]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: retire the Integrator cpufreq driver
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
13ad7701
SP
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
a4675fbc 111 u64 time;
93f0822d
DB
112};
113
13ad7701
SP
114/**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
93f0822d
DB
128struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
3bcc6fa9 132 int max_pstate_physical;
b27580b0 133 int scaling;
93f0822d
DB
134 int turbo_pstate;
135};
136
13ad7701
SP
137/**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
007bea09 150struct vid_data {
21855ff5
DB
151 int min;
152 int max;
153 int turbo;
007bea09
DB
154 int32_t ratio;
155};
156
13ad7701
SP
157/**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
93f0822d
DB
169struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
d253d2a5 176 int32_t last_err;
93f0822d
DB
177};
178
13ad7701
SP
179/**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
2f1d407a 182 * @policy: CPUFreq policy value
13ad7701 183 * @update_util: CPUFreq utility callback information
4578ee7e 184 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
185 * @iowait_boost: iowait-related boost fraction
186 * @last_update: Time of the last update.
13ad7701
SP
187 * @pstate: Stores P state limits for this CPU
188 * @vid: Stores VID limits for this CPU
189 * @pid: Stores PID parameters for this CPU
190 * @last_sample_time: Last Sample time
191 * @prev_aperf: Last APERF value read from APERF MSR
192 * @prev_mperf: Last MPERF value read from MPERF MSR
193 * @prev_tsc: Last timestamp counter (TSC) value
194 * @prev_cummulative_iowait: IO Wait time difference from last and
195 * current sample
196 * @sample: Storage for storing last Sample data
9522a2ff
SP
197 * @acpi_perf_data: Stores ACPI perf information read from _PSS
198 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
199 *
200 * This structure stores per CPU instance data for all CPUs.
201 */
93f0822d
DB
202struct cpudata {
203 int cpu;
204
2f1d407a 205 unsigned int policy;
a4675fbc 206 struct update_util_data update_util;
4578ee7e 207 bool update_util_set;
93f0822d 208
93f0822d 209 struct pstate_data pstate;
007bea09 210 struct vid_data vid;
93f0822d 211 struct _pid pid;
93f0822d 212
09c448d3 213 u64 last_update;
a4675fbc 214 u64 last_sample_time;
93f0822d
DB
215 u64 prev_aperf;
216 u64 prev_mperf;
4055fad3 217 u64 prev_tsc;
63d1d656 218 u64 prev_cummulative_iowait;
d37e2b76 219 struct sample sample;
9522a2ff
SP
220#ifdef CONFIG_ACPI
221 struct acpi_processor_performance acpi_perf_data;
222 bool valid_pss_table;
223#endif
09c448d3 224 unsigned int iowait_boost;
93f0822d
DB
225};
226
227static struct cpudata **all_cpu_data;
13ad7701
SP
228
229/**
3954517e 230 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
231 * @sample_rate_ms: PID calculation sample rate in ms
232 * @sample_rate_ns: Sample rate calculation in ns
233 * @deadband: PID deadband
234 * @setpoint: PID Setpoint
235 * @p_gain_pct: PID proportional gain
236 * @i_gain_pct: PID integral gain
237 * @d_gain_pct: PID derivative gain
238 *
239 * Stores per CPU model static PID configuration data.
240 */
93f0822d
DB
241struct pstate_adjust_policy {
242 int sample_rate_ms;
a4675fbc 243 s64 sample_rate_ns;
93f0822d
DB
244 int deadband;
245 int setpoint;
246 int p_gain_pct;
247 int d_gain_pct;
248 int i_gain_pct;
249};
250
13ad7701
SP
251/**
252 * struct pstate_funcs - Per CPU model specific callbacks
253 * @get_max: Callback to get maximum non turbo effective P state
254 * @get_max_physical: Callback to get maximum non turbo physical P state
255 * @get_min: Callback to get minimum P state
256 * @get_turbo: Callback to get turbo P state
257 * @get_scaling: Callback to get frequency scaling factor
258 * @get_val: Callback to convert P state to actual MSR write value
259 * @get_vid: Callback to get VID data for Atom platforms
260 * @get_target_pstate: Callback to a function to calculate next P state to use
261 *
262 * Core and Atom CPU models have different way to get P State limits. This
263 * structure is used to store those callbacks.
264 */
016c8150
DB
265struct pstate_funcs {
266 int (*get_max)(void);
3bcc6fa9 267 int (*get_max_physical)(void);
016c8150
DB
268 int (*get_min)(void);
269 int (*get_turbo)(void);
b27580b0 270 int (*get_scaling)(void);
fdfdb2b1 271 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 272 void (*get_vid)(struct cpudata *);
157386b6 273 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
274};
275
13ad7701
SP
276/**
277 * struct cpu_defaults- Per CPU model default config data
278 * @pid_policy: PID config data
279 * @funcs: Callback function data
280 */
016c8150
DB
281struct cpu_defaults {
282 struct pstate_adjust_policy pid_policy;
283 struct pstate_funcs funcs;
93f0822d
DB
284};
285
157386b6 286static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 287static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 288
4a7cb7a9
JZ
289static struct pstate_adjust_policy pid_params __read_mostly;
290static struct pstate_funcs pstate_funcs __read_mostly;
291static int hwp_active __read_mostly;
016c8150 292
9522a2ff
SP
293#ifdef CONFIG_ACPI
294static bool acpi_ppc;
295#endif
13ad7701
SP
296
297/**
298 * struct perf_limits - Store user and policy limits
299 * @no_turbo: User requested turbo state from intel_pstate sysfs
300 * @turbo_disabled: Platform turbo status either from msr
301 * MSR_IA32_MISC_ENABLE or when maximum available pstate
302 * matches the maximum turbo pstate
303 * @max_perf_pct: Effective maximum performance limit in percentage, this
304 * is minimum of either limits enforced by cpufreq policy
305 * or limits from user set limits via intel_pstate sysfs
306 * @min_perf_pct: Effective minimum performance limit in percentage, this
307 * is maximum of either limits enforced by cpufreq policy
308 * or limits from user set limits via intel_pstate sysfs
309 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
310 * This value is used to limit max pstate
311 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
312 * This value is used to limit min pstate
313 * @max_policy_pct: The maximum performance in percentage enforced by
314 * cpufreq setpolicy interface
315 * @max_sysfs_pct: The maximum performance in percentage enforced by
316 * intel pstate sysfs interface
317 * @min_policy_pct: The minimum performance in percentage enforced by
318 * cpufreq setpolicy interface
319 * @min_sysfs_pct: The minimum performance in percentage enforced by
320 * intel pstate sysfs interface
321 *
322 * Storage for user and policy defined limits.
323 */
93f0822d
DB
324struct perf_limits {
325 int no_turbo;
dd5fbf70 326 int turbo_disabled;
93f0822d
DB
327 int max_perf_pct;
328 int min_perf_pct;
329 int32_t max_perf;
330 int32_t min_perf;
d8f469e9
DB
331 int max_policy_pct;
332 int max_sysfs_pct;
a0475992
KCA
333 int min_policy_pct;
334 int min_sysfs_pct;
93f0822d
DB
335};
336
51443fbf
PB
337static struct perf_limits performance_limits = {
338 .no_turbo = 0,
339 .turbo_disabled = 0,
340 .max_perf_pct = 100,
341 .max_perf = int_tofp(1),
342 .min_perf_pct = 100,
343 .min_perf = int_tofp(1),
344 .max_policy_pct = 100,
345 .max_sysfs_pct = 100,
346 .min_policy_pct = 0,
347 .min_sysfs_pct = 0,
348};
349
350static struct perf_limits powersave_limits = {
93f0822d 351 .no_turbo = 0,
4521e1a0 352 .turbo_disabled = 0,
93f0822d
DB
353 .max_perf_pct = 100,
354 .max_perf = int_tofp(1),
355 .min_perf_pct = 0,
356 .min_perf = 0,
d8f469e9
DB
357 .max_policy_pct = 100,
358 .max_sysfs_pct = 100,
a0475992
KCA
359 .min_policy_pct = 0,
360 .min_sysfs_pct = 0,
93f0822d
DB
361};
362
51443fbf
PB
363#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
364static struct perf_limits *limits = &performance_limits;
365#else
366static struct perf_limits *limits = &powersave_limits;
367#endif
368
9522a2ff 369#ifdef CONFIG_ACPI
2b3ec765
SP
370
371static bool intel_pstate_get_ppc_enable_status(void)
372{
373 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
374 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
375 return true;
376
377 return acpi_ppc;
378}
379
9522a2ff
SP
380static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
381{
382 struct cpudata *cpu;
9522a2ff
SP
383 int ret;
384 int i;
385
e59a8f7f
SP
386 if (hwp_active)
387 return;
388
2b3ec765 389 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
390 return;
391
392 cpu = all_cpu_data[policy->cpu];
393
394 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
395 policy->cpu);
396 if (ret)
397 return;
398
399 /*
400 * Check if the control value in _PSS is for PERF_CTL MSR, which should
401 * guarantee that the states returned by it map to the states in our
402 * list directly.
403 */
404 if (cpu->acpi_perf_data.control_register.space_id !=
405 ACPI_ADR_SPACE_FIXED_HARDWARE)
406 goto err;
407
408 /*
409 * If there is only one entry _PSS, simply ignore _PSS and continue as
410 * usual without taking _PSS into account
411 */
412 if (cpu->acpi_perf_data.state_count < 2)
413 goto err;
414
415 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
416 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
417 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
418 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
419 (u32) cpu->acpi_perf_data.states[i].core_frequency,
420 (u32) cpu->acpi_perf_data.states[i].power,
421 (u32) cpu->acpi_perf_data.states[i].control);
422 }
423
424 /*
425 * The _PSS table doesn't contain whole turbo frequency range.
426 * This just contains +1 MHZ above the max non turbo frequency,
427 * with control value corresponding to max turbo ratio. But
428 * when cpufreq set policy is called, it will call with this
429 * max frequency, which will cause a reduced performance as
430 * this driver uses real max turbo frequency as the max
431 * frequency. So correct this frequency in _PSS table to
b00345d1 432 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
433 * Also need to convert to MHz as _PSS freq is in MHz.
434 */
b00345d1 435 if (!limits->turbo_disabled)
9522a2ff
SP
436 cpu->acpi_perf_data.states[0].core_frequency =
437 policy->cpuinfo.max_freq / 1000;
438 cpu->valid_pss_table = true;
6cacd115 439 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
440
441 return;
442
443 err:
444 cpu->valid_pss_table = false;
445 acpi_processor_unregister_performance(policy->cpu);
446}
447
448static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449{
450 struct cpudata *cpu;
451
452 cpu = all_cpu_data[policy->cpu];
453 if (!cpu->valid_pss_table)
454 return;
455
456 acpi_processor_unregister_performance(policy->cpu);
457}
458
459#else
460static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
461{
462}
463
464static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
465{
466}
467#endif
468
93f0822d 469static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 470 int deadband, int integral) {
b54a0dfd
PL
471 pid->setpoint = int_tofp(setpoint);
472 pid->deadband = int_tofp(deadband);
93f0822d 473 pid->integral = int_tofp(integral);
d98d099b 474 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
475}
476
477static inline void pid_p_gain_set(struct _pid *pid, int percent)
478{
22590efb 479 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
480}
481
482static inline void pid_i_gain_set(struct _pid *pid, int percent)
483{
22590efb 484 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
485}
486
487static inline void pid_d_gain_set(struct _pid *pid, int percent)
488{
22590efb 489 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
490}
491
d253d2a5 492static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 493{
d253d2a5 494 signed int result;
93f0822d
DB
495 int32_t pterm, dterm, fp_error;
496 int32_t integral_limit;
497
b54a0dfd 498 fp_error = pid->setpoint - busy;
93f0822d 499
b54a0dfd 500 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
501 return 0;
502
503 pterm = mul_fp(pid->p_gain, fp_error);
504
505 pid->integral += fp_error;
506
e0d4c8f8
KCA
507 /*
508 * We limit the integral here so that it will never
509 * get higher than 30. This prevents it from becoming
510 * too large an input over long periods of time and allows
511 * it to get factored out sooner.
512 *
513 * The value of 30 was chosen through experimentation.
514 */
93f0822d
DB
515 integral_limit = int_tofp(30);
516 if (pid->integral > integral_limit)
517 pid->integral = integral_limit;
518 if (pid->integral < -integral_limit)
519 pid->integral = -integral_limit;
520
d253d2a5
BS
521 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
522 pid->last_err = fp_error;
93f0822d
DB
523
524 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 525 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
526 return (signed int)fp_toint(result);
527}
528
529static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
530{
016c8150
DB
531 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
532 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
533 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 534
2d8d1f18 535 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
536}
537
93f0822d
DB
538static inline void intel_pstate_reset_all_pid(void)
539{
540 unsigned int cpu;
845c1cbe 541
93f0822d
DB
542 for_each_online_cpu(cpu) {
543 if (all_cpu_data[cpu])
544 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
545 }
546}
547
4521e1a0
GM
548static inline void update_turbo_state(void)
549{
550 u64 misc_en;
551 struct cpudata *cpu;
552
553 cpu = all_cpu_data[0];
554 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 555 limits->turbo_disabled =
4521e1a0
GM
556 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
557 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
558}
559
41cfd64c 560static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 561{
74da56ce
KCA
562 int min, hw_min, max, hw_max, cpu, range, adj_range;
563 u64 value, cap;
564
41cfd64c 565 for_each_cpu(cpu, cpumask) {
f9f4872d
SP
566 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
567 hw_min = HWP_LOWEST_PERF(cap);
568 hw_max = HWP_HIGHEST_PERF(cap);
569 range = hw_max - hw_min;
570
2f86dc4c 571 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 572 adj_range = limits->min_perf_pct * range / 100;
74da56ce 573 min = hw_min + adj_range;
2f86dc4c
DB
574 value &= ~HWP_MIN_PERF(~0L);
575 value |= HWP_MIN_PERF(min);
576
51443fbf 577 adj_range = limits->max_perf_pct * range / 100;
74da56ce 578 max = hw_min + adj_range;
51443fbf 579 if (limits->no_turbo) {
74da56ce
KCA
580 hw_max = HWP_GUARANTEED_PERF(cap);
581 if (hw_max < max)
582 max = hw_max;
2f86dc4c
DB
583 }
584
585 value &= ~HWP_MAX_PERF(~0L);
586 value |= HWP_MAX_PERF(max);
587 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
588 }
41cfd64c 589}
2f86dc4c 590
ba41e1bc
RW
591static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
592{
593 if (hwp_active)
594 intel_pstate_hwp_set(policy->cpus);
595
596 return 0;
597}
598
41cfd64c
VK
599static void intel_pstate_hwp_set_online_cpus(void)
600{
601 get_online_cpus();
602 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
603 put_online_cpus();
604}
605
93f0822d
DB
606/************************** debugfs begin ************************/
607static int pid_param_set(void *data, u64 val)
608{
609 *(u32 *)data = val;
610 intel_pstate_reset_all_pid();
611 return 0;
612}
845c1cbe 613
93f0822d
DB
614static int pid_param_get(void *data, u64 *val)
615{
616 *val = *(u32 *)data;
617 return 0;
618}
2d8d1f18 619DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
620
621struct pid_param {
622 char *name;
623 void *value;
624};
625
626static struct pid_param pid_files[] = {
016c8150
DB
627 {"sample_rate_ms", &pid_params.sample_rate_ms},
628 {"d_gain_pct", &pid_params.d_gain_pct},
629 {"i_gain_pct", &pid_params.i_gain_pct},
630 {"deadband", &pid_params.deadband},
631 {"setpoint", &pid_params.setpoint},
632 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
633 {NULL, NULL}
634};
635
317dd50e 636static void __init intel_pstate_debug_expose_params(void)
93f0822d 637{
317dd50e 638 struct dentry *debugfs_parent;
93f0822d
DB
639 int i = 0;
640
185d8245
SP
641 if (hwp_active ||
642 pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
2f86dc4c 643 return;
185d8245 644
93f0822d
DB
645 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
646 if (IS_ERR_OR_NULL(debugfs_parent))
647 return;
648 while (pid_files[i].name) {
649 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
650 debugfs_parent, pid_files[i].value,
651 &fops_pid_param);
93f0822d
DB
652 i++;
653 }
654}
655
656/************************** debugfs end ************************/
657
658/************************** sysfs begin ************************/
659#define show_one(file_name, object) \
660 static ssize_t show_##file_name \
661 (struct kobject *kobj, struct attribute *attr, char *buf) \
662 { \
51443fbf 663 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
664 }
665
d01b1f48
KCA
666static ssize_t show_turbo_pct(struct kobject *kobj,
667 struct attribute *attr, char *buf)
668{
669 struct cpudata *cpu;
670 int total, no_turbo, turbo_pct;
671 uint32_t turbo_fp;
672
673 cpu = all_cpu_data[0];
674
675 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
676 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 677 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
678 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
679 return sprintf(buf, "%u\n", turbo_pct);
680}
681
0522424e
KCA
682static ssize_t show_num_pstates(struct kobject *kobj,
683 struct attribute *attr, char *buf)
684{
685 struct cpudata *cpu;
686 int total;
687
688 cpu = all_cpu_data[0];
689 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
690 return sprintf(buf, "%u\n", total);
691}
692
4521e1a0
GM
693static ssize_t show_no_turbo(struct kobject *kobj,
694 struct attribute *attr, char *buf)
695{
696 ssize_t ret;
697
698 update_turbo_state();
51443fbf
PB
699 if (limits->turbo_disabled)
700 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 701 else
51443fbf 702 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
703
704 return ret;
705}
706
93f0822d 707static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 708 const char *buf, size_t count)
93f0822d
DB
709{
710 unsigned int input;
711 int ret;
845c1cbe 712
93f0822d
DB
713 ret = sscanf(buf, "%u", &input);
714 if (ret != 1)
715 return -EINVAL;
4521e1a0
GM
716
717 update_turbo_state();
51443fbf 718 if (limits->turbo_disabled) {
4836df17 719 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 720 return -EPERM;
dd5fbf70 721 }
2f86dc4c 722
51443fbf 723 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 724
2f86dc4c 725 if (hwp_active)
41cfd64c 726 intel_pstate_hwp_set_online_cpus();
2f86dc4c 727
93f0822d
DB
728 return count;
729}
730
731static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 732 const char *buf, size_t count)
93f0822d
DB
733{
734 unsigned int input;
735 int ret;
845c1cbe 736
93f0822d
DB
737 ret = sscanf(buf, "%u", &input);
738 if (ret != 1)
739 return -EINVAL;
740
51443fbf
PB
741 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
742 limits->max_perf_pct = min(limits->max_policy_pct,
743 limits->max_sysfs_pct);
744 limits->max_perf_pct = max(limits->min_policy_pct,
745 limits->max_perf_pct);
746 limits->max_perf_pct = max(limits->min_perf_pct,
747 limits->max_perf_pct);
22590efb 748 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 749
2f86dc4c 750 if (hwp_active)
41cfd64c 751 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
752 return count;
753}
754
755static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 756 const char *buf, size_t count)
93f0822d
DB
757{
758 unsigned int input;
759 int ret;
845c1cbe 760
93f0822d
DB
761 ret = sscanf(buf, "%u", &input);
762 if (ret != 1)
763 return -EINVAL;
a0475992 764
51443fbf
PB
765 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
766 limits->min_perf_pct = max(limits->min_policy_pct,
767 limits->min_sysfs_pct);
768 limits->min_perf_pct = min(limits->max_policy_pct,
769 limits->min_perf_pct);
770 limits->min_perf_pct = min(limits->max_perf_pct,
771 limits->min_perf_pct);
22590efb 772 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 773
2f86dc4c 774 if (hwp_active)
41cfd64c 775 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
776 return count;
777}
778
93f0822d
DB
779show_one(max_perf_pct, max_perf_pct);
780show_one(min_perf_pct, min_perf_pct);
781
782define_one_global_rw(no_turbo);
783define_one_global_rw(max_perf_pct);
784define_one_global_rw(min_perf_pct);
d01b1f48 785define_one_global_ro(turbo_pct);
0522424e 786define_one_global_ro(num_pstates);
93f0822d
DB
787
788static struct attribute *intel_pstate_attributes[] = {
789 &no_turbo.attr,
790 &max_perf_pct.attr,
791 &min_perf_pct.attr,
d01b1f48 792 &turbo_pct.attr,
0522424e 793 &num_pstates.attr,
93f0822d
DB
794 NULL
795};
796
797static struct attribute_group intel_pstate_attr_group = {
798 .attrs = intel_pstate_attributes,
799};
93f0822d 800
317dd50e 801static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 802{
317dd50e 803 struct kobject *intel_pstate_kobject;
93f0822d
DB
804 int rc;
805
806 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
807 &cpu_subsys.dev_root->kobj);
808 BUG_ON(!intel_pstate_kobject);
2d8d1f18 809 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
810 BUG_ON(rc);
811}
93f0822d 812/************************** sysfs end ************************/
2f86dc4c 813
ba88d433 814static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 815{
f05c9665 816 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
817 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
818 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 819
ba88d433 820 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
821}
822
938d21a2 823static int atom_get_min_pstate(void)
19e77c28
DB
824{
825 u64 value;
845c1cbe 826
938d21a2 827 rdmsrl(ATOM_RATIOS, value);
c16ed060 828 return (value >> 8) & 0x7F;
19e77c28
DB
829}
830
938d21a2 831static int atom_get_max_pstate(void)
19e77c28
DB
832{
833 u64 value;
845c1cbe 834
938d21a2 835 rdmsrl(ATOM_RATIOS, value);
c16ed060 836 return (value >> 16) & 0x7F;
19e77c28 837}
93f0822d 838
938d21a2 839static int atom_get_turbo_pstate(void)
61d8d2ab
DB
840{
841 u64 value;
845c1cbe 842
938d21a2 843 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 844 return value & 0x7F;
61d8d2ab
DB
845}
846
fdfdb2b1 847static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
848{
849 u64 val;
850 int32_t vid_fp;
851 u32 vid;
852
144c8e17 853 val = (u64)pstate << 8;
51443fbf 854 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
855 val |= (u64)1 << 32;
856
857 vid_fp = cpudata->vid.min + mul_fp(
858 int_tofp(pstate - cpudata->pstate.min_pstate),
859 cpudata->vid.ratio);
860
861 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 862 vid = ceiling_fp(vid_fp);
007bea09 863
21855ff5
DB
864 if (pstate > cpudata->pstate.max_pstate)
865 vid = cpudata->vid.turbo;
866
fdfdb2b1 867 return val | vid;
007bea09
DB
868}
869
1421df63 870static int silvermont_get_scaling(void)
b27580b0
DB
871{
872 u64 value;
873 int i;
1421df63
PL
874 /* Defined in Table 35-6 from SDM (Sept 2015) */
875 static int silvermont_freq_table[] = {
876 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
877
878 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
879 i = value & 0x7;
880 WARN_ON(i > 4);
b27580b0 881
1421df63
PL
882 return silvermont_freq_table[i];
883}
b27580b0 884
1421df63
PL
885static int airmont_get_scaling(void)
886{
887 u64 value;
888 int i;
889 /* Defined in Table 35-10 from SDM (Sept 2015) */
890 static int airmont_freq_table[] = {
891 83300, 100000, 133300, 116700, 80000,
892 93300, 90000, 88900, 87500};
893
894 rdmsrl(MSR_FSB_FREQ, value);
895 i = value & 0xF;
896 WARN_ON(i > 8);
897
898 return airmont_freq_table[i];
b27580b0
DB
899}
900
938d21a2 901static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
902{
903 u64 value;
904
938d21a2 905 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
906 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
907 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
908 cpudata->vid.ratio = div_fp(
909 cpudata->vid.max - cpudata->vid.min,
910 int_tofp(cpudata->pstate.max_pstate -
911 cpudata->pstate.min_pstate));
21855ff5 912
938d21a2 913 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 914 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
915}
916
016c8150 917static int core_get_min_pstate(void)
93f0822d
DB
918{
919 u64 value;
845c1cbe 920
05e99c8c 921 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
922 return (value >> 40) & 0xFF;
923}
924
3bcc6fa9 925static int core_get_max_pstate_physical(void)
93f0822d
DB
926{
927 u64 value;
845c1cbe 928
05e99c8c 929 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
930 return (value >> 8) & 0xFF;
931}
932
016c8150 933static int core_get_max_pstate(void)
93f0822d 934{
6a35fc2d
SP
935 u64 tar;
936 u64 plat_info;
937 int max_pstate;
938 int err;
939
940 rdmsrl(MSR_PLATFORM_INFO, plat_info);
941 max_pstate = (plat_info >> 8) & 0xFF;
942
943 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
944 if (!err) {
945 /* Do some sanity checking for safety */
946 if (plat_info & 0x600000000) {
947 u64 tdp_ctrl;
948 u64 tdp_ratio;
949 int tdp_msr;
950
951 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
952 if (err)
953 goto skip_tar;
954
5fc8f707 955 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
956 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
957 if (err)
958 goto skip_tar;
959
1becf035
SP
960 /* For level 1 and 2, bits[23:16] contain the ratio */
961 if (tdp_ctrl)
962 tdp_ratio >>= 16;
963
964 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
965 if (tdp_ratio - 1 == tar) {
966 max_pstate = tar;
967 pr_debug("max_pstate=TAC %x\n", max_pstate);
968 } else {
969 goto skip_tar;
970 }
971 }
972 }
845c1cbe 973
6a35fc2d
SP
974skip_tar:
975 return max_pstate;
93f0822d
DB
976}
977
016c8150 978static int core_get_turbo_pstate(void)
93f0822d
DB
979{
980 u64 value;
981 int nont, ret;
845c1cbe 982
100cf6f2 983 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 984 nont = core_get_max_pstate();
285cb990 985 ret = (value) & 255;
93f0822d
DB
986 if (ret <= nont)
987 ret = nont;
988 return ret;
989}
990
b27580b0
DB
991static inline int core_get_scaling(void)
992{
993 return 100000;
994}
995
fdfdb2b1 996static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
997{
998 u64 val;
999
144c8e17 1000 val = (u64)pstate << 8;
51443fbf 1001 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1002 val |= (u64)1 << 32;
1003
fdfdb2b1 1004 return val;
016c8150
DB
1005}
1006
b34ef932
DC
1007static int knl_get_turbo_pstate(void)
1008{
1009 u64 value;
1010 int nont, ret;
1011
100cf6f2 1012 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1013 nont = core_get_max_pstate();
1014 ret = (((value) >> 8) & 0xFF);
1015 if (ret <= nont)
1016 ret = nont;
1017 return ret;
1018}
1019
016c8150
DB
1020static struct cpu_defaults core_params = {
1021 .pid_policy = {
1022 .sample_rate_ms = 10,
1023 .deadband = 0,
1024 .setpoint = 97,
1025 .p_gain_pct = 20,
1026 .d_gain_pct = 0,
1027 .i_gain_pct = 0,
1028 },
1029 .funcs = {
1030 .get_max = core_get_max_pstate,
3bcc6fa9 1031 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1032 .get_min = core_get_min_pstate,
1033 .get_turbo = core_get_turbo_pstate,
b27580b0 1034 .get_scaling = core_get_scaling,
fdfdb2b1 1035 .get_val = core_get_val,
157386b6 1036 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1037 },
1038};
1039
42ce8921 1040static const struct cpu_defaults silvermont_params = {
1421df63
PL
1041 .pid_policy = {
1042 .sample_rate_ms = 10,
1043 .deadband = 0,
1044 .setpoint = 60,
1045 .p_gain_pct = 14,
1046 .d_gain_pct = 0,
1047 .i_gain_pct = 4,
1048 },
1049 .funcs = {
1050 .get_max = atom_get_max_pstate,
1051 .get_max_physical = atom_get_max_pstate,
1052 .get_min = atom_get_min_pstate,
1053 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1054 .get_val = atom_get_val,
1421df63
PL
1055 .get_scaling = silvermont_get_scaling,
1056 .get_vid = atom_get_vid,
e70eed2b 1057 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1058 },
1059};
1060
42ce8921 1061static const struct cpu_defaults airmont_params = {
19e77c28
DB
1062 .pid_policy = {
1063 .sample_rate_ms = 10,
1064 .deadband = 0,
6a82ba6d 1065 .setpoint = 60,
19e77c28
DB
1066 .p_gain_pct = 14,
1067 .d_gain_pct = 0,
1068 .i_gain_pct = 4,
1069 },
1070 .funcs = {
938d21a2
PL
1071 .get_max = atom_get_max_pstate,
1072 .get_max_physical = atom_get_max_pstate,
1073 .get_min = atom_get_min_pstate,
1074 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1075 .get_val = atom_get_val,
1421df63 1076 .get_scaling = airmont_get_scaling,
938d21a2 1077 .get_vid = atom_get_vid,
e70eed2b 1078 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1079 },
1080};
1081
42ce8921 1082static const struct cpu_defaults knl_params = {
b34ef932
DC
1083 .pid_policy = {
1084 .sample_rate_ms = 10,
1085 .deadband = 0,
1086 .setpoint = 97,
1087 .p_gain_pct = 20,
1088 .d_gain_pct = 0,
1089 .i_gain_pct = 0,
1090 },
1091 .funcs = {
1092 .get_max = core_get_max_pstate,
3bcc6fa9 1093 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1094 .get_min = core_get_min_pstate,
1095 .get_turbo = knl_get_turbo_pstate,
69cefc27 1096 .get_scaling = core_get_scaling,
fdfdb2b1 1097 .get_val = core_get_val,
157386b6 1098 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1099 },
1100};
1101
42ce8921 1102static const struct cpu_defaults bxt_params = {
41bad47f
SP
1103 .pid_policy = {
1104 .sample_rate_ms = 10,
1105 .deadband = 0,
1106 .setpoint = 60,
1107 .p_gain_pct = 14,
1108 .d_gain_pct = 0,
1109 .i_gain_pct = 4,
1110 },
1111 .funcs = {
1112 .get_max = core_get_max_pstate,
1113 .get_max_physical = core_get_max_pstate_physical,
1114 .get_min = core_get_min_pstate,
1115 .get_turbo = core_get_turbo_pstate,
1116 .get_scaling = core_get_scaling,
1117 .get_val = core_get_val,
1118 .get_target_pstate = get_target_pstate_use_cpu_load,
1119 },
1120};
1121
93f0822d
DB
1122static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1123{
1124 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1125 int max_perf_adj;
93f0822d 1126 int min_perf;
845c1cbe 1127
51443fbf 1128 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1129 max_perf = cpu->pstate.max_pstate;
1130
e0d4c8f8
KCA
1131 /*
1132 * performance can be limited by user through sysfs, by cpufreq
1133 * policy, or by cpu specific default values determined through
1134 * experimentation.
1135 */
a158bed5 1136 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1137 *max = clamp_t(int, max_perf_adj,
1138 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1139
a158bed5 1140 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1141 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1142}
1143
a6c6ead1 1144static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1145{
bc95a454
RW
1146 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1147 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1148 /*
1149 * Generally, there is no guarantee that this code will always run on
1150 * the CPU being updated, so force the register update to run on the
1151 * right CPU.
1152 */
1153 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1154 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1155}
1156
a6c6ead1
RW
1157static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1158{
1159 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1160}
1161
1162static void intel_pstate_max_within_limits(struct cpudata *cpu)
1163{
1164 int min_pstate, max_pstate;
1165
1166 update_turbo_state();
1167 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1168 intel_pstate_set_pstate(cpu, max_pstate);
1169}
1170
93f0822d
DB
1171static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1172{
016c8150
DB
1173 cpu->pstate.min_pstate = pstate_funcs.get_min();
1174 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1175 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1176 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1177 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1178
007bea09
DB
1179 if (pstate_funcs.get_vid)
1180 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1181
1182 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1183}
1184
a1c9787d 1185static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1186{
6b17ddb2 1187 struct sample *sample = &cpu->sample;
e66c1768 1188
a1c9787d 1189 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1190}
1191
4fec7ad5 1192static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1193{
93f0822d 1194 u64 aperf, mperf;
4ab60c3f 1195 unsigned long flags;
4055fad3 1196 u64 tsc;
93f0822d 1197
4ab60c3f 1198 local_irq_save(flags);
93f0822d
DB
1199 rdmsrl(MSR_IA32_APERF, aperf);
1200 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1201 tsc = rdtsc();
4fec7ad5 1202 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1203 local_irq_restore(flags);
4fec7ad5 1204 return false;
8e601a9f 1205 }
4ab60c3f 1206 local_irq_restore(flags);
b69880f9 1207
c4ee841f 1208 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1209 cpu->sample.time = time;
d37e2b76
DB
1210 cpu->sample.aperf = aperf;
1211 cpu->sample.mperf = mperf;
4055fad3 1212 cpu->sample.tsc = tsc;
d37e2b76
DB
1213 cpu->sample.aperf -= cpu->prev_aperf;
1214 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1215 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1216
93f0822d
DB
1217 cpu->prev_aperf = aperf;
1218 cpu->prev_mperf = mperf;
4055fad3 1219 cpu->prev_tsc = tsc;
febce40f
RW
1220 /*
1221 * First time this function is invoked in a given cycle, all of the
1222 * previous sample data fields are equal to zero or stale and they must
1223 * be populated with meaningful numbers for things to work, so assume
1224 * that sample.time will always be reset before setting the utilization
1225 * update hook and make the caller skip the sample then.
1226 */
1227 return !!cpu->last_sample_time;
93f0822d
DB
1228}
1229
8fa520af
PL
1230static inline int32_t get_avg_frequency(struct cpudata *cpu)
1231{
a1c9787d
RW
1232 return mul_ext_fp(cpu->sample.core_avg_perf,
1233 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1234}
1235
bdcaa23f
PL
1236static inline int32_t get_avg_pstate(struct cpudata *cpu)
1237{
8edb0a6e
RW
1238 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1239 cpu->sample.core_avg_perf);
bdcaa23f
PL
1240}
1241
e70eed2b
PL
1242static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1243{
1244 struct sample *sample = &cpu->sample;
09c448d3 1245 int32_t busy_frac, boost;
0843e83c 1246 int target, avg_pstate;
e70eed2b 1247
09c448d3 1248 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1249
09c448d3
RW
1250 boost = cpu->iowait_boost;
1251 cpu->iowait_boost >>= 1;
63d1d656 1252
09c448d3
RW
1253 if (busy_frac < boost)
1254 busy_frac = boost;
63d1d656 1255
09c448d3 1256 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1257
1258 target = limits->no_turbo || limits->turbo_disabled ?
1259 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1260 target += target >> 2;
1261 target = mul_fp(target, busy_frac);
1262 if (target < cpu->pstate.min_pstate)
1263 target = cpu->pstate.min_pstate;
1264
1265 /*
1266 * If the average P-state during the previous cycle was higher than the
1267 * current target, add 50% of the difference to the target to reduce
1268 * possible performance oscillations and offset possible performance
1269 * loss related to moving the workload from one CPU to another within
1270 * a package/module.
1271 */
1272 avg_pstate = get_avg_pstate(cpu);
1273 if (avg_pstate > target)
1274 target += (avg_pstate - target) >> 1;
1275
1276 return target;
e70eed2b
PL
1277}
1278
157386b6 1279static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1280{
1aa7a6e2 1281 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1282 u64 duration_ns;
93f0822d 1283
e0d4c8f8 1284 /*
f00593a4
RW
1285 * perf_scaled is the ratio of the average P-state during the last
1286 * sampling period to the P-state requested last time (in percent).
1287 *
1288 * That measures the system's response to the previous P-state
1289 * selection.
e0d4c8f8 1290 */
22590efb
RW
1291 max_pstate = cpu->pstate.max_pstate_physical;
1292 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1293 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1294 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1295
e0d4c8f8 1296 /*
a4675fbc
RW
1297 * Since our utilization update callback will not run unless we are
1298 * in C0, check if the actual elapsed time is significantly greater (3x)
1299 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1300 * enough period of time to adjust our performance metric.
e0d4c8f8 1301 */
a4675fbc 1302 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1303 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1304 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1305 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1306 } else {
1307 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1308 if (sample_ratio < int_tofp(1))
1aa7a6e2 1309 perf_scaled = 0;
c4ee841f
DB
1310 }
1311
1aa7a6e2
RW
1312 cpu->sample.busy_scaled = perf_scaled;
1313 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1314}
1315
fdfdb2b1
RW
1316static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1317{
1318 int max_perf, min_perf;
1319
1320 update_turbo_state();
1321
1322 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1323 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1324 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1
RW
1325 if (pstate == cpu->pstate.current_pstate)
1326 return;
1327
bc95a454 1328 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1329 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1330}
1331
93f0822d
DB
1332static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1333{
157386b6 1334 int from, target_pstate;
4055fad3
DS
1335 struct sample *sample;
1336
1337 from = cpu->pstate.current_pstate;
93f0822d 1338
2f1d407a
RW
1339 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1340 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1341
fdfdb2b1 1342 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1343
1344 sample = &cpu->sample;
a1c9787d 1345 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1346 fp_toint(sample->busy_scaled),
4055fad3
DS
1347 from,
1348 cpu->pstate.current_pstate,
1349 sample->mperf,
1350 sample->aperf,
1351 sample->tsc,
3ba7bcaa
SP
1352 get_avg_frequency(cpu),
1353 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1354}
1355
a4675fbc 1356static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1357 unsigned int flags)
93f0822d 1358{
a4675fbc 1359 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1360 u64 delta_ns;
1361
1d29815e 1362 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1363 if (flags & SCHED_CPUFREQ_IOWAIT) {
1364 cpu->iowait_boost = int_tofp(1);
1365 } else if (cpu->iowait_boost) {
1366 /* Clear iowait_boost if the CPU may have been idle. */
1367 delta_ns = time - cpu->last_update;
1368 if (delta_ns > TICK_NSEC)
1369 cpu->iowait_boost = 0;
1370 }
1371 cpu->last_update = time;
1372 }
b69880f9 1373
09c448d3 1374 delta_ns = time - cpu->sample.time;
a4675fbc 1375 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1376 bool sample_taken = intel_pstate_sample(cpu, time);
1377
6d45b719 1378 if (sample_taken) {
a1c9787d 1379 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1380 if (!hwp_active)
1381 intel_pstate_adjust_busy_pstate(cpu);
1382 }
a4675fbc 1383 }
93f0822d
DB
1384}
1385
1386#define ICPU(model, policy) \
6cbd7ee1
DB
1387 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1388 (unsigned long)&policy }
93f0822d
DB
1389
1390static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1391 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1392 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1393 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1394 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1395 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1396 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1397 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1398 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1399 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1400 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1401 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1402 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1403 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1404 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1405 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1406 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1407 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1408 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1409 {}
1410};
1411MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1412
29327c84 1413static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1414 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1415 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1416 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1417 {}
1418};
1419
93f0822d
DB
1420static int intel_pstate_init_cpu(unsigned int cpunum)
1421{
93f0822d
DB
1422 struct cpudata *cpu;
1423
c0348717
DB
1424 if (!all_cpu_data[cpunum])
1425 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1426 GFP_KERNEL);
93f0822d
DB
1427 if (!all_cpu_data[cpunum])
1428 return -ENOMEM;
1429
1430 cpu = all_cpu_data[cpunum];
1431
93f0822d 1432 cpu->cpu = cpunum;
ba88d433 1433
a4675fbc 1434 if (hwp_active) {
ba88d433 1435 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1436 pid_params.sample_rate_ms = 50;
1437 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1438 }
ba88d433 1439
179e8471 1440 intel_pstate_get_cpu_pstates(cpu);
016c8150 1441
93f0822d 1442 intel_pstate_busy_pid_reset(cpu);
93f0822d 1443
4836df17 1444 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1445
1446 return 0;
1447}
1448
1449static unsigned int intel_pstate_get(unsigned int cpu_num)
1450{
f96fd0c8 1451 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1452
f96fd0c8 1453 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1454}
1455
febce40f 1456static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1457{
febce40f
RW
1458 struct cpudata *cpu = all_cpu_data[cpu_num];
1459
5ab666e0
RW
1460 if (cpu->update_util_set)
1461 return;
1462
febce40f
RW
1463 /* Prevent intel_pstate_update_util() from using stale data. */
1464 cpu->sample.time = 0;
0bed612b
RW
1465 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1466 intel_pstate_update_util);
4578ee7e 1467 cpu->update_util_set = true;
bb6ab52f
RW
1468}
1469
1470static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1471{
4578ee7e
CY
1472 struct cpudata *cpu_data = all_cpu_data[cpu];
1473
1474 if (!cpu_data->update_util_set)
1475 return;
1476
0bed612b 1477 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1478 cpu_data->update_util_set = false;
bb6ab52f
RW
1479 synchronize_sched();
1480}
1481
30a39153
SP
1482static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1483{
1484 limits->no_turbo = 0;
1485 limits->turbo_disabled = 0;
1486 limits->max_perf_pct = 100;
1487 limits->max_perf = int_tofp(1);
1488 limits->min_perf_pct = 100;
1489 limits->min_perf = int_tofp(1);
1490 limits->max_policy_pct = 100;
1491 limits->max_sysfs_pct = 100;
1492 limits->min_policy_pct = 0;
1493 limits->min_sysfs_pct = 0;
1494}
1495
93f0822d
DB
1496static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1497{
3be9200d
SP
1498 struct cpudata *cpu;
1499
d3929b83
DB
1500 if (!policy->cpuinfo.max_freq)
1501 return -ENODEV;
1502
2c2c1af4
SP
1503 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1504 policy->cpuinfo.max_freq, policy->max);
1505
a6c6ead1 1506 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
1507 cpu->policy = policy->policy;
1508
c749c64f
RW
1509 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1510 policy->max < policy->cpuinfo.max_freq &&
1511 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1512 pr_debug("policy->max > max non turbo frequency\n");
1513 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1514 }
1515
2f1d407a 1516 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1517 limits = &performance_limits;
30a39153 1518 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1519 pr_debug("set performance\n");
30a39153
SP
1520 intel_pstate_set_performance_limits(limits);
1521 goto out;
1522 }
1523 } else {
4836df17 1524 pr_debug("set powersave\n");
30a39153 1525 limits = &powersave_limits;
93f0822d 1526 }
2f86dc4c 1527
51443fbf
PB
1528 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1529 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1530 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1531 policy->cpuinfo.max_freq);
51443fbf 1532 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1533
1534 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1535 limits->min_perf_pct = max(limits->min_policy_pct,
1536 limits->min_sysfs_pct);
1537 limits->min_perf_pct = min(limits->max_policy_pct,
1538 limits->min_perf_pct);
1539 limits->max_perf_pct = min(limits->max_policy_pct,
1540 limits->max_sysfs_pct);
1541 limits->max_perf_pct = max(limits->min_policy_pct,
1542 limits->max_perf_pct);
43717aad
CY
1543
1544 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1545 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1546
22590efb
RW
1547 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1548 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1549 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1550
bb6ab52f 1551 out:
2f1d407a 1552 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
1553 /*
1554 * NOHZ_FULL CPUs need this as the governor callback may not
1555 * be invoked on them.
1556 */
1557 intel_pstate_clear_update_util_hook(policy->cpu);
1558 intel_pstate_max_within_limits(cpu);
1559 }
1560
bb6ab52f
RW
1561 intel_pstate_set_update_util_hook(policy->cpu);
1562
ba41e1bc 1563 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1564
93f0822d
DB
1565 return 0;
1566}
1567
1568static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1569{
be49e346 1570 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1571
285cb990 1572 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1573 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1574 return -EINVAL;
1575
1576 return 0;
1577}
1578
bb18008f 1579static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1580{
bb18008f
DB
1581 int cpu_num = policy->cpu;
1582 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1583
4836df17 1584 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1585
bb6ab52f 1586 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1587
2f86dc4c
DB
1588 if (hwp_active)
1589 return;
1590
fdfdb2b1 1591 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1592}
1593
2760984f 1594static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1595{
93f0822d 1596 struct cpudata *cpu;
52e0a509 1597 int rc;
93f0822d
DB
1598
1599 rc = intel_pstate_init_cpu(policy->cpu);
1600 if (rc)
1601 return rc;
1602
1603 cpu = all_cpu_data[policy->cpu];
1604
51443fbf 1605 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1606 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1607 else
1608 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1609
b27580b0
DB
1610 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1611 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1612
1613 /* cpuinfo and default policy values */
b27580b0 1614 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1615 update_turbo_state();
1616 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1617 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1618 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1619
9522a2ff 1620 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1621 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1622 cpumask_set_cpu(policy->cpu, policy->cpus);
1623
1624 return 0;
1625}
1626
9522a2ff
SP
1627static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1628{
1629 intel_pstate_exit_perf_limits(policy);
1630
1631 return 0;
1632}
1633
93f0822d
DB
1634static struct cpufreq_driver intel_pstate_driver = {
1635 .flags = CPUFREQ_CONST_LOOPS,
1636 .verify = intel_pstate_verify_policy,
1637 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1638 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1639 .get = intel_pstate_get,
1640 .init = intel_pstate_cpu_init,
9522a2ff 1641 .exit = intel_pstate_cpu_exit,
bb18008f 1642 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1643 .name = "intel_pstate",
93f0822d
DB
1644};
1645
eed43609
JZ
1646static int no_load __initdata;
1647static int no_hwp __initdata;
1648static int hwp_only __initdata;
29327c84 1649static unsigned int force_load __initdata;
6be26498 1650
29327c84 1651static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1652{
016c8150 1653 if (!pstate_funcs.get_max() ||
c410833a
SK
1654 !pstate_funcs.get_min() ||
1655 !pstate_funcs.get_turbo())
b563b4e3
DB
1656 return -ENODEV;
1657
b563b4e3
DB
1658 return 0;
1659}
016c8150 1660
29327c84 1661static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1662{
1663 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1664 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1665 pid_params.p_gain_pct = policy->p_gain_pct;
1666 pid_params.i_gain_pct = policy->i_gain_pct;
1667 pid_params.d_gain_pct = policy->d_gain_pct;
1668 pid_params.deadband = policy->deadband;
1669 pid_params.setpoint = policy->setpoint;
1670}
1671
29327c84 1672static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1673{
1674 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1675 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1676 pstate_funcs.get_min = funcs->get_min;
1677 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1678 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1679 pstate_funcs.get_val = funcs->get_val;
007bea09 1680 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1681 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1682
016c8150
DB
1683}
1684
9522a2ff 1685#ifdef CONFIG_ACPI
fbbcdc07 1686
29327c84 1687static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1688{
1689 int i;
1690
1691 for_each_possible_cpu(i) {
1692 acpi_status status;
1693 union acpi_object *pss;
1694 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1695 struct acpi_processor *pr = per_cpu(processors, i);
1696
1697 if (!pr)
1698 continue;
1699
1700 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1701 if (ACPI_FAILURE(status))
1702 continue;
1703
1704 pss = buffer.pointer;
1705 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1706 kfree(pss);
1707 return false;
1708 }
1709
1710 kfree(pss);
1711 }
1712
1713 return true;
1714}
1715
29327c84 1716static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1717{
1718 int i;
1719
1720 for_each_possible_cpu(i) {
1721 struct acpi_processor *pr = per_cpu(processors, i);
1722
1723 if (!pr)
1724 continue;
1725 if (acpi_has_method(pr->handle, "_PPC"))
1726 return true;
1727 }
1728 return false;
1729}
1730
1731enum {
1732 PSS,
1733 PPC,
1734};
1735
fbbcdc07
AH
1736struct hw_vendor_info {
1737 u16 valid;
1738 char oem_id[ACPI_OEM_ID_SIZE];
1739 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1740 int oem_pwr_table;
fbbcdc07
AH
1741};
1742
1743/* Hardware vendor-specific info that has its own power management modes */
29327c84 1744static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1745 {1, "HP ", "ProLiant", PSS},
1746 {1, "ORACLE", "X4-2 ", PPC},
1747 {1, "ORACLE", "X4-2L ", PPC},
1748 {1, "ORACLE", "X4-2B ", PPC},
1749 {1, "ORACLE", "X3-2 ", PPC},
1750 {1, "ORACLE", "X3-2L ", PPC},
1751 {1, "ORACLE", "X3-2B ", PPC},
1752 {1, "ORACLE", "X4470M2 ", PPC},
1753 {1, "ORACLE", "X4270M3 ", PPC},
1754 {1, "ORACLE", "X4270M2 ", PPC},
1755 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1756 {1, "ORACLE", "X4170 M3", PPC},
1757 {1, "ORACLE", "X4275 M3", PPC},
1758 {1, "ORACLE", "X6-2 ", PPC},
1759 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1760 {0, "", ""},
1761};
1762
29327c84 1763static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1764{
1765 struct acpi_table_header hdr;
1766 struct hw_vendor_info *v_info;
2f86dc4c
DB
1767 const struct x86_cpu_id *id;
1768 u64 misc_pwr;
1769
1770 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1771 if (id) {
1772 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1773 if ( misc_pwr & (1 << 8))
1774 return true;
1775 }
fbbcdc07 1776
c410833a
SK
1777 if (acpi_disabled ||
1778 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1779 return false;
1780
1781 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1782 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1783 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1784 ACPI_OEM_TABLE_ID_SIZE))
1785 switch (v_info->oem_pwr_table) {
1786 case PSS:
1787 return intel_pstate_no_acpi_pss();
1788 case PPC:
aa4ea34d
EZ
1789 return intel_pstate_has_acpi_ppc() &&
1790 (!force_load);
966916ea 1791 }
fbbcdc07
AH
1792 }
1793
1794 return false;
1795}
1796#else /* CONFIG_ACPI not enabled */
1797static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1798static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1799#endif /* CONFIG_ACPI */
1800
7791e4aa
SP
1801static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1802 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1803 {}
1804};
1805
93f0822d
DB
1806static int __init intel_pstate_init(void)
1807{
907cc908 1808 int cpu, rc = 0;
93f0822d 1809 const struct x86_cpu_id *id;
64df1fdf 1810 struct cpu_defaults *cpu_def;
93f0822d 1811
6be26498
DB
1812 if (no_load)
1813 return -ENODEV;
1814
7791e4aa
SP
1815 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1816 copy_cpu_funcs(&core_params.funcs);
1817 hwp_active++;
1818 goto hwp_cpu_matched;
1819 }
1820
93f0822d
DB
1821 id = x86_match_cpu(intel_pstate_cpu_ids);
1822 if (!id)
1823 return -ENODEV;
1824
64df1fdf 1825 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1826
64df1fdf
BP
1827 copy_pid_params(&cpu_def->pid_policy);
1828 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1829
b563b4e3
DB
1830 if (intel_pstate_msrs_not_valid())
1831 return -ENODEV;
1832
7791e4aa
SP
1833hwp_cpu_matched:
1834 /*
1835 * The Intel pstate driver will be ignored if the platform
1836 * firmware has its own power management modes.
1837 */
1838 if (intel_pstate_platform_pwr_mgmt_exists())
1839 return -ENODEV;
1840
4836df17 1841 pr_info("Intel P-state driver initializing\n");
93f0822d 1842
b57ffac5 1843 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1844 if (!all_cpu_data)
1845 return -ENOMEM;
93f0822d 1846
d64c3b0b
KCA
1847 if (!hwp_active && hwp_only)
1848 goto out;
1849
93f0822d
DB
1850 rc = cpufreq_register_driver(&intel_pstate_driver);
1851 if (rc)
1852 goto out;
1853
1854 intel_pstate_debug_expose_params();
1855 intel_pstate_sysfs_expose_params();
b69880f9 1856
7791e4aa 1857 if (hwp_active)
4836df17 1858 pr_info("HWP enabled\n");
7791e4aa 1859
93f0822d
DB
1860 return rc;
1861out:
907cc908
DB
1862 get_online_cpus();
1863 for_each_online_cpu(cpu) {
1864 if (all_cpu_data[cpu]) {
bb6ab52f 1865 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1866 kfree(all_cpu_data[cpu]);
1867 }
1868 }
1869
1870 put_online_cpus();
1871 vfree(all_cpu_data);
93f0822d
DB
1872 return -ENODEV;
1873}
1874device_initcall(intel_pstate_init);
1875
6be26498
DB
1876static int __init intel_pstate_setup(char *str)
1877{
1878 if (!str)
1879 return -EINVAL;
1880
1881 if (!strcmp(str, "disable"))
1882 no_load = 1;
539342f6 1883 if (!strcmp(str, "no_hwp")) {
4836df17 1884 pr_info("HWP disabled\n");
2f86dc4c 1885 no_hwp = 1;
539342f6 1886 }
aa4ea34d
EZ
1887 if (!strcmp(str, "force"))
1888 force_load = 1;
d64c3b0b
KCA
1889 if (!strcmp(str, "hwp_only"))
1890 hwp_only = 1;
9522a2ff
SP
1891
1892#ifdef CONFIG_ACPI
1893 if (!strcmp(str, "support_acpi_ppc"))
1894 acpi_ppc = true;
1895#endif
1896
6be26498
DB
1897 return 0;
1898}
1899early_param("intel_pstate", intel_pstate_setup);
1900
93f0822d
DB
1901MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1902MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1903MODULE_LICENSE("GPL");