]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
intel_pstate: expose turbo range to sysfs
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
fbbcdc07 28#include <linux/acpi.h>
93f0822d
DB
29#include <trace/events/power.h>
30
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34
61d8d2ab
DB
35#define BYT_RATIOS 0x66a
36#define BYT_VIDS 0x66b
37#define BYT_TURBO_RATIOS 0x66c
21855ff5 38#define BYT_TURBO_VIDS 0x66d
61d8d2ab 39
f0fe3cd7 40#define FRAC_BITS 8
93f0822d
DB
41#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 43
93f0822d
DB
44
45static inline int32_t mul_fp(int32_t x, int32_t y)
46{
47 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48}
49
50static inline int32_t div_fp(int32_t x, int32_t y)
51{
fa30dff9 52 return div_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
53}
54
d022a65e
DB
55static inline int ceiling_fp(int32_t x)
56{
57 int mask, ret;
58
59 ret = fp_toint(x);
60 mask = (1 << FRAC_BITS) - 1;
61 if (x & mask)
62 ret += 1;
63 return ret;
64}
65
93f0822d 66struct sample {
d253d2a5 67 int32_t core_pct_busy;
93f0822d
DB
68 u64 aperf;
69 u64 mperf;
70 int freq;
c4ee841f 71 ktime_t time;
93f0822d
DB
72};
73
74struct pstate_data {
75 int current_pstate;
76 int min_pstate;
77 int max_pstate;
b27580b0 78 int scaling;
93f0822d
DB
79 int turbo_pstate;
80};
81
007bea09 82struct vid_data {
21855ff5
DB
83 int min;
84 int max;
85 int turbo;
007bea09
DB
86 int32_t ratio;
87};
88
93f0822d
DB
89struct _pid {
90 int setpoint;
91 int32_t integral;
92 int32_t p_gain;
93 int32_t i_gain;
94 int32_t d_gain;
95 int deadband;
d253d2a5 96 int32_t last_err;
93f0822d
DB
97};
98
99struct cpudata {
100 int cpu;
101
93f0822d
DB
102 struct timer_list timer;
103
93f0822d 104 struct pstate_data pstate;
007bea09 105 struct vid_data vid;
93f0822d 106 struct _pid pid;
93f0822d 107
c4ee841f 108 ktime_t last_sample_time;
93f0822d
DB
109 u64 prev_aperf;
110 u64 prev_mperf;
d37e2b76 111 struct sample sample;
93f0822d
DB
112};
113
114static struct cpudata **all_cpu_data;
115struct pstate_adjust_policy {
116 int sample_rate_ms;
117 int deadband;
118 int setpoint;
119 int p_gain_pct;
120 int d_gain_pct;
121 int i_gain_pct;
122};
123
016c8150
DB
124struct pstate_funcs {
125 int (*get_max)(void);
126 int (*get_min)(void);
127 int (*get_turbo)(void);
b27580b0 128 int (*get_scaling)(void);
007bea09
DB
129 void (*set)(struct cpudata*, int pstate);
130 void (*get_vid)(struct cpudata *);
93f0822d
DB
131};
132
016c8150
DB
133struct cpu_defaults {
134 struct pstate_adjust_policy pid_policy;
135 struct pstate_funcs funcs;
93f0822d
DB
136};
137
016c8150
DB
138static struct pstate_adjust_policy pid_params;
139static struct pstate_funcs pstate_funcs;
2f86dc4c 140static int hwp_active;
016c8150 141
93f0822d
DB
142struct perf_limits {
143 int no_turbo;
dd5fbf70 144 int turbo_disabled;
93f0822d
DB
145 int max_perf_pct;
146 int min_perf_pct;
147 int32_t max_perf;
148 int32_t min_perf;
d8f469e9
DB
149 int max_policy_pct;
150 int max_sysfs_pct;
93f0822d
DB
151};
152
153static struct perf_limits limits = {
154 .no_turbo = 0,
4521e1a0 155 .turbo_disabled = 0,
93f0822d
DB
156 .max_perf_pct = 100,
157 .max_perf = int_tofp(1),
158 .min_perf_pct = 0,
159 .min_perf = 0,
d8f469e9
DB
160 .max_policy_pct = 100,
161 .max_sysfs_pct = 100,
93f0822d
DB
162};
163
164static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 165 int deadband, int integral) {
93f0822d
DB
166 pid->setpoint = setpoint;
167 pid->deadband = deadband;
168 pid->integral = int_tofp(integral);
d98d099b 169 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
170}
171
172static inline void pid_p_gain_set(struct _pid *pid, int percent)
173{
174 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175}
176
177static inline void pid_i_gain_set(struct _pid *pid, int percent)
178{
179 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180}
181
182static inline void pid_d_gain_set(struct _pid *pid, int percent)
183{
93f0822d
DB
184 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185}
186
d253d2a5 187static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 188{
d253d2a5 189 signed int result;
93f0822d
DB
190 int32_t pterm, dterm, fp_error;
191 int32_t integral_limit;
192
d253d2a5 193 fp_error = int_tofp(pid->setpoint) - busy;
93f0822d 194
d253d2a5 195 if (abs(fp_error) <= int_tofp(pid->deadband))
93f0822d
DB
196 return 0;
197
198 pterm = mul_fp(pid->p_gain, fp_error);
199
200 pid->integral += fp_error;
201
e0d4c8f8
KCA
202 /*
203 * We limit the integral here so that it will never
204 * get higher than 30. This prevents it from becoming
205 * too large an input over long periods of time and allows
206 * it to get factored out sooner.
207 *
208 * The value of 30 was chosen through experimentation.
209 */
93f0822d
DB
210 integral_limit = int_tofp(30);
211 if (pid->integral > integral_limit)
212 pid->integral = integral_limit;
213 if (pid->integral < -integral_limit)
214 pid->integral = -integral_limit;
215
d253d2a5
BS
216 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217 pid->last_err = fp_error;
93f0822d
DB
218
219 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 220 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
221 return (signed int)fp_toint(result);
222}
223
224static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225{
016c8150
DB
226 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 229
2d8d1f18 230 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
231}
232
93f0822d
DB
233static inline void intel_pstate_reset_all_pid(void)
234{
235 unsigned int cpu;
845c1cbe 236
93f0822d
DB
237 for_each_online_cpu(cpu) {
238 if (all_cpu_data[cpu])
239 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240 }
241}
242
4521e1a0
GM
243static inline void update_turbo_state(void)
244{
245 u64 misc_en;
246 struct cpudata *cpu;
247
248 cpu = all_cpu_data[0];
249 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250 limits.turbo_disabled =
251 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253}
254
2f86dc4c
DB
255#define PCT_TO_HWP(x) (x * 255 / 100)
256static void intel_pstate_hwp_set(void)
257{
258 int min, max, cpu;
259 u64 value, freq;
260
261 get_online_cpus();
262
263 for_each_online_cpu(cpu) {
264 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265 min = PCT_TO_HWP(limits.min_perf_pct);
266 value &= ~HWP_MIN_PERF(~0L);
267 value |= HWP_MIN_PERF(min);
268
269 max = PCT_TO_HWP(limits.max_perf_pct);
270 if (limits.no_turbo) {
271 rdmsrl( MSR_HWP_CAPABILITIES, freq);
272 max = HWP_GUARANTEED_PERF(freq);
273 }
274
275 value &= ~HWP_MAX_PERF(~0L);
276 value |= HWP_MAX_PERF(max);
277 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278 }
279
280 put_online_cpus();
281}
282
93f0822d
DB
283/************************** debugfs begin ************************/
284static int pid_param_set(void *data, u64 val)
285{
286 *(u32 *)data = val;
287 intel_pstate_reset_all_pid();
288 return 0;
289}
845c1cbe 290
93f0822d
DB
291static int pid_param_get(void *data, u64 *val)
292{
293 *val = *(u32 *)data;
294 return 0;
295}
2d8d1f18 296DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
297
298struct pid_param {
299 char *name;
300 void *value;
301};
302
303static struct pid_param pid_files[] = {
016c8150
DB
304 {"sample_rate_ms", &pid_params.sample_rate_ms},
305 {"d_gain_pct", &pid_params.d_gain_pct},
306 {"i_gain_pct", &pid_params.i_gain_pct},
307 {"deadband", &pid_params.deadband},
308 {"setpoint", &pid_params.setpoint},
309 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
310 {NULL, NULL}
311};
312
317dd50e 313static void __init intel_pstate_debug_expose_params(void)
93f0822d 314{
317dd50e 315 struct dentry *debugfs_parent;
93f0822d
DB
316 int i = 0;
317
2f86dc4c
DB
318 if (hwp_active)
319 return;
93f0822d
DB
320 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321 if (IS_ERR_OR_NULL(debugfs_parent))
322 return;
323 while (pid_files[i].name) {
324 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
325 debugfs_parent, pid_files[i].value,
326 &fops_pid_param);
93f0822d
DB
327 i++;
328 }
329}
330
331/************************** debugfs end ************************/
332
333/************************** sysfs begin ************************/
334#define show_one(file_name, object) \
335 static ssize_t show_##file_name \
336 (struct kobject *kobj, struct attribute *attr, char *buf) \
337 { \
338 return sprintf(buf, "%u\n", limits.object); \
339 }
340
d01b1f48
KCA
341static ssize_t show_turbo_pct(struct kobject *kobj,
342 struct attribute *attr, char *buf)
343{
344 struct cpudata *cpu;
345 int total, no_turbo, turbo_pct;
346 uint32_t turbo_fp;
347
348 cpu = all_cpu_data[0];
349
350 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
351 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
352 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
353 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
354 return sprintf(buf, "%u\n", turbo_pct);
355}
356
4521e1a0
GM
357static ssize_t show_no_turbo(struct kobject *kobj,
358 struct attribute *attr, char *buf)
359{
360 ssize_t ret;
361
362 update_turbo_state();
363 if (limits.turbo_disabled)
364 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
365 else
366 ret = sprintf(buf, "%u\n", limits.no_turbo);
367
368 return ret;
369}
370
93f0822d 371static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 372 const char *buf, size_t count)
93f0822d
DB
373{
374 unsigned int input;
375 int ret;
845c1cbe 376
93f0822d
DB
377 ret = sscanf(buf, "%u", &input);
378 if (ret != 1)
379 return -EINVAL;
4521e1a0
GM
380
381 update_turbo_state();
dd5fbf70
DB
382 if (limits.turbo_disabled) {
383 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 384 return -EPERM;
dd5fbf70 385 }
2f86dc4c 386
4521e1a0
GM
387 limits.no_turbo = clamp_t(int, input, 0, 1);
388
2f86dc4c
DB
389 if (hwp_active)
390 intel_pstate_hwp_set();
391
93f0822d
DB
392 return count;
393}
394
395static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 396 const char *buf, size_t count)
93f0822d
DB
397{
398 unsigned int input;
399 int ret;
845c1cbe 400
93f0822d
DB
401 ret = sscanf(buf, "%u", &input);
402 if (ret != 1)
403 return -EINVAL;
404
d8f469e9
DB
405 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
406 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
93f0822d 407 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
845c1cbe 408
2f86dc4c
DB
409 if (hwp_active)
410 intel_pstate_hwp_set();
93f0822d
DB
411 return count;
412}
413
414static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 415 const char *buf, size_t count)
93f0822d
DB
416{
417 unsigned int input;
418 int ret;
845c1cbe 419
93f0822d
DB
420 ret = sscanf(buf, "%u", &input);
421 if (ret != 1)
422 return -EINVAL;
423 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
424 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
425
2f86dc4c
DB
426 if (hwp_active)
427 intel_pstate_hwp_set();
93f0822d
DB
428 return count;
429}
430
93f0822d
DB
431show_one(max_perf_pct, max_perf_pct);
432show_one(min_perf_pct, min_perf_pct);
433
434define_one_global_rw(no_turbo);
435define_one_global_rw(max_perf_pct);
436define_one_global_rw(min_perf_pct);
d01b1f48 437define_one_global_ro(turbo_pct);
93f0822d
DB
438
439static struct attribute *intel_pstate_attributes[] = {
440 &no_turbo.attr,
441 &max_perf_pct.attr,
442 &min_perf_pct.attr,
d01b1f48 443 &turbo_pct.attr,
93f0822d
DB
444 NULL
445};
446
447static struct attribute_group intel_pstate_attr_group = {
448 .attrs = intel_pstate_attributes,
449};
93f0822d 450
317dd50e 451static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 452{
317dd50e 453 struct kobject *intel_pstate_kobject;
93f0822d
DB
454 int rc;
455
456 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
457 &cpu_subsys.dev_root->kobj);
458 BUG_ON(!intel_pstate_kobject);
2d8d1f18 459 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
460 BUG_ON(rc);
461}
93f0822d 462/************************** sysfs end ************************/
2f86dc4c
DB
463
464static void intel_pstate_hwp_enable(void)
465{
466 hwp_active++;
467 pr_info("intel_pstate HWP enabled\n");
468
469 wrmsrl( MSR_PM_ENABLE, 0x1);
470}
471
19e77c28
DB
472static int byt_get_min_pstate(void)
473{
474 u64 value;
845c1cbe 475
19e77c28 476 rdmsrl(BYT_RATIOS, value);
c16ed060 477 return (value >> 8) & 0x7F;
19e77c28
DB
478}
479
480static int byt_get_max_pstate(void)
481{
482 u64 value;
845c1cbe 483
19e77c28 484 rdmsrl(BYT_RATIOS, value);
c16ed060 485 return (value >> 16) & 0x7F;
19e77c28 486}
93f0822d 487
61d8d2ab
DB
488static int byt_get_turbo_pstate(void)
489{
490 u64 value;
845c1cbe 491
61d8d2ab 492 rdmsrl(BYT_TURBO_RATIOS, value);
c16ed060 493 return value & 0x7F;
61d8d2ab
DB
494}
495
007bea09
DB
496static void byt_set_pstate(struct cpudata *cpudata, int pstate)
497{
498 u64 val;
499 int32_t vid_fp;
500 u32 vid;
501
502 val = pstate << 8;
dd5fbf70 503 if (limits.no_turbo && !limits.turbo_disabled)
007bea09
DB
504 val |= (u64)1 << 32;
505
506 vid_fp = cpudata->vid.min + mul_fp(
507 int_tofp(pstate - cpudata->pstate.min_pstate),
508 cpudata->vid.ratio);
509
510 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 511 vid = ceiling_fp(vid_fp);
007bea09 512
21855ff5
DB
513 if (pstate > cpudata->pstate.max_pstate)
514 vid = cpudata->vid.turbo;
515
007bea09
DB
516 val |= vid;
517
518 wrmsrl(MSR_IA32_PERF_CTL, val);
519}
520
b27580b0
DB
521#define BYT_BCLK_FREQS 5
522static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
523
524static int byt_get_scaling(void)
525{
526 u64 value;
527 int i;
528
529 rdmsrl(MSR_FSB_FREQ, value);
530 i = value & 0x3;
531
532 BUG_ON(i > BYT_BCLK_FREQS);
533
534 return byt_freq_table[i] * 100;
535}
536
007bea09
DB
537static void byt_get_vid(struct cpudata *cpudata)
538{
539 u64 value;
540
541 rdmsrl(BYT_VIDS, value);
c16ed060
DB
542 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
543 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
544 cpudata->vid.ratio = div_fp(
545 cpudata->vid.max - cpudata->vid.min,
546 int_tofp(cpudata->pstate.max_pstate -
547 cpudata->pstate.min_pstate));
21855ff5
DB
548
549 rdmsrl(BYT_TURBO_VIDS, value);
550 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
551}
552
016c8150 553static int core_get_min_pstate(void)
93f0822d
DB
554{
555 u64 value;
845c1cbe 556
05e99c8c 557 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
558 return (value >> 40) & 0xFF;
559}
560
016c8150 561static int core_get_max_pstate(void)
93f0822d
DB
562{
563 u64 value;
845c1cbe 564
05e99c8c 565 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
566 return (value >> 8) & 0xFF;
567}
568
016c8150 569static int core_get_turbo_pstate(void)
93f0822d
DB
570{
571 u64 value;
572 int nont, ret;
845c1cbe 573
05e99c8c 574 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 575 nont = core_get_max_pstate();
285cb990 576 ret = (value) & 255;
93f0822d
DB
577 if (ret <= nont)
578 ret = nont;
579 return ret;
580}
581
b27580b0
DB
582static inline int core_get_scaling(void)
583{
584 return 100000;
585}
586
007bea09 587static void core_set_pstate(struct cpudata *cpudata, int pstate)
016c8150
DB
588{
589 u64 val;
590
591 val = pstate << 8;
dd5fbf70 592 if (limits.no_turbo && !limits.turbo_disabled)
016c8150
DB
593 val |= (u64)1 << 32;
594
bb18008f 595 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
016c8150
DB
596}
597
598static struct cpu_defaults core_params = {
599 .pid_policy = {
600 .sample_rate_ms = 10,
601 .deadband = 0,
602 .setpoint = 97,
603 .p_gain_pct = 20,
604 .d_gain_pct = 0,
605 .i_gain_pct = 0,
606 },
607 .funcs = {
608 .get_max = core_get_max_pstate,
609 .get_min = core_get_min_pstate,
610 .get_turbo = core_get_turbo_pstate,
b27580b0 611 .get_scaling = core_get_scaling,
016c8150
DB
612 .set = core_set_pstate,
613 },
614};
615
19e77c28
DB
616static struct cpu_defaults byt_params = {
617 .pid_policy = {
618 .sample_rate_ms = 10,
619 .deadband = 0,
620 .setpoint = 97,
621 .p_gain_pct = 14,
622 .d_gain_pct = 0,
623 .i_gain_pct = 4,
624 },
625 .funcs = {
626 .get_max = byt_get_max_pstate,
627 .get_min = byt_get_min_pstate,
61d8d2ab 628 .get_turbo = byt_get_turbo_pstate,
007bea09 629 .set = byt_set_pstate,
b27580b0 630 .get_scaling = byt_get_scaling,
007bea09 631 .get_vid = byt_get_vid,
19e77c28
DB
632 },
633};
634
93f0822d
DB
635static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
636{
637 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 638 int max_perf_adj;
93f0822d 639 int min_perf;
845c1cbe 640
4521e1a0 641 if (limits.no_turbo || limits.turbo_disabled)
93f0822d
DB
642 max_perf = cpu->pstate.max_pstate;
643
e0d4c8f8
KCA
644 /*
645 * performance can be limited by user through sysfs, by cpufreq
646 * policy, or by cpu specific default values determined through
647 * experimentation.
648 */
7244cb62
DB
649 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
650 *max = clamp_t(int, max_perf_adj,
93f0822d
DB
651 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
652
653 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
2d8d1f18 654 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
655}
656
657static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
658{
659 int max_perf, min_perf;
660
4521e1a0
GM
661 update_turbo_state();
662
93f0822d
DB
663 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
664
665 pstate = clamp_t(int, pstate, min_perf, max_perf);
666
667 if (pstate == cpu->pstate.current_pstate)
668 return;
669
b27580b0 670 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
35363e94 671
93f0822d 672 cpu->pstate.current_pstate = pstate;
93f0822d 673
007bea09 674 pstate_funcs.set(cpu, pstate);
93f0822d
DB
675}
676
93f0822d
DB
677static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
678{
016c8150
DB
679 cpu->pstate.min_pstate = pstate_funcs.get_min();
680 cpu->pstate.max_pstate = pstate_funcs.get_max();
681 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 682 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 683
007bea09
DB
684 if (pstate_funcs.get_vid)
685 pstate_funcs.get_vid(cpu);
d40a63c4 686 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
93f0822d
DB
687}
688
6b17ddb2 689static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 690{
6b17ddb2 691 struct sample *sample = &cpu->sample;
bf810222 692 int64_t core_pct;
93f0822d 693
bf810222 694 core_pct = int_tofp(sample->aperf) * int_tofp(100);
78e27086 695 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
e66c1768 696
fcb6a15c 697 sample->freq = fp_toint(
b27580b0
DB
698 mul_fp(int_tofp(
699 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
700 core_pct));
fcb6a15c 701
bf810222 702 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
703}
704
705static inline void intel_pstate_sample(struct cpudata *cpu)
706{
93f0822d 707 u64 aperf, mperf;
4ab60c3f 708 unsigned long flags;
93f0822d 709
4ab60c3f 710 local_irq_save(flags);
93f0822d
DB
711 rdmsrl(MSR_IA32_APERF, aperf);
712 rdmsrl(MSR_IA32_MPERF, mperf);
4ab60c3f 713 local_irq_restore(flags);
b69880f9 714
c4ee841f
DB
715 cpu->last_sample_time = cpu->sample.time;
716 cpu->sample.time = ktime_get();
d37e2b76
DB
717 cpu->sample.aperf = aperf;
718 cpu->sample.mperf = mperf;
d37e2b76
DB
719 cpu->sample.aperf -= cpu->prev_aperf;
720 cpu->sample.mperf -= cpu->prev_mperf;
1abc4b20 721
6b17ddb2 722 intel_pstate_calc_busy(cpu);
93f0822d 723
93f0822d
DB
724 cpu->prev_aperf = aperf;
725 cpu->prev_mperf = mperf;
726}
727
2f86dc4c
DB
728static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
729{
730 int delay;
731
732 delay = msecs_to_jiffies(50);
733 mod_timer_pinned(&cpu->timer, jiffies + delay);
734}
735
93f0822d
DB
736static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
737{
abf013bf 738 int delay;
93f0822d 739
abf013bf 740 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
93f0822d
DB
741 mod_timer_pinned(&cpu->timer, jiffies + delay);
742}
743
d253d2a5 744static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
93f0822d 745{
c4ee841f
DB
746 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
747 u32 duration_us;
748 u32 sample_time;
93f0822d 749
e0d4c8f8
KCA
750 /*
751 * core_busy is the ratio of actual performance to max
752 * max_pstate is the max non turbo pstate available
753 * current_pstate was the pstate that was requested during
754 * the last sample period.
755 *
756 * We normalize core_busy, which was our actual percent
757 * performance to what we requested during the last sample
758 * period. The result will be a percentage of busy at a
759 * specified pstate.
760 */
d37e2b76 761 core_busy = cpu->sample.core_pct_busy;
2134ed4d 762 max_pstate = int_tofp(cpu->pstate.max_pstate);
93f0822d 763 current_pstate = int_tofp(cpu->pstate.current_pstate);
e66c1768 764 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 765
e0d4c8f8
KCA
766 /*
767 * Since we have a deferred timer, it will not fire unless
768 * we are in C0. So, determine if the actual elapsed time
769 * is significantly greater (3x) than our sample interval. If it
770 * is, then we were idle for a long enough period of time
771 * to adjust our busyness.
772 */
285cb990 773 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
c4ee841f 774 duration_us = (u32) ktime_us_delta(cpu->sample.time,
c410833a 775 cpu->last_sample_time);
c4ee841f
DB
776 if (duration_us > sample_time * 3) {
777 sample_ratio = div_fp(int_tofp(sample_time),
c410833a 778 int_tofp(duration_us));
c4ee841f
DB
779 core_busy = mul_fp(core_busy, sample_ratio);
780 }
781
f0fe3cd7 782 return core_busy;
93f0822d
DB
783}
784
785static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
786{
d253d2a5 787 int32_t busy_scaled;
93f0822d 788 struct _pid *pid;
4b707c89 789 signed int ctl;
93f0822d
DB
790
791 pid = &cpu->pid;
792 busy_scaled = intel_pstate_get_scaled_busy(cpu);
793
794 ctl = pid_calc(pid, busy_scaled);
795
4b707c89
SK
796 /* Negative values of ctl increase the pstate and vice versa */
797 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
93f0822d
DB
798}
799
2f86dc4c
DB
800static void intel_hwp_timer_func(unsigned long __data)
801{
802 struct cpudata *cpu = (struct cpudata *) __data;
803
804 intel_pstate_sample(cpu);
805 intel_hwp_set_sample_time(cpu);
806}
807
93f0822d
DB
808static void intel_pstate_timer_func(unsigned long __data)
809{
810 struct cpudata *cpu = (struct cpudata *) __data;
b69880f9 811 struct sample *sample;
93f0822d
DB
812
813 intel_pstate_sample(cpu);
b69880f9 814
d37e2b76 815 sample = &cpu->sample;
b69880f9 816
ca182aee 817 intel_pstate_adjust_busy_pstate(cpu);
b69880f9
DB
818
819 trace_pstate_sample(fp_toint(sample->core_pct_busy),
820 fp_toint(intel_pstate_get_scaled_busy(cpu)),
821 cpu->pstate.current_pstate,
822 sample->mperf,
823 sample->aperf,
b69880f9
DB
824 sample->freq);
825
93f0822d
DB
826 intel_pstate_set_sample_time(cpu);
827}
828
829#define ICPU(model, policy) \
6cbd7ee1
DB
830 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
831 (unsigned long)&policy }
93f0822d
DB
832
833static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
834 ICPU(0x2a, core_params),
835 ICPU(0x2d, core_params),
19e77c28 836 ICPU(0x37, byt_params),
016c8150
DB
837 ICPU(0x3a, core_params),
838 ICPU(0x3c, core_params),
c7e241df 839 ICPU(0x3d, core_params),
016c8150
DB
840 ICPU(0x3e, core_params),
841 ICPU(0x3f, core_params),
842 ICPU(0x45, core_params),
843 ICPU(0x46, core_params),
43f8a966 844 ICPU(0x47, core_params),
16405f98 845 ICPU(0x4c, byt_params),
7ab0256e 846 ICPU(0x4e, core_params),
c7e241df
DB
847 ICPU(0x4f, core_params),
848 ICPU(0x56, core_params),
93f0822d
DB
849 {}
850};
851MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
852
2f86dc4c
DB
853static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
854 ICPU(0x56, core_params),
855 {}
856};
857
93f0822d
DB
858static int intel_pstate_init_cpu(unsigned int cpunum)
859{
93f0822d
DB
860 struct cpudata *cpu;
861
c0348717
DB
862 if (!all_cpu_data[cpunum])
863 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
864 GFP_KERNEL);
93f0822d
DB
865 if (!all_cpu_data[cpunum])
866 return -ENOMEM;
867
868 cpu = all_cpu_data[cpunum];
869
93f0822d 870 cpu->cpu = cpunum;
179e8471 871 intel_pstate_get_cpu_pstates(cpu);
016c8150 872
93f0822d 873 init_timer_deferrable(&cpu->timer);
2d8d1f18 874 cpu->timer.data = (unsigned long)cpu;
93f0822d 875 cpu->timer.expires = jiffies + HZ/100;
2f86dc4c
DB
876
877 if (!hwp_active)
878 cpu->timer.function = intel_pstate_timer_func;
879 else
880 cpu->timer.function = intel_hwp_timer_func;
881
93f0822d 882 intel_pstate_busy_pid_reset(cpu);
93f0822d 883 intel_pstate_sample(cpu);
93f0822d
DB
884
885 add_timer_on(&cpu->timer, cpunum);
886
ce717613 887 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
93f0822d
DB
888
889 return 0;
890}
891
892static unsigned int intel_pstate_get(unsigned int cpu_num)
893{
894 struct sample *sample;
895 struct cpudata *cpu;
896
897 cpu = all_cpu_data[cpu_num];
898 if (!cpu)
899 return 0;
d37e2b76 900 sample = &cpu->sample;
93f0822d
DB
901 return sample->freq;
902}
903
904static int intel_pstate_set_policy(struct cpufreq_policy *policy)
905{
d3929b83
DB
906 if (!policy->cpuinfo.max_freq)
907 return -ENODEV;
908
93f0822d
DB
909 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
910 limits.min_perf_pct = 100;
911 limits.min_perf = int_tofp(1);
36b4bed5 912 limits.max_policy_pct = 100;
93f0822d
DB
913 limits.max_perf_pct = 100;
914 limits.max_perf = int_tofp(1);
4521e1a0 915 limits.no_turbo = 0;
d1b68485 916 return 0;
93f0822d 917 }
2f86dc4c 918
d1b68485
SP
919 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
920 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
921 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
922
285cb990 923 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
d8f469e9
DB
924 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
925 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
d1b68485 926 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
93f0822d 927
2f86dc4c
DB
928 if (hwp_active)
929 intel_pstate_hwp_set();
930
93f0822d
DB
931 return 0;
932}
933
934static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
935{
be49e346 936 cpufreq_verify_within_cpu_limits(policy);
93f0822d 937
285cb990 938 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 939 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
940 return -EINVAL;
941
942 return 0;
943}
944
bb18008f 945static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 946{
bb18008f
DB
947 int cpu_num = policy->cpu;
948 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 949
bb18008f
DB
950 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
951
c2294a2f 952 del_timer_sync(&all_cpu_data[cpu_num]->timer);
2f86dc4c
DB
953 if (hwp_active)
954 return;
955
bb18008f 956 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
93f0822d
DB
957}
958
2760984f 959static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 960{
93f0822d 961 struct cpudata *cpu;
52e0a509 962 int rc;
93f0822d
DB
963
964 rc = intel_pstate_init_cpu(policy->cpu);
965 if (rc)
966 return rc;
967
968 cpu = all_cpu_data[policy->cpu];
969
dd5fbf70 970 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
93f0822d
DB
971 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
972 else
973 policy->policy = CPUFREQ_POLICY_POWERSAVE;
974
b27580b0
DB
975 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
976 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
977
978 /* cpuinfo and default policy values */
b27580b0
DB
979 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
980 policy->cpuinfo.max_freq =
981 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
982 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
983 cpumask_set_cpu(policy->cpu, policy->cpus);
984
985 return 0;
986}
987
988static struct cpufreq_driver intel_pstate_driver = {
989 .flags = CPUFREQ_CONST_LOOPS,
990 .verify = intel_pstate_verify_policy,
991 .setpolicy = intel_pstate_set_policy,
992 .get = intel_pstate_get,
993 .init = intel_pstate_cpu_init,
bb18008f 994 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 995 .name = "intel_pstate",
93f0822d
DB
996};
997
6be26498 998static int __initdata no_load;
2f86dc4c 999static int __initdata no_hwp;
aa4ea34d 1000static unsigned int force_load;
6be26498 1001
b563b4e3
DB
1002static int intel_pstate_msrs_not_valid(void)
1003{
1004 /* Check that all the msr's we are using are valid. */
1005 u64 aperf, mperf, tmp;
1006
1007 rdmsrl(MSR_IA32_APERF, aperf);
1008 rdmsrl(MSR_IA32_MPERF, mperf);
1009
016c8150 1010 if (!pstate_funcs.get_max() ||
c410833a
SK
1011 !pstate_funcs.get_min() ||
1012 !pstate_funcs.get_turbo())
b563b4e3
DB
1013 return -ENODEV;
1014
1015 rdmsrl(MSR_IA32_APERF, tmp);
1016 if (!(tmp - aperf))
1017 return -ENODEV;
1018
1019 rdmsrl(MSR_IA32_MPERF, tmp);
1020 if (!(tmp - mperf))
1021 return -ENODEV;
1022
1023 return 0;
1024}
016c8150 1025
e0a261a2 1026static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1027{
1028 pid_params.sample_rate_ms = policy->sample_rate_ms;
1029 pid_params.p_gain_pct = policy->p_gain_pct;
1030 pid_params.i_gain_pct = policy->i_gain_pct;
1031 pid_params.d_gain_pct = policy->d_gain_pct;
1032 pid_params.deadband = policy->deadband;
1033 pid_params.setpoint = policy->setpoint;
1034}
1035
e0a261a2 1036static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1037{
1038 pstate_funcs.get_max = funcs->get_max;
1039 pstate_funcs.get_min = funcs->get_min;
1040 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1041 pstate_funcs.get_scaling = funcs->get_scaling;
016c8150 1042 pstate_funcs.set = funcs->set;
007bea09 1043 pstate_funcs.get_vid = funcs->get_vid;
016c8150
DB
1044}
1045
fbbcdc07
AH
1046#if IS_ENABLED(CONFIG_ACPI)
1047#include <acpi/processor.h>
1048
1049static bool intel_pstate_no_acpi_pss(void)
1050{
1051 int i;
1052
1053 for_each_possible_cpu(i) {
1054 acpi_status status;
1055 union acpi_object *pss;
1056 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1057 struct acpi_processor *pr = per_cpu(processors, i);
1058
1059 if (!pr)
1060 continue;
1061
1062 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1063 if (ACPI_FAILURE(status))
1064 continue;
1065
1066 pss = buffer.pointer;
1067 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1068 kfree(pss);
1069 return false;
1070 }
1071
1072 kfree(pss);
1073 }
1074
1075 return true;
1076}
1077
966916ea 1078static bool intel_pstate_has_acpi_ppc(void)
1079{
1080 int i;
1081
1082 for_each_possible_cpu(i) {
1083 struct acpi_processor *pr = per_cpu(processors, i);
1084
1085 if (!pr)
1086 continue;
1087 if (acpi_has_method(pr->handle, "_PPC"))
1088 return true;
1089 }
1090 return false;
1091}
1092
1093enum {
1094 PSS,
1095 PPC,
1096};
1097
fbbcdc07
AH
1098struct hw_vendor_info {
1099 u16 valid;
1100 char oem_id[ACPI_OEM_ID_SIZE];
1101 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1102 int oem_pwr_table;
fbbcdc07
AH
1103};
1104
1105/* Hardware vendor-specific info that has its own power management modes */
1106static struct hw_vendor_info vendor_info[] = {
966916ea 1107 {1, "HP ", "ProLiant", PSS},
1108 {1, "ORACLE", "X4-2 ", PPC},
1109 {1, "ORACLE", "X4-2L ", PPC},
1110 {1, "ORACLE", "X4-2B ", PPC},
1111 {1, "ORACLE", "X3-2 ", PPC},
1112 {1, "ORACLE", "X3-2L ", PPC},
1113 {1, "ORACLE", "X3-2B ", PPC},
1114 {1, "ORACLE", "X4470M2 ", PPC},
1115 {1, "ORACLE", "X4270M3 ", PPC},
1116 {1, "ORACLE", "X4270M2 ", PPC},
1117 {1, "ORACLE", "X4170M2 ", PPC},
fbbcdc07
AH
1118 {0, "", ""},
1119};
1120
1121static bool intel_pstate_platform_pwr_mgmt_exists(void)
1122{
1123 struct acpi_table_header hdr;
1124 struct hw_vendor_info *v_info;
2f86dc4c
DB
1125 const struct x86_cpu_id *id;
1126 u64 misc_pwr;
1127
1128 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1129 if (id) {
1130 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1131 if ( misc_pwr & (1 << 8))
1132 return true;
1133 }
fbbcdc07 1134
c410833a
SK
1135 if (acpi_disabled ||
1136 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1137 return false;
1138
1139 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1140 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1141 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1142 ACPI_OEM_TABLE_ID_SIZE))
1143 switch (v_info->oem_pwr_table) {
1144 case PSS:
1145 return intel_pstate_no_acpi_pss();
1146 case PPC:
aa4ea34d
EZ
1147 return intel_pstate_has_acpi_ppc() &&
1148 (!force_load);
966916ea 1149 }
fbbcdc07
AH
1150 }
1151
1152 return false;
1153}
1154#else /* CONFIG_ACPI not enabled */
1155static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1156static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1157#endif /* CONFIG_ACPI */
1158
93f0822d
DB
1159static int __init intel_pstate_init(void)
1160{
907cc908 1161 int cpu, rc = 0;
93f0822d 1162 const struct x86_cpu_id *id;
016c8150 1163 struct cpu_defaults *cpu_info;
2f86dc4c 1164 struct cpuinfo_x86 *c = &boot_cpu_data;
93f0822d 1165
6be26498
DB
1166 if (no_load)
1167 return -ENODEV;
1168
93f0822d
DB
1169 id = x86_match_cpu(intel_pstate_cpu_ids);
1170 if (!id)
1171 return -ENODEV;
1172
fbbcdc07
AH
1173 /*
1174 * The Intel pstate driver will be ignored if the platform
1175 * firmware has its own power management modes.
1176 */
1177 if (intel_pstate_platform_pwr_mgmt_exists())
1178 return -ENODEV;
1179
016c8150
DB
1180 cpu_info = (struct cpu_defaults *)id->driver_data;
1181
1182 copy_pid_params(&cpu_info->pid_policy);
1183 copy_cpu_funcs(&cpu_info->funcs);
1184
b563b4e3
DB
1185 if (intel_pstate_msrs_not_valid())
1186 return -ENODEV;
1187
93f0822d
DB
1188 pr_info("Intel P-state driver initializing.\n");
1189
b57ffac5 1190 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1191 if (!all_cpu_data)
1192 return -ENOMEM;
93f0822d 1193
2f86dc4c
DB
1194 if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1195 intel_pstate_hwp_enable();
1196
93f0822d
DB
1197 rc = cpufreq_register_driver(&intel_pstate_driver);
1198 if (rc)
1199 goto out;
1200
1201 intel_pstate_debug_expose_params();
1202 intel_pstate_sysfs_expose_params();
b69880f9 1203
93f0822d
DB
1204 return rc;
1205out:
907cc908
DB
1206 get_online_cpus();
1207 for_each_online_cpu(cpu) {
1208 if (all_cpu_data[cpu]) {
1209 del_timer_sync(&all_cpu_data[cpu]->timer);
1210 kfree(all_cpu_data[cpu]);
1211 }
1212 }
1213
1214 put_online_cpus();
1215 vfree(all_cpu_data);
93f0822d
DB
1216 return -ENODEV;
1217}
1218device_initcall(intel_pstate_init);
1219
6be26498
DB
1220static int __init intel_pstate_setup(char *str)
1221{
1222 if (!str)
1223 return -EINVAL;
1224
1225 if (!strcmp(str, "disable"))
1226 no_load = 1;
2f86dc4c
DB
1227 if (!strcmp(str, "no_hwp"))
1228 no_hwp = 1;
aa4ea34d
EZ
1229 if (!strcmp(str, "force"))
1230 force_load = 1;
6be26498
DB
1231 return 0;
1232}
1233early_param("intel_pstate", intel_pstate_setup);
1234
93f0822d
DB
1235MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1236MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1237MODULE_LICENSE("GPL");