]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/cpufreq/intel_pstate.c
Merge branch 'pm-cpufreq-sched' into pm-cpufreq
[mirror_ubuntu-hirsute-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
93f0822d 38
938d21a2
PL
39#define ATOM_RATIOS 0x66a
40#define ATOM_VIDS 0x66b
41#define ATOM_TURBO_RATIOS 0x66c
42#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 43
9522a2ff
SP
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#endif
47
f0fe3cd7 48#define FRAC_BITS 8
93f0822d
DB
49#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 51
93f0822d
DB
52static inline int32_t mul_fp(int32_t x, int32_t y)
53{
54 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55}
56
7180dddf 57static inline int32_t div_fp(s64 x, s64 y)
93f0822d 58{
7180dddf 59 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
60}
61
d022a65e
DB
62static inline int ceiling_fp(int32_t x)
63{
64 int mask, ret;
65
66 ret = fp_toint(x);
67 mask = (1 << FRAC_BITS) - 1;
68 if (x & mask)
69 ret += 1;
70 return ret;
71}
72
13ad7701
SP
73/**
74 * struct sample - Store performance sample
75 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
76 * performance during last sample period
77 * @busy_scaled: Scaled busy value which is used to calculate next
78 * P state. This can be different than core_pct_busy
79 * to account for cpu idle period
80 * @aperf: Difference of actual performance frequency clock count
81 * read from APERF MSR between last and current sample
82 * @mperf: Difference of maximum performance frequency clock count
83 * read from MPERF MSR between last and current sample
84 * @tsc: Difference of time stamp counter between last and
85 * current sample
86 * @freq: Effective frequency calculated from APERF/MPERF
87 * @time: Current time from scheduler
88 *
89 * This structure is used in the cpudata structure to store performance sample
90 * data for choosing next P State.
91 */
93f0822d 92struct sample {
d253d2a5 93 int32_t core_pct_busy;
157386b6 94 int32_t busy_scaled;
93f0822d
DB
95 u64 aperf;
96 u64 mperf;
4055fad3 97 u64 tsc;
93f0822d 98 int freq;
a4675fbc 99 u64 time;
93f0822d
DB
100};
101
13ad7701
SP
102/**
103 * struct pstate_data - Store P state data
104 * @current_pstate: Current requested P state
105 * @min_pstate: Min P state possible for this platform
106 * @max_pstate: Max P state possible for this platform
107 * @max_pstate_physical:This is physical Max P state for a processor
108 * This can be higher than the max_pstate which can
109 * be limited by platform thermal design power limits
110 * @scaling: Scaling factor to convert frequency to cpufreq
111 * frequency units
112 * @turbo_pstate: Max Turbo P state possible for this platform
113 *
114 * Stores the per cpu model P state limits and current P state.
115 */
93f0822d
DB
116struct pstate_data {
117 int current_pstate;
118 int min_pstate;
119 int max_pstate;
3bcc6fa9 120 int max_pstate_physical;
b27580b0 121 int scaling;
93f0822d
DB
122 int turbo_pstate;
123};
124
13ad7701
SP
125/**
126 * struct vid_data - Stores voltage information data
127 * @min: VID data for this platform corresponding to
128 * the lowest P state
129 * @max: VID data corresponding to the highest P State.
130 * @turbo: VID data for turbo P state
131 * @ratio: Ratio of (vid max - vid min) /
132 * (max P state - Min P State)
133 *
134 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135 * This data is used in Atom platforms, where in addition to target P state,
136 * the voltage data needs to be specified to select next P State.
137 */
007bea09 138struct vid_data {
21855ff5
DB
139 int min;
140 int max;
141 int turbo;
007bea09
DB
142 int32_t ratio;
143};
144
13ad7701
SP
145/**
146 * struct _pid - Stores PID data
147 * @setpoint: Target set point for busyness or performance
148 * @integral: Storage for accumulated error values
149 * @p_gain: PID proportional gain
150 * @i_gain: PID integral gain
151 * @d_gain: PID derivative gain
152 * @deadband: PID deadband
153 * @last_err: Last error storage for integral part of PID calculation
154 *
155 * Stores PID coefficients and last error for PID controller.
156 */
93f0822d
DB
157struct _pid {
158 int setpoint;
159 int32_t integral;
160 int32_t p_gain;
161 int32_t i_gain;
162 int32_t d_gain;
163 int deadband;
d253d2a5 164 int32_t last_err;
93f0822d
DB
165};
166
13ad7701
SP
167/**
168 * struct cpudata - Per CPU instance data storage
169 * @cpu: CPU number for this instance data
170 * @update_util: CPUFreq utility callback information
171 * @pstate: Stores P state limits for this CPU
172 * @vid: Stores VID limits for this CPU
173 * @pid: Stores PID parameters for this CPU
174 * @last_sample_time: Last Sample time
175 * @prev_aperf: Last APERF value read from APERF MSR
176 * @prev_mperf: Last MPERF value read from MPERF MSR
177 * @prev_tsc: Last timestamp counter (TSC) value
178 * @prev_cummulative_iowait: IO Wait time difference from last and
179 * current sample
180 * @sample: Storage for storing last Sample data
9522a2ff
SP
181 * @acpi_perf_data: Stores ACPI perf information read from _PSS
182 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
13ad7701
SP
183 *
184 * This structure stores per CPU instance data for all CPUs.
185 */
93f0822d
DB
186struct cpudata {
187 int cpu;
188
a4675fbc 189 struct update_util_data update_util;
93f0822d 190
93f0822d 191 struct pstate_data pstate;
007bea09 192 struct vid_data vid;
93f0822d 193 struct _pid pid;
93f0822d 194
a4675fbc 195 u64 last_sample_time;
93f0822d
DB
196 u64 prev_aperf;
197 u64 prev_mperf;
4055fad3 198 u64 prev_tsc;
63d1d656 199 u64 prev_cummulative_iowait;
d37e2b76 200 struct sample sample;
9522a2ff
SP
201#ifdef CONFIG_ACPI
202 struct acpi_processor_performance acpi_perf_data;
203 bool valid_pss_table;
204#endif
93f0822d
DB
205};
206
207static struct cpudata **all_cpu_data;
13ad7701
SP
208
209/**
210 * struct pid_adjust_policy - Stores static PID configuration data
211 * @sample_rate_ms: PID calculation sample rate in ms
212 * @sample_rate_ns: Sample rate calculation in ns
213 * @deadband: PID deadband
214 * @setpoint: PID Setpoint
215 * @p_gain_pct: PID proportional gain
216 * @i_gain_pct: PID integral gain
217 * @d_gain_pct: PID derivative gain
218 *
219 * Stores per CPU model static PID configuration data.
220 */
93f0822d
DB
221struct pstate_adjust_policy {
222 int sample_rate_ms;
a4675fbc 223 s64 sample_rate_ns;
93f0822d
DB
224 int deadband;
225 int setpoint;
226 int p_gain_pct;
227 int d_gain_pct;
228 int i_gain_pct;
229};
230
13ad7701
SP
231/**
232 * struct pstate_funcs - Per CPU model specific callbacks
233 * @get_max: Callback to get maximum non turbo effective P state
234 * @get_max_physical: Callback to get maximum non turbo physical P state
235 * @get_min: Callback to get minimum P state
236 * @get_turbo: Callback to get turbo P state
237 * @get_scaling: Callback to get frequency scaling factor
238 * @get_val: Callback to convert P state to actual MSR write value
239 * @get_vid: Callback to get VID data for Atom platforms
240 * @get_target_pstate: Callback to a function to calculate next P state to use
241 *
242 * Core and Atom CPU models have different way to get P State limits. This
243 * structure is used to store those callbacks.
244 */
016c8150
DB
245struct pstate_funcs {
246 int (*get_max)(void);
3bcc6fa9 247 int (*get_max_physical)(void);
016c8150
DB
248 int (*get_min)(void);
249 int (*get_turbo)(void);
b27580b0 250 int (*get_scaling)(void);
fdfdb2b1 251 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 252 void (*get_vid)(struct cpudata *);
157386b6 253 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
254};
255
13ad7701
SP
256/**
257 * struct cpu_defaults- Per CPU model default config data
258 * @pid_policy: PID config data
259 * @funcs: Callback function data
260 */
016c8150
DB
261struct cpu_defaults {
262 struct pstate_adjust_policy pid_policy;
263 struct pstate_funcs funcs;
93f0822d
DB
264};
265
157386b6 266static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 267static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 268
016c8150
DB
269static struct pstate_adjust_policy pid_params;
270static struct pstate_funcs pstate_funcs;
2f86dc4c 271static int hwp_active;
016c8150 272
9522a2ff
SP
273#ifdef CONFIG_ACPI
274static bool acpi_ppc;
275#endif
13ad7701
SP
276
277/**
278 * struct perf_limits - Store user and policy limits
279 * @no_turbo: User requested turbo state from intel_pstate sysfs
280 * @turbo_disabled: Platform turbo status either from msr
281 * MSR_IA32_MISC_ENABLE or when maximum available pstate
282 * matches the maximum turbo pstate
283 * @max_perf_pct: Effective maximum performance limit in percentage, this
284 * is minimum of either limits enforced by cpufreq policy
285 * or limits from user set limits via intel_pstate sysfs
286 * @min_perf_pct: Effective minimum performance limit in percentage, this
287 * is maximum of either limits enforced by cpufreq policy
288 * or limits from user set limits via intel_pstate sysfs
289 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
290 * This value is used to limit max pstate
291 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
292 * This value is used to limit min pstate
293 * @max_policy_pct: The maximum performance in percentage enforced by
294 * cpufreq setpolicy interface
295 * @max_sysfs_pct: The maximum performance in percentage enforced by
296 * intel pstate sysfs interface
297 * @min_policy_pct: The minimum performance in percentage enforced by
298 * cpufreq setpolicy interface
299 * @min_sysfs_pct: The minimum performance in percentage enforced by
300 * intel pstate sysfs interface
301 *
302 * Storage for user and policy defined limits.
303 */
93f0822d
DB
304struct perf_limits {
305 int no_turbo;
dd5fbf70 306 int turbo_disabled;
93f0822d
DB
307 int max_perf_pct;
308 int min_perf_pct;
309 int32_t max_perf;
310 int32_t min_perf;
d8f469e9
DB
311 int max_policy_pct;
312 int max_sysfs_pct;
a0475992
KCA
313 int min_policy_pct;
314 int min_sysfs_pct;
93f0822d
DB
315};
316
51443fbf
PB
317static struct perf_limits performance_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 100,
323 .min_perf = int_tofp(1),
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328};
329
330static struct perf_limits powersave_limits = {
93f0822d 331 .no_turbo = 0,
4521e1a0 332 .turbo_disabled = 0,
93f0822d
DB
333 .max_perf_pct = 100,
334 .max_perf = int_tofp(1),
335 .min_perf_pct = 0,
336 .min_perf = 0,
d8f469e9
DB
337 .max_policy_pct = 100,
338 .max_sysfs_pct = 100,
a0475992
KCA
339 .min_policy_pct = 0,
340 .min_sysfs_pct = 0,
93f0822d
DB
341};
342
51443fbf
PB
343#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344static struct perf_limits *limits = &performance_limits;
345#else
346static struct perf_limits *limits = &powersave_limits;
347#endif
348
9522a2ff 349#ifdef CONFIG_ACPI
2b3ec765
SP
350
351static bool intel_pstate_get_ppc_enable_status(void)
352{
353 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355 return true;
356
357 return acpi_ppc;
358}
359
9522a2ff
SP
360/*
361 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365 * target ratio 0x17. The _PSS control value stores in a format which can be
366 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368 * This function converts the _PSS control value to intel pstate driver format
369 * for comparison and assignment.
370 */
371static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372{
373 return cpu->acpi_perf_data.states[index].control >> 8;
374}
375
376static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377{
378 struct cpudata *cpu;
379 int turbo_pss_ctl;
380 int ret;
381 int i;
382
e59a8f7f
SP
383 if (hwp_active)
384 return;
385
2b3ec765 386 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
387 return;
388
389 cpu = all_cpu_data[policy->cpu];
390
391 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392 policy->cpu);
393 if (ret)
394 return;
395
396 /*
397 * Check if the control value in _PSS is for PERF_CTL MSR, which should
398 * guarantee that the states returned by it map to the states in our
399 * list directly.
400 */
401 if (cpu->acpi_perf_data.control_register.space_id !=
402 ACPI_ADR_SPACE_FIXED_HARDWARE)
403 goto err;
404
405 /*
406 * If there is only one entry _PSS, simply ignore _PSS and continue as
407 * usual without taking _PSS into account
408 */
409 if (cpu->acpi_perf_data.state_count < 2)
410 goto err;
411
412 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
415 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416 (u32) cpu->acpi_perf_data.states[i].core_frequency,
417 (u32) cpu->acpi_perf_data.states[i].power,
418 (u32) cpu->acpi_perf_data.states[i].control);
419 }
420
421 /*
422 * The _PSS table doesn't contain whole turbo frequency range.
423 * This just contains +1 MHZ above the max non turbo frequency,
424 * with control value corresponding to max turbo ratio. But
425 * when cpufreq set policy is called, it will call with this
426 * max frequency, which will cause a reduced performance as
427 * this driver uses real max turbo frequency as the max
428 * frequency. So correct this frequency in _PSS table to
429 * correct max turbo frequency based on the turbo ratio.
430 * Also need to convert to MHz as _PSS freq is in MHz.
431 */
432 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433 if (turbo_pss_ctl > cpu->pstate.max_pstate)
434 cpu->acpi_perf_data.states[0].core_frequency =
435 policy->cpuinfo.max_freq / 1000;
436 cpu->valid_pss_table = true;
437 pr_info("_PPC limits will be enforced\n");
438
439 return;
440
441 err:
442 cpu->valid_pss_table = false;
443 acpi_processor_unregister_performance(policy->cpu);
444}
445
446static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447{
448 struct cpudata *cpu;
449
450 cpu = all_cpu_data[policy->cpu];
451 if (!cpu->valid_pss_table)
452 return;
453
454 acpi_processor_unregister_performance(policy->cpu);
455}
456
457#else
458static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459{
460}
461
462static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463{
464}
465#endif
466
93f0822d 467static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 468 int deadband, int integral) {
b54a0dfd
PL
469 pid->setpoint = int_tofp(setpoint);
470 pid->deadband = int_tofp(deadband);
93f0822d 471 pid->integral = int_tofp(integral);
d98d099b 472 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
473}
474
475static inline void pid_p_gain_set(struct _pid *pid, int percent)
476{
22590efb 477 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
478}
479
480static inline void pid_i_gain_set(struct _pid *pid, int percent)
481{
22590efb 482 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
483}
484
485static inline void pid_d_gain_set(struct _pid *pid, int percent)
486{
22590efb 487 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
488}
489
d253d2a5 490static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 491{
d253d2a5 492 signed int result;
93f0822d
DB
493 int32_t pterm, dterm, fp_error;
494 int32_t integral_limit;
495
b54a0dfd 496 fp_error = pid->setpoint - busy;
93f0822d 497
b54a0dfd 498 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
499 return 0;
500
501 pterm = mul_fp(pid->p_gain, fp_error);
502
503 pid->integral += fp_error;
504
e0d4c8f8
KCA
505 /*
506 * We limit the integral here so that it will never
507 * get higher than 30. This prevents it from becoming
508 * too large an input over long periods of time and allows
509 * it to get factored out sooner.
510 *
511 * The value of 30 was chosen through experimentation.
512 */
93f0822d
DB
513 integral_limit = int_tofp(30);
514 if (pid->integral > integral_limit)
515 pid->integral = integral_limit;
516 if (pid->integral < -integral_limit)
517 pid->integral = -integral_limit;
518
d253d2a5
BS
519 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 pid->last_err = fp_error;
93f0822d
DB
521
522 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 523 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
524 return (signed int)fp_toint(result);
525}
526
527static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528{
016c8150
DB
529 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 532
2d8d1f18 533 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
534}
535
93f0822d
DB
536static inline void intel_pstate_reset_all_pid(void)
537{
538 unsigned int cpu;
845c1cbe 539
93f0822d
DB
540 for_each_online_cpu(cpu) {
541 if (all_cpu_data[cpu])
542 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 }
544}
545
4521e1a0
GM
546static inline void update_turbo_state(void)
547{
548 u64 misc_en;
549 struct cpudata *cpu;
550
551 cpu = all_cpu_data[0];
552 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 553 limits->turbo_disabled =
4521e1a0
GM
554 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556}
557
41cfd64c 558static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 559{
74da56ce
KCA
560 int min, hw_min, max, hw_max, cpu, range, adj_range;
561 u64 value, cap;
562
563 rdmsrl(MSR_HWP_CAPABILITIES, cap);
564 hw_min = HWP_LOWEST_PERF(cap);
565 hw_max = HWP_HIGHEST_PERF(cap);
566 range = hw_max - hw_min;
2f86dc4c 567
41cfd64c 568 for_each_cpu(cpu, cpumask) {
2f86dc4c 569 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 570 adj_range = limits->min_perf_pct * range / 100;
74da56ce 571 min = hw_min + adj_range;
2f86dc4c
DB
572 value &= ~HWP_MIN_PERF(~0L);
573 value |= HWP_MIN_PERF(min);
574
51443fbf 575 adj_range = limits->max_perf_pct * range / 100;
74da56ce 576 max = hw_min + adj_range;
51443fbf 577 if (limits->no_turbo) {
74da56ce
KCA
578 hw_max = HWP_GUARANTEED_PERF(cap);
579 if (hw_max < max)
580 max = hw_max;
2f86dc4c
DB
581 }
582
583 value &= ~HWP_MAX_PERF(~0L);
584 value |= HWP_MAX_PERF(max);
585 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 }
41cfd64c 587}
2f86dc4c 588
ba41e1bc
RW
589static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
590{
591 if (hwp_active)
592 intel_pstate_hwp_set(policy->cpus);
593
594 return 0;
595}
596
41cfd64c
VK
597static void intel_pstate_hwp_set_online_cpus(void)
598{
599 get_online_cpus();
600 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
601 put_online_cpus();
602}
603
93f0822d
DB
604/************************** debugfs begin ************************/
605static int pid_param_set(void *data, u64 val)
606{
607 *(u32 *)data = val;
608 intel_pstate_reset_all_pid();
609 return 0;
610}
845c1cbe 611
93f0822d
DB
612static int pid_param_get(void *data, u64 *val)
613{
614 *val = *(u32 *)data;
615 return 0;
616}
2d8d1f18 617DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
618
619struct pid_param {
620 char *name;
621 void *value;
622};
623
624static struct pid_param pid_files[] = {
016c8150
DB
625 {"sample_rate_ms", &pid_params.sample_rate_ms},
626 {"d_gain_pct", &pid_params.d_gain_pct},
627 {"i_gain_pct", &pid_params.i_gain_pct},
628 {"deadband", &pid_params.deadband},
629 {"setpoint", &pid_params.setpoint},
630 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
631 {NULL, NULL}
632};
633
317dd50e 634static void __init intel_pstate_debug_expose_params(void)
93f0822d 635{
317dd50e 636 struct dentry *debugfs_parent;
93f0822d
DB
637 int i = 0;
638
2f86dc4c
DB
639 if (hwp_active)
640 return;
93f0822d
DB
641 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
642 if (IS_ERR_OR_NULL(debugfs_parent))
643 return;
644 while (pid_files[i].name) {
645 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
646 debugfs_parent, pid_files[i].value,
647 &fops_pid_param);
93f0822d
DB
648 i++;
649 }
650}
651
652/************************** debugfs end ************************/
653
654/************************** sysfs begin ************************/
655#define show_one(file_name, object) \
656 static ssize_t show_##file_name \
657 (struct kobject *kobj, struct attribute *attr, char *buf) \
658 { \
51443fbf 659 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
660 }
661
d01b1f48
KCA
662static ssize_t show_turbo_pct(struct kobject *kobj,
663 struct attribute *attr, char *buf)
664{
665 struct cpudata *cpu;
666 int total, no_turbo, turbo_pct;
667 uint32_t turbo_fp;
668
669 cpu = all_cpu_data[0];
670
671 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
672 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 673 turbo_fp = div_fp(no_turbo, total);
d01b1f48
KCA
674 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
675 return sprintf(buf, "%u\n", turbo_pct);
676}
677
0522424e
KCA
678static ssize_t show_num_pstates(struct kobject *kobj,
679 struct attribute *attr, char *buf)
680{
681 struct cpudata *cpu;
682 int total;
683
684 cpu = all_cpu_data[0];
685 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
686 return sprintf(buf, "%u\n", total);
687}
688
4521e1a0
GM
689static ssize_t show_no_turbo(struct kobject *kobj,
690 struct attribute *attr, char *buf)
691{
692 ssize_t ret;
693
694 update_turbo_state();
51443fbf
PB
695 if (limits->turbo_disabled)
696 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 697 else
51443fbf 698 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
699
700 return ret;
701}
702
93f0822d 703static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 704 const char *buf, size_t count)
93f0822d
DB
705{
706 unsigned int input;
707 int ret;
845c1cbe 708
93f0822d
DB
709 ret = sscanf(buf, "%u", &input);
710 if (ret != 1)
711 return -EINVAL;
4521e1a0
GM
712
713 update_turbo_state();
51443fbf 714 if (limits->turbo_disabled) {
4836df17 715 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 716 return -EPERM;
dd5fbf70 717 }
2f86dc4c 718
51443fbf 719 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 720
2f86dc4c 721 if (hwp_active)
41cfd64c 722 intel_pstate_hwp_set_online_cpus();
2f86dc4c 723
93f0822d
DB
724 return count;
725}
726
727static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 728 const char *buf, size_t count)
93f0822d
DB
729{
730 unsigned int input;
731 int ret;
845c1cbe 732
93f0822d
DB
733 ret = sscanf(buf, "%u", &input);
734 if (ret != 1)
735 return -EINVAL;
736
51443fbf
PB
737 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
738 limits->max_perf_pct = min(limits->max_policy_pct,
739 limits->max_sysfs_pct);
740 limits->max_perf_pct = max(limits->min_policy_pct,
741 limits->max_perf_pct);
742 limits->max_perf_pct = max(limits->min_perf_pct,
743 limits->max_perf_pct);
22590efb 744 limits->max_perf = div_fp(limits->max_perf_pct, 100);
845c1cbe 745
2f86dc4c 746 if (hwp_active)
41cfd64c 747 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
748 return count;
749}
750
751static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 752 const char *buf, size_t count)
93f0822d
DB
753{
754 unsigned int input;
755 int ret;
845c1cbe 756
93f0822d
DB
757 ret = sscanf(buf, "%u", &input);
758 if (ret != 1)
759 return -EINVAL;
a0475992 760
51443fbf
PB
761 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
762 limits->min_perf_pct = max(limits->min_policy_pct,
763 limits->min_sysfs_pct);
764 limits->min_perf_pct = min(limits->max_policy_pct,
765 limits->min_perf_pct);
766 limits->min_perf_pct = min(limits->max_perf_pct,
767 limits->min_perf_pct);
22590efb 768 limits->min_perf = div_fp(limits->min_perf_pct, 100);
93f0822d 769
2f86dc4c 770 if (hwp_active)
41cfd64c 771 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
772 return count;
773}
774
93f0822d
DB
775show_one(max_perf_pct, max_perf_pct);
776show_one(min_perf_pct, min_perf_pct);
777
778define_one_global_rw(no_turbo);
779define_one_global_rw(max_perf_pct);
780define_one_global_rw(min_perf_pct);
d01b1f48 781define_one_global_ro(turbo_pct);
0522424e 782define_one_global_ro(num_pstates);
93f0822d
DB
783
784static struct attribute *intel_pstate_attributes[] = {
785 &no_turbo.attr,
786 &max_perf_pct.attr,
787 &min_perf_pct.attr,
d01b1f48 788 &turbo_pct.attr,
0522424e 789 &num_pstates.attr,
93f0822d
DB
790 NULL
791};
792
793static struct attribute_group intel_pstate_attr_group = {
794 .attrs = intel_pstate_attributes,
795};
93f0822d 796
317dd50e 797static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 798{
317dd50e 799 struct kobject *intel_pstate_kobject;
93f0822d
DB
800 int rc;
801
802 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
803 &cpu_subsys.dev_root->kobj);
804 BUG_ON(!intel_pstate_kobject);
2d8d1f18 805 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
806 BUG_ON(rc);
807}
93f0822d 808/************************** sysfs end ************************/
2f86dc4c 809
ba88d433 810static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 811{
f05c9665
SP
812 /* First disable HWP notification interrupt as we don't process them */
813 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
814
ba88d433 815 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
816}
817
938d21a2 818static int atom_get_min_pstate(void)
19e77c28
DB
819{
820 u64 value;
845c1cbe 821
938d21a2 822 rdmsrl(ATOM_RATIOS, value);
c16ed060 823 return (value >> 8) & 0x7F;
19e77c28
DB
824}
825
938d21a2 826static int atom_get_max_pstate(void)
19e77c28
DB
827{
828 u64 value;
845c1cbe 829
938d21a2 830 rdmsrl(ATOM_RATIOS, value);
c16ed060 831 return (value >> 16) & 0x7F;
19e77c28 832}
93f0822d 833
938d21a2 834static int atom_get_turbo_pstate(void)
61d8d2ab
DB
835{
836 u64 value;
845c1cbe 837
938d21a2 838 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 839 return value & 0x7F;
61d8d2ab
DB
840}
841
fdfdb2b1 842static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
843{
844 u64 val;
845 int32_t vid_fp;
846 u32 vid;
847
144c8e17 848 val = (u64)pstate << 8;
51443fbf 849 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
850 val |= (u64)1 << 32;
851
852 vid_fp = cpudata->vid.min + mul_fp(
853 int_tofp(pstate - cpudata->pstate.min_pstate),
854 cpudata->vid.ratio);
855
856 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 857 vid = ceiling_fp(vid_fp);
007bea09 858
21855ff5
DB
859 if (pstate > cpudata->pstate.max_pstate)
860 vid = cpudata->vid.turbo;
861
fdfdb2b1 862 return val | vid;
007bea09
DB
863}
864
1421df63 865static int silvermont_get_scaling(void)
b27580b0
DB
866{
867 u64 value;
868 int i;
1421df63
PL
869 /* Defined in Table 35-6 from SDM (Sept 2015) */
870 static int silvermont_freq_table[] = {
871 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
872
873 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
874 i = value & 0x7;
875 WARN_ON(i > 4);
b27580b0 876
1421df63
PL
877 return silvermont_freq_table[i];
878}
b27580b0 879
1421df63
PL
880static int airmont_get_scaling(void)
881{
882 u64 value;
883 int i;
884 /* Defined in Table 35-10 from SDM (Sept 2015) */
885 static int airmont_freq_table[] = {
886 83300, 100000, 133300, 116700, 80000,
887 93300, 90000, 88900, 87500};
888
889 rdmsrl(MSR_FSB_FREQ, value);
890 i = value & 0xF;
891 WARN_ON(i > 8);
892
893 return airmont_freq_table[i];
b27580b0
DB
894}
895
938d21a2 896static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
897{
898 u64 value;
899
938d21a2 900 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
901 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
902 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
903 cpudata->vid.ratio = div_fp(
904 cpudata->vid.max - cpudata->vid.min,
905 int_tofp(cpudata->pstate.max_pstate -
906 cpudata->pstate.min_pstate));
21855ff5 907
938d21a2 908 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 909 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
910}
911
016c8150 912static int core_get_min_pstate(void)
93f0822d
DB
913{
914 u64 value;
845c1cbe 915
05e99c8c 916 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
917 return (value >> 40) & 0xFF;
918}
919
3bcc6fa9 920static int core_get_max_pstate_physical(void)
93f0822d
DB
921{
922 u64 value;
845c1cbe 923
05e99c8c 924 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
925 return (value >> 8) & 0xFF;
926}
927
016c8150 928static int core_get_max_pstate(void)
93f0822d 929{
6a35fc2d
SP
930 u64 tar;
931 u64 plat_info;
932 int max_pstate;
933 int err;
934
935 rdmsrl(MSR_PLATFORM_INFO, plat_info);
936 max_pstate = (plat_info >> 8) & 0xFF;
937
938 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
939 if (!err) {
940 /* Do some sanity checking for safety */
941 if (plat_info & 0x600000000) {
942 u64 tdp_ctrl;
943 u64 tdp_ratio;
944 int tdp_msr;
945
946 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
947 if (err)
948 goto skip_tar;
949
950 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
951 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
952 if (err)
953 goto skip_tar;
954
1becf035
SP
955 /* For level 1 and 2, bits[23:16] contain the ratio */
956 if (tdp_ctrl)
957 tdp_ratio >>= 16;
958
959 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
960 if (tdp_ratio - 1 == tar) {
961 max_pstate = tar;
962 pr_debug("max_pstate=TAC %x\n", max_pstate);
963 } else {
964 goto skip_tar;
965 }
966 }
967 }
845c1cbe 968
6a35fc2d
SP
969skip_tar:
970 return max_pstate;
93f0822d
DB
971}
972
016c8150 973static int core_get_turbo_pstate(void)
93f0822d
DB
974{
975 u64 value;
976 int nont, ret;
845c1cbe 977
05e99c8c 978 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 979 nont = core_get_max_pstate();
285cb990 980 ret = (value) & 255;
93f0822d
DB
981 if (ret <= nont)
982 ret = nont;
983 return ret;
984}
985
b27580b0
DB
986static inline int core_get_scaling(void)
987{
988 return 100000;
989}
990
fdfdb2b1 991static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
992{
993 u64 val;
994
144c8e17 995 val = (u64)pstate << 8;
51443fbf 996 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
997 val |= (u64)1 << 32;
998
fdfdb2b1 999 return val;
016c8150
DB
1000}
1001
b34ef932
DC
1002static int knl_get_turbo_pstate(void)
1003{
1004 u64 value;
1005 int nont, ret;
1006
1007 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1008 nont = core_get_max_pstate();
1009 ret = (((value) >> 8) & 0xFF);
1010 if (ret <= nont)
1011 ret = nont;
1012 return ret;
1013}
1014
016c8150
DB
1015static struct cpu_defaults core_params = {
1016 .pid_policy = {
1017 .sample_rate_ms = 10,
1018 .deadband = 0,
1019 .setpoint = 97,
1020 .p_gain_pct = 20,
1021 .d_gain_pct = 0,
1022 .i_gain_pct = 0,
1023 },
1024 .funcs = {
1025 .get_max = core_get_max_pstate,
3bcc6fa9 1026 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1027 .get_min = core_get_min_pstate,
1028 .get_turbo = core_get_turbo_pstate,
b27580b0 1029 .get_scaling = core_get_scaling,
fdfdb2b1 1030 .get_val = core_get_val,
157386b6 1031 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1032 },
1033};
1034
1421df63
PL
1035static struct cpu_defaults silvermont_params = {
1036 .pid_policy = {
1037 .sample_rate_ms = 10,
1038 .deadband = 0,
1039 .setpoint = 60,
1040 .p_gain_pct = 14,
1041 .d_gain_pct = 0,
1042 .i_gain_pct = 4,
1043 },
1044 .funcs = {
1045 .get_max = atom_get_max_pstate,
1046 .get_max_physical = atom_get_max_pstate,
1047 .get_min = atom_get_min_pstate,
1048 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1049 .get_val = atom_get_val,
1421df63
PL
1050 .get_scaling = silvermont_get_scaling,
1051 .get_vid = atom_get_vid,
e70eed2b 1052 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1053 },
1054};
1055
1056static struct cpu_defaults airmont_params = {
19e77c28
DB
1057 .pid_policy = {
1058 .sample_rate_ms = 10,
1059 .deadband = 0,
6a82ba6d 1060 .setpoint = 60,
19e77c28
DB
1061 .p_gain_pct = 14,
1062 .d_gain_pct = 0,
1063 .i_gain_pct = 4,
1064 },
1065 .funcs = {
938d21a2
PL
1066 .get_max = atom_get_max_pstate,
1067 .get_max_physical = atom_get_max_pstate,
1068 .get_min = atom_get_min_pstate,
1069 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1070 .get_val = atom_get_val,
1421df63 1071 .get_scaling = airmont_get_scaling,
938d21a2 1072 .get_vid = atom_get_vid,
e70eed2b 1073 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1074 },
1075};
1076
b34ef932
DC
1077static struct cpu_defaults knl_params = {
1078 .pid_policy = {
1079 .sample_rate_ms = 10,
1080 .deadband = 0,
1081 .setpoint = 97,
1082 .p_gain_pct = 20,
1083 .d_gain_pct = 0,
1084 .i_gain_pct = 0,
1085 },
1086 .funcs = {
1087 .get_max = core_get_max_pstate,
3bcc6fa9 1088 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1089 .get_min = core_get_min_pstate,
1090 .get_turbo = knl_get_turbo_pstate,
69cefc27 1091 .get_scaling = core_get_scaling,
fdfdb2b1 1092 .get_val = core_get_val,
157386b6 1093 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1094 },
1095};
1096
93f0822d
DB
1097static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1098{
1099 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1100 int max_perf_adj;
93f0822d 1101 int min_perf;
845c1cbe 1102
51443fbf 1103 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1104 max_perf = cpu->pstate.max_pstate;
1105
e0d4c8f8
KCA
1106 /*
1107 * performance can be limited by user through sysfs, by cpufreq
1108 * policy, or by cpu specific default values determined through
1109 * experimentation.
1110 */
a158bed5 1111 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
1112 *max = clamp_t(int, max_perf_adj,
1113 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1114
a158bed5 1115 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 1116 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1117}
1118
fdfdb2b1 1119static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 1120{
b27580b0 1121 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 1122 cpu->pstate.current_pstate = pstate;
fdfdb2b1 1123}
93f0822d 1124
fdfdb2b1
RW
1125static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1126{
1127 int pstate = cpu->pstate.min_pstate;
1128
1129 intel_pstate_record_pstate(cpu, pstate);
1130 /*
1131 * Generally, there is no guarantee that this code will always run on
1132 * the CPU being updated, so force the register update to run on the
1133 * right CPU.
1134 */
1135 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1136 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1137}
1138
93f0822d
DB
1139static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1140{
016c8150
DB
1141 cpu->pstate.min_pstate = pstate_funcs.get_min();
1142 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1143 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1144 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1145 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1146
007bea09
DB
1147 if (pstate_funcs.get_vid)
1148 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1149
1150 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1151}
1152
6b17ddb2 1153static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 1154{
6b17ddb2 1155 struct sample *sample = &cpu->sample;
bf810222 1156 int64_t core_pct;
93f0822d 1157
22590efb
RW
1158 core_pct = sample->aperf * int_tofp(100);
1159 core_pct = div64_u64(core_pct, sample->mperf);
e66c1768 1160
bf810222 1161 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
1162}
1163
4fec7ad5 1164static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1165{
93f0822d 1166 u64 aperf, mperf;
4ab60c3f 1167 unsigned long flags;
4055fad3 1168 u64 tsc;
93f0822d 1169
4ab60c3f 1170 local_irq_save(flags);
93f0822d
DB
1171 rdmsrl(MSR_IA32_APERF, aperf);
1172 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1173 tsc = rdtsc();
4fec7ad5 1174 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1175 local_irq_restore(flags);
4fec7ad5 1176 return false;
8e601a9f 1177 }
4ab60c3f 1178 local_irq_restore(flags);
b69880f9 1179
c4ee841f 1180 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1181 cpu->sample.time = time;
d37e2b76
DB
1182 cpu->sample.aperf = aperf;
1183 cpu->sample.mperf = mperf;
4055fad3 1184 cpu->sample.tsc = tsc;
d37e2b76
DB
1185 cpu->sample.aperf -= cpu->prev_aperf;
1186 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1187 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1188
93f0822d
DB
1189 cpu->prev_aperf = aperf;
1190 cpu->prev_mperf = mperf;
4055fad3 1191 cpu->prev_tsc = tsc;
febce40f
RW
1192 /*
1193 * First time this function is invoked in a given cycle, all of the
1194 * previous sample data fields are equal to zero or stale and they must
1195 * be populated with meaningful numbers for things to work, so assume
1196 * that sample.time will always be reset before setting the utilization
1197 * update hook and make the caller skip the sample then.
1198 */
1199 return !!cpu->last_sample_time;
93f0822d
DB
1200}
1201
8fa520af
PL
1202static inline int32_t get_avg_frequency(struct cpudata *cpu)
1203{
6d45b719
RW
1204 return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1205 int_tofp(cpu->pstate.max_pstate_physical *
1206 cpu->pstate.scaling / 100)));
8fa520af
PL
1207}
1208
bdcaa23f
PL
1209static inline int32_t get_avg_pstate(struct cpudata *cpu)
1210{
1211 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1212 cpu->sample.mperf);
1213}
1214
e70eed2b
PL
1215static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1216{
1217 struct sample *sample = &cpu->sample;
63d1d656
PL
1218 u64 cummulative_iowait, delta_iowait_us;
1219 u64 delta_iowait_mperf;
1220 u64 mperf, now;
e70eed2b
PL
1221 int32_t cpu_load;
1222
63d1d656
PL
1223 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1224
1225 /*
1226 * Convert iowait time into number of IO cycles spent at max_freq.
1227 * IO is considered as busy only for the cpu_load algorithm. For
1228 * performance this is not needed since we always try to reach the
1229 * maximum P-State, so we are already boosting the IOs.
1230 */
1231 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1232 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1233 cpu->pstate.max_pstate, MSEC_PER_SEC);
1234
1235 mperf = cpu->sample.mperf + delta_iowait_mperf;
1236 cpu->prev_cummulative_iowait = cummulative_iowait;
1237
e70eed2b
PL
1238 /*
1239 * The load can be estimated as the ratio of the mperf counter
1240 * running at a constant frequency during active periods
1241 * (C0) and the time stamp counter running at the same frequency
1242 * also during C-states.
1243 */
63d1d656 1244 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1245 cpu->sample.busy_scaled = cpu_load;
1246
bdcaa23f 1247 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
e70eed2b
PL
1248}
1249
157386b6 1250static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1251{
c4ee841f 1252 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 1253 u64 duration_ns;
93f0822d 1254
e0d4c8f8
KCA
1255 /*
1256 * core_busy is the ratio of actual performance to max
1257 * max_pstate is the max non turbo pstate available
1258 * current_pstate was the pstate that was requested during
1259 * the last sample period.
1260 *
1261 * We normalize core_busy, which was our actual percent
1262 * performance to what we requested during the last sample
1263 * period. The result will be a percentage of busy at a
1264 * specified pstate.
1265 */
d37e2b76 1266 core_busy = cpu->sample.core_pct_busy;
22590efb
RW
1267 max_pstate = cpu->pstate.max_pstate_physical;
1268 current_pstate = cpu->pstate.current_pstate;
e66c1768 1269 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 1270
e0d4c8f8 1271 /*
a4675fbc
RW
1272 * Since our utilization update callback will not run unless we are
1273 * in C0, check if the actual elapsed time is significantly greater (3x)
1274 * than our sample interval. If it is, then we were idle for a long
1275 * enough period of time to adjust our busyness.
e0d4c8f8 1276 */
a4675fbc 1277 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1278 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1279 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
c4ee841f 1280 core_busy = mul_fp(core_busy, sample_ratio);
ffb81056
RW
1281 } else {
1282 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1283 if (sample_ratio < int_tofp(1))
1284 core_busy = 0;
c4ee841f
DB
1285 }
1286
157386b6
PL
1287 cpu->sample.busy_scaled = core_busy;
1288 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
1289}
1290
fdfdb2b1
RW
1291static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1292{
1293 int max_perf, min_perf;
1294
1295 update_turbo_state();
1296
1297 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1298 pstate = clamp_t(int, pstate, min_perf, max_perf);
1299 if (pstate == cpu->pstate.current_pstate)
1300 return;
1301
1302 intel_pstate_record_pstate(cpu, pstate);
1303 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1304}
1305
93f0822d
DB
1306static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1307{
157386b6 1308 int from, target_pstate;
4055fad3
DS
1309 struct sample *sample;
1310
1311 from = cpu->pstate.current_pstate;
93f0822d 1312
157386b6 1313 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1314
fdfdb2b1 1315 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1316
1317 sample = &cpu->sample;
1318 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1319 fp_toint(sample->busy_scaled),
4055fad3
DS
1320 from,
1321 cpu->pstate.current_pstate,
1322 sample->mperf,
1323 sample->aperf,
1324 sample->tsc,
8fa520af 1325 get_avg_frequency(cpu));
93f0822d
DB
1326}
1327
a4675fbc
RW
1328static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1329 unsigned long util, unsigned long max)
93f0822d 1330{
a4675fbc
RW
1331 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1332 u64 delta_ns = time - cpu->sample.time;
b69880f9 1333
a4675fbc 1334 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1335 bool sample_taken = intel_pstate_sample(cpu, time);
1336
6d45b719
RW
1337 if (sample_taken) {
1338 intel_pstate_calc_busy(cpu);
1339 if (!hwp_active)
1340 intel_pstate_adjust_busy_pstate(cpu);
1341 }
a4675fbc 1342 }
93f0822d
DB
1343}
1344
1345#define ICPU(model, policy) \
6cbd7ee1
DB
1346 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1347 (unsigned long)&policy }
93f0822d
DB
1348
1349static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1350 ICPU(0x2a, core_params),
1351 ICPU(0x2d, core_params),
1421df63 1352 ICPU(0x37, silvermont_params),
016c8150
DB
1353 ICPU(0x3a, core_params),
1354 ICPU(0x3c, core_params),
c7e241df 1355 ICPU(0x3d, core_params),
016c8150
DB
1356 ICPU(0x3e, core_params),
1357 ICPU(0x3f, core_params),
1358 ICPU(0x45, core_params),
1359 ICPU(0x46, core_params),
43f8a966 1360 ICPU(0x47, core_params),
1421df63 1361 ICPU(0x4c, airmont_params),
7ab0256e 1362 ICPU(0x4e, core_params),
c7e241df 1363 ICPU(0x4f, core_params),
1c939123 1364 ICPU(0x5e, core_params),
c7e241df 1365 ICPU(0x56, core_params),
b34ef932 1366 ICPU(0x57, knl_params),
93f0822d
DB
1367 {}
1368};
1369MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1370
2f86dc4c
DB
1371static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1372 ICPU(0x56, core_params),
1373 {}
1374};
1375
93f0822d
DB
1376static int intel_pstate_init_cpu(unsigned int cpunum)
1377{
93f0822d
DB
1378 struct cpudata *cpu;
1379
c0348717
DB
1380 if (!all_cpu_data[cpunum])
1381 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1382 GFP_KERNEL);
93f0822d
DB
1383 if (!all_cpu_data[cpunum])
1384 return -ENOMEM;
1385
1386 cpu = all_cpu_data[cpunum];
1387
93f0822d 1388 cpu->cpu = cpunum;
ba88d433 1389
a4675fbc 1390 if (hwp_active) {
ba88d433 1391 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1392 pid_params.sample_rate_ms = 50;
1393 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1394 }
ba88d433 1395
179e8471 1396 intel_pstate_get_cpu_pstates(cpu);
016c8150 1397
93f0822d 1398 intel_pstate_busy_pid_reset(cpu);
93f0822d 1399
4836df17 1400 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1401
1402 return 0;
1403}
1404
1405static unsigned int intel_pstate_get(unsigned int cpu_num)
1406{
f96fd0c8 1407 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1408
f96fd0c8 1409 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1410}
1411
febce40f 1412static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1413{
febce40f
RW
1414 struct cpudata *cpu = all_cpu_data[cpu_num];
1415
1416 /* Prevent intel_pstate_update_util() from using stale data. */
1417 cpu->sample.time = 0;
0bed612b
RW
1418 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1419 intel_pstate_update_util);
bb6ab52f
RW
1420}
1421
1422static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1423{
0bed612b 1424 cpufreq_remove_update_util_hook(cpu);
bb6ab52f
RW
1425 synchronize_sched();
1426}
1427
30a39153
SP
1428static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1429{
1430 limits->no_turbo = 0;
1431 limits->turbo_disabled = 0;
1432 limits->max_perf_pct = 100;
1433 limits->max_perf = int_tofp(1);
1434 limits->min_perf_pct = 100;
1435 limits->min_perf = int_tofp(1);
1436 limits->max_policy_pct = 100;
1437 limits->max_sysfs_pct = 100;
1438 limits->min_policy_pct = 0;
1439 limits->min_sysfs_pct = 0;
1440}
1441
93f0822d
DB
1442static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1443{
3be9200d
SP
1444 struct cpudata *cpu;
1445
d3929b83
DB
1446 if (!policy->cpuinfo.max_freq)
1447 return -ENODEV;
1448
bb6ab52f
RW
1449 intel_pstate_clear_update_util_hook(policy->cpu);
1450
3be9200d
SP
1451 cpu = all_cpu_data[0];
1452 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1453 if (policy->max < policy->cpuinfo.max_freq &&
1454 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1455 pr_debug("policy->max > max non turbo frequency\n");
1456 policy->max = policy->cpuinfo.max_freq;
1457 }
1458 }
1459
30a39153 1460 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1461 limits = &performance_limits;
30a39153 1462 if (policy->max >= policy->cpuinfo.max_freq) {
4836df17 1463 pr_debug("set performance\n");
30a39153
SP
1464 intel_pstate_set_performance_limits(limits);
1465 goto out;
1466 }
1467 } else {
4836df17 1468 pr_debug("set powersave\n");
30a39153 1469 limits = &powersave_limits;
93f0822d 1470 }
2f86dc4c 1471
51443fbf
PB
1472 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1473 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1474 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1475 policy->cpuinfo.max_freq);
51443fbf 1476 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1477
1478 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1479 limits->min_perf_pct = max(limits->min_policy_pct,
1480 limits->min_sysfs_pct);
1481 limits->min_perf_pct = min(limits->max_policy_pct,
1482 limits->min_perf_pct);
1483 limits->max_perf_pct = min(limits->max_policy_pct,
1484 limits->max_sysfs_pct);
1485 limits->max_perf_pct = max(limits->min_policy_pct,
1486 limits->max_perf_pct);
88b7b7c0 1487 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1488
1489 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1490 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1491
22590efb
RW
1492 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1493 limits->max_perf = div_fp(limits->max_perf_pct, 100);
93f0822d 1494
bb6ab52f
RW
1495 out:
1496 intel_pstate_set_update_util_hook(policy->cpu);
1497
ba41e1bc 1498 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1499
93f0822d
DB
1500 return 0;
1501}
1502
1503static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1504{
be49e346 1505 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1506
285cb990 1507 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1508 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1509 return -EINVAL;
1510
1511 return 0;
1512}
1513
bb18008f 1514static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1515{
bb18008f
DB
1516 int cpu_num = policy->cpu;
1517 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1518
4836df17 1519 pr_debug("CPU %d exiting\n", cpu_num);
bb18008f 1520
bb6ab52f 1521 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1522
2f86dc4c
DB
1523 if (hwp_active)
1524 return;
1525
fdfdb2b1 1526 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1527}
1528
2760984f 1529static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1530{
93f0822d 1531 struct cpudata *cpu;
52e0a509 1532 int rc;
93f0822d
DB
1533
1534 rc = intel_pstate_init_cpu(policy->cpu);
1535 if (rc)
1536 return rc;
1537
1538 cpu = all_cpu_data[policy->cpu];
1539
51443fbf 1540 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1541 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1542 else
1543 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1544
b27580b0
DB
1545 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1546 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1547
1548 /* cpuinfo and default policy values */
b27580b0
DB
1549 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1550 policy->cpuinfo.max_freq =
1551 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
9522a2ff 1552 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
1553 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1554 cpumask_set_cpu(policy->cpu, policy->cpus);
1555
1556 return 0;
1557}
1558
9522a2ff
SP
1559static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1560{
1561 intel_pstate_exit_perf_limits(policy);
1562
1563 return 0;
1564}
1565
93f0822d
DB
1566static struct cpufreq_driver intel_pstate_driver = {
1567 .flags = CPUFREQ_CONST_LOOPS,
1568 .verify = intel_pstate_verify_policy,
1569 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1570 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1571 .get = intel_pstate_get,
1572 .init = intel_pstate_cpu_init,
9522a2ff 1573 .exit = intel_pstate_cpu_exit,
bb18008f 1574 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1575 .name = "intel_pstate",
93f0822d
DB
1576};
1577
6be26498 1578static int __initdata no_load;
2f86dc4c 1579static int __initdata no_hwp;
d64c3b0b 1580static int __initdata hwp_only;
aa4ea34d 1581static unsigned int force_load;
6be26498 1582
b563b4e3
DB
1583static int intel_pstate_msrs_not_valid(void)
1584{
016c8150 1585 if (!pstate_funcs.get_max() ||
c410833a
SK
1586 !pstate_funcs.get_min() ||
1587 !pstate_funcs.get_turbo())
b563b4e3
DB
1588 return -ENODEV;
1589
b563b4e3
DB
1590 return 0;
1591}
016c8150 1592
e0a261a2 1593static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1594{
1595 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1596 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1597 pid_params.p_gain_pct = policy->p_gain_pct;
1598 pid_params.i_gain_pct = policy->i_gain_pct;
1599 pid_params.d_gain_pct = policy->d_gain_pct;
1600 pid_params.deadband = policy->deadband;
1601 pid_params.setpoint = policy->setpoint;
1602}
1603
e0a261a2 1604static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1605{
1606 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1607 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1608 pstate_funcs.get_min = funcs->get_min;
1609 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1610 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1611 pstate_funcs.get_val = funcs->get_val;
007bea09 1612 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1613 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1614
016c8150
DB
1615}
1616
9522a2ff 1617#ifdef CONFIG_ACPI
fbbcdc07
AH
1618
1619static bool intel_pstate_no_acpi_pss(void)
1620{
1621 int i;
1622
1623 for_each_possible_cpu(i) {
1624 acpi_status status;
1625 union acpi_object *pss;
1626 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1627 struct acpi_processor *pr = per_cpu(processors, i);
1628
1629 if (!pr)
1630 continue;
1631
1632 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1633 if (ACPI_FAILURE(status))
1634 continue;
1635
1636 pss = buffer.pointer;
1637 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1638 kfree(pss);
1639 return false;
1640 }
1641
1642 kfree(pss);
1643 }
1644
1645 return true;
1646}
1647
966916ea 1648static bool intel_pstate_has_acpi_ppc(void)
1649{
1650 int i;
1651
1652 for_each_possible_cpu(i) {
1653 struct acpi_processor *pr = per_cpu(processors, i);
1654
1655 if (!pr)
1656 continue;
1657 if (acpi_has_method(pr->handle, "_PPC"))
1658 return true;
1659 }
1660 return false;
1661}
1662
1663enum {
1664 PSS,
1665 PPC,
1666};
1667
fbbcdc07
AH
1668struct hw_vendor_info {
1669 u16 valid;
1670 char oem_id[ACPI_OEM_ID_SIZE];
1671 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1672 int oem_pwr_table;
fbbcdc07
AH
1673};
1674
1675/* Hardware vendor-specific info that has its own power management modes */
1676static struct hw_vendor_info vendor_info[] = {
966916ea 1677 {1, "HP ", "ProLiant", PSS},
1678 {1, "ORACLE", "X4-2 ", PPC},
1679 {1, "ORACLE", "X4-2L ", PPC},
1680 {1, "ORACLE", "X4-2B ", PPC},
1681 {1, "ORACLE", "X3-2 ", PPC},
1682 {1, "ORACLE", "X3-2L ", PPC},
1683 {1, "ORACLE", "X3-2B ", PPC},
1684 {1, "ORACLE", "X4470M2 ", PPC},
1685 {1, "ORACLE", "X4270M3 ", PPC},
1686 {1, "ORACLE", "X4270M2 ", PPC},
1687 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1688 {1, "ORACLE", "X4170 M3", PPC},
1689 {1, "ORACLE", "X4275 M3", PPC},
1690 {1, "ORACLE", "X6-2 ", PPC},
1691 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1692 {0, "", ""},
1693};
1694
1695static bool intel_pstate_platform_pwr_mgmt_exists(void)
1696{
1697 struct acpi_table_header hdr;
1698 struct hw_vendor_info *v_info;
2f86dc4c
DB
1699 const struct x86_cpu_id *id;
1700 u64 misc_pwr;
1701
1702 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1703 if (id) {
1704 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1705 if ( misc_pwr & (1 << 8))
1706 return true;
1707 }
fbbcdc07 1708
c410833a
SK
1709 if (acpi_disabled ||
1710 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1711 return false;
1712
1713 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1714 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1715 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1716 ACPI_OEM_TABLE_ID_SIZE))
1717 switch (v_info->oem_pwr_table) {
1718 case PSS:
1719 return intel_pstate_no_acpi_pss();
1720 case PPC:
aa4ea34d
EZ
1721 return intel_pstate_has_acpi_ppc() &&
1722 (!force_load);
966916ea 1723 }
fbbcdc07
AH
1724 }
1725
1726 return false;
1727}
1728#else /* CONFIG_ACPI not enabled */
1729static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1730static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1731#endif /* CONFIG_ACPI */
1732
7791e4aa
SP
1733static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1734 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1735 {}
1736};
1737
93f0822d
DB
1738static int __init intel_pstate_init(void)
1739{
907cc908 1740 int cpu, rc = 0;
93f0822d 1741 const struct x86_cpu_id *id;
64df1fdf 1742 struct cpu_defaults *cpu_def;
93f0822d 1743
6be26498
DB
1744 if (no_load)
1745 return -ENODEV;
1746
7791e4aa
SP
1747 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1748 copy_cpu_funcs(&core_params.funcs);
1749 hwp_active++;
1750 goto hwp_cpu_matched;
1751 }
1752
93f0822d
DB
1753 id = x86_match_cpu(intel_pstate_cpu_ids);
1754 if (!id)
1755 return -ENODEV;
1756
64df1fdf 1757 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1758
64df1fdf
BP
1759 copy_pid_params(&cpu_def->pid_policy);
1760 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1761
b563b4e3
DB
1762 if (intel_pstate_msrs_not_valid())
1763 return -ENODEV;
1764
7791e4aa
SP
1765hwp_cpu_matched:
1766 /*
1767 * The Intel pstate driver will be ignored if the platform
1768 * firmware has its own power management modes.
1769 */
1770 if (intel_pstate_platform_pwr_mgmt_exists())
1771 return -ENODEV;
1772
4836df17 1773 pr_info("Intel P-state driver initializing\n");
93f0822d 1774
b57ffac5 1775 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1776 if (!all_cpu_data)
1777 return -ENOMEM;
93f0822d 1778
d64c3b0b
KCA
1779 if (!hwp_active && hwp_only)
1780 goto out;
1781
93f0822d
DB
1782 rc = cpufreq_register_driver(&intel_pstate_driver);
1783 if (rc)
1784 goto out;
1785
1786 intel_pstate_debug_expose_params();
1787 intel_pstate_sysfs_expose_params();
b69880f9 1788
7791e4aa 1789 if (hwp_active)
4836df17 1790 pr_info("HWP enabled\n");
7791e4aa 1791
93f0822d
DB
1792 return rc;
1793out:
907cc908
DB
1794 get_online_cpus();
1795 for_each_online_cpu(cpu) {
1796 if (all_cpu_data[cpu]) {
bb6ab52f 1797 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1798 kfree(all_cpu_data[cpu]);
1799 }
1800 }
1801
1802 put_online_cpus();
1803 vfree(all_cpu_data);
93f0822d
DB
1804 return -ENODEV;
1805}
1806device_initcall(intel_pstate_init);
1807
6be26498
DB
1808static int __init intel_pstate_setup(char *str)
1809{
1810 if (!str)
1811 return -EINVAL;
1812
1813 if (!strcmp(str, "disable"))
1814 no_load = 1;
539342f6 1815 if (!strcmp(str, "no_hwp")) {
4836df17 1816 pr_info("HWP disabled\n");
2f86dc4c 1817 no_hwp = 1;
539342f6 1818 }
aa4ea34d
EZ
1819 if (!strcmp(str, "force"))
1820 force_load = 1;
d64c3b0b
KCA
1821 if (!strcmp(str, "hwp_only"))
1822 hwp_only = 1;
9522a2ff
SP
1823
1824#ifdef CONFIG_ACPI
1825 if (!strcmp(str, "support_acpi_ppc"))
1826 acpi_ppc = true;
1827#endif
1828
6be26498
DB
1829 return 0;
1830}
1831early_param("intel_pstate", intel_pstate_setup);
1832
93f0822d
DB
1833MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1834MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1835MODULE_LICENSE("GPL");