]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/cpufreq/intel_pstate.c
Merge branch 'x86/cpu'
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
100 * @freq: Effective frequency calculated from APERF/MPERF
101 * @time: Current time from scheduler
102 *
103 * This structure is used in the cpudata structure to store performance sample
104 * data for choosing next P State.
105 */
93f0822d 106struct sample {
a1c9787d 107 int32_t core_avg_perf;
157386b6 108 int32_t busy_scaled;
93f0822d
DB
109 u64 aperf;
110 u64 mperf;
4055fad3 111 u64 tsc;
93f0822d 112 int freq;
a4675fbc 113 u64 time;
93f0822d
DB
114};
115
13ad7701
SP
116/**
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
125 * frequency units
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 *
128 * Stores the per cpu model P state limits and current P state.
129 */
93f0822d
DB
130struct pstate_data {
131 int current_pstate;
132 int min_pstate;
133 int max_pstate;
3bcc6fa9 134 int max_pstate_physical;
b27580b0 135 int scaling;
93f0822d
DB
136 int turbo_pstate;
137};
138
13ad7701
SP
139/**
140 * struct vid_data - Stores voltage information data
141 * @min: VID data for this platform corresponding to
142 * the lowest P state
143 * @max: VID data corresponding to the highest P State.
144 * @turbo: VID data for turbo P state
145 * @ratio: Ratio of (vid max - vid min) /
146 * (max P state - Min P State)
147 *
148 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149 * This data is used in Atom platforms, where in addition to target P state,
150 * the voltage data needs to be specified to select next P State.
151 */
007bea09 152struct vid_data {
21855ff5
DB
153 int min;
154 int max;
155 int turbo;
007bea09
DB
156 int32_t ratio;
157};
158
13ad7701
SP
159/**
160 * struct _pid - Stores PID data
161 * @setpoint: Target set point for busyness or performance
162 * @integral: Storage for accumulated error values
163 * @p_gain: PID proportional gain
164 * @i_gain: PID integral gain
165 * @d_gain: PID derivative gain
166 * @deadband: PID deadband
167 * @last_err: Last error storage for integral part of PID calculation
168 *
169 * Stores PID coefficients and last error for PID controller.
170 */
93f0822d
DB
171struct _pid {
172 int setpoint;
173 int32_t integral;
174 int32_t p_gain;
175 int32_t i_gain;
176 int32_t d_gain;
177 int deadband;
d253d2a5 178 int32_t last_err;
93f0822d
DB
179};
180
13ad7701
SP
181/**
182 * struct cpudata - Per CPU instance data storage
183 * @cpu: CPU number for this instance data
184 * @update_util: CPUFreq utility callback information
4578ee7e 185 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
186 * @pstate: Stores P state limits for this CPU
187 * @vid: Stores VID limits for this CPU
188 * @pid: Stores PID parameters for this CPU
189 * @last_sample_time: Last Sample time
190 * @prev_aperf: Last APERF value read from APERF MSR
191 * @prev_mperf: Last MPERF value read from MPERF MSR
192 * @prev_tsc: Last timestamp counter (TSC) value
193 * @prev_cummulative_iowait: IO Wait time difference from last and
194 * current sample
195 * @sample: Storage for storing last Sample data
9522a2ff
SP
196 * @acpi_perf_data: Stores ACPI perf information read from _PSS
197 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
198 *
199 * This structure stores per CPU instance data for all CPUs.
200 */
93f0822d
DB
201struct cpudata {
202 int cpu;
203
a4675fbc 204 struct update_util_data update_util;
4578ee7e 205 bool update_util_set;
93f0822d 206
93f0822d 207 struct pstate_data pstate;
007bea09 208 struct vid_data vid;
93f0822d 209 struct _pid pid;
93f0822d 210
a4675fbc 211 u64 last_sample_time;
93f0822d
DB
212 u64 prev_aperf;
213 u64 prev_mperf;
4055fad3 214 u64 prev_tsc;
63d1d656 215 u64 prev_cummulative_iowait;
d37e2b76 216 struct sample sample;
9522a2ff
SP
217#ifdef CONFIG_ACPI
218 struct acpi_processor_performance acpi_perf_data;
219 bool valid_pss_table;
220#endif
93f0822d
DB
221};
222
223static struct cpudata **all_cpu_data;
13ad7701
SP
224
225/**
226 * struct pid_adjust_policy - Stores static PID configuration data
227 * @sample_rate_ms: PID calculation sample rate in ms
228 * @sample_rate_ns: Sample rate calculation in ns
229 * @deadband: PID deadband
230 * @setpoint: PID Setpoint
231 * @p_gain_pct: PID proportional gain
232 * @i_gain_pct: PID integral gain
233 * @d_gain_pct: PID derivative gain
234 *
235 * Stores per CPU model static PID configuration data.
236 */
93f0822d
DB
237struct pstate_adjust_policy {
238 int sample_rate_ms;
a4675fbc 239 s64 sample_rate_ns;
93f0822d
DB
240 int deadband;
241 int setpoint;
242 int p_gain_pct;
243 int d_gain_pct;
244 int i_gain_pct;
245};
246
13ad7701
SP
247/**
248 * struct pstate_funcs - Per CPU model specific callbacks
249 * @get_max: Callback to get maximum non turbo effective P state
250 * @get_max_physical: Callback to get maximum non turbo physical P state
251 * @get_min: Callback to get minimum P state
252 * @get_turbo: Callback to get turbo P state
253 * @get_scaling: Callback to get frequency scaling factor
254 * @get_val: Callback to convert P state to actual MSR write value
255 * @get_vid: Callback to get VID data for Atom platforms
256 * @get_target_pstate: Callback to a function to calculate next P state to use
257 *
258 * Core and Atom CPU models have different way to get P State limits. This
259 * structure is used to store those callbacks.
260 */
016c8150
DB
261struct pstate_funcs {
262 int (*get_max)(void);
3bcc6fa9 263 int (*get_max_physical)(void);
016c8150
DB
264 int (*get_min)(void);
265 int (*get_turbo)(void);
b27580b0 266 int (*get_scaling)(void);
fdfdb2b1 267 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 268 void (*get_vid)(struct cpudata *);
157386b6 269 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
270};
271
13ad7701
SP
272/**
273 * struct cpu_defaults- Per CPU model default config data
274 * @pid_policy: PID config data
275 * @funcs: Callback function data
276 */
016c8150
DB
277struct cpu_defaults {
278 struct pstate_adjust_policy pid_policy;
279 struct pstate_funcs funcs;
93f0822d
DB
280};
281
157386b6 282static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 283static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 284
016c8150
DB
285static struct pstate_adjust_policy pid_params;
286static struct pstate_funcs pstate_funcs;
2f86dc4c 287static int hwp_active;
016c8150 288
9522a2ff
SP
289#ifdef CONFIG_ACPI
290static bool acpi_ppc;
291#endif
13ad7701
SP
292
293/**
294 * struct perf_limits - Store user and policy limits
295 * @no_turbo: User requested turbo state from intel_pstate sysfs
296 * @turbo_disabled: Platform turbo status either from msr
297 * MSR_IA32_MISC_ENABLE or when maximum available pstate
298 * matches the maximum turbo pstate
299 * @max_perf_pct: Effective maximum performance limit in percentage, this
300 * is minimum of either limits enforced by cpufreq policy
301 * or limits from user set limits via intel_pstate sysfs
302 * @min_perf_pct: Effective minimum performance limit in percentage, this
303 * is maximum of either limits enforced by cpufreq policy
304 * or limits from user set limits via intel_pstate sysfs
305 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
306 * This value is used to limit max pstate
307 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
308 * This value is used to limit min pstate
309 * @max_policy_pct: The maximum performance in percentage enforced by
310 * cpufreq setpolicy interface
311 * @max_sysfs_pct: The maximum performance in percentage enforced by
312 * intel pstate sysfs interface
313 * @min_policy_pct: The minimum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @min_sysfs_pct: The minimum performance in percentage enforced by
316 * intel pstate sysfs interface
317 *
318 * Storage for user and policy defined limits.
319 */
93f0822d
DB
320struct perf_limits {
321 int no_turbo;
dd5fbf70 322 int turbo_disabled;
93f0822d
DB
323 int max_perf_pct;
324 int min_perf_pct;
325 int32_t max_perf;
326 int32_t min_perf;
d8f469e9
DB
327 int max_policy_pct;
328 int max_sysfs_pct;
a0475992
KCA
329 int min_policy_pct;
330 int min_sysfs_pct;
93f0822d
DB
331};
332
51443fbf
PB
333static struct perf_limits performance_limits = {
334 .no_turbo = 0,
335 .turbo_disabled = 0,
336 .max_perf_pct = 100,
337 .max_perf = int_tofp(1),
338 .min_perf_pct = 100,
339 .min_perf = int_tofp(1),
340 .max_policy_pct = 100,
341 .max_sysfs_pct = 100,
342 .min_policy_pct = 0,
343 .min_sysfs_pct = 0,
344};
345
346static struct perf_limits powersave_limits = {
93f0822d 347 .no_turbo = 0,
4521e1a0 348 .turbo_disabled = 0,
93f0822d
DB
349 .max_perf_pct = 100,
350 .max_perf = int_tofp(1),
351 .min_perf_pct = 0,
352 .min_perf = 0,
d8f469e9
DB
353 .max_policy_pct = 100,
354 .max_sysfs_pct = 100,
a0475992
KCA
355 .min_policy_pct = 0,
356 .min_sysfs_pct = 0,
93f0822d
DB
357};
358
51443fbf
PB
359#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360static struct perf_limits *limits = &performance_limits;
361#else
362static struct perf_limits *limits = &powersave_limits;
363#endif
364
9522a2ff 365#ifdef CONFIG_ACPI
2b3ec765
SP
366
367static bool intel_pstate_get_ppc_enable_status(void)
368{
369 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371 return true;
372
373 return acpi_ppc;
374}
375
9522a2ff
SP
376/*
377 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
378 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
379 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
380 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
381 * target ratio 0x17. The _PSS control value stores in a format which can be
382 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
383 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
384 * This function converts the _PSS control value to intel pstate driver format
385 * for comparison and assignment.
386 */
387static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
388{
389 return cpu->acpi_perf_data.states[index].control >> 8;
390}
391
392static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
393{
394 struct cpudata *cpu;
395 int turbo_pss_ctl;
396 int ret;
397 int i;
398
e59a8f7f
SP
399 if (hwp_active)
400 return;
401
2b3ec765 402 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
403 return;
404
405 cpu = all_cpu_data[policy->cpu];
406
407 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
408 policy->cpu);
409 if (ret)
410 return;
411
412 /*
413 * Check if the control value in _PSS is for PERF_CTL MSR, which should
414 * guarantee that the states returned by it map to the states in our
415 * list directly.
416 */
417 if (cpu->acpi_perf_data.control_register.space_id !=
418 ACPI_ADR_SPACE_FIXED_HARDWARE)
419 goto err;
420
421 /*
422 * If there is only one entry _PSS, simply ignore _PSS and continue as
423 * usual without taking _PSS into account
424 */
425 if (cpu->acpi_perf_data.state_count < 2)
426 goto err;
427
428 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
429 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
430 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
431 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
432 (u32) cpu->acpi_perf_data.states[i].core_frequency,
433 (u32) cpu->acpi_perf_data.states[i].power,
434 (u32) cpu->acpi_perf_data.states[i].control);
435 }
436
437 /*
438 * The _PSS table doesn't contain whole turbo frequency range.
439 * This just contains +1 MHZ above the max non turbo frequency,
440 * with control value corresponding to max turbo ratio. But
441 * when cpufreq set policy is called, it will call with this
442 * max frequency, which will cause a reduced performance as
443 * this driver uses real max turbo frequency as the max
444 * frequency. So correct this frequency in _PSS table to
445 * correct max turbo frequency based on the turbo ratio.
446 * Also need to convert to MHz as _PSS freq is in MHz.
447 */
448 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
449 if (turbo_pss_ctl > cpu->pstate.max_pstate)
450 cpu->acpi_perf_data.states[0].core_frequency =
451 policy->cpuinfo.max_freq / 1000;
452 cpu->valid_pss_table = true;
6cacd115 453 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
454
455 return;
456
457 err:
458 cpu->valid_pss_table = false;
459 acpi_processor_unregister_performance(policy->cpu);
460}
461
462static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463{
464 struct cpudata *cpu;
465
466 cpu = all_cpu_data[policy->cpu];
467 if (!cpu->valid_pss_table)
468 return;
469
470 acpi_processor_unregister_performance(policy->cpu);
471}
472
473#else
474static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
475{
476}
477
478static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
479{
480}
481#endif
482
93f0822d 483static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 484 int deadband, int integral) {
b54a0dfd
PL
485 pid->setpoint = int_tofp(setpoint);
486 pid->deadband = int_tofp(deadband);
93f0822d 487 pid->integral = int_tofp(integral);
d98d099b 488 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
489}
490
491static inline void pid_p_gain_set(struct _pid *pid, int percent)
492{
22590efb 493 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
494}
495
496static inline void pid_i_gain_set(struct _pid *pid, int percent)
497{
22590efb 498 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
499}
500
501static inline void pid_d_gain_set(struct _pid *pid, int percent)
502{
22590efb 503 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
504}
505
d253d2a5 506static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 507{
d253d2a5 508 signed int result;
93f0822d
DB
509 int32_t pterm, dterm, fp_error;
510 int32_t integral_limit;
511
b54a0dfd 512 fp_error = pid->setpoint - busy;
93f0822d 513
b54a0dfd 514 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
515 return 0;
516
517 pterm = mul_fp(pid->p_gain, fp_error);
518
519 pid->integral += fp_error;
520
e0d4c8f8
KCA
521 /*
522 * We limit the integral here so that it will never
523 * get higher than 30. This prevents it from becoming
524 * too large an input over long periods of time and allows
525 * it to get factored out sooner.
526 *
527 * The value of 30 was chosen through experimentation.
528 */
93f0822d
DB
529 integral_limit = int_tofp(30);
530 if (pid->integral > integral_limit)
531 pid->integral = integral_limit;
532 if (pid->integral < -integral_limit)
533 pid->integral = -integral_limit;
534
d253d2a5
BS
535 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
536 pid->last_err = fp_error;
93f0822d
DB
537
538 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 539 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
540 return (signed int)fp_toint(result);
541}
542
543static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
544{
016c8150
DB
545 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
546 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
547 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 548
2d8d1f18 549 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
550}
551
93f0822d
DB
552static inline void intel_pstate_reset_all_pid(void)
553{
554 unsigned int cpu;
845c1cbe 555
93f0822d
DB
556 for_each_online_cpu(cpu) {
557 if (all_cpu_data[cpu])
558 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
559 }
560}
561
4521e1a0
GM
562static inline void update_turbo_state(void)
563{
564 u64 misc_en;
565 struct cpudata *cpu;
566
567 cpu = all_cpu_data[0];
568 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 569 limits->turbo_disabled =
4521e1a0
GM
570 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
571 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
572}
573
41cfd64c 574static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 575{
74da56ce
KCA
576 int min, hw_min, max, hw_max, cpu, range, adj_range;
577 u64 value, cap;
578
579 rdmsrl(MSR_HWP_CAPABILITIES, cap);
580 hw_min = HWP_LOWEST_PERF(cap);
581 hw_max = HWP_HIGHEST_PERF(cap);
582 range = hw_max - hw_min;
2f86dc4c 583
41cfd64c 584 for_each_cpu(cpu, cpumask) {
2f86dc4c 585 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 586 adj_range = limits->min_perf_pct * range / 100;
74da56ce 587 min = hw_min + adj_range;
2f86dc4c
DB
588 value &= ~HWP_MIN_PERF(~0L);
589 value |= HWP_MIN_PERF(min);
590
51443fbf 591 adj_range = limits->max_perf_pct * range / 100;
74da56ce 592 max = hw_min + adj_range;
51443fbf 593 if (limits->no_turbo) {
74da56ce
KCA
594 hw_max = HWP_GUARANTEED_PERF(cap);
595 if (hw_max < max)
596 max = hw_max;
2f86dc4c
DB
597 }
598
599 value &= ~HWP_MAX_PERF(~0L);
600 value |= HWP_MAX_PERF(max);
601 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
602 }
41cfd64c 603}
2f86dc4c 604
ba41e1bc
RW
605static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
606{
607 if (hwp_active)
608 intel_pstate_hwp_set(policy->cpus);
609
610 return 0;
611}
612
41cfd64c
VK
613static void intel_pstate_hwp_set_online_cpus(void)
614{
615 get_online_cpus();
616 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
617 put_online_cpus();
618}
619
93f0822d
DB
620/************************** debugfs begin ************************/
621static int pid_param_set(void *data, u64 val)
622{
623 *(u32 *)data = val;
624 intel_pstate_reset_all_pid();
625 return 0;
626}
845c1cbe 627
93f0822d
DB
628static int pid_param_get(void *data, u64 *val)
629{
630 *val = *(u32 *)data;
631 return 0;
632}
2d8d1f18 633DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
634
635struct pid_param {
636 char *name;
637 void *value;
638};
639
640static struct pid_param pid_files[] = {
016c8150
DB
641 {"sample_rate_ms", &pid_params.sample_rate_ms},
642 {"d_gain_pct", &pid_params.d_gain_pct},
643 {"i_gain_pct", &pid_params.i_gain_pct},
644 {"deadband", &pid_params.deadband},
645 {"setpoint", &pid_params.setpoint},
646 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
647 {NULL, NULL}
648};
649
317dd50e 650static void __init intel_pstate_debug_expose_params(void)
93f0822d 651{
317dd50e 652 struct dentry *debugfs_parent;
93f0822d
DB
653 int i = 0;
654
2f86dc4c
DB
655 if (hwp_active)
656 return;
93f0822d
DB
657 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
658 if (IS_ERR_OR_NULL(debugfs_parent))
659 return;
660 while (pid_files[i].name) {
661 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
662 debugfs_parent, pid_files[i].value,
663 &fops_pid_param);
93f0822d
DB
664 i++;
665 }
666}
667
668/************************** debugfs end ************************/
669
670/************************** sysfs begin ************************/
671#define show_one(file_name, object) \
672 static ssize_t show_##file_name \
673 (struct kobject *kobj, struct attribute *attr, char *buf) \
674 { \
51443fbf 675 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
676 }
677
d01b1f48
KCA
678static ssize_t show_turbo_pct(struct kobject *kobj,
679 struct attribute *attr, char *buf)
680{
681 struct cpudata *cpu;
682 int total, no_turbo, turbo_pct;
683 uint32_t turbo_fp;
684
685 cpu = all_cpu_data[0];
686
687 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
688 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 689 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
690 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
691 return sprintf(buf, "%u\n", turbo_pct);
692}
693
0522424e
KCA
694static ssize_t show_num_pstates(struct kobject *kobj,
695 struct attribute *attr, char *buf)
696{
697 struct cpudata *cpu;
698 int total;
699
700 cpu = all_cpu_data[0];
701 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
702 return sprintf(buf, "%u\n", total);
703}
704
4521e1a0
GM
705static ssize_t show_no_turbo(struct kobject *kobj,
706 struct attribute *attr, char *buf)
707{
708 ssize_t ret;
709
710 update_turbo_state();
51443fbf
PB
711 if (limits->turbo_disabled)
712 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 713 else
51443fbf 714 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
715
716 return ret;
717}
718
93f0822d 719static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 720 const char *buf, size_t count)
93f0822d
DB
721{
722 unsigned int input;
723 int ret;
845c1cbe 724
93f0822d
DB
725 ret = sscanf(buf, "%u", &input);
726 if (ret != 1)
727 return -EINVAL;
4521e1a0
GM
728
729 update_turbo_state();
51443fbf 730 if (limits->turbo_disabled) {
4836df17 731 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 732 return -EPERM;
dd5fbf70 733 }
2f86dc4c 734
51443fbf 735 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 736
2f86dc4c 737 if (hwp_active)
41cfd64c 738 intel_pstate_hwp_set_online_cpus();
2f86dc4c 739
93f0822d
DB
740 return count;
741}
742
743static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 744 const char *buf, size_t count)
93f0822d
DB
745{
746 unsigned int input;
747 int ret;
845c1cbe 748
93f0822d
DB
749 ret = sscanf(buf, "%u", &input);
750 if (ret != 1)
751 return -EINVAL;
752
51443fbf
PB
753 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
754 limits->max_perf_pct = min(limits->max_policy_pct,
755 limits->max_sysfs_pct);
756 limits->max_perf_pct = max(limits->min_policy_pct,
757 limits->max_perf_pct);
758 limits->max_perf_pct = max(limits->min_perf_pct,
759 limits->max_perf_pct);
22590efb 760 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 761
2f86dc4c 762 if (hwp_active)
41cfd64c 763 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
764 return count;
765}
766
767static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 768 const char *buf, size_t count)
93f0822d
DB
769{
770 unsigned int input;
771 int ret;
845c1cbe 772
93f0822d
DB
773 ret = sscanf(buf, "%u", &input);
774 if (ret != 1)
775 return -EINVAL;
a0475992 776
51443fbf
PB
777 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
778 limits->min_perf_pct = max(limits->min_policy_pct,
779 limits->min_sysfs_pct);
780 limits->min_perf_pct = min(limits->max_policy_pct,
781 limits->min_perf_pct);
782 limits->min_perf_pct = min(limits->max_perf_pct,
783 limits->min_perf_pct);
22590efb 784 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 785
2f86dc4c 786 if (hwp_active)
41cfd64c 787 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
788 return count;
789}
790
93f0822d
DB
791show_one(max_perf_pct, max_perf_pct);
792show_one(min_perf_pct, min_perf_pct);
793
794define_one_global_rw(no_turbo);
795define_one_global_rw(max_perf_pct);
796define_one_global_rw(min_perf_pct);
d01b1f48 797define_one_global_ro(turbo_pct);
0522424e 798define_one_global_ro(num_pstates);
93f0822d
DB
799
800static struct attribute *intel_pstate_attributes[] = {
801 &no_turbo.attr,
802 &max_perf_pct.attr,
803 &min_perf_pct.attr,
d01b1f48 804 &turbo_pct.attr,
0522424e 805 &num_pstates.attr,
93f0822d
DB
806 NULL
807};
808
809static struct attribute_group intel_pstate_attr_group = {
810 .attrs = intel_pstate_attributes,
811};
93f0822d 812
317dd50e 813static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 814{
317dd50e 815 struct kobject *intel_pstate_kobject;
93f0822d
DB
816 int rc;
817
818 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
819 &cpu_subsys.dev_root->kobj);
820 BUG_ON(!intel_pstate_kobject);
2d8d1f18 821 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
822 BUG_ON(rc);
823}
93f0822d 824/************************** sysfs end ************************/
2f86dc4c 825
ba88d433 826static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 827{
f05c9665
SP
828 /* First disable HWP notification interrupt as we don't process them */
829 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
830
ba88d433 831 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
832}
833
938d21a2 834static int atom_get_min_pstate(void)
19e77c28
DB
835{
836 u64 value;
845c1cbe 837
938d21a2 838 rdmsrl(ATOM_RATIOS, value);
c16ed060 839 return (value >> 8) & 0x7F;
19e77c28
DB
840}
841
938d21a2 842static int atom_get_max_pstate(void)
19e77c28
DB
843{
844 u64 value;
845c1cbe 845
938d21a2 846 rdmsrl(ATOM_RATIOS, value);
c16ed060 847 return (value >> 16) & 0x7F;
19e77c28 848}
93f0822d 849
938d21a2 850static int atom_get_turbo_pstate(void)
61d8d2ab
DB
851{
852 u64 value;
845c1cbe 853
938d21a2 854 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 855 return value & 0x7F;
61d8d2ab
DB
856}
857
fdfdb2b1 858static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
859{
860 u64 val;
861 int32_t vid_fp;
862 u32 vid;
863
144c8e17 864 val = (u64)pstate << 8;
51443fbf 865 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
866 val |= (u64)1 << 32;
867
868 vid_fp = cpudata->vid.min + mul_fp(
869 int_tofp(pstate - cpudata->pstate.min_pstate),
870 cpudata->vid.ratio);
871
872 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 873 vid = ceiling_fp(vid_fp);
007bea09 874
21855ff5
DB
875 if (pstate > cpudata->pstate.max_pstate)
876 vid = cpudata->vid.turbo;
877
fdfdb2b1 878 return val | vid;
007bea09
DB
879}
880
1421df63 881static int silvermont_get_scaling(void)
b27580b0
DB
882{
883 u64 value;
884 int i;
1421df63
PL
885 /* Defined in Table 35-6 from SDM (Sept 2015) */
886 static int silvermont_freq_table[] = {
887 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
888
889 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
890 i = value & 0x7;
891 WARN_ON(i > 4);
b27580b0 892
1421df63
PL
893 return silvermont_freq_table[i];
894}
b27580b0 895
1421df63
PL
896static int airmont_get_scaling(void)
897{
898 u64 value;
899 int i;
900 /* Defined in Table 35-10 from SDM (Sept 2015) */
901 static int airmont_freq_table[] = {
902 83300, 100000, 133300, 116700, 80000,
903 93300, 90000, 88900, 87500};
904
905 rdmsrl(MSR_FSB_FREQ, value);
906 i = value & 0xF;
907 WARN_ON(i > 8);
908
909 return airmont_freq_table[i];
b27580b0
DB
910}
911
938d21a2 912static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
913{
914 u64 value;
915
938d21a2 916 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
917 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
918 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
919 cpudata->vid.ratio = div_fp(
920 cpudata->vid.max - cpudata->vid.min,
921 int_tofp(cpudata->pstate.max_pstate -
922 cpudata->pstate.min_pstate));
21855ff5 923
938d21a2 924 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 925 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
926}
927
016c8150 928static int core_get_min_pstate(void)
93f0822d
DB
929{
930 u64 value;
845c1cbe 931
05e99c8c 932 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
933 return (value >> 40) & 0xFF;
934}
935
3bcc6fa9 936static int core_get_max_pstate_physical(void)
93f0822d
DB
937{
938 u64 value;
845c1cbe 939
05e99c8c 940 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
941 return (value >> 8) & 0xFF;
942}
943
016c8150 944static int core_get_max_pstate(void)
93f0822d 945{
6a35fc2d
SP
946 u64 tar;
947 u64 plat_info;
948 int max_pstate;
949 int err;
950
951 rdmsrl(MSR_PLATFORM_INFO, plat_info);
952 max_pstate = (plat_info >> 8) & 0xFF;
953
954 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
955 if (!err) {
956 /* Do some sanity checking for safety */
957 if (plat_info & 0x600000000) {
958 u64 tdp_ctrl;
959 u64 tdp_ratio;
960 int tdp_msr;
961
962 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
963 if (err)
964 goto skip_tar;
965
966 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
967 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
968 if (err)
969 goto skip_tar;
970
1becf035
SP
971 /* For level 1 and 2, bits[23:16] contain the ratio */
972 if (tdp_ctrl)
973 tdp_ratio >>= 16;
974
975 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
976 if (tdp_ratio - 1 == tar) {
977 max_pstate = tar;
978 pr_debug("max_pstate=TAC %x\n", max_pstate);
979 } else {
980 goto skip_tar;
981 }
982 }
983 }
845c1cbe 984
6a35fc2d
SP
985skip_tar:
986 return max_pstate;
93f0822d
DB
987}
988
016c8150 989static int core_get_turbo_pstate(void)
93f0822d
DB
990{
991 u64 value;
992 int nont, ret;
845c1cbe 993
05e99c8c 994 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 995 nont = core_get_max_pstate();
285cb990 996 ret = (value) & 255;
93f0822d
DB
997 if (ret <= nont)
998 ret = nont;
999 return ret;
1000}
1001
b27580b0
DB
1002static inline int core_get_scaling(void)
1003{
1004 return 100000;
1005}
1006
fdfdb2b1 1007static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1008{
1009 u64 val;
1010
144c8e17 1011 val = (u64)pstate << 8;
51443fbf 1012 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1013 val |= (u64)1 << 32;
1014
fdfdb2b1 1015 return val;
016c8150
DB
1016}
1017
b34ef932
DC
1018static int knl_get_turbo_pstate(void)
1019{
1020 u64 value;
1021 int nont, ret;
1022
1023 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1024 nont = core_get_max_pstate();
1025 ret = (((value) >> 8) & 0xFF);
1026 if (ret <= nont)
1027 ret = nont;
1028 return ret;
1029}
1030
016c8150
DB
1031static struct cpu_defaults core_params = {
1032 .pid_policy = {
1033 .sample_rate_ms = 10,
1034 .deadband = 0,
1035 .setpoint = 97,
1036 .p_gain_pct = 20,
1037 .d_gain_pct = 0,
1038 .i_gain_pct = 0,
1039 },
1040 .funcs = {
1041 .get_max = core_get_max_pstate,
3bcc6fa9 1042 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1043 .get_min = core_get_min_pstate,
1044 .get_turbo = core_get_turbo_pstate,
b27580b0 1045 .get_scaling = core_get_scaling,
fdfdb2b1 1046 .get_val = core_get_val,
157386b6 1047 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1048 },
1049};
1050
1421df63
PL
1051static struct cpu_defaults silvermont_params = {
1052 .pid_policy = {
1053 .sample_rate_ms = 10,
1054 .deadband = 0,
1055 .setpoint = 60,
1056 .p_gain_pct = 14,
1057 .d_gain_pct = 0,
1058 .i_gain_pct = 4,
1059 },
1060 .funcs = {
1061 .get_max = atom_get_max_pstate,
1062 .get_max_physical = atom_get_max_pstate,
1063 .get_min = atom_get_min_pstate,
1064 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1065 .get_val = atom_get_val,
1421df63
PL
1066 .get_scaling = silvermont_get_scaling,
1067 .get_vid = atom_get_vid,
e70eed2b 1068 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1069 },
1070};
1071
1072static struct cpu_defaults airmont_params = {
19e77c28
DB
1073 .pid_policy = {
1074 .sample_rate_ms = 10,
1075 .deadband = 0,
6a82ba6d 1076 .setpoint = 60,
19e77c28
DB
1077 .p_gain_pct = 14,
1078 .d_gain_pct = 0,
1079 .i_gain_pct = 4,
1080 },
1081 .funcs = {
938d21a2
PL
1082 .get_max = atom_get_max_pstate,
1083 .get_max_physical = atom_get_max_pstate,
1084 .get_min = atom_get_min_pstate,
1085 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1086 .get_val = atom_get_val,
1421df63 1087 .get_scaling = airmont_get_scaling,
938d21a2 1088 .get_vid = atom_get_vid,
e70eed2b 1089 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1090 },
1091};
1092
b34ef932
DC
1093static struct cpu_defaults knl_params = {
1094 .pid_policy = {
1095 .sample_rate_ms = 10,
1096 .deadband = 0,
1097 .setpoint = 97,
1098 .p_gain_pct = 20,
1099 .d_gain_pct = 0,
1100 .i_gain_pct = 0,
1101 },
1102 .funcs = {
1103 .get_max = core_get_max_pstate,
3bcc6fa9 1104 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1105 .get_min = core_get_min_pstate,
1106 .get_turbo = knl_get_turbo_pstate,
69cefc27 1107 .get_scaling = core_get_scaling,
fdfdb2b1 1108 .get_val = core_get_val,
157386b6 1109 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1110 },
1111};
1112
93f0822d
DB
1113static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1114{
1115 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1116 int max_perf_adj;
93f0822d 1117 int min_perf;
845c1cbe 1118
51443fbf 1119 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1120 max_perf = cpu->pstate.max_pstate;
1121
e0d4c8f8
KCA
1122 /*
1123 * performance can be limited by user through sysfs, by cpufreq
1124 * policy, or by cpu specific default values determined through
1125 * experimentation.
1126 */
a158bed5 1127 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1128 *max = clamp_t(int, max_perf_adj,
1129 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1130
a158bed5 1131 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1132 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1133}
1134
fdfdb2b1 1135static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1136{
b27580b0 1137 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1138 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1139}
93f0822d 1140
fdfdb2b1
RW
1141static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1142{
1143 int pstate = cpu->pstate.min_pstate;
1144
1145 intel_pstate_record_pstate(cpu, pstate);
1146 /*
1147 * Generally, there is no guarantee that this code will always run on
1148 * the CPU being updated, so force the register update to run on the
1149 * right CPU.
1150 */
1151 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1152 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1153}
1154
93f0822d
DB
1155static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1156{
016c8150
DB
1157 cpu->pstate.min_pstate = pstate_funcs.get_min();
1158 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1159 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1160 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1161 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1162
007bea09
DB
1163 if (pstate_funcs.get_vid)
1164 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1165
1166 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1167}
1168
a1c9787d 1169static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1170{
6b17ddb2 1171 struct sample *sample = &cpu->sample;
e66c1768 1172
a1c9787d 1173 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1174}
1175
4fec7ad5 1176static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1177{
93f0822d 1178 u64 aperf, mperf;
4ab60c3f 1179 unsigned long flags;
4055fad3 1180 u64 tsc;
93f0822d 1181
4ab60c3f 1182 local_irq_save(flags);
93f0822d
DB
1183 rdmsrl(MSR_IA32_APERF, aperf);
1184 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1185 tsc = rdtsc();
4fec7ad5 1186 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1187 local_irq_restore(flags);
4fec7ad5 1188 return false;
8e601a9f 1189 }
4ab60c3f 1190 local_irq_restore(flags);
b69880f9 1191
c4ee841f 1192 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1193 cpu->sample.time = time;
d37e2b76
DB
1194 cpu->sample.aperf = aperf;
1195 cpu->sample.mperf = mperf;
4055fad3 1196 cpu->sample.tsc = tsc;
d37e2b76
DB
1197 cpu->sample.aperf -= cpu->prev_aperf;
1198 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1199 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1200
93f0822d
DB
1201 cpu->prev_aperf = aperf;
1202 cpu->prev_mperf = mperf;
4055fad3 1203 cpu->prev_tsc = tsc;
febce40f
RW
1204 /*
1205 * First time this function is invoked in a given cycle, all of the
1206 * previous sample data fields are equal to zero or stale and they must
1207 * be populated with meaningful numbers for things to work, so assume
1208 * that sample.time will always be reset before setting the utilization
1209 * update hook and make the caller skip the sample then.
1210 */
1211 return !!cpu->last_sample_time;
93f0822d
DB
1212}
1213
8fa520af
PL
1214static inline int32_t get_avg_frequency(struct cpudata *cpu)
1215{
a1c9787d
RW
1216 return mul_ext_fp(cpu->sample.core_avg_perf,
1217 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1218}
1219
bdcaa23f
PL
1220static inline int32_t get_avg_pstate(struct cpudata *cpu)
1221{
8edb0a6e
RW
1222 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1223 cpu->sample.core_avg_perf);
bdcaa23f
PL
1224}
1225
e70eed2b
PL
1226static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1227{
1228 struct sample *sample = &cpu->sample;
63d1d656
PL
1229 u64 cummulative_iowait, delta_iowait_us;
1230 u64 delta_iowait_mperf;
1231 u64 mperf, now;
e70eed2b
PL
1232 int32_t cpu_load;
1233
63d1d656
PL
1234 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1235
1236 /*
1237 * Convert iowait time into number of IO cycles spent at max_freq.
1238 * IO is considered as busy only for the cpu_load algorithm. For
1239 * performance this is not needed since we always try to reach the
1240 * maximum P-State, so we are already boosting the IOs.
1241 */
1242 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1243 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1244 cpu->pstate.max_pstate, MSEC_PER_SEC);
1245
1246 mperf = cpu->sample.mperf + delta_iowait_mperf;
1247 cpu->prev_cummulative_iowait = cummulative_iowait;
1248
e70eed2b
PL
1249 /*
1250 * The load can be estimated as the ratio of the mperf counter
1251 * running at a constant frequency during active periods
1252 * (C0) and the time stamp counter running at the same frequency
1253 * also during C-states.
1254 */
63d1d656 1255 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1256 cpu->sample.busy_scaled = cpu_load;
1257
bdcaa23f 1258 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1259}
1260
157386b6 1261static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1262{
1aa7a6e2 1263 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1264 u64 duration_ns;
93f0822d 1265
e0d4c8f8 1266 /*
1aa7a6e2
RW
1267 * perf_scaled is the average performance during the last sampling
1268 * period scaled by the ratio of the maximum P-state to the P-state
1269 * requested last time (in percent). That measures the system's
1270 * response to the previous P-state selection.
e0d4c8f8 1271 */
22590efb
RW
1272 max_pstate = cpu->pstate.max_pstate_physical;
1273 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1274 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1275 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1276
e0d4c8f8 1277 /*
a4675fbc
RW
1278 * Since our utilization update callback will not run unless we are
1279 * in C0, check if the actual elapsed time is significantly greater (3x)
1280 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1281 * enough period of time to adjust our performance metric.
e0d4c8f8 1282 */
a4675fbc 1283 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1284 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1285 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1286 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1287 } else {
1288 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1289 if (sample_ratio < int_tofp(1))
1aa7a6e2 1290 perf_scaled = 0;
c4ee841f
DB
1291 }
1292
1aa7a6e2
RW
1293 cpu->sample.busy_scaled = perf_scaled;
1294 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1295}
1296
fdfdb2b1
RW
1297static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1298{
1299 int max_perf, min_perf;
1300
1301 update_turbo_state();
1302
1303 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1304 pstate = clamp_t(int, pstate, min_perf, max_perf);
1305 if (pstate == cpu->pstate.current_pstate)
1306 return;
1307
1308 intel_pstate_record_pstate(cpu, pstate);
1309 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1310}
1311
93f0822d
DB
1312static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1313{
157386b6 1314 int from, target_pstate;
4055fad3
DS
1315 struct sample *sample;
1316
1317 from = cpu->pstate.current_pstate;
93f0822d 1318
157386b6 1319 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1320
fdfdb2b1 1321 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1322
1323 sample = &cpu->sample;
a1c9787d 1324 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1325 fp_toint(sample->busy_scaled),
4055fad3
DS
1326 from,
1327 cpu->pstate.current_pstate,
1328 sample->mperf,
1329 sample->aperf,
1330 sample->tsc,
8fa520af 1331 get_avg_frequency(cpu));
93f0822d
DB
1332}
1333
a4675fbc
RW
1334static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1335 unsigned long util, unsigned long max)
93f0822d 1336{
a4675fbc
RW
1337 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1338 u64 delta_ns = time - cpu->sample.time;
b69880f9 1339
a4675fbc 1340 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1341 bool sample_taken = intel_pstate_sample(cpu, time);
1342
6d45b719 1343 if (sample_taken) {
a1c9787d 1344 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1345 if (!hwp_active)
1346 intel_pstate_adjust_busy_pstate(cpu);
1347 }
a4675fbc 1348 }
93f0822d
DB
1349}
1350
1351#define ICPU(model, policy) \
6cbd7ee1
DB
1352 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1353 (unsigned long)&policy }
93f0822d
DB
1354
1355static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1356 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1357 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1358 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1359 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1360 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1361 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1362 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1363 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1364 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1365 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1366 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1367 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1368 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1369 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1370 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1371 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1372 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
93f0822d
DB
1373 {}
1374};
1375MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1376
2f86dc4c 1377static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
5b20c944 1378 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
2f86dc4c
DB
1379 {}
1380};
1381
93f0822d
DB
1382static int intel_pstate_init_cpu(unsigned int cpunum)
1383{
93f0822d
DB
1384 struct cpudata *cpu;
1385
c0348717
DB
1386 if (!all_cpu_data[cpunum])
1387 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1388 GFP_KERNEL);
93f0822d
DB
1389 if (!all_cpu_data[cpunum])
1390 return -ENOMEM;
1391
1392 cpu = all_cpu_data[cpunum];
1393
93f0822d 1394 cpu->cpu = cpunum;
ba88d433 1395
a4675fbc 1396 if (hwp_active) {
ba88d433 1397 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1398 pid_params.sample_rate_ms = 50;
1399 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1400 }
ba88d433 1401
179e8471 1402 intel_pstate_get_cpu_pstates(cpu);
016c8150 1403
93f0822d 1404 intel_pstate_busy_pid_reset(cpu);
93f0822d 1405
4836df17 1406 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1407
1408 return 0;
1409}
1410
1411static unsigned int intel_pstate_get(unsigned int cpu_num)
1412{
f96fd0c8 1413 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1414
f96fd0c8 1415 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1416}
1417
febce40f 1418static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1419{
febce40f
RW
1420 struct cpudata *cpu = all_cpu_data[cpu_num];
1421
1422 /* Prevent intel_pstate_update_util() from using stale data. */
1423 cpu->sample.time = 0;
0bed612b
RW
1424 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1425 intel_pstate_update_util);
4578ee7e 1426 cpu->update_util_set = true;
bb6ab52f
RW
1427}
1428
1429static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1430{
4578ee7e
CY
1431 struct cpudata *cpu_data = all_cpu_data[cpu];
1432
1433 if (!cpu_data->update_util_set)
1434 return;
1435
0bed612b 1436 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1437 cpu_data->update_util_set = false;
bb6ab52f
RW
1438 synchronize_sched();
1439}
1440
30a39153
SP
1441static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1442{
1443 limits->no_turbo = 0;
1444 limits->turbo_disabled = 0;
1445 limits->max_perf_pct = 100;
1446 limits->max_perf = int_tofp(1);
1447 limits->min_perf_pct = 100;
1448 limits->min_perf = int_tofp(1);
1449 limits->max_policy_pct = 100;
1450 limits->max_sysfs_pct = 100;
1451 limits->min_policy_pct = 0;
1452 limits->min_sysfs_pct = 0;
1453}
1454
93f0822d
DB
1455static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1456{
3be9200d
SP
1457 struct cpudata *cpu;
1458
d3929b83
DB
1459 if (!policy->cpuinfo.max_freq)
1460 return -ENODEV;
1461
bb6ab52f
RW
1462 intel_pstate_clear_update_util_hook(policy->cpu);
1463
2c2c1af4
SP
1464 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1465 policy->cpuinfo.max_freq, policy->max);
1466
3be9200d 1467 cpu = all_cpu_data[0];
c749c64f
RW
1468 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1469 policy->max < policy->cpuinfo.max_freq &&
1470 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1471 pr_debug("policy->max > max non turbo frequency\n");
1472 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1473 }
1474
30a39153 1475 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1476 limits = &performance_limits;
30a39153 1477 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1478 pr_debug("set performance\n");
30a39153
SP
1479 intel_pstate_set_performance_limits(limits);
1480 goto out;
1481 }
1482 } else {
4836df17 1483 pr_debug("set powersave\n");
30a39153 1484 limits = &powersave_limits;
93f0822d 1485 }
2f86dc4c 1486
51443fbf
PB
1487 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1488 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1489 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1490 policy->cpuinfo.max_freq);
51443fbf 1491 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1492
1493 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1494 limits->min_perf_pct = max(limits->min_policy_pct,
1495 limits->min_sysfs_pct);
1496 limits->min_perf_pct = min(limits->max_policy_pct,
1497 limits->min_perf_pct);
1498 limits->max_perf_pct = min(limits->max_policy_pct,
1499 limits->max_sysfs_pct);
1500 limits->max_perf_pct = max(limits->min_policy_pct,
1501 limits->max_perf_pct);
43717aad
CY
1502
1503 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1504 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1505
22590efb
RW
1506 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1507 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1508 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1509
bb6ab52f
RW
1510 out:
1511 intel_pstate_set_update_util_hook(policy->cpu);
1512
ba41e1bc 1513 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1514
93f0822d
DB
1515 return 0;
1516}
1517
1518static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1519{
be49e346 1520 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1521
285cb990 1522 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1523 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1524 return -EINVAL;
1525
1526 return 0;
1527}
1528
bb18008f 1529static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1530{
bb18008f
DB
1531 int cpu_num = policy->cpu;
1532 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1533
4836df17 1534 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1535
bb6ab52f 1536 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1537
2f86dc4c
DB
1538 if (hwp_active)
1539 return;
1540
fdfdb2b1 1541 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1542}
1543
2760984f 1544static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1545{
93f0822d 1546 struct cpudata *cpu;
52e0a509 1547 int rc;
93f0822d
DB
1548
1549 rc = intel_pstate_init_cpu(policy->cpu);
1550 if (rc)
1551 return rc;
1552
1553 cpu = all_cpu_data[policy->cpu];
1554
51443fbf 1555 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1556 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1557 else
1558 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1559
b27580b0
DB
1560 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1561 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1562
1563 /* cpuinfo and default policy values */
b27580b0 1564 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1565 update_turbo_state();
1566 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1567 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1568 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1569
9522a2ff 1570 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1571 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1572 cpumask_set_cpu(policy->cpu, policy->cpus);
1573
1574 return 0;
1575}
1576
9522a2ff
SP
1577static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1578{
1579 intel_pstate_exit_perf_limits(policy);
1580
1581 return 0;
1582}
1583
93f0822d
DB
1584static struct cpufreq_driver intel_pstate_driver = {
1585 .flags = CPUFREQ_CONST_LOOPS,
1586 .verify = intel_pstate_verify_policy,
1587 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1588 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1589 .get = intel_pstate_get,
1590 .init = intel_pstate_cpu_init,
9522a2ff 1591 .exit = intel_pstate_cpu_exit,
bb18008f 1592 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1593 .name = "intel_pstate",
93f0822d
DB
1594};
1595
6be26498 1596static int __initdata no_load;
2f86dc4c 1597static int __initdata no_hwp;
d64c3b0b 1598static int __initdata hwp_only;
aa4ea34d 1599static unsigned int force_load;
6be26498 1600
b563b4e3
DB
1601static int intel_pstate_msrs_not_valid(void)
1602{
016c8150 1603 if (!pstate_funcs.get_max() ||
c410833a
SK
1604 !pstate_funcs.get_min() ||
1605 !pstate_funcs.get_turbo())
b563b4e3
DB
1606 return -ENODEV;
1607
b563b4e3
DB
1608 return 0;
1609}
016c8150 1610
e0a261a2 1611static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1612{
1613 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1614 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1615 pid_params.p_gain_pct = policy->p_gain_pct;
1616 pid_params.i_gain_pct = policy->i_gain_pct;
1617 pid_params.d_gain_pct = policy->d_gain_pct;
1618 pid_params.deadband = policy->deadband;
1619 pid_params.setpoint = policy->setpoint;
1620}
1621
e0a261a2 1622static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1623{
1624 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1625 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1626 pstate_funcs.get_min = funcs->get_min;
1627 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1628 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1629 pstate_funcs.get_val = funcs->get_val;
007bea09 1630 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1631 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1632
016c8150
DB
1633}
1634
9522a2ff 1635#ifdef CONFIG_ACPI
fbbcdc07
AH
1636
1637static bool intel_pstate_no_acpi_pss(void)
1638{
1639 int i;
1640
1641 for_each_possible_cpu(i) {
1642 acpi_status status;
1643 union acpi_object *pss;
1644 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1645 struct acpi_processor *pr = per_cpu(processors, i);
1646
1647 if (!pr)
1648 continue;
1649
1650 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1651 if (ACPI_FAILURE(status))
1652 continue;
1653
1654 pss = buffer.pointer;
1655 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1656 kfree(pss);
1657 return false;
1658 }
1659
1660 kfree(pss);
1661 }
1662
1663 return true;
1664}
1665
966916ea 1666static bool intel_pstate_has_acpi_ppc(void)
1667{
1668 int i;
1669
1670 for_each_possible_cpu(i) {
1671 struct acpi_processor *pr = per_cpu(processors, i);
1672
1673 if (!pr)
1674 continue;
1675 if (acpi_has_method(pr->handle, "_PPC"))
1676 return true;
1677 }
1678 return false;
1679}
1680
1681enum {
1682 PSS,
1683 PPC,
1684};
1685
fbbcdc07
AH
1686struct hw_vendor_info {
1687 u16 valid;
1688 char oem_id[ACPI_OEM_ID_SIZE];
1689 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1690 int oem_pwr_table;
fbbcdc07
AH
1691};
1692
1693/* Hardware vendor-specific info that has its own power management modes */
1694static struct hw_vendor_info vendor_info[] = {
966916ea 1695 {1, "HP ", "ProLiant", PSS},
1696 {1, "ORACLE", "X4-2 ", PPC},
1697 {1, "ORACLE", "X4-2L ", PPC},
1698 {1, "ORACLE", "X4-2B ", PPC},
1699 {1, "ORACLE", "X3-2 ", PPC},
1700 {1, "ORACLE", "X3-2L ", PPC},
1701 {1, "ORACLE", "X3-2B ", PPC},
1702 {1, "ORACLE", "X4470M2 ", PPC},
1703 {1, "ORACLE", "X4270M3 ", PPC},
1704 {1, "ORACLE", "X4270M2 ", PPC},
1705 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1706 {1, "ORACLE", "X4170 M3", PPC},
1707 {1, "ORACLE", "X4275 M3", PPC},
1708 {1, "ORACLE", "X6-2 ", PPC},
1709 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1710 {0, "", ""},
1711};
1712
1713static bool intel_pstate_platform_pwr_mgmt_exists(void)
1714{
1715 struct acpi_table_header hdr;
1716 struct hw_vendor_info *v_info;
2f86dc4c
DB
1717 const struct x86_cpu_id *id;
1718 u64 misc_pwr;
1719
1720 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1721 if (id) {
1722 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1723 if ( misc_pwr & (1 << 8))
1724 return true;
1725 }
fbbcdc07 1726
c410833a
SK
1727 if (acpi_disabled ||
1728 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1729 return false;
1730
1731 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1732 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1733 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1734 ACPI_OEM_TABLE_ID_SIZE))
1735 switch (v_info->oem_pwr_table) {
1736 case PSS:
1737 return intel_pstate_no_acpi_pss();
1738 case PPC:
aa4ea34d
EZ
1739 return intel_pstate_has_acpi_ppc() &&
1740 (!force_load);
966916ea 1741 }
fbbcdc07
AH
1742 }
1743
1744 return false;
1745}
1746#else /* CONFIG_ACPI not enabled */
1747static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1748static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1749#endif /* CONFIG_ACPI */
1750
7791e4aa
SP
1751static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1752 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1753 {}
1754};
1755
93f0822d
DB
1756static int __init intel_pstate_init(void)
1757{
907cc908 1758 int cpu, rc = 0;
93f0822d 1759 const struct x86_cpu_id *id;
64df1fdf 1760 struct cpu_defaults *cpu_def;
93f0822d 1761
6be26498
DB
1762 if (no_load)
1763 return -ENODEV;
1764
7791e4aa
SP
1765 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1766 copy_cpu_funcs(&core_params.funcs);
1767 hwp_active++;
1768 goto hwp_cpu_matched;
1769 }
1770
93f0822d
DB
1771 id = x86_match_cpu(intel_pstate_cpu_ids);
1772 if (!id)
1773 return -ENODEV;
1774
64df1fdf 1775 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1776
64df1fdf
BP
1777 copy_pid_params(&cpu_def->pid_policy);
1778 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1779
b563b4e3
DB
1780 if (intel_pstate_msrs_not_valid())
1781 return -ENODEV;
1782
7791e4aa
SP
1783hwp_cpu_matched:
1784 /*
1785 * The Intel pstate driver will be ignored if the platform
1786 * firmware has its own power management modes.
1787 */
1788 if (intel_pstate_platform_pwr_mgmt_exists())
1789 return -ENODEV;
1790
4836df17 1791 pr_info("Intel P-state driver initializing\n");
93f0822d 1792
b57ffac5 1793 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1794 if (!all_cpu_data)
1795 return -ENOMEM;
93f0822d 1796
d64c3b0b
KCA
1797 if (!hwp_active && hwp_only)
1798 goto out;
1799
93f0822d
DB
1800 rc = cpufreq_register_driver(&intel_pstate_driver);
1801 if (rc)
1802 goto out;
1803
1804 intel_pstate_debug_expose_params();
1805 intel_pstate_sysfs_expose_params();
b69880f9 1806
7791e4aa 1807 if (hwp_active)
4836df17 1808 pr_info("HWP enabled\n");
7791e4aa 1809
93f0822d
DB
1810 return rc;
1811out:
907cc908
DB
1812 get_online_cpus();
1813 for_each_online_cpu(cpu) {
1814 if (all_cpu_data[cpu]) {
bb6ab52f 1815 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1816 kfree(all_cpu_data[cpu]);
1817 }
1818 }
1819
1820 put_online_cpus();
1821 vfree(all_cpu_data);
93f0822d
DB
1822 return -ENODEV;
1823}
1824device_initcall(intel_pstate_init);
1825
6be26498
DB
1826static int __init intel_pstate_setup(char *str)
1827{
1828 if (!str)
1829 return -EINVAL;
1830
1831 if (!strcmp(str, "disable"))
1832 no_load = 1;
539342f6 1833 if (!strcmp(str, "no_hwp")) {
4836df17 1834 pr_info("HWP disabled\n");
2f86dc4c 1835 no_hwp = 1;
539342f6 1836 }
aa4ea34d
EZ
1837 if (!strcmp(str, "force"))
1838 force_load = 1;
d64c3b0b
KCA
1839 if (!strcmp(str, "hwp_only"))
1840 hwp_only = 1;
9522a2ff
SP
1841
1842#ifdef CONFIG_ACPI
1843 if (!strcmp(str, "support_acpi_ppc"))
1844 acpi_ppc = true;
1845#endif
1846
6be26498
DB
1847 return 0;
1848}
1849early_param("intel_pstate", intel_pstate_setup);
1850
93f0822d
DB
1851MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1852MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1853MODULE_LICENSE("GPL");