]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Fix intel_cpufreq_verify_policy()
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
938d21a2
PL
42#define ATOM_RATIOS 0x66a
43#define ATOM_VIDS 0x66b
44#define ATOM_TURBO_RATIOS 0x66c
45#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 46
9522a2ff
SP
47#ifdef CONFIG_ACPI
48#include <acpi/processor.h>
17669006 49#include <acpi/cppc_acpi.h>
9522a2ff
SP
50#endif
51
f0fe3cd7 52#define FRAC_BITS 8
93f0822d
DB
53#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 55
a1c9787d
RW
56#define EXT_BITS 6
57#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
58#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 60
93f0822d
DB
61static inline int32_t mul_fp(int32_t x, int32_t y)
62{
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64}
65
7180dddf 66static inline int32_t div_fp(s64 x, s64 y)
93f0822d 67{
7180dddf 68 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
69}
70
d022a65e
DB
71static inline int ceiling_fp(int32_t x)
72{
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80}
81
a1c9787d
RW
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
eae48f04
SP
188/**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228};
229
13ad7701
SP
230/**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
2f1d407a 233 * @policy: CPUFreq policy value
13ad7701 234 * @update_util: CPUFreq utility callback information
4578ee7e 235 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
13ad7701
SP
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
eae48f04
SP
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
9522a2ff
SP
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
8442885f 256 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
13ad7701
SP
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
93f0822d
DB
264struct cpudata {
265 int cpu;
266
2f1d407a 267 unsigned int policy;
a4675fbc 268 struct update_util_data update_util;
4578ee7e 269 bool update_util_set;
93f0822d 270
93f0822d 271 struct pstate_data pstate;
007bea09 272 struct vid_data vid;
93f0822d 273 struct _pid pid;
93f0822d 274
09c448d3 275 u64 last_update;
a4675fbc 276 u64 last_sample_time;
93f0822d
DB
277 u64 prev_aperf;
278 u64 prev_mperf;
4055fad3 279 u64 prev_tsc;
63d1d656 280 u64 prev_cummulative_iowait;
d37e2b76 281 struct sample sample;
eae48f04 282 struct perf_limits *perf_limits;
9522a2ff
SP
283#ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286#endif
09c448d3 287 unsigned int iowait_boost;
984edbdc 288 s16 epp_powersave;
8442885f 289 s16 epp_policy;
984edbdc
SP
290 s16 epp_default;
291 s16 epp_saved;
93f0822d
DB
292};
293
294static struct cpudata **all_cpu_data;
13ad7701
SP
295
296/**
3954517e 297 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
93f0822d
DB
308struct pstate_adjust_policy {
309 int sample_rate_ms;
a4675fbc 310 s64 sample_rate_ns;
93f0822d
DB
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316};
317
13ad7701
SP
318/**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
016c8150
DB
332struct pstate_funcs {
333 int (*get_max)(void);
3bcc6fa9 334 int (*get_max_physical)(void);
016c8150
DB
335 int (*get_min)(void);
336 int (*get_turbo)(void);
b27580b0 337 int (*get_scaling)(void);
fdfdb2b1 338 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 339 void (*get_vid)(struct cpudata *);
157386b6 340 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
341};
342
13ad7701
SP
343/**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
016c8150
DB
348struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
93f0822d
DB
351};
352
157386b6 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 355
4a7cb7a9
JZ
356static struct pstate_adjust_policy pid_params __read_mostly;
357static struct pstate_funcs pstate_funcs __read_mostly;
358static int hwp_active __read_mostly;
eae48f04 359static bool per_cpu_limits __read_mostly;
016c8150 360
0c30b65b
RW
361static bool driver_registered __read_mostly;
362
9522a2ff
SP
363#ifdef CONFIG_ACPI
364static bool acpi_ppc;
365#endif
13ad7701 366
c3a49c89
RW
367static struct perf_limits performance_limits;
368static struct perf_limits powersave_limits;
369static struct perf_limits *limits;
51443fbf 370
c3a49c89
RW
371static void intel_pstate_init_limits(struct perf_limits *limits)
372{
373 memset(limits, 0, sizeof(*limits));
374 limits->max_perf_pct = 100;
375 limits->max_perf = int_ext_tofp(1);
376 limits->max_policy_pct = 100;
377 limits->max_sysfs_pct = 100;
378}
93f0822d 379
c3a49c89
RW
380static void intel_pstate_set_performance_limits(struct perf_limits *limits)
381{
382 intel_pstate_init_limits(limits);
383 limits->min_perf_pct = 100;
384 limits->min_perf = int_ext_tofp(1);
385}
51443fbf 386
0c30b65b 387static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
388static DEFINE_MUTEX(intel_pstate_limits_lock);
389
9522a2ff 390#ifdef CONFIG_ACPI
2b3ec765
SP
391
392static bool intel_pstate_get_ppc_enable_status(void)
393{
394 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
395 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
396 return true;
397
398 return acpi_ppc;
399}
400
17669006
RW
401#ifdef CONFIG_ACPI_CPPC_LIB
402
403/* The work item is needed to avoid CPU hotplug locking issues */
404static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
405{
406 sched_set_itmt_support();
407}
408
409static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
410
411static void intel_pstate_set_itmt_prio(int cpu)
412{
413 struct cppc_perf_caps cppc_perf;
414 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
415 int ret;
416
417 ret = cppc_get_perf_caps(cpu, &cppc_perf);
418 if (ret)
419 return;
420
421 /*
422 * The priorities can be set regardless of whether or not
423 * sched_set_itmt_support(true) has been called and it is valid to
424 * update them at any time after it has been called.
425 */
426 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
427
428 if (max_highest_perf <= min_highest_perf) {
429 if (cppc_perf.highest_perf > max_highest_perf)
430 max_highest_perf = cppc_perf.highest_perf;
431
432 if (cppc_perf.highest_perf < min_highest_perf)
433 min_highest_perf = cppc_perf.highest_perf;
434
435 if (max_highest_perf > min_highest_perf) {
436 /*
437 * This code can be run during CPU online under the
438 * CPU hotplug locks, so sched_set_itmt_support()
439 * cannot be called from here. Queue up a work item
440 * to invoke it.
441 */
442 schedule_work(&sched_itmt_work);
443 }
444 }
445}
446#else
447static void intel_pstate_set_itmt_prio(int cpu)
448{
449}
450#endif
451
9522a2ff
SP
452static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
453{
454 struct cpudata *cpu;
9522a2ff
SP
455 int ret;
456 int i;
457
17669006
RW
458 if (hwp_active) {
459 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 460 return;
17669006 461 }
e59a8f7f 462
2b3ec765 463 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
464 return;
465
466 cpu = all_cpu_data[policy->cpu];
467
468 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
469 policy->cpu);
470 if (ret)
471 return;
472
473 /*
474 * Check if the control value in _PSS is for PERF_CTL MSR, which should
475 * guarantee that the states returned by it map to the states in our
476 * list directly.
477 */
478 if (cpu->acpi_perf_data.control_register.space_id !=
479 ACPI_ADR_SPACE_FIXED_HARDWARE)
480 goto err;
481
482 /*
483 * If there is only one entry _PSS, simply ignore _PSS and continue as
484 * usual without taking _PSS into account
485 */
486 if (cpu->acpi_perf_data.state_count < 2)
487 goto err;
488
489 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
490 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
491 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
492 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
493 (u32) cpu->acpi_perf_data.states[i].core_frequency,
494 (u32) cpu->acpi_perf_data.states[i].power,
495 (u32) cpu->acpi_perf_data.states[i].control);
496 }
497
498 /*
499 * The _PSS table doesn't contain whole turbo frequency range.
500 * This just contains +1 MHZ above the max non turbo frequency,
501 * with control value corresponding to max turbo ratio. But
502 * when cpufreq set policy is called, it will call with this
503 * max frequency, which will cause a reduced performance as
504 * this driver uses real max turbo frequency as the max
505 * frequency. So correct this frequency in _PSS table to
b00345d1 506 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
507 * Also need to convert to MHz as _PSS freq is in MHz.
508 */
b00345d1 509 if (!limits->turbo_disabled)
9522a2ff
SP
510 cpu->acpi_perf_data.states[0].core_frequency =
511 policy->cpuinfo.max_freq / 1000;
512 cpu->valid_pss_table = true;
6cacd115 513 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
514
515 return;
516
517 err:
518 cpu->valid_pss_table = false;
519 acpi_processor_unregister_performance(policy->cpu);
520}
521
522static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
523{
524 struct cpudata *cpu;
525
526 cpu = all_cpu_data[policy->cpu];
527 if (!cpu->valid_pss_table)
528 return;
529
530 acpi_processor_unregister_performance(policy->cpu);
531}
9522a2ff 532#else
7a3ba767 533static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
534{
535}
536
7a3ba767 537static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
538{
539}
540#endif
541
93f0822d 542static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 543 int deadband, int integral) {
b54a0dfd
PL
544 pid->setpoint = int_tofp(setpoint);
545 pid->deadband = int_tofp(deadband);
93f0822d 546 pid->integral = int_tofp(integral);
d98d099b 547 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
548}
549
550static inline void pid_p_gain_set(struct _pid *pid, int percent)
551{
22590efb 552 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
553}
554
555static inline void pid_i_gain_set(struct _pid *pid, int percent)
556{
22590efb 557 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
558}
559
560static inline void pid_d_gain_set(struct _pid *pid, int percent)
561{
22590efb 562 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
563}
564
d253d2a5 565static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 566{
d253d2a5 567 signed int result;
93f0822d
DB
568 int32_t pterm, dterm, fp_error;
569 int32_t integral_limit;
570
b54a0dfd 571 fp_error = pid->setpoint - busy;
93f0822d 572
b54a0dfd 573 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
574 return 0;
575
576 pterm = mul_fp(pid->p_gain, fp_error);
577
578 pid->integral += fp_error;
579
e0d4c8f8
KCA
580 /*
581 * We limit the integral here so that it will never
582 * get higher than 30. This prevents it from becoming
583 * too large an input over long periods of time and allows
584 * it to get factored out sooner.
585 *
586 * The value of 30 was chosen through experimentation.
587 */
93f0822d
DB
588 integral_limit = int_tofp(30);
589 if (pid->integral > integral_limit)
590 pid->integral = integral_limit;
591 if (pid->integral < -integral_limit)
592 pid->integral = -integral_limit;
593
d253d2a5
BS
594 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
595 pid->last_err = fp_error;
93f0822d
DB
596
597 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 598 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
599 return (signed int)fp_toint(result);
600}
601
602static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
603{
016c8150
DB
604 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
605 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
606 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 607
2d8d1f18 608 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
609}
610
93f0822d
DB
611static inline void intel_pstate_reset_all_pid(void)
612{
613 unsigned int cpu;
845c1cbe 614
93f0822d
DB
615 for_each_online_cpu(cpu) {
616 if (all_cpu_data[cpu])
617 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
618 }
619}
620
4521e1a0
GM
621static inline void update_turbo_state(void)
622{
623 u64 misc_en;
624 struct cpudata *cpu;
625
626 cpu = all_cpu_data[0];
627 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 628 limits->turbo_disabled =
4521e1a0
GM
629 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
630 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
631}
632
8442885f
SP
633static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
634{
635 u64 epb;
636 int ret;
637
638 if (!static_cpu_has(X86_FEATURE_EPB))
639 return -ENXIO;
640
641 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
642 if (ret)
643 return (s16)ret;
644
645 return (s16)(epb & 0x0f);
646}
647
648static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
649{
650 s16 epp;
651
984edbdc
SP
652 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
653 /*
654 * When hwp_req_data is 0, means that caller didn't read
655 * MSR_HWP_REQUEST, so need to read and get EPP.
656 */
657 if (!hwp_req_data) {
658 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
659 &hwp_req_data);
660 if (epp)
661 return epp;
662 }
8442885f 663 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 664 } else {
8442885f
SP
665 /* When there is no EPP present, HWP uses EPB settings */
666 epp = intel_pstate_get_epb(cpu_data);
984edbdc 667 }
8442885f
SP
668
669 return epp;
670}
671
984edbdc 672static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
673{
674 u64 epb;
984edbdc 675 int ret;
8442885f
SP
676
677 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 678 return -ENXIO;
8442885f 679
984edbdc
SP
680 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
681 if (ret)
682 return ret;
8442885f
SP
683
684 epb = (epb & ~0x0f) | pref;
685 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
686
687 return 0;
8442885f
SP
688}
689
984edbdc
SP
690/*
691 * EPP/EPB display strings corresponding to EPP index in the
692 * energy_perf_strings[]
693 * index String
694 *-------------------------------------
695 * 0 default
696 * 1 performance
697 * 2 balance_performance
698 * 3 balance_power
699 * 4 power
700 */
701static const char * const energy_perf_strings[] = {
702 "default",
703 "performance",
704 "balance_performance",
705 "balance_power",
706 "power",
707 NULL
708};
709
710static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
711{
712 s16 epp;
713 int index = -EINVAL;
714
715 epp = intel_pstate_get_epp(cpu_data, 0);
716 if (epp < 0)
717 return epp;
718
719 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
720 /*
721 * Range:
722 * 0x00-0x3F : Performance
723 * 0x40-0x7F : Balance performance
724 * 0x80-0xBF : Balance power
725 * 0xC0-0xFF : Power
726 * The EPP is a 8 bit value, but our ranges restrict the
727 * value which can be set. Here only using top two bits
728 * effectively.
729 */
730 index = (epp >> 6) + 1;
731 } else if (static_cpu_has(X86_FEATURE_EPB)) {
732 /*
733 * Range:
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
737 * 0x0C-0x0F : Power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
741 */
742 index = (epp >> 2) + 1;
743 }
744
745 return index;
746}
747
748static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
749 int pref_index)
750{
751 int epp = -EINVAL;
752 int ret;
753
754 if (!pref_index)
755 epp = cpu_data->epp_default;
756
757 mutex_lock(&intel_pstate_limits_lock);
758
759 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
760 u64 value;
761
762 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
763 if (ret)
764 goto return_pref;
765
766 value &= ~GENMASK_ULL(31, 24);
767
768 /*
769 * If epp is not default, convert from index into
770 * energy_perf_strings to epp value, by shifting 6
771 * bits left to use only top two bits in epp.
772 * The resultant epp need to shifted by 24 bits to
773 * epp position in MSR_HWP_REQUEST.
774 */
775 if (epp == -EINVAL)
776 epp = (pref_index - 1) << 6;
777
778 value |= (u64)epp << 24;
779 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
780 } else {
781 if (epp == -EINVAL)
782 epp = (pref_index - 1) << 2;
783 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
784 }
785return_pref:
786 mutex_unlock(&intel_pstate_limits_lock);
787
788 return ret;
789}
790
791static ssize_t show_energy_performance_available_preferences(
792 struct cpufreq_policy *policy, char *buf)
793{
794 int i = 0;
795 int ret = 0;
796
797 while (energy_perf_strings[i] != NULL)
798 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
799
800 ret += sprintf(&buf[ret], "\n");
801
802 return ret;
803}
804
805cpufreq_freq_attr_ro(energy_performance_available_preferences);
806
807static ssize_t store_energy_performance_preference(
808 struct cpufreq_policy *policy, const char *buf, size_t count)
809{
810 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
811 char str_preference[21];
812 int ret, i = 0;
813
814 ret = sscanf(buf, "%20s", str_preference);
815 if (ret != 1)
816 return -EINVAL;
817
818 while (energy_perf_strings[i] != NULL) {
819 if (!strcmp(str_preference, energy_perf_strings[i])) {
820 intel_pstate_set_energy_pref_index(cpu_data, i);
821 return count;
822 }
823 ++i;
824 }
825
826 return -EINVAL;
827}
828
829static ssize_t show_energy_performance_preference(
830 struct cpufreq_policy *policy, char *buf)
831{
832 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
833 int preference;
834
835 preference = intel_pstate_get_energy_pref_index(cpu_data);
836 if (preference < 0)
837 return preference;
838
839 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
840}
841
842cpufreq_freq_attr_rw(energy_performance_preference);
843
844static struct freq_attr *hwp_cpufreq_attrs[] = {
845 &energy_performance_preference,
846 &energy_performance_available_preferences,
847 NULL,
848};
849
111b8b3f 850static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 851{
74da56ce 852 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 853 struct perf_limits *perf_limits = limits;
74da56ce
KCA
854 u64 value, cap;
855
111b8b3f 856 for_each_cpu(cpu, policy->cpus) {
eae48f04 857 int max_perf_pct, min_perf_pct;
8442885f
SP
858 struct cpudata *cpu_data = all_cpu_data[cpu];
859 s16 epp;
eae48f04
SP
860
861 if (per_cpu_limits)
862 perf_limits = all_cpu_data[cpu]->perf_limits;
863
f9f4872d
SP
864 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
865 hw_min = HWP_LOWEST_PERF(cap);
4e5d3f71
SP
866 if (limits->no_turbo)
867 hw_max = HWP_GUARANTEED_PERF(cap);
868 else
869 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d
SP
870 range = hw_max - hw_min;
871
eae48f04
SP
872 max_perf_pct = perf_limits->max_perf_pct;
873 min_perf_pct = perf_limits->min_perf_pct;
874
2f86dc4c 875 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 876 adj_range = min_perf_pct * range / 100;
74da56ce 877 min = hw_min + adj_range;
2f86dc4c
DB
878 value &= ~HWP_MIN_PERF(~0L);
879 value |= HWP_MIN_PERF(min);
880
eae48f04 881 adj_range = max_perf_pct * range / 100;
74da56ce 882 max = hw_min + adj_range;
2f86dc4c
DB
883
884 value &= ~HWP_MAX_PERF(~0L);
885 value |= HWP_MAX_PERF(max);
8442885f
SP
886
887 if (cpu_data->epp_policy == cpu_data->policy)
888 goto skip_epp;
889
890 cpu_data->epp_policy = cpu_data->policy;
891
984edbdc
SP
892 if (cpu_data->epp_saved >= 0) {
893 epp = cpu_data->epp_saved;
894 cpu_data->epp_saved = -EINVAL;
895 goto update_epp;
896 }
897
8442885f
SP
898 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
899 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 900 cpu_data->epp_powersave = epp;
8442885f 901 /* If EPP read was failed, then don't try to write */
984edbdc 902 if (epp < 0)
8442885f 903 goto skip_epp;
8442885f 904
8442885f
SP
905
906 epp = 0;
907 } else {
908 /* skip setting EPP, when saved value is invalid */
984edbdc 909 if (cpu_data->epp_powersave < 0)
8442885f
SP
910 goto skip_epp;
911
912 /*
913 * No need to restore EPP when it is not zero. This
914 * means:
915 * - Policy is not changed
916 * - user has manually changed
917 * - Error reading EPB
918 */
919 epp = intel_pstate_get_epp(cpu_data, value);
920 if (epp)
921 goto skip_epp;
922
984edbdc 923 epp = cpu_data->epp_powersave;
8442885f 924 }
984edbdc 925update_epp:
8442885f
SP
926 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
927 value &= ~GENMASK_ULL(31, 24);
928 value |= (u64)epp << 24;
929 } else {
930 intel_pstate_set_epb(cpu, epp);
931 }
932skip_epp:
2f86dc4c
DB
933 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
934 }
41cfd64c 935}
2f86dc4c 936
ba41e1bc
RW
937static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
938{
939 if (hwp_active)
111b8b3f 940 intel_pstate_hwp_set(policy);
ba41e1bc
RW
941
942 return 0;
943}
944
984edbdc
SP
945static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
946{
947 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
948
949 if (!hwp_active)
950 return 0;
951
952 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
953
954 return 0;
955}
956
8442885f
SP
957static int intel_pstate_resume(struct cpufreq_policy *policy)
958{
aa439248
RW
959 int ret;
960
8442885f
SP
961 if (!hwp_active)
962 return 0;
963
aa439248
RW
964 mutex_lock(&intel_pstate_limits_lock);
965
8442885f 966 all_cpu_data[policy->cpu]->epp_policy = 0;
8442885f 967
aa439248
RW
968 ret = intel_pstate_hwp_set_policy(policy);
969
970 mutex_unlock(&intel_pstate_limits_lock);
971
972 return ret;
8442885f
SP
973}
974
111b8b3f 975static void intel_pstate_update_policies(void)
41cfd64c 976{
111b8b3f
RW
977 int cpu;
978
979 for_each_possible_cpu(cpu)
980 cpufreq_update_policy(cpu);
2f86dc4c
DB
981}
982
93f0822d
DB
983/************************** debugfs begin ************************/
984static int pid_param_set(void *data, u64 val)
985{
986 *(u32 *)data = val;
987 intel_pstate_reset_all_pid();
988 return 0;
989}
845c1cbe 990
93f0822d
DB
991static int pid_param_get(void *data, u64 *val)
992{
993 *val = *(u32 *)data;
994 return 0;
995}
2d8d1f18 996DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 997
fb1fe104
RW
998static struct dentry *debugfs_parent;
999
93f0822d
DB
1000struct pid_param {
1001 char *name;
1002 void *value;
fb1fe104 1003 struct dentry *dentry;
93f0822d
DB
1004};
1005
1006static struct pid_param pid_files[] = {
fb1fe104
RW
1007 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1008 {"d_gain_pct", &pid_params.d_gain_pct, },
1009 {"i_gain_pct", &pid_params.i_gain_pct, },
1010 {"deadband", &pid_params.deadband, },
1011 {"setpoint", &pid_params.setpoint, },
1012 {"p_gain_pct", &pid_params.p_gain_pct, },
1013 {NULL, NULL, }
93f0822d
DB
1014};
1015
fb1fe104 1016static void intel_pstate_debug_expose_params(void)
93f0822d 1017{
fb1fe104 1018 int i;
93f0822d
DB
1019
1020 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1021 if (IS_ERR_OR_NULL(debugfs_parent))
1022 return;
fb1fe104
RW
1023
1024 for (i = 0; pid_files[i].name; i++) {
1025 struct dentry *dentry;
1026
1027 dentry = debugfs_create_file(pid_files[i].name, 0660,
1028 debugfs_parent, pid_files[i].value,
1029 &fops_pid_param);
1030 if (!IS_ERR(dentry))
1031 pid_files[i].dentry = dentry;
93f0822d
DB
1032 }
1033}
1034
fb1fe104
RW
1035static void intel_pstate_debug_hide_params(void)
1036{
1037 int i;
1038
1039 if (IS_ERR_OR_NULL(debugfs_parent))
1040 return;
1041
1042 for (i = 0; pid_files[i].name; i++) {
1043 debugfs_remove(pid_files[i].dentry);
1044 pid_files[i].dentry = NULL;
93f0822d 1045 }
fb1fe104
RW
1046
1047 debugfs_remove(debugfs_parent);
1048 debugfs_parent = NULL;
93f0822d
DB
1049}
1050
1051/************************** debugfs end ************************/
1052
1053/************************** sysfs begin ************************/
1054#define show_one(file_name, object) \
1055 static ssize_t show_##file_name \
1056 (struct kobject *kobj, struct attribute *attr, char *buf) \
1057 { \
51443fbf 1058 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
1059 }
1060
fb1fe104
RW
1061static ssize_t intel_pstate_show_status(char *buf);
1062static int intel_pstate_update_status(const char *buf, size_t size);
1063
1064static ssize_t show_status(struct kobject *kobj,
1065 struct attribute *attr, char *buf)
1066{
1067 ssize_t ret;
1068
1069 mutex_lock(&intel_pstate_driver_lock);
1070 ret = intel_pstate_show_status(buf);
1071 mutex_unlock(&intel_pstate_driver_lock);
1072
1073 return ret;
1074}
1075
1076static ssize_t store_status(struct kobject *a, struct attribute *b,
1077 const char *buf, size_t count)
1078{
1079 char *p = memchr(buf, '\n', count);
1080 int ret;
1081
1082 mutex_lock(&intel_pstate_driver_lock);
1083 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1084 mutex_unlock(&intel_pstate_driver_lock);
1085
1086 return ret < 0 ? ret : count;
1087}
1088
d01b1f48
KCA
1089static ssize_t show_turbo_pct(struct kobject *kobj,
1090 struct attribute *attr, char *buf)
1091{
1092 struct cpudata *cpu;
1093 int total, no_turbo, turbo_pct;
1094 uint32_t turbo_fp;
1095
0c30b65b
RW
1096 mutex_lock(&intel_pstate_driver_lock);
1097
1098 if (!driver_registered) {
1099 mutex_unlock(&intel_pstate_driver_lock);
1100 return -EAGAIN;
1101 }
1102
d01b1f48
KCA
1103 cpu = all_cpu_data[0];
1104
1105 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1106 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1107 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1108 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1109
1110 mutex_unlock(&intel_pstate_driver_lock);
1111
d01b1f48
KCA
1112 return sprintf(buf, "%u\n", turbo_pct);
1113}
1114
0522424e
KCA
1115static ssize_t show_num_pstates(struct kobject *kobj,
1116 struct attribute *attr, char *buf)
1117{
1118 struct cpudata *cpu;
1119 int total;
1120
0c30b65b
RW
1121 mutex_lock(&intel_pstate_driver_lock);
1122
1123 if (!driver_registered) {
1124 mutex_unlock(&intel_pstate_driver_lock);
1125 return -EAGAIN;
1126 }
1127
0522424e
KCA
1128 cpu = all_cpu_data[0];
1129 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1130
1131 mutex_unlock(&intel_pstate_driver_lock);
1132
0522424e
KCA
1133 return sprintf(buf, "%u\n", total);
1134}
1135
4521e1a0
GM
1136static ssize_t show_no_turbo(struct kobject *kobj,
1137 struct attribute *attr, char *buf)
1138{
1139 ssize_t ret;
1140
0c30b65b
RW
1141 mutex_lock(&intel_pstate_driver_lock);
1142
1143 if (!driver_registered) {
1144 mutex_unlock(&intel_pstate_driver_lock);
1145 return -EAGAIN;
1146 }
1147
4521e1a0 1148 update_turbo_state();
51443fbf
PB
1149 if (limits->turbo_disabled)
1150 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 1151 else
51443fbf 1152 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0 1153
0c30b65b
RW
1154 mutex_unlock(&intel_pstate_driver_lock);
1155
4521e1a0
GM
1156 return ret;
1157}
1158
93f0822d 1159static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1160 const char *buf, size_t count)
93f0822d
DB
1161{
1162 unsigned int input;
1163 int ret;
845c1cbe 1164
93f0822d
DB
1165 ret = sscanf(buf, "%u", &input);
1166 if (ret != 1)
1167 return -EINVAL;
4521e1a0 1168
0c30b65b
RW
1169 mutex_lock(&intel_pstate_driver_lock);
1170
1171 if (!driver_registered) {
1172 mutex_unlock(&intel_pstate_driver_lock);
1173 return -EAGAIN;
1174 }
1175
a410c03d
SP
1176 mutex_lock(&intel_pstate_limits_lock);
1177
4521e1a0 1178 update_turbo_state();
51443fbf 1179 if (limits->turbo_disabled) {
4836df17 1180 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1181 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1182 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1183 return -EPERM;
dd5fbf70 1184 }
2f86dc4c 1185
51443fbf 1186 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 1187
b59fe540
SP
1188 mutex_unlock(&intel_pstate_limits_lock);
1189
111b8b3f
RW
1190 intel_pstate_update_policies();
1191
0c30b65b
RW
1192 mutex_unlock(&intel_pstate_driver_lock);
1193
93f0822d
DB
1194 return count;
1195}
1196
1197static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1198 const char *buf, size_t count)
93f0822d
DB
1199{
1200 unsigned int input;
1201 int ret;
845c1cbe 1202
93f0822d
DB
1203 ret = sscanf(buf, "%u", &input);
1204 if (ret != 1)
1205 return -EINVAL;
1206
0c30b65b
RW
1207 mutex_lock(&intel_pstate_driver_lock);
1208
1209 if (!driver_registered) {
1210 mutex_unlock(&intel_pstate_driver_lock);
1211 return -EAGAIN;
1212 }
1213
a410c03d
SP
1214 mutex_lock(&intel_pstate_limits_lock);
1215
51443fbf
PB
1216 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1217 limits->max_perf_pct = min(limits->max_policy_pct,
1218 limits->max_sysfs_pct);
1219 limits->max_perf_pct = max(limits->min_policy_pct,
1220 limits->max_perf_pct);
1221 limits->max_perf_pct = max(limits->min_perf_pct,
1222 limits->max_perf_pct);
d5dd33d9 1223 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
845c1cbe 1224
b59fe540
SP
1225 mutex_unlock(&intel_pstate_limits_lock);
1226
111b8b3f
RW
1227 intel_pstate_update_policies();
1228
0c30b65b
RW
1229 mutex_unlock(&intel_pstate_driver_lock);
1230
93f0822d
DB
1231 return count;
1232}
1233
1234static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1235 const char *buf, size_t count)
93f0822d
DB
1236{
1237 unsigned int input;
1238 int ret;
845c1cbe 1239
93f0822d
DB
1240 ret = sscanf(buf, "%u", &input);
1241 if (ret != 1)
1242 return -EINVAL;
a0475992 1243
0c30b65b
RW
1244 mutex_lock(&intel_pstate_driver_lock);
1245
1246 if (!driver_registered) {
1247 mutex_unlock(&intel_pstate_driver_lock);
1248 return -EAGAIN;
1249 }
1250
a410c03d
SP
1251 mutex_lock(&intel_pstate_limits_lock);
1252
51443fbf
PB
1253 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1254 limits->min_perf_pct = max(limits->min_policy_pct,
1255 limits->min_sysfs_pct);
1256 limits->min_perf_pct = min(limits->max_policy_pct,
1257 limits->min_perf_pct);
1258 limits->min_perf_pct = min(limits->max_perf_pct,
1259 limits->min_perf_pct);
d5dd33d9 1260 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
93f0822d 1261
b59fe540
SP
1262 mutex_unlock(&intel_pstate_limits_lock);
1263
111b8b3f
RW
1264 intel_pstate_update_policies();
1265
0c30b65b
RW
1266 mutex_unlock(&intel_pstate_driver_lock);
1267
93f0822d
DB
1268 return count;
1269}
1270
93f0822d
DB
1271show_one(max_perf_pct, max_perf_pct);
1272show_one(min_perf_pct, min_perf_pct);
1273
fb1fe104 1274define_one_global_rw(status);
93f0822d
DB
1275define_one_global_rw(no_turbo);
1276define_one_global_rw(max_perf_pct);
1277define_one_global_rw(min_perf_pct);
d01b1f48 1278define_one_global_ro(turbo_pct);
0522424e 1279define_one_global_ro(num_pstates);
93f0822d
DB
1280
1281static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1282 &status.attr,
93f0822d 1283 &no_turbo.attr,
d01b1f48 1284 &turbo_pct.attr,
0522424e 1285 &num_pstates.attr,
93f0822d
DB
1286 NULL
1287};
1288
1289static struct attribute_group intel_pstate_attr_group = {
1290 .attrs = intel_pstate_attributes,
1291};
93f0822d 1292
317dd50e 1293static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1294{
317dd50e 1295 struct kobject *intel_pstate_kobject;
93f0822d
DB
1296 int rc;
1297
1298 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1299 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1300 if (WARN_ON(!intel_pstate_kobject))
1301 return;
1302
2d8d1f18 1303 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1304 if (WARN_ON(rc))
1305 return;
1306
1307 /*
1308 * If per cpu limits are enforced there are no global limits, so
1309 * return without creating max/min_perf_pct attributes
1310 */
1311 if (per_cpu_limits)
1312 return;
1313
1314 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1315 WARN_ON(rc);
1316
1317 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1318 WARN_ON(rc);
1319
93f0822d 1320}
93f0822d 1321/************************** sysfs end ************************/
2f86dc4c 1322
ba88d433 1323static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1324{
f05c9665 1325 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1326 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1327 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1328
ba88d433 1329 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1330 cpudata->epp_policy = 0;
984edbdc
SP
1331 if (cpudata->epp_default == -EINVAL)
1332 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1333}
1334
6e978b22
SP
1335#define MSR_IA32_POWER_CTL_BIT_EE 19
1336
1337/* Disable energy efficiency optimization */
1338static void intel_pstate_disable_ee(int cpu)
1339{
1340 u64 power_ctl;
1341 int ret;
1342
1343 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1344 if (ret)
1345 return;
1346
1347 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1348 pr_info("Disabling energy efficiency optimization\n");
1349 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1350 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1351 }
1352}
1353
938d21a2 1354static int atom_get_min_pstate(void)
19e77c28
DB
1355{
1356 u64 value;
845c1cbe 1357
938d21a2 1358 rdmsrl(ATOM_RATIOS, value);
c16ed060 1359 return (value >> 8) & 0x7F;
19e77c28
DB
1360}
1361
938d21a2 1362static int atom_get_max_pstate(void)
19e77c28
DB
1363{
1364 u64 value;
845c1cbe 1365
938d21a2 1366 rdmsrl(ATOM_RATIOS, value);
c16ed060 1367 return (value >> 16) & 0x7F;
19e77c28 1368}
93f0822d 1369
938d21a2 1370static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1371{
1372 u64 value;
845c1cbe 1373
938d21a2 1374 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 1375 return value & 0x7F;
61d8d2ab
DB
1376}
1377
fdfdb2b1 1378static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1379{
1380 u64 val;
1381 int32_t vid_fp;
1382 u32 vid;
1383
144c8e17 1384 val = (u64)pstate << 8;
51443fbf 1385 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
1386 val |= (u64)1 << 32;
1387
1388 vid_fp = cpudata->vid.min + mul_fp(
1389 int_tofp(pstate - cpudata->pstate.min_pstate),
1390 cpudata->vid.ratio);
1391
1392 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1393 vid = ceiling_fp(vid_fp);
007bea09 1394
21855ff5
DB
1395 if (pstate > cpudata->pstate.max_pstate)
1396 vid = cpudata->vid.turbo;
1397
fdfdb2b1 1398 return val | vid;
007bea09
DB
1399}
1400
1421df63 1401static int silvermont_get_scaling(void)
b27580b0
DB
1402{
1403 u64 value;
1404 int i;
1421df63
PL
1405 /* Defined in Table 35-6 from SDM (Sept 2015) */
1406 static int silvermont_freq_table[] = {
1407 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1408
1409 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1410 i = value & 0x7;
1411 WARN_ON(i > 4);
b27580b0 1412
1421df63
PL
1413 return silvermont_freq_table[i];
1414}
b27580b0 1415
1421df63
PL
1416static int airmont_get_scaling(void)
1417{
1418 u64 value;
1419 int i;
1420 /* Defined in Table 35-10 from SDM (Sept 2015) */
1421 static int airmont_freq_table[] = {
1422 83300, 100000, 133300, 116700, 80000,
1423 93300, 90000, 88900, 87500};
1424
1425 rdmsrl(MSR_FSB_FREQ, value);
1426 i = value & 0xF;
1427 WARN_ON(i > 8);
1428
1429 return airmont_freq_table[i];
b27580b0
DB
1430}
1431
938d21a2 1432static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1433{
1434 u64 value;
1435
938d21a2 1436 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
1437 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1438 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1439 cpudata->vid.ratio = div_fp(
1440 cpudata->vid.max - cpudata->vid.min,
1441 int_tofp(cpudata->pstate.max_pstate -
1442 cpudata->pstate.min_pstate));
21855ff5 1443
938d21a2 1444 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 1445 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1446}
1447
016c8150 1448static int core_get_min_pstate(void)
93f0822d
DB
1449{
1450 u64 value;
845c1cbe 1451
05e99c8c 1452 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1453 return (value >> 40) & 0xFF;
1454}
1455
3bcc6fa9 1456static int core_get_max_pstate_physical(void)
93f0822d
DB
1457{
1458 u64 value;
845c1cbe 1459
05e99c8c 1460 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1461 return (value >> 8) & 0xFF;
1462}
1463
8fc7554a
SP
1464static int core_get_tdp_ratio(u64 plat_info)
1465{
1466 /* Check how many TDP levels present */
1467 if (plat_info & 0x600000000) {
1468 u64 tdp_ctrl;
1469 u64 tdp_ratio;
1470 int tdp_msr;
1471 int err;
1472
1473 /* Get the TDP level (0, 1, 2) to get ratios */
1474 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1475 if (err)
1476 return err;
1477
1478 /* TDP MSR are continuous starting at 0x648 */
1479 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1480 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1481 if (err)
1482 return err;
1483
1484 /* For level 1 and 2, bits[23:16] contain the ratio */
1485 if (tdp_ctrl & 0x03)
1486 tdp_ratio >>= 16;
1487
1488 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1489 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1490
1491 return (int)tdp_ratio;
1492 }
1493
1494 return -ENXIO;
1495}
1496
016c8150 1497static int core_get_max_pstate(void)
93f0822d 1498{
6a35fc2d
SP
1499 u64 tar;
1500 u64 plat_info;
1501 int max_pstate;
8fc7554a 1502 int tdp_ratio;
6a35fc2d
SP
1503 int err;
1504
1505 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1506 max_pstate = (plat_info >> 8) & 0xFF;
1507
8fc7554a
SP
1508 tdp_ratio = core_get_tdp_ratio(plat_info);
1509 if (tdp_ratio <= 0)
1510 return max_pstate;
1511
1512 if (hwp_active) {
1513 /* Turbo activation ratio is not used on HWP platforms */
1514 return tdp_ratio;
1515 }
1516
6a35fc2d
SP
1517 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1518 if (!err) {
8fc7554a
SP
1519 int tar_levels;
1520
6a35fc2d 1521 /* Do some sanity checking for safety */
8fc7554a
SP
1522 tar_levels = tar & 0xff;
1523 if (tdp_ratio - 1 == tar_levels) {
1524 max_pstate = tar_levels;
1525 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1526 }
1527 }
845c1cbe 1528
6a35fc2d 1529 return max_pstate;
93f0822d
DB
1530}
1531
016c8150 1532static int core_get_turbo_pstate(void)
93f0822d
DB
1533{
1534 u64 value;
1535 int nont, ret;
845c1cbe 1536
100cf6f2 1537 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1538 nont = core_get_max_pstate();
285cb990 1539 ret = (value) & 255;
93f0822d
DB
1540 if (ret <= nont)
1541 ret = nont;
1542 return ret;
1543}
1544
b27580b0
DB
1545static inline int core_get_scaling(void)
1546{
1547 return 100000;
1548}
1549
fdfdb2b1 1550static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1551{
1552 u64 val;
1553
144c8e17 1554 val = (u64)pstate << 8;
51443fbf 1555 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1556 val |= (u64)1 << 32;
1557
fdfdb2b1 1558 return val;
016c8150
DB
1559}
1560
b34ef932
DC
1561static int knl_get_turbo_pstate(void)
1562{
1563 u64 value;
1564 int nont, ret;
1565
100cf6f2 1566 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1567 nont = core_get_max_pstate();
1568 ret = (((value) >> 8) & 0xFF);
1569 if (ret <= nont)
1570 ret = nont;
1571 return ret;
1572}
1573
016c8150
DB
1574static struct cpu_defaults core_params = {
1575 .pid_policy = {
1576 .sample_rate_ms = 10,
1577 .deadband = 0,
1578 .setpoint = 97,
1579 .p_gain_pct = 20,
1580 .d_gain_pct = 0,
1581 .i_gain_pct = 0,
1582 },
1583 .funcs = {
1584 .get_max = core_get_max_pstate,
3bcc6fa9 1585 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1586 .get_min = core_get_min_pstate,
1587 .get_turbo = core_get_turbo_pstate,
b27580b0 1588 .get_scaling = core_get_scaling,
fdfdb2b1 1589 .get_val = core_get_val,
157386b6 1590 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1591 },
1592};
1593
42ce8921 1594static const struct cpu_defaults silvermont_params = {
1421df63
PL
1595 .pid_policy = {
1596 .sample_rate_ms = 10,
1597 .deadband = 0,
1598 .setpoint = 60,
1599 .p_gain_pct = 14,
1600 .d_gain_pct = 0,
1601 .i_gain_pct = 4,
1602 },
1603 .funcs = {
1604 .get_max = atom_get_max_pstate,
1605 .get_max_physical = atom_get_max_pstate,
1606 .get_min = atom_get_min_pstate,
1607 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1608 .get_val = atom_get_val,
1421df63
PL
1609 .get_scaling = silvermont_get_scaling,
1610 .get_vid = atom_get_vid,
e70eed2b 1611 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1612 },
1613};
1614
42ce8921 1615static const struct cpu_defaults airmont_params = {
19e77c28
DB
1616 .pid_policy = {
1617 .sample_rate_ms = 10,
1618 .deadband = 0,
6a82ba6d 1619 .setpoint = 60,
19e77c28
DB
1620 .p_gain_pct = 14,
1621 .d_gain_pct = 0,
1622 .i_gain_pct = 4,
1623 },
1624 .funcs = {
938d21a2
PL
1625 .get_max = atom_get_max_pstate,
1626 .get_max_physical = atom_get_max_pstate,
1627 .get_min = atom_get_min_pstate,
1628 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1629 .get_val = atom_get_val,
1421df63 1630 .get_scaling = airmont_get_scaling,
938d21a2 1631 .get_vid = atom_get_vid,
e70eed2b 1632 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1633 },
1634};
1635
42ce8921 1636static const struct cpu_defaults knl_params = {
b34ef932
DC
1637 .pid_policy = {
1638 .sample_rate_ms = 10,
1639 .deadband = 0,
1640 .setpoint = 97,
1641 .p_gain_pct = 20,
1642 .d_gain_pct = 0,
1643 .i_gain_pct = 0,
1644 },
1645 .funcs = {
1646 .get_max = core_get_max_pstate,
3bcc6fa9 1647 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1648 .get_min = core_get_min_pstate,
1649 .get_turbo = knl_get_turbo_pstate,
69cefc27 1650 .get_scaling = core_get_scaling,
fdfdb2b1 1651 .get_val = core_get_val,
157386b6 1652 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1653 },
1654};
1655
42ce8921 1656static const struct cpu_defaults bxt_params = {
41bad47f
SP
1657 .pid_policy = {
1658 .sample_rate_ms = 10,
1659 .deadband = 0,
1660 .setpoint = 60,
1661 .p_gain_pct = 14,
1662 .d_gain_pct = 0,
1663 .i_gain_pct = 4,
1664 },
1665 .funcs = {
1666 .get_max = core_get_max_pstate,
1667 .get_max_physical = core_get_max_pstate_physical,
1668 .get_min = core_get_min_pstate,
1669 .get_turbo = core_get_turbo_pstate,
1670 .get_scaling = core_get_scaling,
1671 .get_val = core_get_val,
1672 .get_target_pstate = get_target_pstate_use_cpu_load,
1673 },
1674};
1675
93f0822d
DB
1676static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1677{
1678 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1679 int max_perf_adj;
93f0822d 1680 int min_perf;
eae48f04 1681 struct perf_limits *perf_limits = limits;
845c1cbe 1682
51443fbf 1683 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1684 max_perf = cpu->pstate.max_pstate;
1685
eae48f04
SP
1686 if (per_cpu_limits)
1687 perf_limits = cpu->perf_limits;
1688
e0d4c8f8
KCA
1689 /*
1690 * performance can be limited by user through sysfs, by cpufreq
1691 * policy, or by cpu specific default values determined through
1692 * experimentation.
1693 */
d5dd33d9 1694 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1695 *max = clamp_t(int, max_perf_adj,
1696 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1697
d5dd33d9 1698 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
799281a3 1699 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1700}
1701
a6c6ead1 1702static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1703{
bc95a454
RW
1704 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1705 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1706 /*
1707 * Generally, there is no guarantee that this code will always run on
1708 * the CPU being updated, so force the register update to run on the
1709 * right CPU.
1710 */
1711 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1712 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1713}
1714
a6c6ead1
RW
1715static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1716{
1717 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1718}
1719
1720static void intel_pstate_max_within_limits(struct cpudata *cpu)
1721{
1722 int min_pstate, max_pstate;
1723
1724 update_turbo_state();
1725 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1726 intel_pstate_set_pstate(cpu, max_pstate);
1727}
1728
93f0822d
DB
1729static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1730{
016c8150
DB
1731 cpu->pstate.min_pstate = pstate_funcs.get_min();
1732 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1733 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1734 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1735 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1736 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1737 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1738
007bea09
DB
1739 if (pstate_funcs.get_vid)
1740 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1741
1742 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1743}
1744
a1c9787d 1745static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1746{
6b17ddb2 1747 struct sample *sample = &cpu->sample;
e66c1768 1748
a1c9787d 1749 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1750}
1751
4fec7ad5 1752static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1753{
93f0822d 1754 u64 aperf, mperf;
4ab60c3f 1755 unsigned long flags;
4055fad3 1756 u64 tsc;
93f0822d 1757
4ab60c3f 1758 local_irq_save(flags);
93f0822d
DB
1759 rdmsrl(MSR_IA32_APERF, aperf);
1760 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1761 tsc = rdtsc();
4fec7ad5 1762 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1763 local_irq_restore(flags);
4fec7ad5 1764 return false;
8e601a9f 1765 }
4ab60c3f 1766 local_irq_restore(flags);
b69880f9 1767
c4ee841f 1768 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1769 cpu->sample.time = time;
d37e2b76
DB
1770 cpu->sample.aperf = aperf;
1771 cpu->sample.mperf = mperf;
4055fad3 1772 cpu->sample.tsc = tsc;
d37e2b76
DB
1773 cpu->sample.aperf -= cpu->prev_aperf;
1774 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1775 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1776
93f0822d
DB
1777 cpu->prev_aperf = aperf;
1778 cpu->prev_mperf = mperf;
4055fad3 1779 cpu->prev_tsc = tsc;
febce40f
RW
1780 /*
1781 * First time this function is invoked in a given cycle, all of the
1782 * previous sample data fields are equal to zero or stale and they must
1783 * be populated with meaningful numbers for things to work, so assume
1784 * that sample.time will always be reset before setting the utilization
1785 * update hook and make the caller skip the sample then.
1786 */
1787 return !!cpu->last_sample_time;
93f0822d
DB
1788}
1789
8fa520af
PL
1790static inline int32_t get_avg_frequency(struct cpudata *cpu)
1791{
a1c9787d
RW
1792 return mul_ext_fp(cpu->sample.core_avg_perf,
1793 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1794}
1795
bdcaa23f
PL
1796static inline int32_t get_avg_pstate(struct cpudata *cpu)
1797{
8edb0a6e
RW
1798 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1799 cpu->sample.core_avg_perf);
bdcaa23f
PL
1800}
1801
e70eed2b
PL
1802static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1803{
1804 struct sample *sample = &cpu->sample;
09c448d3 1805 int32_t busy_frac, boost;
0843e83c 1806 int target, avg_pstate;
e70eed2b 1807
09c448d3 1808 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1809
09c448d3
RW
1810 boost = cpu->iowait_boost;
1811 cpu->iowait_boost >>= 1;
63d1d656 1812
09c448d3
RW
1813 if (busy_frac < boost)
1814 busy_frac = boost;
63d1d656 1815
09c448d3 1816 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1817
1818 target = limits->no_turbo || limits->turbo_disabled ?
1819 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1820 target += target >> 2;
1821 target = mul_fp(target, busy_frac);
1822 if (target < cpu->pstate.min_pstate)
1823 target = cpu->pstate.min_pstate;
1824
1825 /*
1826 * If the average P-state during the previous cycle was higher than the
1827 * current target, add 50% of the difference to the target to reduce
1828 * possible performance oscillations and offset possible performance
1829 * loss related to moving the workload from one CPU to another within
1830 * a package/module.
1831 */
1832 avg_pstate = get_avg_pstate(cpu);
1833 if (avg_pstate > target)
1834 target += (avg_pstate - target) >> 1;
1835
1836 return target;
e70eed2b
PL
1837}
1838
157386b6 1839static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1840{
1aa7a6e2 1841 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1842 u64 duration_ns;
93f0822d 1843
e0d4c8f8 1844 /*
f00593a4
RW
1845 * perf_scaled is the ratio of the average P-state during the last
1846 * sampling period to the P-state requested last time (in percent).
1847 *
1848 * That measures the system's response to the previous P-state
1849 * selection.
e0d4c8f8 1850 */
22590efb
RW
1851 max_pstate = cpu->pstate.max_pstate_physical;
1852 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1853 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1854 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1855
e0d4c8f8 1856 /*
a4675fbc
RW
1857 * Since our utilization update callback will not run unless we are
1858 * in C0, check if the actual elapsed time is significantly greater (3x)
1859 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1860 * enough period of time to adjust our performance metric.
e0d4c8f8 1861 */
a4675fbc 1862 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1863 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1864 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1865 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1866 } else {
1867 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1868 if (sample_ratio < int_tofp(1))
1aa7a6e2 1869 perf_scaled = 0;
c4ee841f
DB
1870 }
1871
1aa7a6e2
RW
1872 cpu->sample.busy_scaled = perf_scaled;
1873 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1874}
1875
001c76f0 1876static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1877{
1878 int max_perf, min_perf;
1879
fdfdb2b1
RW
1880 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1881 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1882 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
001c76f0
RW
1883 return pstate;
1884}
1885
1886static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1887{
1888 pstate = intel_pstate_prepare_request(cpu, pstate);
fdfdb2b1
RW
1889 if (pstate == cpu->pstate.current_pstate)
1890 return;
1891
bc95a454 1892 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1893 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1894}
1895
93f0822d
DB
1896static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1897{
157386b6 1898 int from, target_pstate;
4055fad3
DS
1899 struct sample *sample;
1900
1901 from = cpu->pstate.current_pstate;
93f0822d 1902
2f1d407a
RW
1903 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1904 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1905
001c76f0
RW
1906 update_turbo_state();
1907
fdfdb2b1 1908 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1909
1910 sample = &cpu->sample;
a1c9787d 1911 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1912 fp_toint(sample->busy_scaled),
4055fad3
DS
1913 from,
1914 cpu->pstate.current_pstate,
1915 sample->mperf,
1916 sample->aperf,
1917 sample->tsc,
3ba7bcaa
SP
1918 get_avg_frequency(cpu),
1919 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1920}
1921
a4675fbc 1922static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1923 unsigned int flags)
93f0822d 1924{
a4675fbc 1925 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1926 u64 delta_ns;
1927
1d29815e 1928 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1929 if (flags & SCHED_CPUFREQ_IOWAIT) {
1930 cpu->iowait_boost = int_tofp(1);
1931 } else if (cpu->iowait_boost) {
1932 /* Clear iowait_boost if the CPU may have been idle. */
1933 delta_ns = time - cpu->last_update;
1934 if (delta_ns > TICK_NSEC)
1935 cpu->iowait_boost = 0;
1936 }
1937 cpu->last_update = time;
1938 }
b69880f9 1939
09c448d3 1940 delta_ns = time - cpu->sample.time;
a4675fbc 1941 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1942 bool sample_taken = intel_pstate_sample(cpu, time);
1943
6d45b719 1944 if (sample_taken) {
a1c9787d 1945 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1946 if (!hwp_active)
1947 intel_pstate_adjust_busy_pstate(cpu);
1948 }
a4675fbc 1949 }
93f0822d
DB
1950}
1951
1952#define ICPU(model, policy) \
6cbd7ee1
DB
1953 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1954 (unsigned long)&policy }
93f0822d
DB
1955
1956static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1957 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1958 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1959 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1960 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1961 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1962 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1963 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1964 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1965 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1966 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1967 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1968 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1969 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1970 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1971 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1972 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1973 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1974 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1975 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1976 {}
1977};
1978MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1979
29327c84 1980static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1981 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1982 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1983 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1984 {}
1985};
1986
6e978b22
SP
1987static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1988 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1989 {}
1990};
1991
93f0822d
DB
1992static int intel_pstate_init_cpu(unsigned int cpunum)
1993{
93f0822d
DB
1994 struct cpudata *cpu;
1995
eae48f04
SP
1996 cpu = all_cpu_data[cpunum];
1997
1998 if (!cpu) {
1999 unsigned int size = sizeof(struct cpudata);
2000
2001 if (per_cpu_limits)
2002 size += sizeof(struct perf_limits);
2003
2004 cpu = kzalloc(size, GFP_KERNEL);
2005 if (!cpu)
2006 return -ENOMEM;
2007
2008 all_cpu_data[cpunum] = cpu;
2009 if (per_cpu_limits)
2010 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2011
984edbdc
SP
2012 cpu->epp_default = -EINVAL;
2013 cpu->epp_powersave = -EINVAL;
2014 cpu->epp_saved = -EINVAL;
eae48f04 2015 }
93f0822d
DB
2016
2017 cpu = all_cpu_data[cpunum];
2018
93f0822d 2019 cpu->cpu = cpunum;
ba88d433 2020
a4675fbc 2021 if (hwp_active) {
6e978b22
SP
2022 const struct x86_cpu_id *id;
2023
2024 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2025 if (id)
2026 intel_pstate_disable_ee(cpunum);
2027
ba88d433 2028 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
2029 pid_params.sample_rate_ms = 50;
2030 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2031 }
ba88d433 2032
179e8471 2033 intel_pstate_get_cpu_pstates(cpu);
016c8150 2034
93f0822d 2035 intel_pstate_busy_pid_reset(cpu);
93f0822d 2036
4836df17 2037 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
2038
2039 return 0;
2040}
2041
2042static unsigned int intel_pstate_get(unsigned int cpu_num)
2043{
f96fd0c8 2044 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 2045
f96fd0c8 2046 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
2047}
2048
febce40f 2049static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 2050{
febce40f
RW
2051 struct cpudata *cpu = all_cpu_data[cpu_num];
2052
5ab666e0
RW
2053 if (cpu->update_util_set)
2054 return;
2055
febce40f
RW
2056 /* Prevent intel_pstate_update_util() from using stale data. */
2057 cpu->sample.time = 0;
0bed612b
RW
2058 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2059 intel_pstate_update_util);
4578ee7e 2060 cpu->update_util_set = true;
bb6ab52f
RW
2061}
2062
2063static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2064{
4578ee7e
CY
2065 struct cpudata *cpu_data = all_cpu_data[cpu];
2066
2067 if (!cpu_data->update_util_set)
2068 return;
2069
0bed612b 2070 cpufreq_remove_update_util_hook(cpu);
4578ee7e 2071 cpu_data->update_util_set = false;
bb6ab52f
RW
2072 synchronize_sched();
2073}
2074
eae48f04
SP
2075static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2076 struct perf_limits *limits)
2077{
a410c03d 2078
eae48f04
SP
2079 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2080 policy->cpuinfo.max_freq);
2081 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
2082 if (policy->max == policy->min) {
2083 limits->min_policy_pct = limits->max_policy_pct;
2084 } else {
46992d6b
SP
2085 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2086 policy->cpuinfo.max_freq);
5879f877
SP
2087 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2088 0, 100);
2089 }
eae48f04
SP
2090
2091 /* Normalize user input to [min_policy_pct, max_policy_pct] */
2092 limits->min_perf_pct = max(limits->min_policy_pct,
2093 limits->min_sysfs_pct);
2094 limits->min_perf_pct = min(limits->max_policy_pct,
2095 limits->min_perf_pct);
2096 limits->max_perf_pct = min(limits->max_policy_pct,
2097 limits->max_sysfs_pct);
2098 limits->max_perf_pct = max(limits->min_policy_pct,
2099 limits->max_perf_pct);
2100
2101 /* Make sure min_perf_pct <= max_perf_pct */
2102 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2103
d5dd33d9
SP
2104 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2105 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2106 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2107 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2108
2109 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2110 limits->max_perf_pct, limits->min_perf_pct);
2111}
2112
93f0822d
DB
2113static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2114{
3be9200d 2115 struct cpudata *cpu;
eae48f04 2116 struct perf_limits *perf_limits = NULL;
3be9200d 2117
d3929b83
DB
2118 if (!policy->cpuinfo.max_freq)
2119 return -ENODEV;
2120
2c2c1af4
SP
2121 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2122 policy->cpuinfo.max_freq, policy->max);
2123
a6c6ead1 2124 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2125 cpu->policy = policy->policy;
2126
c749c64f
RW
2127 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2128 policy->max < policy->cpuinfo.max_freq &&
2129 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2130 pr_debug("policy->max > max non turbo frequency\n");
2131 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
2132 }
2133
eae48f04
SP
2134 if (per_cpu_limits)
2135 perf_limits = cpu->perf_limits;
2136
b59fe540
SP
2137 mutex_lock(&intel_pstate_limits_lock);
2138
eae48f04
SP
2139 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2140 if (!perf_limits) {
2141 limits = &performance_limits;
2142 perf_limits = limits;
2143 }
1443ebba
SP
2144 if (policy->max >= policy->cpuinfo.max_freq &&
2145 !limits->no_turbo) {
4836df17 2146 pr_debug("set performance\n");
eae48f04 2147 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
2148 goto out;
2149 }
2150 } else {
4836df17 2151 pr_debug("set powersave\n");
eae48f04
SP
2152 if (!perf_limits) {
2153 limits = &powersave_limits;
2154 perf_limits = limits;
2155 }
43717aad 2156
eae48f04 2157 }
93f0822d 2158
eae48f04 2159 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 2160 out:
2f1d407a 2161 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2162 /*
2163 * NOHZ_FULL CPUs need this as the governor callback may not
2164 * be invoked on them.
2165 */
2166 intel_pstate_clear_update_util_hook(policy->cpu);
2167 intel_pstate_max_within_limits(cpu);
2168 }
2169
bb6ab52f
RW
2170 intel_pstate_set_update_util_hook(policy->cpu);
2171
ba41e1bc 2172 intel_pstate_hwp_set_policy(policy);
2f86dc4c 2173
b59fe540
SP
2174 mutex_unlock(&intel_pstate_limits_lock);
2175
93f0822d
DB
2176 return 0;
2177}
2178
2179static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2180{
7d9a8a9f
SP
2181 struct cpudata *cpu = all_cpu_data[policy->cpu];
2182 struct perf_limits *perf_limits;
2183
2184 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2185 perf_limits = &performance_limits;
2186 else
2187 perf_limits = &powersave_limits;
2188
2189 update_turbo_state();
2190 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2191 perf_limits->no_turbo ?
2192 cpu->pstate.max_freq :
2193 cpu->pstate.turbo_freq;
2194
be49e346 2195 cpufreq_verify_within_cpu_limits(policy);
93f0822d 2196
285cb990 2197 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2198 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2199 return -EINVAL;
2200
1443ebba
SP
2201 /* When per-CPU limits are used, sysfs limits are not used */
2202 if (!per_cpu_limits) {
2203 unsigned int max_freq, min_freq;
2204
2205 max_freq = policy->cpuinfo.max_freq *
2206 limits->max_sysfs_pct / 100;
2207 min_freq = policy->cpuinfo.max_freq *
2208 limits->min_sysfs_pct / 100;
2209 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2210 }
2211
93f0822d
DB
2212 return 0;
2213}
2214
001c76f0
RW
2215static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2216{
2217 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2218}
2219
bb18008f 2220static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2221{
001c76f0 2222 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2223
001c76f0 2224 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2225 if (hwp_active)
2226 intel_pstate_hwp_save_state(policy);
2227 else
001c76f0
RW
2228 intel_cpufreq_stop_cpu(policy);
2229}
bb18008f 2230
001c76f0
RW
2231static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2232{
2233 intel_pstate_exit_perf_limits(policy);
a4675fbc 2234
001c76f0 2235 policy->fast_switch_possible = false;
2f86dc4c 2236
001c76f0 2237 return 0;
93f0822d
DB
2238}
2239
001c76f0 2240static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2241{
93f0822d 2242 struct cpudata *cpu;
52e0a509 2243 int rc;
93f0822d
DB
2244
2245 rc = intel_pstate_init_cpu(policy->cpu);
2246 if (rc)
2247 return rc;
2248
2249 cpu = all_cpu_data[policy->cpu];
2250
eae48f04
SP
2251 /*
2252 * We need sane value in the cpu->perf_limits, so inherit from global
2253 * perf_limits limits, which are seeded with values based on the
2254 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2255 */
2256 if (per_cpu_limits)
2257 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
93f0822d 2258
b27580b0
DB
2259 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2260 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2261
2262 /* cpuinfo and default policy values */
b27580b0 2263 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
2264 update_turbo_state();
2265 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2266 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2267 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2268
9522a2ff 2269 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2270 cpumask_set_cpu(policy->cpu, policy->cpus);
2271
001c76f0
RW
2272 policy->fast_switch_possible = true;
2273
93f0822d
DB
2274 return 0;
2275}
2276
001c76f0 2277static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2278{
001c76f0
RW
2279 int ret = __intel_pstate_cpu_init(policy);
2280
2281 if (ret)
2282 return ret;
2283
2284 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2285 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2286 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2287 else
2288 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2289
2290 return 0;
2291}
2292
001c76f0 2293static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2294 .flags = CPUFREQ_CONST_LOOPS,
2295 .verify = intel_pstate_verify_policy,
2296 .setpolicy = intel_pstate_set_policy,
984edbdc 2297 .suspend = intel_pstate_hwp_save_state,
8442885f 2298 .resume = intel_pstate_resume,
93f0822d
DB
2299 .get = intel_pstate_get,
2300 .init = intel_pstate_cpu_init,
9522a2ff 2301 .exit = intel_pstate_cpu_exit,
bb18008f 2302 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2303 .name = "intel_pstate",
93f0822d
DB
2304};
2305
001c76f0
RW
2306static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2307{
2308 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2309
2310 update_turbo_state();
2311 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2312 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2313
2314 cpufreq_verify_within_cpu_limits(policy);
2315
001c76f0
RW
2316 return 0;
2317}
2318
2319static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2320 struct cpufreq_policy *policy,
2321 unsigned int target_freq)
2322{
2323 unsigned int max_freq;
2324
2325 update_turbo_state();
2326
2327 max_freq = limits->no_turbo || limits->turbo_disabled ?
2328 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2329 policy->cpuinfo.max_freq = max_freq;
2330 if (policy->max > max_freq)
2331 policy->max = max_freq;
2332
2333 if (target_freq > max_freq)
2334 target_freq = max_freq;
2335
2336 return target_freq;
2337}
2338
2339static int intel_cpufreq_target(struct cpufreq_policy *policy,
2340 unsigned int target_freq,
2341 unsigned int relation)
2342{
2343 struct cpudata *cpu = all_cpu_data[policy->cpu];
2344 struct cpufreq_freqs freqs;
2345 int target_pstate;
2346
2347 freqs.old = policy->cur;
2348 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2349
2350 cpufreq_freq_transition_begin(policy, &freqs);
2351 switch (relation) {
2352 case CPUFREQ_RELATION_L:
2353 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2354 break;
2355 case CPUFREQ_RELATION_H:
2356 target_pstate = freqs.new / cpu->pstate.scaling;
2357 break;
2358 default:
2359 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2360 break;
2361 }
2362 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2363 if (target_pstate != cpu->pstate.current_pstate) {
2364 cpu->pstate.current_pstate = target_pstate;
2365 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2366 pstate_funcs.get_val(cpu, target_pstate));
2367 }
2368 cpufreq_freq_transition_end(policy, &freqs, false);
2369
2370 return 0;
2371}
2372
2373static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2374 unsigned int target_freq)
2375{
2376 struct cpudata *cpu = all_cpu_data[policy->cpu];
2377 int target_pstate;
2378
2379 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2380 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2381 intel_pstate_update_pstate(cpu, target_pstate);
2382 return target_freq;
2383}
2384
2385static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2386{
2387 int ret = __intel_pstate_cpu_init(policy);
2388
2389 if (ret)
2390 return ret;
2391
2392 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2393 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2394 policy->cur = policy->cpuinfo.min_freq;
2395
2396 return 0;
2397}
2398
2399static struct cpufreq_driver intel_cpufreq = {
2400 .flags = CPUFREQ_CONST_LOOPS,
2401 .verify = intel_cpufreq_verify_policy,
2402 .target = intel_cpufreq_target,
2403 .fast_switch = intel_cpufreq_fast_switch,
2404 .init = intel_cpufreq_cpu_init,
2405 .exit = intel_pstate_cpu_exit,
2406 .stop_cpu = intel_cpufreq_stop_cpu,
2407 .name = "intel_cpufreq",
2408};
2409
2410static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2411
fb1fe104
RW
2412static void intel_pstate_driver_cleanup(void)
2413{
2414 unsigned int cpu;
2415
2416 get_online_cpus();
2417 for_each_online_cpu(cpu) {
2418 if (all_cpu_data[cpu]) {
2419 if (intel_pstate_driver == &intel_pstate)
2420 intel_pstate_clear_update_util_hook(cpu);
2421
2422 kfree(all_cpu_data[cpu]);
2423 all_cpu_data[cpu] = NULL;
2424 }
2425 }
2426 put_online_cpus();
2427}
2428
2429static int intel_pstate_register_driver(void)
2430{
2431 int ret;
2432
c3a49c89
RW
2433 intel_pstate_init_limits(&powersave_limits);
2434 intel_pstate_set_performance_limits(&performance_limits);
2bc756e7
RW
2435 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
2436 intel_pstate_driver == &intel_pstate)
2437 limits = &performance_limits;
2438 else
2439 limits = &powersave_limits;
c3a49c89 2440
fb1fe104
RW
2441 ret = cpufreq_register_driver(intel_pstate_driver);
2442 if (ret) {
2443 intel_pstate_driver_cleanup();
2444 return ret;
2445 }
2446
2447 mutex_lock(&intel_pstate_limits_lock);
2448 driver_registered = true;
2449 mutex_unlock(&intel_pstate_limits_lock);
2450
2451 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2452 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2453 intel_pstate_debug_expose_params();
2454
2455 return 0;
2456}
2457
2458static int intel_pstate_unregister_driver(void)
2459{
2460 if (hwp_active)
2461 return -EBUSY;
2462
2463 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2464 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2465 intel_pstate_debug_hide_params();
2466
2467 mutex_lock(&intel_pstate_limits_lock);
2468 driver_registered = false;
2469 mutex_unlock(&intel_pstate_limits_lock);
2470
2471 cpufreq_unregister_driver(intel_pstate_driver);
2472 intel_pstate_driver_cleanup();
2473
2474 return 0;
2475}
2476
2477static ssize_t intel_pstate_show_status(char *buf)
2478{
2479 if (!driver_registered)
2480 return sprintf(buf, "off\n");
2481
2482 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2483 "active" : "passive");
2484}
2485
2486static int intel_pstate_update_status(const char *buf, size_t size)
2487{
2488 int ret;
2489
2490 if (size == 3 && !strncmp(buf, "off", size))
2491 return driver_registered ?
2492 intel_pstate_unregister_driver() : -EINVAL;
2493
2494 if (size == 6 && !strncmp(buf, "active", size)) {
2495 if (driver_registered) {
2496 if (intel_pstate_driver == &intel_pstate)
2497 return 0;
2498
2499 ret = intel_pstate_unregister_driver();
2500 if (ret)
2501 return ret;
2502 }
2503
2504 intel_pstate_driver = &intel_pstate;
2505 return intel_pstate_register_driver();
2506 }
2507
2508 if (size == 7 && !strncmp(buf, "passive", size)) {
2509 if (driver_registered) {
2510 if (intel_pstate_driver != &intel_pstate)
2511 return 0;
2512
2513 ret = intel_pstate_unregister_driver();
2514 if (ret)
2515 return ret;
2516 }
2517
2518 intel_pstate_driver = &intel_cpufreq;
2519 return intel_pstate_register_driver();
2520 }
2521
2522 return -EINVAL;
2523}
2524
eed43609
JZ
2525static int no_load __initdata;
2526static int no_hwp __initdata;
2527static int hwp_only __initdata;
29327c84 2528static unsigned int force_load __initdata;
6be26498 2529
29327c84 2530static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2531{
016c8150 2532 if (!pstate_funcs.get_max() ||
c410833a
SK
2533 !pstate_funcs.get_min() ||
2534 !pstate_funcs.get_turbo())
b563b4e3
DB
2535 return -ENODEV;
2536
b563b4e3
DB
2537 return 0;
2538}
016c8150 2539
29327c84 2540static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
2541{
2542 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 2543 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
2544 pid_params.p_gain_pct = policy->p_gain_pct;
2545 pid_params.i_gain_pct = policy->i_gain_pct;
2546 pid_params.d_gain_pct = policy->d_gain_pct;
2547 pid_params.deadband = policy->deadband;
2548 pid_params.setpoint = policy->setpoint;
2549}
2550
7f7a516e
SP
2551#ifdef CONFIG_ACPI
2552static void intel_pstate_use_acpi_profile(void)
2553{
2554 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2555 pstate_funcs.get_target_pstate =
2556 get_target_pstate_use_cpu_load;
2557}
2558#else
2559static void intel_pstate_use_acpi_profile(void)
2560{
2561}
2562#endif
2563
29327c84 2564static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2565{
2566 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2567 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2568 pstate_funcs.get_min = funcs->get_min;
2569 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2570 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2571 pstate_funcs.get_val = funcs->get_val;
007bea09 2572 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2573 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2574
7f7a516e 2575 intel_pstate_use_acpi_profile();
016c8150
DB
2576}
2577
9522a2ff 2578#ifdef CONFIG_ACPI
fbbcdc07 2579
29327c84 2580static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2581{
2582 int i;
2583
2584 for_each_possible_cpu(i) {
2585 acpi_status status;
2586 union acpi_object *pss;
2587 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2588 struct acpi_processor *pr = per_cpu(processors, i);
2589
2590 if (!pr)
2591 continue;
2592
2593 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2594 if (ACPI_FAILURE(status))
2595 continue;
2596
2597 pss = buffer.pointer;
2598 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2599 kfree(pss);
2600 return false;
2601 }
2602
2603 kfree(pss);
2604 }
2605
2606 return true;
2607}
2608
29327c84 2609static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2610{
2611 int i;
2612
2613 for_each_possible_cpu(i) {
2614 struct acpi_processor *pr = per_cpu(processors, i);
2615
2616 if (!pr)
2617 continue;
2618 if (acpi_has_method(pr->handle, "_PPC"))
2619 return true;
2620 }
2621 return false;
2622}
2623
2624enum {
2625 PSS,
2626 PPC,
2627};
2628
fbbcdc07
AH
2629struct hw_vendor_info {
2630 u16 valid;
2631 char oem_id[ACPI_OEM_ID_SIZE];
2632 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2633 int oem_pwr_table;
fbbcdc07
AH
2634};
2635
2636/* Hardware vendor-specific info that has its own power management modes */
29327c84 2637static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2638 {1, "HP ", "ProLiant", PSS},
2639 {1, "ORACLE", "X4-2 ", PPC},
2640 {1, "ORACLE", "X4-2L ", PPC},
2641 {1, "ORACLE", "X4-2B ", PPC},
2642 {1, "ORACLE", "X3-2 ", PPC},
2643 {1, "ORACLE", "X3-2L ", PPC},
2644 {1, "ORACLE", "X3-2B ", PPC},
2645 {1, "ORACLE", "X4470M2 ", PPC},
2646 {1, "ORACLE", "X4270M3 ", PPC},
2647 {1, "ORACLE", "X4270M2 ", PPC},
2648 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2649 {1, "ORACLE", "X4170 M3", PPC},
2650 {1, "ORACLE", "X4275 M3", PPC},
2651 {1, "ORACLE", "X6-2 ", PPC},
2652 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2653 {0, "", ""},
2654};
2655
29327c84 2656static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2657{
2658 struct acpi_table_header hdr;
2659 struct hw_vendor_info *v_info;
2f86dc4c
DB
2660 const struct x86_cpu_id *id;
2661 u64 misc_pwr;
2662
2663 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2664 if (id) {
2665 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2666 if ( misc_pwr & (1 << 8))
2667 return true;
2668 }
fbbcdc07 2669
c410833a
SK
2670 if (acpi_disabled ||
2671 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2672 return false;
2673
2674 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2675 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2676 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2677 ACPI_OEM_TABLE_ID_SIZE))
2678 switch (v_info->oem_pwr_table) {
2679 case PSS:
2680 return intel_pstate_no_acpi_pss();
2681 case PPC:
aa4ea34d
EZ
2682 return intel_pstate_has_acpi_ppc() &&
2683 (!force_load);
966916ea 2684 }
fbbcdc07
AH
2685 }
2686
2687 return false;
2688}
d0ea59e1
RW
2689
2690static void intel_pstate_request_control_from_smm(void)
2691{
2692 /*
2693 * It may be unsafe to request P-states control from SMM if _PPC support
2694 * has not been enabled.
2695 */
2696 if (acpi_ppc)
2697 acpi_processor_pstate_control();
2698}
fbbcdc07
AH
2699#else /* CONFIG_ACPI not enabled */
2700static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2701static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2702static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2703#endif /* CONFIG_ACPI */
2704
7791e4aa
SP
2705static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2706 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2707 {}
2708};
2709
93f0822d
DB
2710static int __init intel_pstate_init(void)
2711{
93f0822d 2712 const struct x86_cpu_id *id;
64df1fdf 2713 struct cpu_defaults *cpu_def;
fb1fe104 2714 int rc = 0;
93f0822d 2715
6be26498
DB
2716 if (no_load)
2717 return -ENODEV;
2718
7791e4aa
SP
2719 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2720 copy_cpu_funcs(&core_params.funcs);
2721 hwp_active++;
984edbdc 2722 intel_pstate.attr = hwp_cpufreq_attrs;
7791e4aa
SP
2723 goto hwp_cpu_matched;
2724 }
2725
93f0822d
DB
2726 id = x86_match_cpu(intel_pstate_cpu_ids);
2727 if (!id)
2728 return -ENODEV;
2729
64df1fdf 2730 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2731
64df1fdf
BP
2732 copy_pid_params(&cpu_def->pid_policy);
2733 copy_cpu_funcs(&cpu_def->funcs);
016c8150 2734
b563b4e3
DB
2735 if (intel_pstate_msrs_not_valid())
2736 return -ENODEV;
2737
7791e4aa
SP
2738hwp_cpu_matched:
2739 /*
2740 * The Intel pstate driver will be ignored if the platform
2741 * firmware has its own power management modes.
2742 */
2743 if (intel_pstate_platform_pwr_mgmt_exists())
2744 return -ENODEV;
2745
fb1fe104
RW
2746 if (!hwp_active && hwp_only)
2747 return -ENOTSUPP;
2748
4836df17 2749 pr_info("Intel P-state driver initializing\n");
93f0822d 2750
b57ffac5 2751 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2752 if (!all_cpu_data)
2753 return -ENOMEM;
93f0822d 2754
d0ea59e1
RW
2755 intel_pstate_request_control_from_smm();
2756
93f0822d 2757 intel_pstate_sysfs_expose_params();
b69880f9 2758
0c30b65b 2759 mutex_lock(&intel_pstate_driver_lock);
fb1fe104 2760 rc = intel_pstate_register_driver();
0c30b65b 2761 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2762 if (rc)
2763 return rc;
366430b5 2764
7791e4aa 2765 if (hwp_active)
4836df17 2766 pr_info("HWP enabled\n");
7791e4aa 2767
fb1fe104 2768 return 0;
93f0822d
DB
2769}
2770device_initcall(intel_pstate_init);
2771
6be26498
DB
2772static int __init intel_pstate_setup(char *str)
2773{
2774 if (!str)
2775 return -EINVAL;
2776
001c76f0 2777 if (!strcmp(str, "disable")) {
6be26498 2778 no_load = 1;
001c76f0
RW
2779 } else if (!strcmp(str, "passive")) {
2780 pr_info("Passive mode enabled\n");
2781 intel_pstate_driver = &intel_cpufreq;
2782 no_hwp = 1;
2783 }
539342f6 2784 if (!strcmp(str, "no_hwp")) {
4836df17 2785 pr_info("HWP disabled\n");
2f86dc4c 2786 no_hwp = 1;
539342f6 2787 }
aa4ea34d
EZ
2788 if (!strcmp(str, "force"))
2789 force_load = 1;
d64c3b0b
KCA
2790 if (!strcmp(str, "hwp_only"))
2791 hwp_only = 1;
eae48f04
SP
2792 if (!strcmp(str, "per_cpu_perf_limits"))
2793 per_cpu_limits = true;
9522a2ff
SP
2794
2795#ifdef CONFIG_ACPI
2796 if (!strcmp(str, "support_acpi_ppc"))
2797 acpi_ppc = true;
2798#endif
2799
6be26498
DB
2800 return 0;
2801}
2802early_param("intel_pstate", intel_pstate_setup);
2803
93f0822d
DB
2804MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2805MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2806MODULE_LICENSE("GPL");