]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
intel_pstate: Update cpu_frequency tracepoint every time
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
938d21a2
PL
40#define ATOM_RATIOS 0x66a
41#define ATOM_VIDS 0x66b
42#define ATOM_TURBO_RATIOS 0x66c
43#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
47#endif
48
f0fe3cd7 49#define FRAC_BITS 8
93f0822d
DB
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 52
a1c9787d
RW
53#define EXT_BITS 6
54#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
13ad7701
SP
87/**
88 * struct sample - Store performance sample
a1c9787d 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
90 * performance during last sample period
91 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 92 * P state. This can be different than core_avg_perf
13ad7701
SP
93 * to account for cpu idle period
94 * @aperf: Difference of actual performance frequency clock count
95 * read from APERF MSR between last and current sample
96 * @mperf: Difference of maximum performance frequency clock count
97 * read from MPERF MSR between last and current sample
98 * @tsc: Difference of time stamp counter between last and
99 * current sample
13ad7701
SP
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
93f0822d 105struct sample {
a1c9787d 106 int32_t core_avg_perf;
157386b6 107 int32_t busy_scaled;
93f0822d
DB
108 u64 aperf;
109 u64 mperf;
4055fad3 110 u64 tsc;
a4675fbc 111 u64 time;
93f0822d
DB
112};
113
13ad7701
SP
114/**
115 * struct pstate_data - Store P state data
116 * @current_pstate: Current requested P state
117 * @min_pstate: Min P state possible for this platform
118 * @max_pstate: Max P state possible for this platform
119 * @max_pstate_physical:This is physical Max P state for a processor
120 * This can be higher than the max_pstate which can
121 * be limited by platform thermal design power limits
122 * @scaling: Scaling factor to convert frequency to cpufreq
123 * frequency units
124 * @turbo_pstate: Max Turbo P state possible for this platform
125 *
126 * Stores the per cpu model P state limits and current P state.
127 */
93f0822d
DB
128struct pstate_data {
129 int current_pstate;
130 int min_pstate;
131 int max_pstate;
3bcc6fa9 132 int max_pstate_physical;
b27580b0 133 int scaling;
93f0822d
DB
134 int turbo_pstate;
135};
136
13ad7701
SP
137/**
138 * struct vid_data - Stores voltage information data
139 * @min: VID data for this platform corresponding to
140 * the lowest P state
141 * @max: VID data corresponding to the highest P State.
142 * @turbo: VID data for turbo P state
143 * @ratio: Ratio of (vid max - vid min) /
144 * (max P state - Min P State)
145 *
146 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147 * This data is used in Atom platforms, where in addition to target P state,
148 * the voltage data needs to be specified to select next P State.
149 */
007bea09 150struct vid_data {
21855ff5
DB
151 int min;
152 int max;
153 int turbo;
007bea09
DB
154 int32_t ratio;
155};
156
13ad7701
SP
157/**
158 * struct _pid - Stores PID data
159 * @setpoint: Target set point for busyness or performance
160 * @integral: Storage for accumulated error values
161 * @p_gain: PID proportional gain
162 * @i_gain: PID integral gain
163 * @d_gain: PID derivative gain
164 * @deadband: PID deadband
165 * @last_err: Last error storage for integral part of PID calculation
166 *
167 * Stores PID coefficients and last error for PID controller.
168 */
93f0822d
DB
169struct _pid {
170 int setpoint;
171 int32_t integral;
172 int32_t p_gain;
173 int32_t i_gain;
174 int32_t d_gain;
175 int deadband;
d253d2a5 176 int32_t last_err;
93f0822d
DB
177};
178
13ad7701
SP
179/**
180 * struct cpudata - Per CPU instance data storage
181 * @cpu: CPU number for this instance data
182 * @update_util: CPUFreq utility callback information
4578ee7e 183 * @update_util_set: CPUFreq utility callback is set
13ad7701
SP
184 * @pstate: Stores P state limits for this CPU
185 * @vid: Stores VID limits for this CPU
186 * @pid: Stores PID parameters for this CPU
187 * @last_sample_time: Last Sample time
188 * @prev_aperf: Last APERF value read from APERF MSR
189 * @prev_mperf: Last MPERF value read from MPERF MSR
190 * @prev_tsc: Last timestamp counter (TSC) value
191 * @prev_cummulative_iowait: IO Wait time difference from last and
192 * current sample
193 * @sample: Storage for storing last Sample data
9522a2ff
SP
194 * @acpi_perf_data: Stores ACPI perf information read from _PSS
195 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
196 *
197 * This structure stores per CPU instance data for all CPUs.
198 */
93f0822d
DB
199struct cpudata {
200 int cpu;
201
a4675fbc 202 struct update_util_data update_util;
4578ee7e 203 bool update_util_set;
93f0822d 204
93f0822d 205 struct pstate_data pstate;
007bea09 206 struct vid_data vid;
93f0822d 207 struct _pid pid;
93f0822d 208
a4675fbc 209 u64 last_sample_time;
93f0822d
DB
210 u64 prev_aperf;
211 u64 prev_mperf;
4055fad3 212 u64 prev_tsc;
63d1d656 213 u64 prev_cummulative_iowait;
d37e2b76 214 struct sample sample;
9522a2ff
SP
215#ifdef CONFIG_ACPI
216 struct acpi_processor_performance acpi_perf_data;
217 bool valid_pss_table;
218#endif
93f0822d
DB
219};
220
221static struct cpudata **all_cpu_data;
13ad7701
SP
222
223/**
224 * struct pid_adjust_policy - Stores static PID configuration data
225 * @sample_rate_ms: PID calculation sample rate in ms
226 * @sample_rate_ns: Sample rate calculation in ns
227 * @deadband: PID deadband
228 * @setpoint: PID Setpoint
229 * @p_gain_pct: PID proportional gain
230 * @i_gain_pct: PID integral gain
231 * @d_gain_pct: PID derivative gain
232 *
233 * Stores per CPU model static PID configuration data.
234 */
93f0822d
DB
235struct pstate_adjust_policy {
236 int sample_rate_ms;
a4675fbc 237 s64 sample_rate_ns;
93f0822d
DB
238 int deadband;
239 int setpoint;
240 int p_gain_pct;
241 int d_gain_pct;
242 int i_gain_pct;
243};
244
13ad7701
SP
245/**
246 * struct pstate_funcs - Per CPU model specific callbacks
247 * @get_max: Callback to get maximum non turbo effective P state
248 * @get_max_physical: Callback to get maximum non turbo physical P state
249 * @get_min: Callback to get minimum P state
250 * @get_turbo: Callback to get turbo P state
251 * @get_scaling: Callback to get frequency scaling factor
252 * @get_val: Callback to convert P state to actual MSR write value
253 * @get_vid: Callback to get VID data for Atom platforms
254 * @get_target_pstate: Callback to a function to calculate next P state to use
255 *
256 * Core and Atom CPU models have different way to get P State limits. This
257 * structure is used to store those callbacks.
258 */
016c8150
DB
259struct pstate_funcs {
260 int (*get_max)(void);
3bcc6fa9 261 int (*get_max_physical)(void);
016c8150
DB
262 int (*get_min)(void);
263 int (*get_turbo)(void);
b27580b0 264 int (*get_scaling)(void);
fdfdb2b1 265 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 266 void (*get_vid)(struct cpudata *);
157386b6 267 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
268};
269
13ad7701
SP
270/**
271 * struct cpu_defaults- Per CPU model default config data
272 * @pid_policy: PID config data
273 * @funcs: Callback function data
274 */
016c8150
DB
275struct cpu_defaults {
276 struct pstate_adjust_policy pid_policy;
277 struct pstate_funcs funcs;
93f0822d
DB
278};
279
157386b6 280static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 281static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 282
4a7cb7a9
JZ
283static struct pstate_adjust_policy pid_params __read_mostly;
284static struct pstate_funcs pstate_funcs __read_mostly;
285static int hwp_active __read_mostly;
016c8150 286
9522a2ff
SP
287#ifdef CONFIG_ACPI
288static bool acpi_ppc;
289#endif
13ad7701
SP
290
291/**
292 * struct perf_limits - Store user and policy limits
293 * @no_turbo: User requested turbo state from intel_pstate sysfs
294 * @turbo_disabled: Platform turbo status either from msr
295 * MSR_IA32_MISC_ENABLE or when maximum available pstate
296 * matches the maximum turbo pstate
297 * @max_perf_pct: Effective maximum performance limit in percentage, this
298 * is minimum of either limits enforced by cpufreq policy
299 * or limits from user set limits via intel_pstate sysfs
300 * @min_perf_pct: Effective minimum performance limit in percentage, this
301 * is maximum of either limits enforced by cpufreq policy
302 * or limits from user set limits via intel_pstate sysfs
303 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
304 * This value is used to limit max pstate
305 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
306 * This value is used to limit min pstate
307 * @max_policy_pct: The maximum performance in percentage enforced by
308 * cpufreq setpolicy interface
309 * @max_sysfs_pct: The maximum performance in percentage enforced by
310 * intel pstate sysfs interface
311 * @min_policy_pct: The minimum performance in percentage enforced by
312 * cpufreq setpolicy interface
313 * @min_sysfs_pct: The minimum performance in percentage enforced by
314 * intel pstate sysfs interface
315 *
316 * Storage for user and policy defined limits.
317 */
93f0822d
DB
318struct perf_limits {
319 int no_turbo;
dd5fbf70 320 int turbo_disabled;
93f0822d
DB
321 int max_perf_pct;
322 int min_perf_pct;
323 int32_t max_perf;
324 int32_t min_perf;
d8f469e9
DB
325 int max_policy_pct;
326 int max_sysfs_pct;
a0475992
KCA
327 int min_policy_pct;
328 int min_sysfs_pct;
93f0822d
DB
329};
330
51443fbf
PB
331static struct perf_limits performance_limits = {
332 .no_turbo = 0,
333 .turbo_disabled = 0,
334 .max_perf_pct = 100,
335 .max_perf = int_tofp(1),
336 .min_perf_pct = 100,
337 .min_perf = int_tofp(1),
338 .max_policy_pct = 100,
339 .max_sysfs_pct = 100,
340 .min_policy_pct = 0,
341 .min_sysfs_pct = 0,
342};
343
344static struct perf_limits powersave_limits = {
93f0822d 345 .no_turbo = 0,
4521e1a0 346 .turbo_disabled = 0,
93f0822d
DB
347 .max_perf_pct = 100,
348 .max_perf = int_tofp(1),
349 .min_perf_pct = 0,
350 .min_perf = 0,
d8f469e9
DB
351 .max_policy_pct = 100,
352 .max_sysfs_pct = 100,
a0475992
KCA
353 .min_policy_pct = 0,
354 .min_sysfs_pct = 0,
93f0822d
DB
355};
356
51443fbf
PB
357#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358static struct perf_limits *limits = &performance_limits;
359#else
360static struct perf_limits *limits = &powersave_limits;
361#endif
362
9522a2ff 363#ifdef CONFIG_ACPI
2b3ec765
SP
364
365static bool intel_pstate_get_ppc_enable_status(void)
366{
367 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 return true;
370
371 return acpi_ppc;
372}
373
9522a2ff
SP
374static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375{
376 struct cpudata *cpu;
9522a2ff
SP
377 int ret;
378 int i;
379
e59a8f7f
SP
380 if (hwp_active)
381 return;
382
2b3ec765 383 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
384 return;
385
386 cpu = all_cpu_data[policy->cpu];
387
388 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389 policy->cpu);
390 if (ret)
391 return;
392
393 /*
394 * Check if the control value in _PSS is for PERF_CTL MSR, which should
395 * guarantee that the states returned by it map to the states in our
396 * list directly.
397 */
398 if (cpu->acpi_perf_data.control_register.space_id !=
399 ACPI_ADR_SPACE_FIXED_HARDWARE)
400 goto err;
401
402 /*
403 * If there is only one entry _PSS, simply ignore _PSS and continue as
404 * usual without taking _PSS into account
405 */
406 if (cpu->acpi_perf_data.state_count < 2)
407 goto err;
408
409 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
412 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413 (u32) cpu->acpi_perf_data.states[i].core_frequency,
414 (u32) cpu->acpi_perf_data.states[i].power,
415 (u32) cpu->acpi_perf_data.states[i].control);
416 }
417
418 /*
419 * The _PSS table doesn't contain whole turbo frequency range.
420 * This just contains +1 MHZ above the max non turbo frequency,
421 * with control value corresponding to max turbo ratio. But
422 * when cpufreq set policy is called, it will call with this
423 * max frequency, which will cause a reduced performance as
424 * this driver uses real max turbo frequency as the max
425 * frequency. So correct this frequency in _PSS table to
b00345d1 426 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
427 * Also need to convert to MHz as _PSS freq is in MHz.
428 */
b00345d1 429 if (!limits->turbo_disabled)
9522a2ff
SP
430 cpu->acpi_perf_data.states[0].core_frequency =
431 policy->cpuinfo.max_freq / 1000;
432 cpu->valid_pss_table = true;
6cacd115 433 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
434
435 return;
436
437 err:
438 cpu->valid_pss_table = false;
439 acpi_processor_unregister_performance(policy->cpu);
440}
441
442static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443{
444 struct cpudata *cpu;
445
446 cpu = all_cpu_data[policy->cpu];
447 if (!cpu->valid_pss_table)
448 return;
449
450 acpi_processor_unregister_performance(policy->cpu);
451}
452
453#else
454static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455{
456}
457
458static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459{
460}
461#endif
462
93f0822d 463static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 464 int deadband, int integral) {
b54a0dfd
PL
465 pid->setpoint = int_tofp(setpoint);
466 pid->deadband = int_tofp(deadband);
93f0822d 467 pid->integral = int_tofp(integral);
d98d099b 468 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
469}
470
471static inline void pid_p_gain_set(struct _pid *pid, int percent)
472{
22590efb 473 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
474}
475
476static inline void pid_i_gain_set(struct _pid *pid, int percent)
477{
22590efb 478 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
479}
480
481static inline void pid_d_gain_set(struct _pid *pid, int percent)
482{
22590efb 483 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
484}
485
d253d2a5 486static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 487{
d253d2a5 488 signed int result;
93f0822d
DB
489 int32_t pterm, dterm, fp_error;
490 int32_t integral_limit;
491
b54a0dfd 492 fp_error = pid->setpoint - busy;
93f0822d 493
b54a0dfd 494 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
495 return 0;
496
497 pterm = mul_fp(pid->p_gain, fp_error);
498
499 pid->integral += fp_error;
500
e0d4c8f8
KCA
501 /*
502 * We limit the integral here so that it will never
503 * get higher than 30. This prevents it from becoming
504 * too large an input over long periods of time and allows
505 * it to get factored out sooner.
506 *
507 * The value of 30 was chosen through experimentation.
508 */
93f0822d
DB
509 integral_limit = int_tofp(30);
510 if (pid->integral > integral_limit)
511 pid->integral = integral_limit;
512 if (pid->integral < -integral_limit)
513 pid->integral = -integral_limit;
514
d253d2a5
BS
515 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516 pid->last_err = fp_error;
93f0822d
DB
517
518 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 519 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
520 return (signed int)fp_toint(result);
521}
522
523static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524{
016c8150
DB
525 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 528
2d8d1f18 529 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
530}
531
93f0822d
DB
532static inline void intel_pstate_reset_all_pid(void)
533{
534 unsigned int cpu;
845c1cbe 535
93f0822d
DB
536 for_each_online_cpu(cpu) {
537 if (all_cpu_data[cpu])
538 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539 }
540}
541
4521e1a0
GM
542static inline void update_turbo_state(void)
543{
544 u64 misc_en;
545 struct cpudata *cpu;
546
547 cpu = all_cpu_data[0];
548 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 549 limits->turbo_disabled =
4521e1a0
GM
550 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552}
553
41cfd64c 554static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 555{
74da56ce
KCA
556 int min, hw_min, max, hw_max, cpu, range, adj_range;
557 u64 value, cap;
558
559 rdmsrl(MSR_HWP_CAPABILITIES, cap);
560 hw_min = HWP_LOWEST_PERF(cap);
561 hw_max = HWP_HIGHEST_PERF(cap);
562 range = hw_max - hw_min;
2f86dc4c 563
41cfd64c 564 for_each_cpu(cpu, cpumask) {
2f86dc4c 565 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 566 adj_range = limits->min_perf_pct * range / 100;
74da56ce 567 min = hw_min + adj_range;
2f86dc4c
DB
568 value &= ~HWP_MIN_PERF(~0L);
569 value |= HWP_MIN_PERF(min);
570
51443fbf 571 adj_range = limits->max_perf_pct * range / 100;
74da56ce 572 max = hw_min + adj_range;
51443fbf 573 if (limits->no_turbo) {
74da56ce
KCA
574 hw_max = HWP_GUARANTEED_PERF(cap);
575 if (hw_max < max)
576 max = hw_max;
2f86dc4c
DB
577 }
578
579 value &= ~HWP_MAX_PERF(~0L);
580 value |= HWP_MAX_PERF(max);
581 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582 }
41cfd64c 583}
2f86dc4c 584
ba41e1bc
RW
585static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586{
587 if (hwp_active)
588 intel_pstate_hwp_set(policy->cpus);
589
590 return 0;
591}
592
41cfd64c
VK
593static void intel_pstate_hwp_set_online_cpus(void)
594{
595 get_online_cpus();
596 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
597 put_online_cpus();
598}
599
93f0822d
DB
600/************************** debugfs begin ************************/
601static int pid_param_set(void *data, u64 val)
602{
603 *(u32 *)data = val;
604 intel_pstate_reset_all_pid();
605 return 0;
606}
845c1cbe 607
93f0822d
DB
608static int pid_param_get(void *data, u64 *val)
609{
610 *val = *(u32 *)data;
611 return 0;
612}
2d8d1f18 613DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
614
615struct pid_param {
616 char *name;
617 void *value;
618};
619
620static struct pid_param pid_files[] = {
016c8150
DB
621 {"sample_rate_ms", &pid_params.sample_rate_ms},
622 {"d_gain_pct", &pid_params.d_gain_pct},
623 {"i_gain_pct", &pid_params.i_gain_pct},
624 {"deadband", &pid_params.deadband},
625 {"setpoint", &pid_params.setpoint},
626 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
627 {NULL, NULL}
628};
629
317dd50e 630static void __init intel_pstate_debug_expose_params(void)
93f0822d 631{
317dd50e 632 struct dentry *debugfs_parent;
93f0822d
DB
633 int i = 0;
634
2f86dc4c
DB
635 if (hwp_active)
636 return;
93f0822d
DB
637 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638 if (IS_ERR_OR_NULL(debugfs_parent))
639 return;
640 while (pid_files[i].name) {
641 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
642 debugfs_parent, pid_files[i].value,
643 &fops_pid_param);
93f0822d
DB
644 i++;
645 }
646}
647
648/************************** debugfs end ************************/
649
650/************************** sysfs begin ************************/
651#define show_one(file_name, object) \
652 static ssize_t show_##file_name \
653 (struct kobject *kobj, struct attribute *attr, char *buf) \
654 { \
51443fbf 655 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
656 }
657
d01b1f48
KCA
658static ssize_t show_turbo_pct(struct kobject *kobj,
659 struct attribute *attr, char *buf)
660{
661 struct cpudata *cpu;
662 int total, no_turbo, turbo_pct;
663 uint32_t turbo_fp;
664
665 cpu = all_cpu_data[0];
666
667 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 669 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
670 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671 return sprintf(buf, "%u\n", turbo_pct);
672}
673
0522424e
KCA
674static ssize_t show_num_pstates(struct kobject *kobj,
675 struct attribute *attr, char *buf)
676{
677 struct cpudata *cpu;
678 int total;
679
680 cpu = all_cpu_data[0];
681 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682 return sprintf(buf, "%u\n", total);
683}
684
4521e1a0
GM
685static ssize_t show_no_turbo(struct kobject *kobj,
686 struct attribute *attr, char *buf)
687{
688 ssize_t ret;
689
690 update_turbo_state();
51443fbf
PB
691 if (limits->turbo_disabled)
692 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 693 else
51443fbf 694 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
695
696 return ret;
697}
698
93f0822d 699static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 700 const char *buf, size_t count)
93f0822d
DB
701{
702 unsigned int input;
703 int ret;
845c1cbe 704
93f0822d
DB
705 ret = sscanf(buf, "%u", &input);
706 if (ret != 1)
707 return -EINVAL;
4521e1a0
GM
708
709 update_turbo_state();
51443fbf 710 if (limits->turbo_disabled) {
4836df17 711 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 712 return -EPERM;
dd5fbf70 713 }
2f86dc4c 714
51443fbf 715 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 716
2f86dc4c 717 if (hwp_active)
41cfd64c 718 intel_pstate_hwp_set_online_cpus();
2f86dc4c 719
93f0822d
DB
720 return count;
721}
722
723static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 724 const char *buf, size_t count)
93f0822d
DB
725{
726 unsigned int input;
727 int ret;
845c1cbe 728
93f0822d
DB
729 ret = sscanf(buf, "%u", &input);
730 if (ret != 1)
731 return -EINVAL;
732
51443fbf
PB
733 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734 limits->max_perf_pct = min(limits->max_policy_pct,
735 limits->max_sysfs_pct);
736 limits->max_perf_pct = max(limits->min_policy_pct,
737 limits->max_perf_pct);
738 limits->max_perf_pct = max(limits->min_perf_pct,
739 limits->max_perf_pct);
22590efb 740 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 741
2f86dc4c 742 if (hwp_active)
41cfd64c 743 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
744 return count;
745}
746
747static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 748 const char *buf, size_t count)
93f0822d
DB
749{
750 unsigned int input;
751 int ret;
845c1cbe 752
93f0822d
DB
753 ret = sscanf(buf, "%u", &input);
754 if (ret != 1)
755 return -EINVAL;
a0475992 756
51443fbf
PB
757 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758 limits->min_perf_pct = max(limits->min_policy_pct,
759 limits->min_sysfs_pct);
760 limits->min_perf_pct = min(limits->max_policy_pct,
761 limits->min_perf_pct);
762 limits->min_perf_pct = min(limits->max_perf_pct,
763 limits->min_perf_pct);
22590efb 764 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 765
2f86dc4c 766 if (hwp_active)
41cfd64c 767 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
768 return count;
769}
770
93f0822d
DB
771show_one(max_perf_pct, max_perf_pct);
772show_one(min_perf_pct, min_perf_pct);
773
774define_one_global_rw(no_turbo);
775define_one_global_rw(max_perf_pct);
776define_one_global_rw(min_perf_pct);
d01b1f48 777define_one_global_ro(turbo_pct);
0522424e 778define_one_global_ro(num_pstates);
93f0822d
DB
779
780static struct attribute *intel_pstate_attributes[] = {
781 &no_turbo.attr,
782 &max_perf_pct.attr,
783 &min_perf_pct.attr,
d01b1f48 784 &turbo_pct.attr,
0522424e 785 &num_pstates.attr,
93f0822d
DB
786 NULL
787};
788
789static struct attribute_group intel_pstate_attr_group = {
790 .attrs = intel_pstate_attributes,
791};
93f0822d 792
317dd50e 793static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 794{
317dd50e 795 struct kobject *intel_pstate_kobject;
93f0822d
DB
796 int rc;
797
798 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799 &cpu_subsys.dev_root->kobj);
800 BUG_ON(!intel_pstate_kobject);
2d8d1f18 801 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
802 BUG_ON(rc);
803}
93f0822d 804/************************** sysfs end ************************/
2f86dc4c 805
ba88d433 806static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 807{
f05c9665
SP
808 /* First disable HWP notification interrupt as we don't process them */
809 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
810
ba88d433 811 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
812}
813
938d21a2 814static int atom_get_min_pstate(void)
19e77c28
DB
815{
816 u64 value;
845c1cbe 817
938d21a2 818 rdmsrl(ATOM_RATIOS, value);
c16ed060 819 return (value >> 8) & 0x7F;
19e77c28
DB
820}
821
938d21a2 822static int atom_get_max_pstate(void)
19e77c28
DB
823{
824 u64 value;
845c1cbe 825
938d21a2 826 rdmsrl(ATOM_RATIOS, value);
c16ed060 827 return (value >> 16) & 0x7F;
19e77c28 828}
93f0822d 829
938d21a2 830static int atom_get_turbo_pstate(void)
61d8d2ab
DB
831{
832 u64 value;
845c1cbe 833
938d21a2 834 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 835 return value & 0x7F;
61d8d2ab
DB
836}
837
fdfdb2b1 838static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
839{
840 u64 val;
841 int32_t vid_fp;
842 u32 vid;
843
144c8e17 844 val = (u64)pstate << 8;
51443fbf 845 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
846 val |= (u64)1 << 32;
847
848 vid_fp = cpudata->vid.min + mul_fp(
849 int_tofp(pstate - cpudata->pstate.min_pstate),
850 cpudata->vid.ratio);
851
852 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 853 vid = ceiling_fp(vid_fp);
007bea09 854
21855ff5
DB
855 if (pstate > cpudata->pstate.max_pstate)
856 vid = cpudata->vid.turbo;
857
fdfdb2b1 858 return val | vid;
007bea09
DB
859}
860
1421df63 861static int silvermont_get_scaling(void)
b27580b0
DB
862{
863 u64 value;
864 int i;
1421df63
PL
865 /* Defined in Table 35-6 from SDM (Sept 2015) */
866 static int silvermont_freq_table[] = {
867 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
868
869 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
870 i = value & 0x7;
871 WARN_ON(i > 4);
b27580b0 872
1421df63
PL
873 return silvermont_freq_table[i];
874}
b27580b0 875
1421df63
PL
876static int airmont_get_scaling(void)
877{
878 u64 value;
879 int i;
880 /* Defined in Table 35-10 from SDM (Sept 2015) */
881 static int airmont_freq_table[] = {
882 83300, 100000, 133300, 116700, 80000,
883 93300, 90000, 88900, 87500};
884
885 rdmsrl(MSR_FSB_FREQ, value);
886 i = value & 0xF;
887 WARN_ON(i > 8);
888
889 return airmont_freq_table[i];
b27580b0
DB
890}
891
938d21a2 892static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
893{
894 u64 value;
895
938d21a2 896 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
897 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
898 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
899 cpudata->vid.ratio = div_fp(
900 cpudata->vid.max - cpudata->vid.min,
901 int_tofp(cpudata->pstate.max_pstate -
902 cpudata->pstate.min_pstate));
21855ff5 903
938d21a2 904 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 905 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
906}
907
016c8150 908static int core_get_min_pstate(void)
93f0822d
DB
909{
910 u64 value;
845c1cbe 911
05e99c8c 912 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
913 return (value >> 40) & 0xFF;
914}
915
3bcc6fa9 916static int core_get_max_pstate_physical(void)
93f0822d
DB
917{
918 u64 value;
845c1cbe 919
05e99c8c 920 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
921 return (value >> 8) & 0xFF;
922}
923
016c8150 924static int core_get_max_pstate(void)
93f0822d 925{
6a35fc2d
SP
926 u64 tar;
927 u64 plat_info;
928 int max_pstate;
929 int err;
930
931 rdmsrl(MSR_PLATFORM_INFO, plat_info);
932 max_pstate = (plat_info >> 8) & 0xFF;
933
934 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
935 if (!err) {
936 /* Do some sanity checking for safety */
937 if (plat_info & 0x600000000) {
938 u64 tdp_ctrl;
939 u64 tdp_ratio;
940 int tdp_msr;
941
942 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
943 if (err)
944 goto skip_tar;
945
5fc8f707 946 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
6a35fc2d
SP
947 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
948 if (err)
949 goto skip_tar;
950
1becf035
SP
951 /* For level 1 and 2, bits[23:16] contain the ratio */
952 if (tdp_ctrl)
953 tdp_ratio >>= 16;
954
955 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
956 if (tdp_ratio - 1 == tar) {
957 max_pstate = tar;
958 pr_debug("max_pstate=TAC %x\n", max_pstate);
959 } else {
960 goto skip_tar;
961 }
962 }
963 }
845c1cbe 964
6a35fc2d
SP
965skip_tar:
966 return max_pstate;
93f0822d
DB
967}
968
016c8150 969static int core_get_turbo_pstate(void)
93f0822d
DB
970{
971 u64 value;
972 int nont, ret;
845c1cbe 973
05e99c8c 974 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 975 nont = core_get_max_pstate();
285cb990 976 ret = (value) & 255;
93f0822d
DB
977 if (ret <= nont)
978 ret = nont;
979 return ret;
980}
981
b27580b0
DB
982static inline int core_get_scaling(void)
983{
984 return 100000;
985}
986
fdfdb2b1 987static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
988{
989 u64 val;
990
144c8e17 991 val = (u64)pstate << 8;
51443fbf 992 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
993 val |= (u64)1 << 32;
994
fdfdb2b1 995 return val;
016c8150
DB
996}
997
b34ef932
DC
998static int knl_get_turbo_pstate(void)
999{
1000 u64 value;
1001 int nont, ret;
1002
1003 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1004 nont = core_get_max_pstate();
1005 ret = (((value) >> 8) & 0xFF);
1006 if (ret <= nont)
1007 ret = nont;
1008 return ret;
1009}
1010
016c8150
DB
1011static struct cpu_defaults core_params = {
1012 .pid_policy = {
1013 .sample_rate_ms = 10,
1014 .deadband = 0,
1015 .setpoint = 97,
1016 .p_gain_pct = 20,
1017 .d_gain_pct = 0,
1018 .i_gain_pct = 0,
1019 },
1020 .funcs = {
1021 .get_max = core_get_max_pstate,
3bcc6fa9 1022 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1023 .get_min = core_get_min_pstate,
1024 .get_turbo = core_get_turbo_pstate,
b27580b0 1025 .get_scaling = core_get_scaling,
fdfdb2b1 1026 .get_val = core_get_val,
157386b6 1027 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1028 },
1029};
1030
1421df63
PL
1031static struct cpu_defaults silvermont_params = {
1032 .pid_policy = {
1033 .sample_rate_ms = 10,
1034 .deadband = 0,
1035 .setpoint = 60,
1036 .p_gain_pct = 14,
1037 .d_gain_pct = 0,
1038 .i_gain_pct = 4,
1039 },
1040 .funcs = {
1041 .get_max = atom_get_max_pstate,
1042 .get_max_physical = atom_get_max_pstate,
1043 .get_min = atom_get_min_pstate,
1044 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1045 .get_val = atom_get_val,
1421df63
PL
1046 .get_scaling = silvermont_get_scaling,
1047 .get_vid = atom_get_vid,
e70eed2b 1048 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1049 },
1050};
1051
1052static struct cpu_defaults airmont_params = {
19e77c28
DB
1053 .pid_policy = {
1054 .sample_rate_ms = 10,
1055 .deadband = 0,
6a82ba6d 1056 .setpoint = 60,
19e77c28
DB
1057 .p_gain_pct = 14,
1058 .d_gain_pct = 0,
1059 .i_gain_pct = 4,
1060 },
1061 .funcs = {
938d21a2
PL
1062 .get_max = atom_get_max_pstate,
1063 .get_max_physical = atom_get_max_pstate,
1064 .get_min = atom_get_min_pstate,
1065 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1066 .get_val = atom_get_val,
1421df63 1067 .get_scaling = airmont_get_scaling,
938d21a2 1068 .get_vid = atom_get_vid,
e70eed2b 1069 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1070 },
1071};
1072
b34ef932
DC
1073static struct cpu_defaults knl_params = {
1074 .pid_policy = {
1075 .sample_rate_ms = 10,
1076 .deadband = 0,
1077 .setpoint = 97,
1078 .p_gain_pct = 20,
1079 .d_gain_pct = 0,
1080 .i_gain_pct = 0,
1081 },
1082 .funcs = {
1083 .get_max = core_get_max_pstate,
3bcc6fa9 1084 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1085 .get_min = core_get_min_pstate,
1086 .get_turbo = knl_get_turbo_pstate,
69cefc27 1087 .get_scaling = core_get_scaling,
fdfdb2b1 1088 .get_val = core_get_val,
157386b6 1089 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1090 },
1091};
1092
41bad47f
SP
1093static struct cpu_defaults bxt_params = {
1094 .pid_policy = {
1095 .sample_rate_ms = 10,
1096 .deadband = 0,
1097 .setpoint = 60,
1098 .p_gain_pct = 14,
1099 .d_gain_pct = 0,
1100 .i_gain_pct = 4,
1101 },
1102 .funcs = {
1103 .get_max = core_get_max_pstate,
1104 .get_max_physical = core_get_max_pstate_physical,
1105 .get_min = core_get_min_pstate,
1106 .get_turbo = core_get_turbo_pstate,
1107 .get_scaling = core_get_scaling,
1108 .get_val = core_get_val,
1109 .get_target_pstate = get_target_pstate_use_cpu_load,
1110 },
1111};
1112
93f0822d
DB
1113static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1114{
1115 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1116 int max_perf_adj;
93f0822d 1117 int min_perf;
845c1cbe 1118
51443fbf 1119 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1120 max_perf = cpu->pstate.max_pstate;
1121
e0d4c8f8
KCA
1122 /*
1123 * performance can be limited by user through sysfs, by cpufreq
1124 * policy, or by cpu specific default values determined through
1125 * experimentation.
1126 */
a158bed5 1127 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1128 *max = clamp_t(int, max_perf_adj,
1129 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1130
a158bed5 1131 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1132 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1133}
1134
fdfdb2b1
RW
1135static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1136{
1137 int pstate = cpu->pstate.min_pstate;
1138
bc95a454
RW
1139 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1140 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1141 /*
1142 * Generally, there is no guarantee that this code will always run on
1143 * the CPU being updated, so force the register update to run on the
1144 * right CPU.
1145 */
1146 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1147 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1148}
1149
93f0822d
DB
1150static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1151{
016c8150
DB
1152 cpu->pstate.min_pstate = pstate_funcs.get_min();
1153 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1154 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1155 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1156 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1157
007bea09
DB
1158 if (pstate_funcs.get_vid)
1159 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1160
1161 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1162}
1163
a1c9787d 1164static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1165{
6b17ddb2 1166 struct sample *sample = &cpu->sample;
e66c1768 1167
a1c9787d 1168 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1169}
1170
4fec7ad5 1171static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1172{
93f0822d 1173 u64 aperf, mperf;
4ab60c3f 1174 unsigned long flags;
4055fad3 1175 u64 tsc;
93f0822d 1176
4ab60c3f 1177 local_irq_save(flags);
93f0822d
DB
1178 rdmsrl(MSR_IA32_APERF, aperf);
1179 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1180 tsc = rdtsc();
4fec7ad5 1181 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1182 local_irq_restore(flags);
4fec7ad5 1183 return false;
8e601a9f 1184 }
4ab60c3f 1185 local_irq_restore(flags);
b69880f9 1186
c4ee841f 1187 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1188 cpu->sample.time = time;
d37e2b76
DB
1189 cpu->sample.aperf = aperf;
1190 cpu->sample.mperf = mperf;
4055fad3 1191 cpu->sample.tsc = tsc;
d37e2b76
DB
1192 cpu->sample.aperf -= cpu->prev_aperf;
1193 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1194 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1195
93f0822d
DB
1196 cpu->prev_aperf = aperf;
1197 cpu->prev_mperf = mperf;
4055fad3 1198 cpu->prev_tsc = tsc;
febce40f
RW
1199 /*
1200 * First time this function is invoked in a given cycle, all of the
1201 * previous sample data fields are equal to zero or stale and they must
1202 * be populated with meaningful numbers for things to work, so assume
1203 * that sample.time will always be reset before setting the utilization
1204 * update hook and make the caller skip the sample then.
1205 */
1206 return !!cpu->last_sample_time;
93f0822d
DB
1207}
1208
8fa520af
PL
1209static inline int32_t get_avg_frequency(struct cpudata *cpu)
1210{
a1c9787d
RW
1211 return mul_ext_fp(cpu->sample.core_avg_perf,
1212 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1213}
1214
bdcaa23f
PL
1215static inline int32_t get_avg_pstate(struct cpudata *cpu)
1216{
8edb0a6e
RW
1217 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1218 cpu->sample.core_avg_perf);
bdcaa23f
PL
1219}
1220
e70eed2b
PL
1221static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1222{
1223 struct sample *sample = &cpu->sample;
63d1d656
PL
1224 u64 cummulative_iowait, delta_iowait_us;
1225 u64 delta_iowait_mperf;
1226 u64 mperf, now;
e70eed2b
PL
1227 int32_t cpu_load;
1228
63d1d656
PL
1229 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1230
1231 /*
1232 * Convert iowait time into number of IO cycles spent at max_freq.
1233 * IO is considered as busy only for the cpu_load algorithm. For
1234 * performance this is not needed since we always try to reach the
1235 * maximum P-State, so we are already boosting the IOs.
1236 */
1237 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1238 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1239 cpu->pstate.max_pstate, MSEC_PER_SEC);
1240
1241 mperf = cpu->sample.mperf + delta_iowait_mperf;
1242 cpu->prev_cummulative_iowait = cummulative_iowait;
1243
e70eed2b
PL
1244 /*
1245 * The load can be estimated as the ratio of the mperf counter
1246 * running at a constant frequency during active periods
1247 * (C0) and the time stamp counter running at the same frequency
1248 * also during C-states.
1249 */
63d1d656 1250 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1251 cpu->sample.busy_scaled = cpu_load;
1252
bdcaa23f 1253 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1254}
1255
157386b6 1256static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1257{
1aa7a6e2 1258 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1259 u64 duration_ns;
93f0822d 1260
e0d4c8f8 1261 /*
1aa7a6e2
RW
1262 * perf_scaled is the average performance during the last sampling
1263 * period scaled by the ratio of the maximum P-state to the P-state
1264 * requested last time (in percent). That measures the system's
1265 * response to the previous P-state selection.
e0d4c8f8 1266 */
22590efb
RW
1267 max_pstate = cpu->pstate.max_pstate_physical;
1268 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1269 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1270 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1271
e0d4c8f8 1272 /*
a4675fbc
RW
1273 * Since our utilization update callback will not run unless we are
1274 * in C0, check if the actual elapsed time is significantly greater (3x)
1275 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1276 * enough period of time to adjust our performance metric.
e0d4c8f8 1277 */
a4675fbc 1278 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1279 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1280 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1281 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1282 } else {
1283 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1284 if (sample_ratio < int_tofp(1))
1aa7a6e2 1285 perf_scaled = 0;
c4ee841f
DB
1286 }
1287
1aa7a6e2
RW
1288 cpu->sample.busy_scaled = perf_scaled;
1289 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1290}
1291
fdfdb2b1
RW
1292static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1293{
1294 int max_perf, min_perf;
1295
1296 update_turbo_state();
1297
1298 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1299 pstate = clamp_t(int, pstate, min_perf, max_perf);
bc95a454 1300 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1
RW
1301 if (pstate == cpu->pstate.current_pstate)
1302 return;
1303
bc95a454 1304 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1305 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1306}
1307
93f0822d
DB
1308static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1309{
157386b6 1310 int from, target_pstate;
4055fad3
DS
1311 struct sample *sample;
1312
1313 from = cpu->pstate.current_pstate;
93f0822d 1314
157386b6 1315 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1316
fdfdb2b1 1317 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1318
1319 sample = &cpu->sample;
a1c9787d 1320 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1321 fp_toint(sample->busy_scaled),
4055fad3
DS
1322 from,
1323 cpu->pstate.current_pstate,
1324 sample->mperf,
1325 sample->aperf,
1326 sample->tsc,
8fa520af 1327 get_avg_frequency(cpu));
93f0822d
DB
1328}
1329
a4675fbc
RW
1330static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1331 unsigned long util, unsigned long max)
93f0822d 1332{
a4675fbc
RW
1333 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1334 u64 delta_ns = time - cpu->sample.time;
b69880f9 1335
a4675fbc 1336 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1337 bool sample_taken = intel_pstate_sample(cpu, time);
1338
6d45b719 1339 if (sample_taken) {
a1c9787d 1340 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1341 if (!hwp_active)
1342 intel_pstate_adjust_busy_pstate(cpu);
1343 }
a4675fbc 1344 }
93f0822d
DB
1345}
1346
1347#define ICPU(model, policy) \
6cbd7ee1
DB
1348 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1349 (unsigned long)&policy }
93f0822d
DB
1350
1351static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1352 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1353 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1354 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1355 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1356 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1357 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1358 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1359 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1360 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1361 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1362 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1363 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1364 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1365 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1366 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1367 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1368 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
41bad47f 1369 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1370 {}
1371};
1372MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1373
29327c84 1374static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1375 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
2f86dc4c
DB
1376 {}
1377};
1378
93f0822d
DB
1379static int intel_pstate_init_cpu(unsigned int cpunum)
1380{
93f0822d
DB
1381 struct cpudata *cpu;
1382
c0348717
DB
1383 if (!all_cpu_data[cpunum])
1384 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1385 GFP_KERNEL);
93f0822d
DB
1386 if (!all_cpu_data[cpunum])
1387 return -ENOMEM;
1388
1389 cpu = all_cpu_data[cpunum];
1390
93f0822d 1391 cpu->cpu = cpunum;
ba88d433 1392
a4675fbc 1393 if (hwp_active) {
ba88d433 1394 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1395 pid_params.sample_rate_ms = 50;
1396 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1397 }
ba88d433 1398
179e8471 1399 intel_pstate_get_cpu_pstates(cpu);
016c8150 1400
93f0822d 1401 intel_pstate_busy_pid_reset(cpu);
93f0822d 1402
4836df17 1403 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1404
1405 return 0;
1406}
1407
1408static unsigned int intel_pstate_get(unsigned int cpu_num)
1409{
f96fd0c8 1410 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1411
f96fd0c8 1412 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1413}
1414
febce40f 1415static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1416{
febce40f
RW
1417 struct cpudata *cpu = all_cpu_data[cpu_num];
1418
5ab666e0
RW
1419 if (cpu->update_util_set)
1420 return;
1421
febce40f
RW
1422 /* Prevent intel_pstate_update_util() from using stale data. */
1423 cpu->sample.time = 0;
0bed612b
RW
1424 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1425 intel_pstate_update_util);
4578ee7e 1426 cpu->update_util_set = true;
bb6ab52f
RW
1427}
1428
1429static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1430{
4578ee7e
CY
1431 struct cpudata *cpu_data = all_cpu_data[cpu];
1432
1433 if (!cpu_data->update_util_set)
1434 return;
1435
0bed612b 1436 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1437 cpu_data->update_util_set = false;
bb6ab52f
RW
1438 synchronize_sched();
1439}
1440
30a39153
SP
1441static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1442{
1443 limits->no_turbo = 0;
1444 limits->turbo_disabled = 0;
1445 limits->max_perf_pct = 100;
1446 limits->max_perf = int_tofp(1);
1447 limits->min_perf_pct = 100;
1448 limits->min_perf = int_tofp(1);
1449 limits->max_policy_pct = 100;
1450 limits->max_sysfs_pct = 100;
1451 limits->min_policy_pct = 0;
1452 limits->min_sysfs_pct = 0;
1453}
1454
93f0822d
DB
1455static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1456{
3be9200d
SP
1457 struct cpudata *cpu;
1458
d3929b83
DB
1459 if (!policy->cpuinfo.max_freq)
1460 return -ENODEV;
1461
2c2c1af4
SP
1462 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1463 policy->cpuinfo.max_freq, policy->max);
1464
3be9200d 1465 cpu = all_cpu_data[0];
c749c64f
RW
1466 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1467 policy->max < policy->cpuinfo.max_freq &&
1468 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1469 pr_debug("policy->max > max non turbo frequency\n");
1470 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
1471 }
1472
30a39153 1473 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1474 limits = &performance_limits;
30a39153 1475 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1476 pr_debug("set performance\n");
30a39153
SP
1477 intel_pstate_set_performance_limits(limits);
1478 goto out;
1479 }
1480 } else {
4836df17 1481 pr_debug("set powersave\n");
30a39153 1482 limits = &powersave_limits;
93f0822d 1483 }
2f86dc4c 1484
51443fbf
PB
1485 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1486 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1487 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1488 policy->cpuinfo.max_freq);
51443fbf 1489 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1490
1491 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1492 limits->min_perf_pct = max(limits->min_policy_pct,
1493 limits->min_sysfs_pct);
1494 limits->min_perf_pct = min(limits->max_policy_pct,
1495 limits->min_perf_pct);
1496 limits->max_perf_pct = min(limits->max_policy_pct,
1497 limits->max_sysfs_pct);
1498 limits->max_perf_pct = max(limits->min_policy_pct,
1499 limits->max_perf_pct);
43717aad
CY
1500
1501 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1502 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1503
22590efb
RW
1504 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1505 limits->max_perf = div_fp(limits->max_perf_pct, 100);
2c2c1af4 1506 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
93f0822d 1507
bb6ab52f
RW
1508 out:
1509 intel_pstate_set_update_util_hook(policy->cpu);
1510
ba41e1bc 1511 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1512
93f0822d
DB
1513 return 0;
1514}
1515
1516static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1517{
be49e346 1518 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1519
285cb990 1520 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1521 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1522 return -EINVAL;
1523
1524 return 0;
1525}
1526
bb18008f 1527static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1528{
bb18008f
DB
1529 int cpu_num = policy->cpu;
1530 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1531
4836df17 1532 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1533
bb6ab52f 1534 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1535
2f86dc4c
DB
1536 if (hwp_active)
1537 return;
1538
fdfdb2b1 1539 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1540}
1541
2760984f 1542static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1543{
93f0822d 1544 struct cpudata *cpu;
52e0a509 1545 int rc;
93f0822d
DB
1546
1547 rc = intel_pstate_init_cpu(policy->cpu);
1548 if (rc)
1549 return rc;
1550
1551 cpu = all_cpu_data[policy->cpu];
1552
51443fbf 1553 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1554 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1555 else
1556 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1557
b27580b0
DB
1558 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1559 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1560
1561 /* cpuinfo and default policy values */
b27580b0 1562 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
1563 update_turbo_state();
1564 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1565 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1566 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1567
9522a2ff 1568 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1569 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1570 cpumask_set_cpu(policy->cpu, policy->cpus);
1571
1572 return 0;
1573}
1574
9522a2ff
SP
1575static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1576{
1577 intel_pstate_exit_perf_limits(policy);
1578
1579 return 0;
1580}
1581
93f0822d
DB
1582static struct cpufreq_driver intel_pstate_driver = {
1583 .flags = CPUFREQ_CONST_LOOPS,
1584 .verify = intel_pstate_verify_policy,
1585 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1586 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1587 .get = intel_pstate_get,
1588 .init = intel_pstate_cpu_init,
9522a2ff 1589 .exit = intel_pstate_cpu_exit,
bb18008f 1590 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1591 .name = "intel_pstate",
93f0822d
DB
1592};
1593
eed43609
JZ
1594static int no_load __initdata;
1595static int no_hwp __initdata;
1596static int hwp_only __initdata;
29327c84 1597static unsigned int force_load __initdata;
6be26498 1598
29327c84 1599static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 1600{
016c8150 1601 if (!pstate_funcs.get_max() ||
c410833a
SK
1602 !pstate_funcs.get_min() ||
1603 !pstate_funcs.get_turbo())
b563b4e3
DB
1604 return -ENODEV;
1605
b563b4e3
DB
1606 return 0;
1607}
016c8150 1608
29327c84 1609static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1610{
1611 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1612 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1613 pid_params.p_gain_pct = policy->p_gain_pct;
1614 pid_params.i_gain_pct = policy->i_gain_pct;
1615 pid_params.d_gain_pct = policy->d_gain_pct;
1616 pid_params.deadband = policy->deadband;
1617 pid_params.setpoint = policy->setpoint;
1618}
1619
29327c84 1620static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1621{
1622 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1623 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1624 pstate_funcs.get_min = funcs->get_min;
1625 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1626 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1627 pstate_funcs.get_val = funcs->get_val;
007bea09 1628 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1629 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1630
016c8150
DB
1631}
1632
9522a2ff 1633#ifdef CONFIG_ACPI
fbbcdc07 1634
29327c84 1635static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
1636{
1637 int i;
1638
1639 for_each_possible_cpu(i) {
1640 acpi_status status;
1641 union acpi_object *pss;
1642 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1643 struct acpi_processor *pr = per_cpu(processors, i);
1644
1645 if (!pr)
1646 continue;
1647
1648 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1649 if (ACPI_FAILURE(status))
1650 continue;
1651
1652 pss = buffer.pointer;
1653 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1654 kfree(pss);
1655 return false;
1656 }
1657
1658 kfree(pss);
1659 }
1660
1661 return true;
1662}
1663
29327c84 1664static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 1665{
1666 int i;
1667
1668 for_each_possible_cpu(i) {
1669 struct acpi_processor *pr = per_cpu(processors, i);
1670
1671 if (!pr)
1672 continue;
1673 if (acpi_has_method(pr->handle, "_PPC"))
1674 return true;
1675 }
1676 return false;
1677}
1678
1679enum {
1680 PSS,
1681 PPC,
1682};
1683
fbbcdc07
AH
1684struct hw_vendor_info {
1685 u16 valid;
1686 char oem_id[ACPI_OEM_ID_SIZE];
1687 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1688 int oem_pwr_table;
fbbcdc07
AH
1689};
1690
1691/* Hardware vendor-specific info that has its own power management modes */
29327c84 1692static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 1693 {1, "HP ", "ProLiant", PSS},
1694 {1, "ORACLE", "X4-2 ", PPC},
1695 {1, "ORACLE", "X4-2L ", PPC},
1696 {1, "ORACLE", "X4-2B ", PPC},
1697 {1, "ORACLE", "X3-2 ", PPC},
1698 {1, "ORACLE", "X3-2L ", PPC},
1699 {1, "ORACLE", "X3-2B ", PPC},
1700 {1, "ORACLE", "X4470M2 ", PPC},
1701 {1, "ORACLE", "X4270M3 ", PPC},
1702 {1, "ORACLE", "X4270M2 ", PPC},
1703 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1704 {1, "ORACLE", "X4170 M3", PPC},
1705 {1, "ORACLE", "X4275 M3", PPC},
1706 {1, "ORACLE", "X6-2 ", PPC},
1707 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1708 {0, "", ""},
1709};
1710
29327c84 1711static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
1712{
1713 struct acpi_table_header hdr;
1714 struct hw_vendor_info *v_info;
2f86dc4c
DB
1715 const struct x86_cpu_id *id;
1716 u64 misc_pwr;
1717
1718 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1719 if (id) {
1720 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1721 if ( misc_pwr & (1 << 8))
1722 return true;
1723 }
fbbcdc07 1724
c410833a
SK
1725 if (acpi_disabled ||
1726 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1727 return false;
1728
1729 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1730 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1731 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1732 ACPI_OEM_TABLE_ID_SIZE))
1733 switch (v_info->oem_pwr_table) {
1734 case PSS:
1735 return intel_pstate_no_acpi_pss();
1736 case PPC:
aa4ea34d
EZ
1737 return intel_pstate_has_acpi_ppc() &&
1738 (!force_load);
966916ea 1739 }
fbbcdc07
AH
1740 }
1741
1742 return false;
1743}
1744#else /* CONFIG_ACPI not enabled */
1745static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1746static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1747#endif /* CONFIG_ACPI */
1748
7791e4aa
SP
1749static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1750 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1751 {}
1752};
1753
93f0822d
DB
1754static int __init intel_pstate_init(void)
1755{
907cc908 1756 int cpu, rc = 0;
93f0822d 1757 const struct x86_cpu_id *id;
64df1fdf 1758 struct cpu_defaults *cpu_def;
93f0822d 1759
6be26498
DB
1760 if (no_load)
1761 return -ENODEV;
1762
7791e4aa
SP
1763 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1764 copy_cpu_funcs(&core_params.funcs);
1765 hwp_active++;
1766 goto hwp_cpu_matched;
1767 }
1768
93f0822d
DB
1769 id = x86_match_cpu(intel_pstate_cpu_ids);
1770 if (!id)
1771 return -ENODEV;
1772
64df1fdf 1773 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1774
64df1fdf
BP
1775 copy_pid_params(&cpu_def->pid_policy);
1776 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1777
b563b4e3
DB
1778 if (intel_pstate_msrs_not_valid())
1779 return -ENODEV;
1780
7791e4aa
SP
1781hwp_cpu_matched:
1782 /*
1783 * The Intel pstate driver will be ignored if the platform
1784 * firmware has its own power management modes.
1785 */
1786 if (intel_pstate_platform_pwr_mgmt_exists())
1787 return -ENODEV;
1788
4836df17 1789 pr_info("Intel P-state driver initializing\n");
93f0822d 1790
b57ffac5 1791 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1792 if (!all_cpu_data)
1793 return -ENOMEM;
93f0822d 1794
d64c3b0b
KCA
1795 if (!hwp_active && hwp_only)
1796 goto out;
1797
93f0822d
DB
1798 rc = cpufreq_register_driver(&intel_pstate_driver);
1799 if (rc)
1800 goto out;
1801
1802 intel_pstate_debug_expose_params();
1803 intel_pstate_sysfs_expose_params();
b69880f9 1804
7791e4aa 1805 if (hwp_active)
4836df17 1806 pr_info("HWP enabled\n");
7791e4aa 1807
93f0822d
DB
1808 return rc;
1809out:
907cc908
DB
1810 get_online_cpus();
1811 for_each_online_cpu(cpu) {
1812 if (all_cpu_data[cpu]) {
bb6ab52f 1813 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1814 kfree(all_cpu_data[cpu]);
1815 }
1816 }
1817
1818 put_online_cpus();
1819 vfree(all_cpu_data);
93f0822d
DB
1820 return -ENODEV;
1821}
1822device_initcall(intel_pstate_init);
1823
6be26498
DB
1824static int __init intel_pstate_setup(char *str)
1825{
1826 if (!str)
1827 return -EINVAL;
1828
1829 if (!strcmp(str, "disable"))
1830 no_load = 1;
539342f6 1831 if (!strcmp(str, "no_hwp")) {
4836df17 1832 pr_info("HWP disabled\n");
2f86dc4c 1833 no_hwp = 1;
539342f6 1834 }
aa4ea34d
EZ
1835 if (!strcmp(str, "force"))
1836 force_load = 1;
d64c3b0b
KCA
1837 if (!strcmp(str, "hwp_only"))
1838 hwp_only = 1;
9522a2ff
SP
1839
1840#ifdef CONFIG_ACPI
1841 if (!strcmp(str, "support_acpi_ppc"))
1842 acpi_ppc = true;
1843#endif
1844
6be26498
DB
1845 return 0;
1846}
1847early_param("intel_pstate", intel_pstate_setup);
1848
93f0822d
DB
1849MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1850MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1851MODULE_LICENSE("GPL");