 325 void (*get_vid)(struct cpudata *);
67dd9bf4
RW
326 void (*update_util)(struct update_util_data *data, u64 time,
327 unsigned int flags);
93f0822d
DB
328};
329
4a7cb7a9 330static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
331static struct pstate_adjust_policy pid_params __read_mostly = {
332 .sample_rate_ms = 10,
333 .sample_rate_ns = 10 * NSEC_PER_MSEC,
334 .deadband = 0,
335 .setpoint = 97,
336 .p_gain_pct = 20,
337 .d_gain_pct = 0,
338 .i_gain_pct = 0,
339};
340
4a7cb7a9 341static int hwp_active __read_mostly;
eae48f04 342static bool per_cpu_limits __read_mostly;
016c8150 343
ee8df89a 344static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 345
9522a2ff
SP
346#ifdef CONFIG_ACPI
347static bool acpi_ppc;
348#endif
13ad7701 349
c5a2ee7d 350static struct global_params global;
93f0822d 351
0c30b65b 352static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
353static DEFINE_MUTEX(intel_pstate_limits_lock);
354
9522a2ff 355#ifdef CONFIG_ACPI
2b3ec765
SP
356
357static bool intel_pstate_get_ppc_enable_status(void)
358{
359 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
360 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
361 return true;
362
363 return acpi_ppc;
364}
365
17669006
RW
366#ifdef CONFIG_ACPI_CPPC_LIB
367
368/* The work item is needed to avoid CPU hotplug locking issues */
369static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
370{
371 sched_set_itmt_support();
372}
373
374static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
375
376static void intel_pstate_set_itmt_prio(int cpu)
377{
378 struct cppc_perf_caps cppc_perf;
379 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return;
385
386 /*
387 * The priorities can be set regardless of whether or not
388 * sched_set_itmt_support(true) has been called and it is valid to
389 * update them at any time after it has been called.
390 */
391 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
392
393 if (max_highest_perf <= min_highest_perf) {
394 if (cppc_perf.highest_perf > max_highest_perf)
395 max_highest_perf = cppc_perf.highest_perf;
396
397 if (cppc_perf.highest_perf < min_highest_perf)
398 min_highest_perf = cppc_perf.highest_perf;
399
400 if (max_highest_perf > min_highest_perf) {
401 /*
402 * This code can be run during CPU online under the
403 * CPU hotplug locks, so sched_set_itmt_support()
404 * cannot be called from here. Queue up a work item
405 * to invoke it.
406 */
407 schedule_work(&sched_itmt_work);
408 }
409 }
410}
411#else
412static void intel_pstate_set_itmt_prio(int cpu)
413{
414}
415#endif
416
9522a2ff
SP
417static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418{
419 struct cpudata *cpu;
9522a2ff
SP
420 int ret;
421 int i;
422
17669006
RW
423 if (hwp_active) {
424 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 425 return;
17669006 426 }
e59a8f7f 427
2b3ec765 428 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
429 return;
430
431 cpu = all_cpu_data[policy->cpu];
432
433 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 policy->cpu);
435 if (ret)
436 return;
437
438 /*
439 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 * guarantee that the states returned by it map to the states in our
441 * list directly.
442 */
443 if (cpu->acpi_perf_data.control_register.space_id !=
444 ACPI_ADR_SPACE_FIXED_HARDWARE)
445 goto err;
446
447 /*
448 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 * usual without taking _PSS into account
450 */
451 if (cpu->acpi_perf_data.state_count < 2)
452 goto err;
453
454 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
457 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 (u32) cpu->acpi_perf_data.states[i].power,
460 (u32) cpu->acpi_perf_data.states[i].control);
461 }
462
463 /*
464 * The _PSS table doesn't contain whole turbo frequency range.
465 * This just contains +1 MHZ above the max non turbo frequency,
466 * with control value corresponding to max turbo ratio. But
467 * when cpufreq set policy is called, it will call with this
468 * max frequency, which will cause a reduced performance as
469 * this driver uses real max turbo frequency as the max
470 * frequency. So correct this frequency in _PSS table to
b00345d1 471 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
472 * Also need to convert to MHz as _PSS freq is in MHz.
473 */
7de32556 474 if (!global.turbo_disabled)
9522a2ff
SP
475 cpu->acpi_perf_data.states[0].core_frequency =
476 policy->cpuinfo.max_freq / 1000;
477 cpu->valid_pss_table = true;
6cacd115 478 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
479
480 return;
481
482 err:
483 cpu->valid_pss_table = false;
484 acpi_processor_unregister_performance(policy->cpu);
485}
486
487static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488{
489 struct cpudata *cpu;
490
491 cpu = all_cpu_data[policy->cpu];
492 if (!cpu->valid_pss_table)
493 return;
494
495 acpi_processor_unregister_performance(policy->cpu);
496}
9522a2ff 497#else
7a3ba767 498static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
499{
500}
501
7a3ba767 502static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
503{
504}
505#endif
506
d253d2a5 507static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 508{
d253d2a5 509 signed int result;
93f0822d
DB
510 int32_t pterm, dterm, fp_error;
511 int32_t integral_limit;
512
b54a0dfd 513 fp_error = pid->setpoint - busy;
93f0822d 514
b54a0dfd 515 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
516 return 0;
517
518 pterm = mul_fp(pid->p_gain, fp_error);
519
520 pid->integral += fp_error;
521
e0d4c8f8
KCA
522 /*
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
527 *
528 * The value of 30 was chosen through experimentation.
529 */
93f0822d
DB
530 integral_limit = int_tofp(30);
531 if (pid->integral > integral_limit)
532 pid->integral = integral_limit;
533 if (pid->integral < -integral_limit)
534 pid->integral = -integral_limit;
535
d253d2a5
BS
536 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 pid->last_err = fp_error;
93f0822d
DB
538
539 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 540 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
541 return (signed int)fp_toint(result);
542}
543
ff35f02e 544static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 545{
ff35f02e 546 struct _pid *pid = &cpu->pid;
93f0822d 547
ff35f02e
RW
548 pid->p_gain = percent_fp(pid_params.p_gain_pct);
549 pid->d_gain = percent_fp(pid_params.d_gain_pct);
550 pid->i_gain = percent_fp(pid_params.i_gain_pct);
551 pid->setpoint = int_tofp(pid_params.setpoint);
552 pid->last_err = pid->setpoint - int_tofp(100);
553 pid->deadband = int_tofp(pid_params.deadband);
554 pid->integral = 0;
93f0822d
DB
555}
556
4521e1a0
GM
557static inline void update_turbo_state(void)
558{
559 u64 misc_en;
560 struct cpudata *cpu;
561
562 cpu = all_cpu_data[0];
563 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 564 global.turbo_disabled =
4521e1a0
GM
565 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567}
568
c5a2ee7d
RW
569static int min_perf_pct_min(void)
570{
571 struct cpudata *cpu = all_cpu_data[0];
57caf4ec 572 int turbo_pstate = cpu->pstate.turbo_pstate;
c5a2ee7d 573
57caf4ec
RW
574 return turbo_pstate ?
575 DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
c5a2ee7d
RW
576}
577
8442885f
SP
578static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579{
580 u64 epb;
581 int ret;
582
583 if (!static_cpu_has(X86_FEATURE_EPB))
584 return -ENXIO;
585
586 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 if (ret)
588 return (s16)ret;
589
590 return (s16)(epb & 0x0f);
591}
592
593static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594{
595 s16 epp;
596
984edbdc
SP
597 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 /*
599 * When hwp_req_data is 0, means that caller didn't read
600 * MSR_HWP_REQUEST, so need to read and get EPP.
601 */
602 if (!hwp_req_data) {
603 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 &hwp_req_data);
605 if (epp)
606 return epp;
607 }
8442885f 608 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 609 } else {
8442885f
SP
610 /* When there is no EPP present, HWP uses EPB settings */
611 epp = intel_pstate_get_epb(cpu_data);
984edbdc 612 }
8442885f
SP
613
614 return epp;
615}
616
984edbdc 617static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
618{
619 u64 epb;
984edbdc 620 int ret;
8442885f
SP
621
622 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 623 return -ENXIO;
8442885f 624
984edbdc
SP
625 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return ret;
8442885f
SP
628
629 epb = (epb & ~0x0f) | pref;
630 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
631
632 return 0;
8442885f
SP
633}
634
984edbdc
SP
635/*
636 * EPP/EPB display strings corresponding to EPP index in the
637 * energy_perf_strings[]
638 * index String
639 *-------------------------------------
640 * 0 default
641 * 1 performance
642 * 2 balance_performance
643 * 3 balance_power
644 * 4 power
645 */
646static const char * const energy_perf_strings[] = {
647 "default",
648 "performance",
649 "balance_performance",
650 "balance_power",
651 "power",
652 NULL
653};
654
655static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
656{
657 s16 epp;
658 int index = -EINVAL;
659
660 epp = intel_pstate_get_epp(cpu_data, 0);
661 if (epp < 0)
662 return epp;
663
664 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 /*
666 * Range:
667 * 0x00-0x3F : Performance
668 * 0x40-0x7F : Balance performance
669 * 0x80-0xBF : Balance power
670 * 0xC0-0xFF : Power
671 * The EPP is a 8 bit value, but our ranges restrict the
672 * value which can be set. Here only using top two bits
673 * effectively.
674 */
675 index = (epp >> 6) + 1;
676 } else if (static_cpu_has(X86_FEATURE_EPB)) {
677 /*
678 * Range:
679 * 0x00-0x03 : Performance
680 * 0x04-0x07 : Balance performance
681 * 0x08-0x0B : Balance power
682 * 0x0C-0x0F : Power
683 * The EPB is a 4 bit value, but our ranges restrict the
684 * value which can be set. Here only using top two bits
685 * effectively.
686 */
687 index = (epp >> 2) + 1;
688 }
689
690 return index;
691}
692
693static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
694 int pref_index)
695{
696 int epp = -EINVAL;
697 int ret;
698
699 if (!pref_index)
700 epp = cpu_data->epp_default;
701
702 mutex_lock(&intel_pstate_limits_lock);
703
704 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
705 u64 value;
706
707 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
708 if (ret)
709 goto return_pref;
710
711 value &= ~GENMASK_ULL(31, 24);
712
713 /*
714 * If epp is not default, convert from index into
715 * energy_perf_strings to epp value, by shifting 6
716 * bits left to use only top two bits in epp.
717 * The resultant epp need to shifted by 24 bits to
718 * epp position in MSR_HWP_REQUEST.
719 */
720 if (epp == -EINVAL)
721 epp = (pref_index - 1) << 6;
722
723 value |= (u64)epp << 24;
724 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
725 } else {
726 if (epp == -EINVAL)
727 epp = (pref_index - 1) << 2;
728 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
729 }
730return_pref:
731 mutex_unlock(&intel_pstate_limits_lock);
732
733 return ret;
734}
735
736static ssize_t show_energy_performance_available_preferences(
737 struct cpufreq_policy *policy, char *buf)
738{
739 int i = 0;
740 int ret = 0;
741
742 while (energy_perf_strings[i] != NULL)
743 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
744
745 ret += sprintf(&buf[ret], "\n");
746
747 return ret;
748}
749
750cpufreq_freq_attr_ro(energy_performance_available_preferences);
751
752static ssize_t store_energy_performance_preference(
753 struct cpufreq_policy *policy, const char *buf, size_t count)
754{
755 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
756 char str_preference[21];
757 int ret, i = 0;
758
759 ret = sscanf(buf, "%20s", str_preference);
760 if (ret != 1)
761 return -EINVAL;
762
763 while (energy_perf_strings[i] != NULL) {
764 if (!strcmp(str_preference, energy_perf_strings[i])) {
765 intel_pstate_set_energy_pref_index(cpu_data, i);
766 return count;
767 }
768 ++i;
769 }
770
771 return -EINVAL;
772}
773
774static ssize_t show_energy_performance_preference(
775 struct cpufreq_policy *policy, char *buf)
776{
777 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
778 int preference;
779
780 preference = intel_pstate_get_energy_pref_index(cpu_data);
781 if (preference < 0)
782 return preference;
783
784 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
785}
786
787cpufreq_freq_attr_rw(energy_performance_preference);
788
789static struct freq_attr *hwp_cpufreq_attrs[] = {
790 &energy_performance_preference,
791 &energy_performance_available_preferences,
792 NULL,
793};
794
1a4fe38a
SP
795static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
796 int *current_max)
2f86dc4c 797{
1a4fe38a 798 u64 cap;
74da56ce 799
2bfc4cbb 800 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
2bfc4cbb 801 if (global.no_turbo)
1a4fe38a 802 *current_max = HWP_GUARANTEED_PERF(cap);
2bfc4cbb 803 else
1a4fe38a
SP
804 *current_max = HWP_HIGHEST_PERF(cap);
805
806 *phy_max = HWP_HIGHEST_PERF(cap);
807}
808
809static void intel_pstate_hwp_set(unsigned int cpu)
810{
811 struct cpudata *cpu_data = all_cpu_data[cpu];
812 int max, min;
813 u64 value;
814 s16 epp;
815
816 max = cpu_data->max_perf_ratio;
817 min = cpu_data->min_perf_ratio;
eae48f04 818
2bfc4cbb
RW
819 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820 min = max;
3f8ed54a 821
2bfc4cbb 822 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
2f86dc4c 823
2bfc4cbb
RW
824 value &= ~HWP_MIN_PERF(~0L);
825 value |= HWP_MIN_PERF(min);
8442885f 826
2bfc4cbb
RW
827 value &= ~HWP_MAX_PERF(~0L);
828 value |= HWP_MAX_PERF(max);
8442885f 829
2bfc4cbb
RW
830 if (cpu_data->epp_policy == cpu_data->policy)
831 goto skip_epp;
8442885f 832
2bfc4cbb 833 cpu_data->epp_policy = cpu_data->policy;
984edbdc 834
2bfc4cbb
RW
835 if (cpu_data->epp_saved >= 0) {
836 epp = cpu_data->epp_saved;
837 cpu_data->epp_saved = -EINVAL;
838 goto update_epp;
839 }
8442885f 840
2bfc4cbb
RW
841 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
842 epp = intel_pstate_get_epp(cpu_data, value);
843 cpu_data->epp_powersave = epp;
844 /* If EPP read was failed, then don't try to write */
845 if (epp < 0)
846 goto skip_epp;
8442885f 847
2bfc4cbb
RW
848 epp = 0;
849 } else {
850 /* skip setting EPP, when saved value is invalid */
851 if (cpu_data->epp_powersave < 0)
852 goto skip_epp;
8442885f 853
2bfc4cbb
RW
854 /*
855 * No need to restore EPP when it is not zero. This
856 * means:
857 * - Policy is not changed
858 * - user has manually changed
859 * - Error reading EPB
860 */
861 epp = intel_pstate_get_epp(cpu_data, value);
862 if (epp)
863 goto skip_epp;
8442885f 864
2bfc4cbb
RW
865 epp = cpu_data->epp_powersave;
866 }
984edbdc 867update_epp:
2bfc4cbb
RW
868 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
869 value &= ~GENMASK_ULL(31, 24);
870 value |= (u64)epp << 24;
871 } else {
872 intel_pstate_set_epb(cpu, epp);
2f86dc4c 873 }
2bfc4cbb
RW
874skip_epp:
875 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
41cfd64c 876}
2f86dc4c 877
984edbdc
SP
878static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
879{
880 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
881
882 if (!hwp_active)
883 return 0;
884
885 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
886
887 return 0;
888}
889
8442885f
SP
890static int intel_pstate_resume(struct cpufreq_policy *policy)
891{
892 if (!hwp_active)
893 return 0;
894
aa439248
RW
895 mutex_lock(&intel_pstate_limits_lock);
896
8442885f 897 all_cpu_data[policy->cpu]->epp_policy = 0;
2bfc4cbb 898 intel_pstate_hwp_set(policy->cpu);
aa439248
RW
899
900 mutex_unlock(&intel_pstate_limits_lock);
901
5f98ced1 902 return 0;
8442885f
SP
903}
904
111b8b3f 905static void intel_pstate_update_policies(void)
41cfd64c 906{
111b8b3f
RW
907 int cpu;
908
909 for_each_possible_cpu(cpu)
910 cpufreq_update_policy(cpu);
2f86dc4c
DB
911}
912
93f0822d
DB
913/************************** debugfs begin ************************/
914static int pid_param_set(void *data, u64 val)
915{
4ddd0146
RW
916 unsigned int cpu;
917
93f0822d 918 *(u32 *)data = val;
6e7408ac 919 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
920 for_each_possible_cpu(cpu)
921 if (all_cpu_data[cpu])
ff35f02e 922 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 923
93f0822d
DB
924 return 0;
925}
845c1cbe 926
93f0822d
DB
927static int pid_param_get(void *data, u64 *val)
928{
929 *val = *(u32 *)data;
930 return 0;
931}
2d8d1f18 932DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 933
fb1fe104
RW
934static struct dentry *debugfs_parent;
935
93f0822d
DB
936struct pid_param {
937 char *name;
938 void *value;
fb1fe104 939 struct dentry *dentry;
93f0822d
DB
940};
941
942static struct pid_param pid_files[] = {
fb1fe104
RW
943 {"sample_rate_ms", &pid_params.sample_rate_ms, },
944 {"d_gain_pct", &pid_params.d_gain_pct, },
945 {"i_gain_pct", &pid_params.i_gain_pct, },
946 {"deadband", &pid_params.deadband, },
947 {"setpoint", &pid_params.setpoint, },
948 {"p_gain_pct", &pid_params.p_gain_pct, },
949 {NULL, NULL, }
93f0822d
DB
950};
951
fb1fe104 952static void intel_pstate_debug_expose_params(void)
93f0822d 953{
fb1fe104 954 int i;
93f0822d
DB
955
956 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
957 if (IS_ERR_OR_NULL(debugfs_parent))
958 return;
fb1fe104
RW
959
960 for (i = 0; pid_files[i].name; i++) {
961 struct dentry *dentry;
962
963 dentry = debugfs_create_file(pid_files[i].name, 0660,
964 debugfs_parent, pid_files[i].value,
965 &fops_pid_param);
966 if (!IS_ERR(dentry))
967 pid_files[i].dentry = dentry;
93f0822d
DB
968 }
969}
970
fb1fe104
RW
971static void intel_pstate_debug_hide_params(void)
972{
973 int i;
974
975 if (IS_ERR_OR_NULL(debugfs_parent))
976 return;
977
978 for (i = 0; pid_files[i].name; i++) {
979 debugfs_remove(pid_files[i].dentry);
980 pid_files[i].dentry = NULL;
93f0822d 981 }
fb1fe104
RW
982
983 debugfs_remove(debugfs_parent);
984 debugfs_parent = NULL;
93f0822d
DB
985}
986
987/************************** debugfs end ************************/
988
989/************************** sysfs begin ************************/
990#define show_one(file_name, object) \
991 static ssize_t show_##file_name \
992 (struct kobject *kobj, struct attribute *attr, char *buf) \
993 { \
7de32556 994 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
995 }
996
fb1fe104
RW
997static ssize_t intel_pstate_show_status(char *buf);
998static int intel_pstate_update_status(const char *buf, size_t size);
999
1000static ssize_t show_status(struct kobject *kobj,
1001 struct attribute *attr, char *buf)
1002{
1003 ssize_t ret;
1004
1005 mutex_lock(&intel_pstate_driver_lock);
1006 ret = intel_pstate_show_status(buf);
1007 mutex_unlock(&intel_pstate_driver_lock);
1008
1009 return ret;
1010}
1011
1012static ssize_t store_status(struct kobject *a, struct attribute *b,
1013 const char *buf, size_t count)
1014{
1015 char *p = memchr(buf, '\n', count);
1016 int ret;
1017
1018 mutex_lock(&intel_pstate_driver_lock);
1019 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1020 mutex_unlock(&intel_pstate_driver_lock);
1021
1022 return ret < 0 ? ret : count;
1023}
1024
d01b1f48
KCA
1025static ssize_t show_turbo_pct(struct kobject *kobj,
1026 struct attribute *attr, char *buf)
1027{
1028 struct cpudata *cpu;
1029 int total, no_turbo, turbo_pct;
1030 uint32_t turbo_fp;
1031
0c30b65b
RW
1032 mutex_lock(&intel_pstate_driver_lock);
1033
ee8df89a 1034 if (!intel_pstate_driver) {
0c30b65b
RW
1035 mutex_unlock(&intel_pstate_driver_lock);
1036 return -EAGAIN;
1037 }
1038
d01b1f48
KCA
1039 cpu = all_cpu_data[0];
1040
1041 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1042 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1043 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1044 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1045
1046 mutex_unlock(&intel_pstate_driver_lock);
1047
d01b1f48
KCA
1048 return sprintf(buf, "%u\n", turbo_pct);
1049}
1050
0522424e
KCA
1051static ssize_t show_num_pstates(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053{
1054 struct cpudata *cpu;
1055 int total;
1056
0c30b65b
RW
1057 mutex_lock(&intel_pstate_driver_lock);
1058
ee8df89a 1059 if (!intel_pstate_driver) {
0c30b65b
RW
1060 mutex_unlock(&intel_pstate_driver_lock);
1061 return -EAGAIN;
1062 }
1063
0522424e
KCA
1064 cpu = all_cpu_data[0];
1065 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1066
1067 mutex_unlock(&intel_pstate_driver_lock);
1068
0522424e
KCA
1069 return sprintf(buf, "%u\n", total);
1070}
1071
4521e1a0
GM
1072static ssize_t show_no_turbo(struct kobject *kobj,
1073 struct attribute *attr, char *buf)
1074{
1075 ssize_t ret;
1076
0c30b65b
RW
1077 mutex_lock(&intel_pstate_driver_lock);
1078
ee8df89a 1079 if (!intel_pstate_driver) {
0c30b65b
RW
1080 mutex_unlock(&intel_pstate_driver_lock);
1081 return -EAGAIN;
1082 }
1083
4521e1a0 1084 update_turbo_state();
7de32556
RW
1085 if (global.turbo_disabled)
1086 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1087 else
7de32556 1088 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1089
0c30b65b
RW
1090 mutex_unlock(&intel_pstate_driver_lock);
1091
4521e1a0
GM
1092 return ret;
1093}
1094
93f0822d 1095static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1096 const char *buf, size_t count)
93f0822d
DB
1097{
1098 unsigned int input;
1099 int ret;
845c1cbe 1100
93f0822d
DB
1101 ret = sscanf(buf, "%u", &input);
1102 if (ret != 1)
1103 return -EINVAL;
4521e1a0 1104
0c30b65b
RW
1105 mutex_lock(&intel_pstate_driver_lock);
1106
ee8df89a 1107 if (!intel_pstate_driver) {
0c30b65b
RW
1108 mutex_unlock(&intel_pstate_driver_lock);
1109 return -EAGAIN;
1110 }
1111
a410c03d
SP
1112 mutex_lock(&intel_pstate_limits_lock);
1113
4521e1a0 1114 update_turbo_state();
7de32556 1115 if (global.turbo_disabled) {
4836df17 1116 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1117 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1118 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1119 return -EPERM;
dd5fbf70 1120 }
2f86dc4c 1121
7de32556 1122 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1123
c5a2ee7d
RW
1124 if (global.no_turbo) {
1125 struct cpudata *cpu = all_cpu_data[0];
1126 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1127
1128 /* Squash the global minimum into the permitted range. */
1129 if (global.min_perf_pct > pct)
1130 global.min_perf_pct = pct;
1131 }
1132
cd59b4be
RW
1133 mutex_unlock(&intel_pstate_limits_lock);
1134
7de32556
RW
1135 intel_pstate_update_policies();
1136
0c30b65b
RW
1137 mutex_unlock(&intel_pstate_driver_lock);
1138
93f0822d
DB
1139 return count;
1140}
1141
1142static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1143 const char *buf, size_t count)
93f0822d
DB
1144{
1145 unsigned int input;
1146 int ret;
845c1cbe 1147
93f0822d
DB
1148 ret = sscanf(buf, "%u", &input);
1149 if (ret != 1)
1150 return -EINVAL;
1151
0c30b65b
RW
1152 mutex_lock(&intel_pstate_driver_lock);
1153
ee8df89a 1154 if (!intel_pstate_driver) {
0c30b65b
RW
1155 mutex_unlock(&intel_pstate_driver_lock);
1156 return -EAGAIN;
1157 }
1158
a410c03d
SP
1159 mutex_lock(&intel_pstate_limits_lock);
1160
c5a2ee7d 1161 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1162
cd59b4be
RW
1163 mutex_unlock(&intel_pstate_limits_lock);
1164
7de32556
RW
1165 intel_pstate_update_policies();
1166
0c30b65b
RW
1167 mutex_unlock(&intel_pstate_driver_lock);
1168
93f0822d
DB
1169 return count;
1170}
1171
1172static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1173 const char *buf, size_t count)
93f0822d
DB
1174{
1175 unsigned int input;
1176 int ret;
845c1cbe 1177
93f0822d
DB
1178 ret = sscanf(buf, "%u", &input);
1179 if (ret != 1)
1180 return -EINVAL;
a0475992 1181
0c30b65b
RW
1182 mutex_lock(&intel_pstate_driver_lock);
1183
ee8df89a 1184 if (!intel_pstate_driver) {
0c30b65b
RW
1185 mutex_unlock(&intel_pstate_driver_lock);
1186 return -EAGAIN;
1187 }
1188
a410c03d
SP
1189 mutex_lock(&intel_pstate_limits_lock);
1190
c5a2ee7d
RW
1191 global.min_perf_pct = clamp_t(int, input,
1192 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1193
cd59b4be
RW
1194 mutex_unlock(&intel_pstate_limits_lock);
1195
7de32556
RW
1196 intel_pstate_update_policies();
1197
0c30b65b
RW
1198 mutex_unlock(&intel_pstate_driver_lock);
1199
93f0822d
DB
1200 return count;
1201}
1202
93f0822d
DB
1203show_one(max_perf_pct, max_perf_pct);
1204show_one(min_perf_pct, min_perf_pct);
1205
fb1fe104 1206define_one_global_rw(status);
93f0822d
DB
1207define_one_global_rw(no_turbo);
1208define_one_global_rw(max_perf_pct);
1209define_one_global_rw(min_perf_pct);
d01b1f48 1210define_one_global_ro(turbo_pct);
0522424e 1211define_one_global_ro(num_pstates);
93f0822d
DB
1212
1213static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1214 &status.attr,
93f0822d 1215 &no_turbo.attr,
d01b1f48 1216 &turbo_pct.attr,
0522424e 1217 &num_pstates.attr,
93f0822d
DB
1218 NULL
1219};
1220
1221static struct attribute_group intel_pstate_attr_group = {
1222 .attrs = intel_pstate_attributes,
1223};
93f0822d 1224
317dd50e 1225static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1226{
317dd50e 1227 struct kobject *intel_pstate_kobject;
93f0822d
DB
1228 int rc;
1229
1230 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1231 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1232 if (WARN_ON(!intel_pstate_kobject))
1233 return;
1234
2d8d1f18 1235 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1236 if (WARN_ON(rc))
1237 return;
1238
1239 /*
1240 * If per cpu limits are enforced there are no global limits, so
1241 * return without creating max/min_perf_pct attributes
1242 */
1243 if (per_cpu_limits)
1244 return;
1245
1246 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1247 WARN_ON(rc);
1248
1249 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1250 WARN_ON(rc);
1251
93f0822d 1252}
93f0822d 1253/************************** sysfs end ************************/
2f86dc4c 1254
ba88d433 1255static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1256{
f05c9665 1257 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1258 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1259 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1260
ba88d433 1261 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1262 cpudata->epp_policy = 0;
984edbdc
SP
1263 if (cpudata->epp_default == -EINVAL)
1264 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1265}
1266
6e978b22
SP
1267#define MSR_IA32_POWER_CTL_BIT_EE 19
1268
1269/* Disable energy efficiency optimization */
1270static void intel_pstate_disable_ee(int cpu)
1271{
1272 u64 power_ctl;
1273 int ret;
1274
1275 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1276 if (ret)
1277 return;
1278
1279 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1280 pr_info("Disabling energy efficiency optimization\n");
1281 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1282 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1283 }
1284}
1285
938d21a2 1286static int atom_get_min_pstate(void)
19e77c28
DB
1287{
1288 u64 value;
845c1cbe 1289
92134bdb 1290 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1291 return (value >> 8) & 0x7F;
19e77c28
DB
1292}
1293
938d21a2 1294static int atom_get_max_pstate(void)
19e77c28
DB
1295{
1296 u64 value;
845c1cbe 1297
92134bdb 1298 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1299 return (value >> 16) & 0x7F;
19e77c28 1300}
93f0822d 1301
938d21a2 1302static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1303{
1304 u64 value;
845c1cbe 1305
92134bdb 1306 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1307 return value & 0x7F;
61d8d2ab
DB
1308}
1309
fdfdb2b1 1310static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1311{
1312 u64 val;
1313 int32_t vid_fp;
1314 u32 vid;
1315
144c8e17 1316 val = (u64)pstate << 8;
7de32556 1317 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1318 val |= (u64)1 << 32;
1319
1320 vid_fp = cpudata->vid.min + mul_fp(
1321 int_tofp(pstate - cpudata->pstate.min_pstate),
1322 cpudata->vid.ratio);
1323
1324 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1325 vid = ceiling_fp(vid_fp);
007bea09 1326
21855ff5
DB
1327 if (pstate > cpudata->pstate.max_pstate)
1328 vid = cpudata->vid.turbo;
1329
fdfdb2b1 1330 return val | vid;
007bea09
DB
1331}
1332
1421df63 1333static int silvermont_get_scaling(void)
b27580b0
DB
1334{
1335 u64 value;
1336 int i;
1421df63
PL
1337 /* Defined in Table 35-6 from SDM (Sept 2015) */
1338 static int silvermont_freq_table[] = {
1339 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1340
1341 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1342 i = value & 0x7;
1343 WARN_ON(i > 4);
b27580b0 1344
1421df63
PL
1345 return silvermont_freq_table[i];
1346}
b27580b0 1347
1421df63
PL
1348static int airmont_get_scaling(void)
1349{
1350 u64 value;
1351 int i;
1352 /* Defined in Table 35-10 from SDM (Sept 2015) */
1353 static int airmont_freq_table[] = {
1354 83300, 100000, 133300, 116700, 80000,
1355 93300, 90000, 88900, 87500};
1356
1357 rdmsrl(MSR_FSB_FREQ, value);
1358 i = value & 0xF;
1359 WARN_ON(i > 8);
1360
1361 return airmont_freq_table[i];
b27580b0
DB
1362}
1363
938d21a2 1364static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1365{
1366 u64 value;
1367
92134bdb 1368 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1369 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1370 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1371 cpudata->vid.ratio = div_fp(
1372 cpudata->vid.max - cpudata->vid.min,
1373 int_tofp(cpudata->pstate.max_pstate -
1374 cpudata->pstate.min_pstate));
21855ff5 1375
92134bdb 1376 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1377 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1378}
1379
016c8150 1380static int core_get_min_pstate(void)
93f0822d
DB
1381{
1382 u64 value;
845c1cbe 1383
05e99c8c 1384 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1385 return (value >> 40) & 0xFF;
1386}
1387
3bcc6fa9 1388static int core_get_max_pstate_physical(void)
93f0822d
DB
1389{
1390 u64 value;
845c1cbe 1391
05e99c8c 1392 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1393 return (value >> 8) & 0xFF;
1394}
1395
8fc7554a
SP
1396static int core_get_tdp_ratio(u64 plat_info)
1397{
1398 /* Check how many TDP levels present */
1399 if (plat_info & 0x600000000) {
1400 u64 tdp_ctrl;
1401 u64 tdp_ratio;
1402 int tdp_msr;
1403 int err;
1404
1405 /* Get the TDP level (0, 1, 2) to get ratios */
1406 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1407 if (err)
1408 return err;
1409
1410 /* TDP MSR are continuous starting at 0x648 */
1411 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1412 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1413 if (err)
1414 return err;
1415
1416 /* For level 1 and 2, bits[23:16] contain the ratio */
1417 if (tdp_ctrl & 0x03)
1418 tdp_ratio >>= 16;
1419
1420 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1421 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1422
1423 return (int)tdp_ratio;
1424 }
1425
1426 return -ENXIO;
1427}
1428
016c8150 1429static int core_get_max_pstate(void)
93f0822d 1430{
6a35fc2d
SP
1431 u64 tar;
1432 u64 plat_info;
1433 int max_pstate;
8fc7554a 1434 int tdp_ratio;
6a35fc2d
SP
1435 int err;
1436
1437 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1438 max_pstate = (plat_info >> 8) & 0xFF;
1439
8fc7554a
SP
1440 tdp_ratio = core_get_tdp_ratio(plat_info);
1441 if (tdp_ratio <= 0)
1442 return max_pstate;
1443
1444 if (hwp_active) {
1445 /* Turbo activation ratio is not used on HWP platforms */
1446 return tdp_ratio;
1447 }
1448
6a35fc2d
SP
1449 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1450 if (!err) {
8fc7554a
SP
1451 int tar_levels;
1452
6a35fc2d 1453 /* Do some sanity checking for safety */
8fc7554a
SP
1454 tar_levels = tar & 0xff;
1455 if (tdp_ratio - 1 == tar_levels) {
1456 max_pstate = tar_levels;
1457 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1458 }
1459 }
845c1cbe 1460
6a35fc2d 1461 return max_pstate;
93f0822d
DB
1462}
1463
016c8150 1464static int core_get_turbo_pstate(void)
93f0822d
DB
1465{
1466 u64 value;
1467 int nont, ret;
845c1cbe 1468
100cf6f2 1469 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1470 nont = core_get_max_pstate();
285cb990 1471 ret = (value) & 255;
93f0822d
DB
1472 if (ret <= nont)
1473 ret = nont;
1474 return ret;
1475}
1476
b27580b0
DB
1477static inline int core_get_scaling(void)
1478{
1479 return 100000;
1480}
1481
fdfdb2b1 1482static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1483{
1484 u64 val;
1485
144c8e17 1486 val = (u64)pstate << 8;
7de32556 1487 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1488 val |= (u64)1 << 32;
1489
fdfdb2b1 1490 return val;
016c8150
DB
1491}
1492
b34ef932
DC
1493static int knl_get_turbo_pstate(void)
1494{
1495 u64 value;
1496 int nont, ret;
1497
100cf6f2 1498 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1499 nont = core_get_max_pstate();
1500 ret = (((value) >> 8) & 0xFF);
1501 if (ret <= nont)
1502 ret = nont;
1503 return ret;
1504}
1505
b02aabe8 1506static int intel_pstate_get_base_pstate(struct cpudata *cpu)
93f0822d 1507{
b02aabe8
RW
1508 return global.no_turbo || global.turbo_disabled ?
1509 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
93f0822d
DB
1510}
1511
a6c6ead1 1512static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1513{
bc95a454
RW
1514 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1515 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1516 /*
1517 * Generally, there is no guarantee that this code will always run on
1518 * the CPU being updated, so force the register update to run on the
1519 * right CPU.
1520 */
1521 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1522 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1523}
1524
a6c6ead1
RW
1525static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1526{
1527 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1528}
1529
1530static void intel_pstate_max_within_limits(struct cpudata *cpu)
1531{
b02aabe8 1532 int pstate;
a6c6ead1
RW
1533
1534 update_turbo_state();
b02aabe8 1535 pstate = intel_pstate_get_base_pstate(cpu);
1a4fe38a 1536 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
b02aabe8 1537 intel_pstate_set_pstate(cpu, pstate);
a6c6ead1
RW
1538}
1539
93f0822d
DB
1540static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1541{
016c8150
DB
1542 cpu->pstate.min_pstate = pstate_funcs.get_min();
1543 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1544 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1545 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1546 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1547 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1548 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1549
007bea09
DB
1550 if (pstate_funcs.get_vid)
1551 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1552
1553 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1554}
1555
a1c9787d 1556static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1557{
6b17ddb2 1558 struct sample *sample = &cpu->sample;
e66c1768 1559
a1c9787d 1560 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1561}
1562
4fec7ad5 1563static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1564{
93f0822d 1565 u64 aperf, mperf;
4ab60c3f 1566 unsigned long flags;
4055fad3 1567 u64 tsc;
93f0822d 1568
4ab60c3f 1569 local_irq_save(flags);
93f0822d
DB
1570 rdmsrl(MSR_IA32_APERF, aperf);
1571 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1572 tsc = rdtsc();
4fec7ad5 1573 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1574 local_irq_restore(flags);
4fec7ad5 1575 return false;
8e601a9f 1576 }
4ab60c3f 1577 local_irq_restore(flags);
b69880f9 1578
c4ee841f 1579 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1580 cpu->sample.time = time;
d37e2b76
DB
1581 cpu->sample.aperf = aperf;
1582 cpu->sample.mperf = mperf;
4055fad3 1583 cpu->sample.tsc = tsc;
d37e2b76
DB
1584 cpu->sample.aperf -= cpu->prev_aperf;
1585 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1586 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1587
93f0822d
DB
1588 cpu->prev_aperf = aperf;
1589 cpu->prev_mperf = mperf;
4055fad3 1590 cpu->prev_tsc = tsc;
febce40f
RW
1591 /*
1592 * First time this function is invoked in a given cycle, all of the
1593 * previous sample data fields are equal to zero or stale and they must
1594 * be populated with meaningful numbers for things to work, so assume
1595 * that sample.time will always be reset before setting the utilization
1596 * update hook and make the caller skip the sample then.
1597 */
eabd22c6
RW
1598 if (cpu->last_sample_time) {
1599 intel_pstate_calc_avg_perf(cpu);
1600 return true;
1601 }
1602 return false;
93f0822d
DB
1603}
1604
8fa520af
PL
1605static inline int32_t get_avg_frequency(struct cpudata *cpu)
1606{
a1c9787d
RW
1607 return mul_ext_fp(cpu->sample.core_avg_perf,
1608 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1609}
1610
bdcaa23f
PL
1611static inline int32_t get_avg_pstate(struct cpudata *cpu)
1612{
8edb0a6e
RW
1613 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1614 cpu->sample.core_avg_perf);
bdcaa23f
PL
1615}
1616
e70eed2b
PL
1617static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1618{
1619 struct sample *sample = &cpu->sample;
09c448d3 1620 int32_t busy_frac, boost;
0843e83c 1621 int target, avg_pstate;
e70eed2b 1622
67dd9bf4
RW
1623 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1624 return cpu->pstate.turbo_pstate;
1625
09c448d3 1626 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1627
09c448d3
RW
1628 boost = cpu->iowait_boost;
1629 cpu->iowait_boost >>= 1;
63d1d656 1630
09c448d3
RW
1631 if (busy_frac < boost)
1632 busy_frac = boost;
63d1d656 1633
09c448d3 1634 sample->busy_scaled = busy_frac * 100;
0843e83c 1635
7de32556 1636 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1637 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1638 target += target >> 2;
1639 target = mul_fp(target, busy_frac);
1640 if (target < cpu->pstate.min_pstate)
1641 target = cpu->pstate.min_pstate;
1642
1643 /*
1644 * If the average P-state during the previous cycle was higher than the
1645 * current target, add 50% of the difference to the target to reduce
1646 * possible performance oscillations and offset possible performance
1647 * loss related to moving the workload from one CPU to another within
1648 * a package/module.
1649 */
1650 avg_pstate = get_avg_pstate(cpu);
1651 if (avg_pstate > target)
1652 target += (avg_pstate - target) >> 1;
1653
1654 return target;
e70eed2b
PL
1655}
1656
157386b6 1657static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1658{
1aa7a6e2 1659 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1660 u64 duration_ns;
93f0822d 1661
67dd9bf4
RW
1662 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1663 return cpu->pstate.turbo_pstate;
1664
e0d4c8f8 1665 /*
f00593a4
RW
1666 * perf_scaled is the ratio of the average P-state during the last
1667 * sampling period to the P-state requested last time (in percent).
1668 *
1669 * That measures the system's response to the previous P-state
1670 * selection.
e0d4c8f8 1671 */
22590efb
RW
1672 max_pstate = cpu->pstate.max_pstate_physical;
1673 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1674 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1675 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1676
e0d4c8f8 1677 /*
a4675fbc
RW
1678 * Since our utilization update callback will not run unless we are
1679 * in C0, check if the actual elapsed time is significantly greater (3x)
1680 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1681 * enough period of time to adjust our performance metric.
e0d4c8f8 1682 */
a4675fbc 1683 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1684 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1685 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1686 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1687 } else {
1688 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1689 if (sample_ratio < int_tofp(1))
1aa7a6e2 1690 perf_scaled = 0;
c4ee841f
DB
1691 }
1692
1aa7a6e2
RW
1693 cpu->sample.busy_scaled = perf_scaled;
1694 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1695}
1696
001c76f0 1697static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1 1698{
b02aabe8
RW
1699 int max_pstate = intel_pstate_get_base_pstate(cpu);
1700 int min_pstate;
fdfdb2b1 1701
1a4fe38a
SP
1702 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1703 max_pstate = max(min_pstate, cpu->max_perf_ratio);
b02aabe8 1704 return clamp_t(int, pstate, min_pstate, max_pstate);
001c76f0
RW
1705}
1706
1707static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1708{
fdfdb2b1
RW
1709 if (pstate == cpu->pstate.current_pstate)
1710 return;
1711
bc95a454 1712 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1713 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1714}
1715
67dd9bf4 1716static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
93f0822d 1717{
67dd9bf4 1718 int from = cpu->pstate.current_pstate;
4055fad3
DS
1719 struct sample *sample;
1720
001c76f0
RW
1721 update_turbo_state();
1722
64078299
RW
1723 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1724 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1725 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1726
1727 sample = &cpu->sample;
a1c9787d 1728 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1729 fp_toint(sample->busy_scaled),
4055fad3
DS
1730 from,
1731 cpu->pstate.current_pstate,
1732 sample->mperf,
1733 sample->aperf,
1734 sample->tsc,
3ba7bcaa
SP
1735 get_avg_frequency(cpu),
1736 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1737}
1738
eabd22c6
RW
1739static void intel_pstate_update_util_pid(struct update_util_data *data,
1740 u64 time, unsigned int flags)
1741{
1742 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1743 u64 delta_ns = time - cpu->sample.time;
1744
1745 if ((s64)delta_ns < pid_params.sample_rate_ns)
1746 return;
1747
67dd9bf4
RW
1748 if (intel_pstate_sample(cpu, time)) {
1749 int target_pstate;
1750
1751 target_pstate = get_target_pstate_use_performance(cpu);
1752 intel_pstate_adjust_pstate(cpu, target_pstate);
1753 }
eabd22c6
RW
1754}
1755
a4675fbc 1756static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1757 unsigned int flags)
93f0822d 1758{
a4675fbc 1759 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1760 u64 delta_ns;
1761
eabd22c6
RW
1762 if (flags & SCHED_CPUFREQ_IOWAIT) {
1763 cpu->iowait_boost = int_tofp(1);
1764 } else if (cpu->iowait_boost) {
1765 /* Clear iowait_boost if the CPU may have been idle. */
1766 delta_ns = time - cpu->last_update;
1767 if (delta_ns > TICK_NSEC)
1768 cpu->iowait_boost = 0;
09c448d3 1769 }
eabd22c6 1770 cpu->last_update = time;
09c448d3 1771 delta_ns = time - cpu->sample.time;
eabd22c6
RW
1772 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1773 return;
4fec7ad5 1774
67dd9bf4
RW
1775 if (intel_pstate_sample(cpu, time)) {
1776 int target_pstate;
93f0822d 1777
67dd9bf4
RW
1778 target_pstate = get_target_pstate_use_cpu_load(cpu);
1779 intel_pstate_adjust_pstate(cpu, target_pstate);
1780 }
1781}
eabd22c6 1782
2f49afc2
RW
1783static struct pstate_funcs core_funcs = {
1784 .get_max = core_get_max_pstate,
1785 .get_max_physical = core_get_max_pstate_physical,
1786 .get_min = core_get_min_pstate,
1787 .get_turbo = core_get_turbo_pstate,
1788 .get_scaling = core_get_scaling,
1789 .get_val = core_get_val,
1790 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1791};
1792
2f49afc2
RW
1793static const struct pstate_funcs silvermont_funcs = {
1794 .get_max = atom_get_max_pstate,
1795 .get_max_physical = atom_get_max_pstate,
1796 .get_min = atom_get_min_pstate,
1797 .get_turbo = atom_get_turbo_pstate,
1798 .get_val = atom_get_val,
1799 .get_scaling = silvermont_get_scaling,
1800 .get_vid = atom_get_vid,
1801 .update_util = intel_pstate_update_util,
de4a76cb
RW
1802};
1803
2f49afc2
RW
1804static const struct pstate_funcs airmont_funcs = {
1805 .get_max = atom_get_max_pstate,
1806 .get_max_physical = atom_get_max_pstate,
1807 .get_min = atom_get_min_pstate,
1808 .get_turbo = atom_get_turbo_pstate,
1809 .get_val = atom_get_val,
1810 .get_scaling = airmont_get_scaling,
1811 .get_vid = atom_get_vid,
1812 .update_util = intel_pstate_update_util,
de4a76cb
RW
1813};
1814
2f49afc2
RW
1815static const struct pstate_funcs knl_funcs = {
1816 .get_max = core_get_max_pstate,
1817 .get_max_physical = core_get_max_pstate_physical,
1818 .get_min = core_get_min_pstate,
1819 .get_turbo = knl_get_turbo_pstate,
1820 .get_scaling = core_get_scaling,
1821 .get_val = core_get_val,
1822 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1823};
1824
2f49afc2
RW
1825static const struct pstate_funcs bxt_funcs = {
1826 .get_max = core_get_max_pstate,
1827 .get_max_physical = core_get_max_pstate_physical,
1828 .get_min = core_get_min_pstate,
1829 .get_turbo = core_get_turbo_pstate,
1830 .get_scaling = core_get_scaling,
1831 .get_val = core_get_val,
1832 .update_util = intel_pstate_update_util,
de4a76cb
RW
1833};
1834
93f0822d 1835#define ICPU(model, policy) \
6cbd7ee1
DB
1836 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1837 (unsigned long)&policy }
93f0822d
DB
1838
1839static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2f49afc2
RW
1840 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1841 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1842 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1843 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1844 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1845 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1846 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1847 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1848 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1849 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1850 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1851 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1852 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1853 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1854 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1855 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1856 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1857 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1858 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
630e5757 1859 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
93f0822d
DB
1860 {}
1861};
1862MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1863
29327c84 1864static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2f49afc2
RW
1865 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1866 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1867 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
2f86dc4c
DB
1868 {}
1869};
1870
6e978b22 1871static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2f49afc2 1872 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
6e978b22
SP
1873 {}
1874};
1875
8ca6ce37
RW
1876static bool pid_in_use(void);
1877
93f0822d
DB
1878static int intel_pstate_init_cpu(unsigned int cpunum)
1879{
93f0822d
DB
1880 struct cpudata *cpu;
1881
eae48f04
SP
1882 cpu = all_cpu_data[cpunum];
1883
1884 if (!cpu) {
c5a2ee7d 1885 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1886 if (!cpu)
1887 return -ENOMEM;
1888
1889 all_cpu_data[cpunum] = cpu;
eae48f04 1890
984edbdc
SP
1891 cpu->epp_default = -EINVAL;
1892 cpu->epp_powersave = -EINVAL;
1893 cpu->epp_saved = -EINVAL;
eae48f04 1894 }
93f0822d
DB
1895
1896 cpu = all_cpu_data[cpunum];
1897
93f0822d 1898 cpu->cpu = cpunum;
ba88d433 1899
a4675fbc 1900 if (hwp_active) {
6e978b22
SP
1901 const struct x86_cpu_id *id;
1902
1903 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1904 if (id)
1905 intel_pstate_disable_ee(cpunum);
1906
ba88d433 1907 intel_pstate_hwp_enable(cpu);
8ca6ce37 1908 } else if (pid_in_use()) {
694cb173 1909 intel_pstate_pid_reset(cpu);
a4675fbc 1910 }
ba88d433 1911
179e8471 1912 intel_pstate_get_cpu_pstates(cpu);
016c8150 1913
4836df17 1914 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1915
1916 return 0;
1917}
1918
1919static unsigned int intel_pstate_get(unsigned int cpu_num)
1920{
f96fd0c8 1921 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1922
f96fd0c8 1923 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1924}
1925
febce40f 1926static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1927{
febce40f
RW
1928 struct cpudata *cpu = all_cpu_data[cpu_num];
1929
62611cb9
LB
1930 if (hwp_active)
1931 return;
1932
5ab666e0
RW
1933 if (cpu->update_util_set)
1934 return;
1935
febce40f
RW
1936 /* Prevent intel_pstate_update_util() from using stale data. */
1937 cpu->sample.time = 0;
67dd9bf4
RW
1938 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1939 pstate_funcs.update_util);
4578ee7e 1940 cpu->update_util_set = true;
bb6ab52f
RW
1941}
1942
1943static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1944{
4578ee7e
CY
1945 struct cpudata *cpu_data = all_cpu_data[cpu];
1946
1947 if (!cpu_data->update_util_set)
1948 return;
1949
0bed612b 1950 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1951 cpu_data->update_util_set = false;
bb6ab52f
RW
1952 synchronize_sched();
1953}
1954
80b120ca
RW
1955static int intel_pstate_get_max_freq(struct cpudata *cpu)
1956{
1957 return global.turbo_disabled || global.no_turbo ?
1958 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1959}
1960
eae48f04 1961static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1962 struct cpudata *cpu)
eae48f04 1963{
80b120ca 1964 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1965 int32_t max_policy_perf, min_policy_perf;
1a4fe38a 1966 int max_state, turbo_max;
a410c03d 1967
1a4fe38a
SP
1968 /*
1969 * HWP needs some special consideration, because on BDX the
1970 * HWP_REQUEST uses abstract value to represent performance
1971 * rather than pure ratios.
1972 */
1973 if (hwp_active) {
1974 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1975 } else {
1976 max_state = intel_pstate_get_base_pstate(cpu);
1977 turbo_max = cpu->pstate.turbo_pstate;
1978 }
1979
1980 max_policy_perf = max_state * policy->max / max_freq;
5879f877 1981 if (policy->max == policy->min) {
e4c204ce 1982 min_policy_perf = max_policy_perf;
5879f877 1983 } else {
1a4fe38a 1984 min_policy_perf = max_state * policy->min / max_freq;
e4c204ce
RW
1985 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1986 0, max_policy_perf);
5879f877 1987 }
eae48f04 1988
1a4fe38a
SP
1989 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1990 policy->cpu, max_state,
1991 min_policy_perf, max_policy_perf);
1992
e4c204ce 1993 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1994 if (per_cpu_limits) {
1a4fe38a
SP
1995 cpu->min_perf_ratio = min_policy_perf;
1996 cpu->max_perf_ratio = max_policy_perf;
c5a2ee7d
RW
1997 } else {
1998 int32_t global_min, global_max;
1999
2000 /* Global limits are in percent of the maximum turbo P-state. */
1a4fe38a
SP
2001 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2002 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
c5a2ee7d 2003 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 2004
1a4fe38a
SP
2005 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2006 global_min, global_max);
c5a2ee7d 2007
1a4fe38a
SP
2008 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2009 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2010 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2011 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
eae48f04 2012
1a4fe38a
SP
2013 /* Make sure min_perf <= max_perf */
2014 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2015 cpu->max_perf_ratio);
eae48f04 2016
1a4fe38a
SP
2017 }
2018 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2019 cpu->max_perf_ratio,
2020 cpu->min_perf_ratio);
eae48f04
SP
2021}
2022
93f0822d
DB
2023static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2024{
3be9200d
SP
2025 struct cpudata *cpu;
2026
d3929b83
DB
2027 if (!policy->cpuinfo.max_freq)
2028 return -ENODEV;
2029
2c2c1af4
SP
2030 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2031 policy->cpuinfo.max_freq, policy->max);
2032
a6c6ead1 2033 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2034 cpu->policy = policy->policy;
2035
b59fe540
SP
2036 mutex_lock(&intel_pstate_limits_lock);
2037
c5a2ee7d 2038 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2039
2f1d407a 2040 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2041 /*
2042 * NOHZ_FULL CPUs need this as the governor callback may not
2043 * be invoked on them.
2044 */
2045 intel_pstate_clear_update_util_hook(policy->cpu);
2046 intel_pstate_max_within_limits(cpu);
2047 }
2048
bb6ab52f
RW
2049 intel_pstate_set_update_util_hook(policy->cpu);
2050
5f98ced1 2051 if (hwp_active)
2bfc4cbb 2052 intel_pstate_hwp_set(policy->cpu);
2f86dc4c 2053
b59fe540
SP
2054 mutex_unlock(&intel_pstate_limits_lock);
2055
93f0822d
DB
2056 return 0;
2057}
2058
80b120ca
RW
2059static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2060 struct cpudata *cpu)
2061{
2062 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2063 policy->max < policy->cpuinfo.max_freq &&
2064 policy->max > cpu->pstate.max_freq) {
2065 pr_debug("policy->max > max non turbo frequency\n");
2066 policy->max = policy->cpuinfo.max_freq;
2067 }
2068}
2069
93f0822d
DB
2070static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2071{
7d9a8a9f 2072 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2073
2074 update_turbo_state();
80b120ca
RW
2075 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2076 intel_pstate_get_max_freq(cpu));
93f0822d 2077
285cb990 2078 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2079 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2080 return -EINVAL;
2081
80b120ca
RW
2082 intel_pstate_adjust_policy_max(policy, cpu);
2083
93f0822d
DB
2084 return 0;
2085}
2086
001c76f0
RW
2087static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2088{
2089 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2090}
2091
bb18008f 2092static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2093{
001c76f0 2094 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2095
001c76f0 2096 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2097 if (hwp_active)
2098 intel_pstate_hwp_save_state(policy);
2099 else
001c76f0
RW
2100 intel_cpufreq_stop_cpu(policy);
2101}
bb18008f 2102
001c76f0
RW
2103static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2104{
2105 intel_pstate_exit_perf_limits(policy);
a4675fbc 2106
001c76f0 2107 policy->fast_switch_possible = false;
2f86dc4c 2108
001c76f0 2109 return 0;
93f0822d
DB
2110}
2111
001c76f0 2112static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2113{
93f0822d 2114 struct cpudata *cpu;
52e0a509 2115 int rc;
93f0822d
DB
2116
2117 rc = intel_pstate_init_cpu(policy->cpu);
2118 if (rc)
2119 return rc;
2120
2121 cpu = all_cpu_data[policy->cpu];
2122
1a4fe38a
SP
2123 cpu->max_perf_ratio = 0xFF;
2124 cpu->min_perf_ratio = 0;
93f0822d 2125
b27580b0
DB
2126 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2127 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2128
2129 /* cpuinfo and default policy values */
b27580b0 2130 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2131 update_turbo_state();
7de32556 2132 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2133 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2134 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2135
9522a2ff 2136 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2137 cpumask_set_cpu(policy->cpu, policy->cpus);
2138
001c76f0
RW
2139 policy->fast_switch_possible = true;
2140
93f0822d
DB
2141 return 0;
2142}
2143
001c76f0 2144static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2145{
001c76f0
RW
2146 int ret = __intel_pstate_cpu_init(policy);
2147
2148 if (ret)
2149 return ret;
2150
2151 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2152 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2153 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2154 else
2155 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2156
2157 return 0;
2158}
2159
001c76f0 2160static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2161 .flags = CPUFREQ_CONST_LOOPS,
2162 .verify = intel_pstate_verify_policy,
2163 .setpolicy = intel_pstate_set_policy,
984edbdc 2164 .suspend = intel_pstate_hwp_save_state,
8442885f 2165 .resume = intel_pstate_resume,
93f0822d
DB
2166 .get = intel_pstate_get,
2167 .init = intel_pstate_cpu_init,
9522a2ff 2168 .exit = intel_pstate_cpu_exit,
bb18008f 2169 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2170 .name = "intel_pstate",
93f0822d
DB
2171};
2172
001c76f0
RW
2173static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2174{
2175 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2176
2177 update_turbo_state();
80b120ca
RW
2178 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2179 intel_pstate_get_max_freq(cpu));
001c76f0 2180
80b120ca 2181 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2182
c5a2ee7d
RW
2183 intel_pstate_update_perf_limits(policy, cpu);
2184
001c76f0
RW
2185 return 0;
2186}
2187
001c76f0
RW
2188static int intel_cpufreq_target(struct cpufreq_policy *policy,
2189 unsigned int target_freq,
2190 unsigned int relation)
2191{
2192 struct cpudata *cpu = all_cpu_data[policy->cpu];
2193 struct cpufreq_freqs freqs;
2194 int target_pstate;
2195
64897b20
RW
2196 update_turbo_state();
2197
001c76f0 2198 freqs.old = policy->cur;
64897b20 2199 freqs.new = target_freq;
001c76f0
RW
2200
2201 cpufreq_freq_transition_begin(policy, &freqs);
2202 switch (relation) {
2203 case CPUFREQ_RELATION_L:
2204 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2205 break;
2206 case CPUFREQ_RELATION_H:
2207 target_pstate = freqs.new / cpu->pstate.scaling;
2208 break;
2209 default:
2210 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2211 break;
2212 }
2213 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2214 if (target_pstate != cpu->pstate.current_pstate) {
2215 cpu->pstate.current_pstate = target_pstate;
2216 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2217 pstate_funcs.get_val(cpu, target_pstate));
2218 }
64078299 2219 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2220 cpufreq_freq_transition_end(policy, &freqs, false);
2221
2222 return 0;
2223}
2224
2225static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2226 unsigned int target_freq)
2227{
2228 struct cpudata *cpu = all_cpu_data[policy->cpu];
2229 int target_pstate;
2230
64897b20
RW
2231 update_turbo_state();
2232
001c76f0 2233 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2234 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2235 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2236 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2237}
2238
2239static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2240{
2241 int ret = __intel_pstate_cpu_init(policy);
2242
2243 if (ret)
2244 return ret;
2245
2246 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1b72e7fd 2247 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
001c76f0
RW
2248 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2249 policy->cur = policy->cpuinfo.min_freq;
2250
2251 return 0;
2252}
2253
2254static struct cpufreq_driver intel_cpufreq = {
2255 .flags = CPUFREQ_CONST_LOOPS,
2256 .verify = intel_cpufreq_verify_policy,
2257 .target = intel_cpufreq_target,
2258 .fast_switch = intel_cpufreq_fast_switch,
2259 .init = intel_cpufreq_cpu_init,
2260 .exit = intel_pstate_cpu_exit,
2261 .stop_cpu = intel_cpufreq_stop_cpu,
2262 .name = "intel_cpufreq",
2263};
2264
ee8df89a 2265static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2266
8ca6ce37
RW
2267static bool pid_in_use(void)
2268{
2269 return intel_pstate_driver == &intel_pstate &&
2270 pstate_funcs.update_util == intel_pstate_update_util_pid;
2271}
2272
fb1fe104
RW
2273static void intel_pstate_driver_cleanup(void)
2274{
2275 unsigned int cpu;
2276
2277 get_online_cpus();
2278 for_each_online_cpu(cpu) {
2279 if (all_cpu_data[cpu]) {
2280 if (intel_pstate_driver == &intel_pstate)
2281 intel_pstate_clear_update_util_hook(cpu);
2282
2283 kfree(all_cpu_data[cpu]);
2284 all_cpu_data[cpu] = NULL;
2285 }
2286 }
2287 put_online_cpus();
ee8df89a 2288 intel_pstate_driver = NULL;
fb1fe104
RW
2289}
2290
ee8df89a 2291static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2292{
2293 int ret;
2294
c5a2ee7d
RW
2295 memset(&global, 0, sizeof(global));
2296 global.max_perf_pct = 100;
c3a49c89 2297
ee8df89a 2298 intel_pstate_driver = driver;
fb1fe104
RW
2299 ret = cpufreq_register_driver(intel_pstate_driver);
2300 if (ret) {
2301 intel_pstate_driver_cleanup();
2302 return ret;
2303 }
2304
c5a2ee7d
RW
2305 global.min_perf_pct = min_perf_pct_min();
2306
8ca6ce37 2307 if (pid_in_use())
fb1fe104
RW
2308 intel_pstate_debug_expose_params();
2309
2310 return 0;
2311}
2312
2313static int intel_pstate_unregister_driver(void)
2314{
2315 if (hwp_active)
2316 return -EBUSY;
2317
8ca6ce37 2318 if (pid_in_use())
fb1fe104
RW
2319 intel_pstate_debug_hide_params();
2320
fb1fe104
RW
2321 cpufreq_unregister_driver(intel_pstate_driver);
2322 intel_pstate_driver_cleanup();
2323
2324 return 0;
2325}
2326
2327static ssize_t intel_pstate_show_status(char *buf)
2328{
ee8df89a 2329 if (!intel_pstate_driver)
fb1fe104
RW
2330 return sprintf(buf, "off\n");
2331
2332 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2333 "active" : "passive");
2334}
2335
2336static int intel_pstate_update_status(const char *buf, size_t size)
2337{
2338 int ret;
2339
2340 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2341 return intel_pstate_driver ?
fb1fe104
RW
2342 intel_pstate_unregister_driver() : -EINVAL;
2343
2344 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2345 if (intel_pstate_driver) {
fb1fe104
RW
2346 if (intel_pstate_driver == &intel_pstate)
2347 return 0;
2348
2349 ret = intel_pstate_unregister_driver();
2350 if (ret)
2351 return ret;
2352 }
2353
ee8df89a 2354 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2355 }
2356
2357 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2358 if (intel_pstate_driver) {
0042b2c0 2359 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2360 return 0;
2361
2362 ret = intel_pstate_unregister_driver();
2363 if (ret)
2364 return ret;
2365 }
2366
ee8df89a 2367 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2368 }
2369
2370 return -EINVAL;
2371}
2372
eed43609
JZ
2373static int no_load __initdata;
2374static int no_hwp __initdata;
2375static int hwp_only __initdata;
29327c84 2376static unsigned int force_load __initdata;
6be26498 2377
29327c84 2378static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2379{
016c8150 2380 if (!pstate_funcs.get_max() ||
c410833a
SK
2381 !pstate_funcs.get_min() ||
2382 !pstate_funcs.get_turbo())
b563b4e3
DB
2383 return -ENODEV;
2384
b563b4e3
DB
2385 return 0;
2386}
016c8150 2387
7f7a516e
SP
2388#ifdef CONFIG_ACPI
2389static void intel_pstate_use_acpi_profile(void)
2390{
55395345
RW
2391 switch (acpi_gbl_FADT.preferred_profile) {
2392 case PM_MOBILE:
2393 case PM_TABLET:
2394 case PM_APPLIANCE_PC:
2395 case PM_DESKTOP:
2396 case PM_WORKSTATION:
67dd9bf4 2397 pstate_funcs.update_util = intel_pstate_update_util;
55395345 2398 }
7f7a516e
SP
2399}
2400#else
2401static void intel_pstate_use_acpi_profile(void)
2402{
2403}
2404#endif
2405
29327c84 2406static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2407{
2408 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2409 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2410 pstate_funcs.get_min = funcs->get_min;
2411 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2412 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2413 pstate_funcs.get_val = funcs->get_val;
007bea09 2414 pstate_funcs.get_vid = funcs->get_vid;
67dd9bf4 2415 pstate_funcs.update_util = funcs->update_util;
157386b6 2416
7f7a516e 2417 intel_pstate_use_acpi_profile();
016c8150
DB
2418}
2419
9522a2ff 2420#ifdef CONFIG_ACPI
fbbcdc07 2421
29327c84 2422static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2423{
2424 int i;
2425
2426 for_each_possible_cpu(i) {
2427 acpi_status status;
2428 union acpi_object *pss;
2429 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2430 struct acpi_processor *pr = per_cpu(processors, i);
2431
2432 if (!pr)
2433 continue;
2434
2435 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2436 if (ACPI_FAILURE(status))
2437 continue;
2438
2439 pss = buffer.pointer;
2440 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2441 kfree(pss);
2442 return false;
2443 }
2444
2445 kfree(pss);
2446 }
2447
2448 return true;
2449}
2450
29327c84 2451static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2452{
2453 int i;
2454
2455 for_each_possible_cpu(i) {
2456 struct acpi_processor *pr = per_cpu(processors, i);
2457
2458 if (!pr)
2459 continue;
2460 if (acpi_has_method(pr->handle, "_PPC"))
2461 return true;
2462 }
2463 return false;
2464}
2465
2466enum {
2467 PSS,
2468 PPC,
2469};
2470
fbbcdc07
AH
2471struct hw_vendor_info {
2472 u16 valid;
2473 char oem_id[ACPI_OEM_ID_SIZE];
2474 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2475 int oem_pwr_table;
fbbcdc07
AH
2476};
2477
2478/* Hardware vendor-specific info that has its own power management modes */
29327c84 2479static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2480 {1, "HP ", "ProLiant", PSS},
2481 {1, "ORACLE", "X4-2 ", PPC},
2482 {1, "ORACLE", "X4-2L ", PPC},
2483 {1, "ORACLE", "X4-2B ", PPC},
2484 {1, "ORACLE", "X3-2 ", PPC},
2485 {1, "ORACLE", "X3-2L ", PPC},
2486 {1, "ORACLE", "X3-2B ", PPC},
2487 {1, "ORACLE", "X4470M2 ", PPC},
2488 {1, "ORACLE", "X4270M3 ", PPC},
2489 {1, "ORACLE", "X4270M2 ", PPC},
2490 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2491 {1, "ORACLE", "X4170 M3", PPC},
2492 {1, "ORACLE", "X4275 M3", PPC},
2493 {1, "ORACLE", "X6-2 ", PPC},
2494 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2495 {0, "", ""},
2496};
2497
29327c84 2498static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2499{
2500 struct acpi_table_header hdr;
2501 struct hw_vendor_info *v_info;
2f86dc4c
DB
2502 const struct x86_cpu_id *id;
2503 u64 misc_pwr;
2504
2505 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2506 if (id) {
2507 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2508 if ( misc_pwr & (1 << 8))
2509 return true;
2510 }
fbbcdc07 2511
c410833a
SK
2512 if (acpi_disabled ||
2513 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2514 return false;
2515
2516 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2517 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2518 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2519 ACPI_OEM_TABLE_ID_SIZE))
2520 switch (v_info->oem_pwr_table) {
2521 case PSS:
2522 return intel_pstate_no_acpi_pss();
2523 case PPC:
aa4ea34d
EZ
2524 return intel_pstate_has_acpi_ppc() &&
2525 (!force_load);
966916ea 2526 }
fbbcdc07
AH
2527 }
2528
2529 return false;
2530}
d0ea59e1
RW
2531
2532static void intel_pstate_request_control_from_smm(void)
2533{
2534 /*
2535 * It may be unsafe to request P-states control from SMM if _PPC support
2536 * has not been enabled.
2537 */
2538 if (acpi_ppc)
2539 acpi_processor_pstate_control();
2540}
fbbcdc07
AH
2541#else /* CONFIG_ACPI not enabled */
2542static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2543static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2544static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2545#endif /* CONFIG_ACPI */
2546
7791e4aa
SP
2547static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2548 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2549 {}
2550};
2551
93f0822d
DB
2552static int __init intel_pstate_init(void)
2553{
eb5139d1 2554 int rc;
93f0822d 2555
6be26498
DB
2556 if (no_load)
2557 return -ENODEV;
2558
eb5139d1 2559 if (x86_match_cpu(hwp_support_ids)) {
2f49afc2 2560 copy_cpu_funcs(&core_funcs);
eb5139d1 2561 if (no_hwp) {
67dd9bf4 2562 pstate_funcs.update_util = intel_pstate_update_util;
eb5139d1
RW
2563 } else {
2564 hwp_active++;
2565 intel_pstate.attr = hwp_cpufreq_attrs;
2566 goto hwp_cpu_matched;
2567 }
2568 } else {
2569 const struct x86_cpu_id *id;
7791e4aa 2570
eb5139d1
RW
2571 id = x86_match_cpu(intel_pstate_cpu_ids);
2572 if (!id)
2573 return -ENODEV;
93f0822d 2574
2f49afc2 2575 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
eb5139d1 2576 }
016c8150 2577
b563b4e3
DB
2578 if (intel_pstate_msrs_not_valid())
2579 return -ENODEV;
2580
7791e4aa
SP
2581hwp_cpu_matched:
2582 /*
2583 * The Intel pstate driver will be ignored if the platform
2584 * firmware has its own power management modes.
2585 */
2586 if (intel_pstate_platform_pwr_mgmt_exists())
2587 return -ENODEV;
2588
fb1fe104
RW
2589 if (!hwp_active && hwp_only)
2590 return -ENOTSUPP;
2591
4836df17 2592 pr_info("Intel P-state driver initializing\n");
93f0822d 2593
b57ffac5 2594 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2595 if (!all_cpu_data)
2596 return -ENOMEM;
93f0822d 2597
d0ea59e1
RW
2598 intel_pstate_request_control_from_smm();
2599
93f0822d 2600 intel_pstate_sysfs_expose_params();
b69880f9 2601
0c30b65b 2602 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2603 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2604 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2605 if (rc)
2606 return rc;
366430b5 2607
7791e4aa 2608 if (hwp_active)
4836df17 2609 pr_info("HWP enabled\n");
7791e4aa 2610
fb1fe104 2611 return 0;
93f0822d
DB
2612}
2613device_initcall(intel_pstate_init);
2614
6be26498
DB
2615static int __init intel_pstate_setup(char *str)
2616{
2617 if (!str)
2618 return -EINVAL;
2619
001c76f0 2620 if (!strcmp(str, "disable")) {
6be26498 2621 no_load = 1;
001c76f0
RW
2622 } else if (!strcmp(str, "passive")) {
2623 pr_info("Passive mode enabled\n");
ee8df89a 2624 default_driver = &intel_cpufreq;
001c76f0
RW
2625 no_hwp = 1;
2626 }
539342f6 2627 if (!strcmp(str, "no_hwp")) {
4836df17 2628 pr_info("HWP disabled\n");
2f86dc4c 2629 no_hwp = 1;
539342f6 2630 }
aa4ea34d
EZ
2631 if (!strcmp(str, "force"))
2632 force_load = 1;
d64c3b0b
KCA
2633 if (!strcmp(str, "hwp_only"))
2634 hwp_only = 1;
eae48f04
SP
2635 if (!strcmp(str, "per_cpu_perf_limits"))
2636 per_cpu_limits = true;
9522a2ff
SP
2637
2638#ifdef CONFIG_ACPI
2639 if (!strcmp(str, "support_acpi_ppc"))
2640 acpi_ppc = true;
2641#endif
2642
6be26498
DB
2643 return 0;
2644}
2645early_param("intel_pstate", intel_pstate_setup);
2646
93f0822d
DB
2647MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2648MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2649MODULE_LICENSE("GPL");