]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Fix intel_pstate_verify_policy()
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
938d21a2
PL
42#define ATOM_RATIOS 0x66a
43#define ATOM_VIDS 0x66b
44#define ATOM_TURBO_RATIOS 0x66c
45#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 46
9522a2ff
SP
47#ifdef CONFIG_ACPI
48#include <acpi/processor.h>
17669006 49#include <acpi/cppc_acpi.h>
9522a2ff
SP
50#endif
51
f0fe3cd7 52#define FRAC_BITS 8
93f0822d
DB
53#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 55
a1c9787d
RW
56#define EXT_BITS 6
57#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
58#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 60
93f0822d
DB
61static inline int32_t mul_fp(int32_t x, int32_t y)
62{
63 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64}
65
7180dddf 66static inline int32_t div_fp(s64 x, s64 y)
93f0822d 67{
7180dddf 68 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
69}
70
d022a65e
DB
71static inline int ceiling_fp(int32_t x)
72{
73 int mask, ret;
74
75 ret = fp_toint(x);
76 mask = (1 << FRAC_BITS) - 1;
77 if (x & mask)
78 ret += 1;
79 return ret;
80}
81
a1c9787d
RW
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
eae48f04
SP
188/**
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
214 *
215 * Storage for user and policy defined limits.
216 */
217struct perf_limits {
218 int no_turbo;
219 int turbo_disabled;
220 int max_perf_pct;
221 int min_perf_pct;
222 int32_t max_perf;
223 int32_t min_perf;
224 int max_policy_pct;
225 int max_sysfs_pct;
226 int min_policy_pct;
227 int min_sysfs_pct;
228};
229
13ad7701
SP
230/**
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
2f1d407a 233 * @policy: CPUFreq policy value
13ad7701 234 * @update_util: CPUFreq utility callback information
4578ee7e 235 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
13ad7701
SP
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
246 * current sample
247 * @sample: Storage for storing last Sample data
eae48f04
SP
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
9522a2ff
SP
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
8442885f 256 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
257 * @epp_default: Power on default HWP energy performance
258 * preference/bias
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
260 * operation
13ad7701
SP
261 *
262 * This structure stores per CPU instance data for all CPUs.
263 */
93f0822d
DB
264struct cpudata {
265 int cpu;
266
2f1d407a 267 unsigned int policy;
a4675fbc 268 struct update_util_data update_util;
4578ee7e 269 bool update_util_set;
93f0822d 270
93f0822d 271 struct pstate_data pstate;
007bea09 272 struct vid_data vid;
93f0822d 273 struct _pid pid;
93f0822d 274
09c448d3 275 u64 last_update;
a4675fbc 276 u64 last_sample_time;
93f0822d
DB
277 u64 prev_aperf;
278 u64 prev_mperf;
4055fad3 279 u64 prev_tsc;
63d1d656 280 u64 prev_cummulative_iowait;
d37e2b76 281 struct sample sample;
eae48f04 282 struct perf_limits *perf_limits;
9522a2ff
SP
283#ifdef CONFIG_ACPI
284 struct acpi_processor_performance acpi_perf_data;
285 bool valid_pss_table;
286#endif
09c448d3 287 unsigned int iowait_boost;
984edbdc 288 s16 epp_powersave;
8442885f 289 s16 epp_policy;
984edbdc
SP
290 s16 epp_default;
291 s16 epp_saved;
93f0822d
DB
292};
293
294static struct cpudata **all_cpu_data;
13ad7701
SP
295
296/**
3954517e 297 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
305 *
306 * Stores per CPU model static PID configuration data.
307 */
93f0822d
DB
308struct pstate_adjust_policy {
309 int sample_rate_ms;
a4675fbc 310 s64 sample_rate_ns;
93f0822d
DB
311 int deadband;
312 int setpoint;
313 int p_gain_pct;
314 int d_gain_pct;
315 int i_gain_pct;
316};
317
13ad7701
SP
318/**
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
328 *
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
331 */
016c8150
DB
332struct pstate_funcs {
333 int (*get_max)(void);
3bcc6fa9 334 int (*get_max_physical)(void);
016c8150
DB
335 int (*get_min)(void);
336 int (*get_turbo)(void);
b27580b0 337 int (*get_scaling)(void);
fdfdb2b1 338 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 339 void (*get_vid)(struct cpudata *);
157386b6 340 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
341};
342
13ad7701
SP
343/**
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
347 */
016c8150
DB
348struct cpu_defaults {
349 struct pstate_adjust_policy pid_policy;
350 struct pstate_funcs funcs;
93f0822d
DB
351};
352
157386b6 353static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 354static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 355
4a7cb7a9
JZ
356static struct pstate_adjust_policy pid_params __read_mostly;
357static struct pstate_funcs pstate_funcs __read_mostly;
358static int hwp_active __read_mostly;
eae48f04 359static bool per_cpu_limits __read_mostly;
016c8150 360
0c30b65b
RW
361static bool driver_registered __read_mostly;
362
9522a2ff
SP
363#ifdef CONFIG_ACPI
364static bool acpi_ppc;
365#endif
13ad7701 366
c3a49c89
RW
367static struct perf_limits performance_limits;
368static struct perf_limits powersave_limits;
369static struct perf_limits *limits;
51443fbf 370
c3a49c89
RW
371static void intel_pstate_init_limits(struct perf_limits *limits)
372{
373 memset(limits, 0, sizeof(*limits));
374 limits->max_perf_pct = 100;
375 limits->max_perf = int_ext_tofp(1);
376 limits->max_policy_pct = 100;
377 limits->max_sysfs_pct = 100;
378}
93f0822d 379
c3a49c89
RW
380static void intel_pstate_set_performance_limits(struct perf_limits *limits)
381{
382 intel_pstate_init_limits(limits);
383 limits->min_perf_pct = 100;
384 limits->min_perf = int_ext_tofp(1);
385}
51443fbf 386
0c30b65b 387static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
388static DEFINE_MUTEX(intel_pstate_limits_lock);
389
9522a2ff 390#ifdef CONFIG_ACPI
2b3ec765
SP
391
392static bool intel_pstate_get_ppc_enable_status(void)
393{
394 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
395 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
396 return true;
397
398 return acpi_ppc;
399}
400
17669006
RW
401#ifdef CONFIG_ACPI_CPPC_LIB
402
403/* The work item is needed to avoid CPU hotplug locking issues */
404static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
405{
406 sched_set_itmt_support();
407}
408
409static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
410
411static void intel_pstate_set_itmt_prio(int cpu)
412{
413 struct cppc_perf_caps cppc_perf;
414 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
415 int ret;
416
417 ret = cppc_get_perf_caps(cpu, &cppc_perf);
418 if (ret)
419 return;
420
421 /*
422 * The priorities can be set regardless of whether or not
423 * sched_set_itmt_support(true) has been called and it is valid to
424 * update them at any time after it has been called.
425 */
426 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
427
428 if (max_highest_perf <= min_highest_perf) {
429 if (cppc_perf.highest_perf > max_highest_perf)
430 max_highest_perf = cppc_perf.highest_perf;
431
432 if (cppc_perf.highest_perf < min_highest_perf)
433 min_highest_perf = cppc_perf.highest_perf;
434
435 if (max_highest_perf > min_highest_perf) {
436 /*
437 * This code can be run during CPU online under the
438 * CPU hotplug locks, so sched_set_itmt_support()
439 * cannot be called from here. Queue up a work item
440 * to invoke it.
441 */
442 schedule_work(&sched_itmt_work);
443 }
444 }
445}
446#else
447static void intel_pstate_set_itmt_prio(int cpu)
448{
449}
450#endif
451
9522a2ff
SP
452static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
453{
454 struct cpudata *cpu;
9522a2ff
SP
455 int ret;
456 int i;
457
17669006
RW
458 if (hwp_active) {
459 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 460 return;
17669006 461 }
e59a8f7f 462
2b3ec765 463 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
464 return;
465
466 cpu = all_cpu_data[policy->cpu];
467
468 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
469 policy->cpu);
470 if (ret)
471 return;
472
473 /*
474 * Check if the control value in _PSS is for PERF_CTL MSR, which should
475 * guarantee that the states returned by it map to the states in our
476 * list directly.
477 */
478 if (cpu->acpi_perf_data.control_register.space_id !=
479 ACPI_ADR_SPACE_FIXED_HARDWARE)
480 goto err;
481
482 /*
483 * If there is only one entry _PSS, simply ignore _PSS and continue as
484 * usual without taking _PSS into account
485 */
486 if (cpu->acpi_perf_data.state_count < 2)
487 goto err;
488
489 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
490 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
491 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
492 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
493 (u32) cpu->acpi_perf_data.states[i].core_frequency,
494 (u32) cpu->acpi_perf_data.states[i].power,
495 (u32) cpu->acpi_perf_data.states[i].control);
496 }
497
498 /*
499 * The _PSS table doesn't contain whole turbo frequency range.
500 * This just contains +1 MHZ above the max non turbo frequency,
501 * with control value corresponding to max turbo ratio. But
502 * when cpufreq set policy is called, it will call with this
503 * max frequency, which will cause a reduced performance as
504 * this driver uses real max turbo frequency as the max
505 * frequency. So correct this frequency in _PSS table to
b00345d1 506 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
507 * Also need to convert to MHz as _PSS freq is in MHz.
508 */
b00345d1 509 if (!limits->turbo_disabled)
9522a2ff
SP
510 cpu->acpi_perf_data.states[0].core_frequency =
511 policy->cpuinfo.max_freq / 1000;
512 cpu->valid_pss_table = true;
6cacd115 513 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
514
515 return;
516
517 err:
518 cpu->valid_pss_table = false;
519 acpi_processor_unregister_performance(policy->cpu);
520}
521
522static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
523{
524 struct cpudata *cpu;
525
526 cpu = all_cpu_data[policy->cpu];
527 if (!cpu->valid_pss_table)
528 return;
529
530 acpi_processor_unregister_performance(policy->cpu);
531}
9522a2ff 532#else
7a3ba767 533static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
534{
535}
536
7a3ba767 537static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
538{
539}
540#endif
541
93f0822d 542static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 543 int deadband, int integral) {
b54a0dfd
PL
544 pid->setpoint = int_tofp(setpoint);
545 pid->deadband = int_tofp(deadband);
93f0822d 546 pid->integral = int_tofp(integral);
d98d099b 547 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
548}
549
550static inline void pid_p_gain_set(struct _pid *pid, int percent)
551{
22590efb 552 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
553}
554
555static inline void pid_i_gain_set(struct _pid *pid, int percent)
556{
22590efb 557 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
558}
559
560static inline void pid_d_gain_set(struct _pid *pid, int percent)
561{
22590efb 562 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
563}
564
d253d2a5 565static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 566{
d253d2a5 567 signed int result;
93f0822d
DB
568 int32_t pterm, dterm, fp_error;
569 int32_t integral_limit;
570
b54a0dfd 571 fp_error = pid->setpoint - busy;
93f0822d 572
b54a0dfd 573 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
574 return 0;
575
576 pterm = mul_fp(pid->p_gain, fp_error);
577
578 pid->integral += fp_error;
579
e0d4c8f8
KCA
580 /*
581 * We limit the integral here so that it will never
582 * get higher than 30. This prevents it from becoming
583 * too large an input over long periods of time and allows
584 * it to get factored out sooner.
585 *
586 * The value of 30 was chosen through experimentation.
587 */
93f0822d
DB
588 integral_limit = int_tofp(30);
589 if (pid->integral > integral_limit)
590 pid->integral = integral_limit;
591 if (pid->integral < -integral_limit)
592 pid->integral = -integral_limit;
593
d253d2a5
BS
594 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
595 pid->last_err = fp_error;
93f0822d
DB
596
597 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 598 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
599 return (signed int)fp_toint(result);
600}
601
602static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
603{
016c8150
DB
604 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
605 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
606 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 607
2d8d1f18 608 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
609}
610
93f0822d
DB
611static inline void intel_pstate_reset_all_pid(void)
612{
613 unsigned int cpu;
845c1cbe 614
93f0822d
DB
615 for_each_online_cpu(cpu) {
616 if (all_cpu_data[cpu])
617 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
618 }
619}
620
4521e1a0
GM
621static inline void update_turbo_state(void)
622{
623 u64 misc_en;
624 struct cpudata *cpu;
625
626 cpu = all_cpu_data[0];
627 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 628 limits->turbo_disabled =
4521e1a0
GM
629 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
630 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
631}
632
8442885f
SP
633static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
634{
635 u64 epb;
636 int ret;
637
638 if (!static_cpu_has(X86_FEATURE_EPB))
639 return -ENXIO;
640
641 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
642 if (ret)
643 return (s16)ret;
644
645 return (s16)(epb & 0x0f);
646}
647
648static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
649{
650 s16 epp;
651
984edbdc
SP
652 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
653 /*
654 * When hwp_req_data is 0, means that caller didn't read
655 * MSR_HWP_REQUEST, so need to read and get EPP.
656 */
657 if (!hwp_req_data) {
658 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
659 &hwp_req_data);
660 if (epp)
661 return epp;
662 }
8442885f 663 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 664 } else {
8442885f
SP
665 /* When there is no EPP present, HWP uses EPB settings */
666 epp = intel_pstate_get_epb(cpu_data);
984edbdc 667 }
8442885f
SP
668
669 return epp;
670}
671
984edbdc 672static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
673{
674 u64 epb;
984edbdc 675 int ret;
8442885f
SP
676
677 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 678 return -ENXIO;
8442885f 679
984edbdc
SP
680 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
681 if (ret)
682 return ret;
8442885f
SP
683
684 epb = (epb & ~0x0f) | pref;
685 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
686
687 return 0;
8442885f
SP
688}
689
984edbdc
SP
690/*
691 * EPP/EPB display strings corresponding to EPP index in the
692 * energy_perf_strings[]
693 * index String
694 *-------------------------------------
695 * 0 default
696 * 1 performance
697 * 2 balance_performance
698 * 3 balance_power
699 * 4 power
700 */
701static const char * const energy_perf_strings[] = {
702 "default",
703 "performance",
704 "balance_performance",
705 "balance_power",
706 "power",
707 NULL
708};
709
710static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
711{
712 s16 epp;
713 int index = -EINVAL;
714
715 epp = intel_pstate_get_epp(cpu_data, 0);
716 if (epp < 0)
717 return epp;
718
719 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
720 /*
721 * Range:
722 * 0x00-0x3F : Performance
723 * 0x40-0x7F : Balance performance
724 * 0x80-0xBF : Balance power
725 * 0xC0-0xFF : Power
726 * The EPP is a 8 bit value, but our ranges restrict the
727 * value which can be set. Here only using top two bits
728 * effectively.
729 */
730 index = (epp >> 6) + 1;
731 } else if (static_cpu_has(X86_FEATURE_EPB)) {
732 /*
733 * Range:
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
737 * 0x0C-0x0F : Power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
741 */
742 index = (epp >> 2) + 1;
743 }
744
745 return index;
746}
747
748static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
749 int pref_index)
750{
751 int epp = -EINVAL;
752 int ret;
753
754 if (!pref_index)
755 epp = cpu_data->epp_default;
756
757 mutex_lock(&intel_pstate_limits_lock);
758
759 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
760 u64 value;
761
762 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
763 if (ret)
764 goto return_pref;
765
766 value &= ~GENMASK_ULL(31, 24);
767
768 /*
769 * If epp is not default, convert from index into
770 * energy_perf_strings to epp value, by shifting 6
771 * bits left to use only top two bits in epp.
772 * The resultant epp need to shifted by 24 bits to
773 * epp position in MSR_HWP_REQUEST.
774 */
775 if (epp == -EINVAL)
776 epp = (pref_index - 1) << 6;
777
778 value |= (u64)epp << 24;
779 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
780 } else {
781 if (epp == -EINVAL)
782 epp = (pref_index - 1) << 2;
783 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
784 }
785return_pref:
786 mutex_unlock(&intel_pstate_limits_lock);
787
788 return ret;
789}
790
791static ssize_t show_energy_performance_available_preferences(
792 struct cpufreq_policy *policy, char *buf)
793{
794 int i = 0;
795 int ret = 0;
796
797 while (energy_perf_strings[i] != NULL)
798 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
799
800 ret += sprintf(&buf[ret], "\n");
801
802 return ret;
803}
804
805cpufreq_freq_attr_ro(energy_performance_available_preferences);
806
807static ssize_t store_energy_performance_preference(
808 struct cpufreq_policy *policy, const char *buf, size_t count)
809{
810 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
811 char str_preference[21];
812 int ret, i = 0;
813
814 ret = sscanf(buf, "%20s", str_preference);
815 if (ret != 1)
816 return -EINVAL;
817
818 while (energy_perf_strings[i] != NULL) {
819 if (!strcmp(str_preference, energy_perf_strings[i])) {
820 intel_pstate_set_energy_pref_index(cpu_data, i);
821 return count;
822 }
823 ++i;
824 }
825
826 return -EINVAL;
827}
828
829static ssize_t show_energy_performance_preference(
830 struct cpufreq_policy *policy, char *buf)
831{
832 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
833 int preference;
834
835 preference = intel_pstate_get_energy_pref_index(cpu_data);
836 if (preference < 0)
837 return preference;
838
839 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
840}
841
842cpufreq_freq_attr_rw(energy_performance_preference);
843
844static struct freq_attr *hwp_cpufreq_attrs[] = {
845 &energy_performance_preference,
846 &energy_performance_available_preferences,
847 NULL,
848};
849
111b8b3f 850static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 851{
74da56ce 852 int min, hw_min, max, hw_max, cpu, range, adj_range;
eae48f04 853 struct perf_limits *perf_limits = limits;
74da56ce
KCA
854 u64 value, cap;
855
111b8b3f 856 for_each_cpu(cpu, policy->cpus) {
eae48f04 857 int max_perf_pct, min_perf_pct;
8442885f
SP
858 struct cpudata *cpu_data = all_cpu_data[cpu];
859 s16 epp;
eae48f04
SP
860
861 if (per_cpu_limits)
862 perf_limits = all_cpu_data[cpu]->perf_limits;
863
f9f4872d
SP
864 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
865 hw_min = HWP_LOWEST_PERF(cap);
4e5d3f71
SP
866 if (limits->no_turbo)
867 hw_max = HWP_GUARANTEED_PERF(cap);
868 else
869 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d
SP
870 range = hw_max - hw_min;
871
eae48f04
SP
872 max_perf_pct = perf_limits->max_perf_pct;
873 min_perf_pct = perf_limits->min_perf_pct;
874
2f86dc4c 875 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
eae48f04 876 adj_range = min_perf_pct * range / 100;
74da56ce 877 min = hw_min + adj_range;
2f86dc4c
DB
878 value &= ~HWP_MIN_PERF(~0L);
879 value |= HWP_MIN_PERF(min);
880
eae48f04 881 adj_range = max_perf_pct * range / 100;
74da56ce 882 max = hw_min + adj_range;
2f86dc4c
DB
883
884 value &= ~HWP_MAX_PERF(~0L);
885 value |= HWP_MAX_PERF(max);
8442885f
SP
886
887 if (cpu_data->epp_policy == cpu_data->policy)
888 goto skip_epp;
889
890 cpu_data->epp_policy = cpu_data->policy;
891
984edbdc
SP
892 if (cpu_data->epp_saved >= 0) {
893 epp = cpu_data->epp_saved;
894 cpu_data->epp_saved = -EINVAL;
895 goto update_epp;
896 }
897
8442885f
SP
898 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
899 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 900 cpu_data->epp_powersave = epp;
8442885f 901 /* If EPP read was failed, then don't try to write */
984edbdc 902 if (epp < 0)
8442885f 903 goto skip_epp;
8442885f 904
8442885f
SP
905
906 epp = 0;
907 } else {
908 /* skip setting EPP, when saved value is invalid */
984edbdc 909 if (cpu_data->epp_powersave < 0)
8442885f
SP
910 goto skip_epp;
911
912 /*
913 * No need to restore EPP when it is not zero. This
914 * means:
915 * - Policy is not changed
916 * - user has manually changed
917 * - Error reading EPB
918 */
919 epp = intel_pstate_get_epp(cpu_data, value);
920 if (epp)
921 goto skip_epp;
922
984edbdc 923 epp = cpu_data->epp_powersave;
8442885f 924 }
984edbdc 925update_epp:
8442885f
SP
926 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
927 value &= ~GENMASK_ULL(31, 24);
928 value |= (u64)epp << 24;
929 } else {
930 intel_pstate_set_epb(cpu, epp);
931 }
932skip_epp:
2f86dc4c
DB
933 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
934 }
41cfd64c 935}
2f86dc4c 936
ba41e1bc
RW
937static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
938{
939 if (hwp_active)
111b8b3f 940 intel_pstate_hwp_set(policy);
ba41e1bc
RW
941
942 return 0;
943}
944
984edbdc
SP
945static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
946{
947 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
948
949 if (!hwp_active)
950 return 0;
951
952 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
953
954 return 0;
955}
956
8442885f
SP
957static int intel_pstate_resume(struct cpufreq_policy *policy)
958{
aa439248
RW
959 int ret;
960
8442885f
SP
961 if (!hwp_active)
962 return 0;
963
aa439248
RW
964 mutex_lock(&intel_pstate_limits_lock);
965
8442885f 966 all_cpu_data[policy->cpu]->epp_policy = 0;
8442885f 967
aa439248
RW
968 ret = intel_pstate_hwp_set_policy(policy);
969
970 mutex_unlock(&intel_pstate_limits_lock);
971
972 return ret;
8442885f
SP
973}
974
111b8b3f 975static void intel_pstate_update_policies(void)
cd59b4be
RW
976 __releases(&intel_pstate_limits_lock)
977 __acquires(&intel_pstate_limits_lock)
41cfd64c 978{
cd59b4be 979 struct perf_limits *saved_limits = limits;
111b8b3f
RW
980 int cpu;
981
cd59b4be
RW
982 mutex_unlock(&intel_pstate_limits_lock);
983
111b8b3f
RW
984 for_each_possible_cpu(cpu)
985 cpufreq_update_policy(cpu);
cd59b4be
RW
986
987 mutex_lock(&intel_pstate_limits_lock);
988
989 limits = saved_limits;
2f86dc4c
DB
990}
991
93f0822d
DB
992/************************** debugfs begin ************************/
993static int pid_param_set(void *data, u64 val)
994{
995 *(u32 *)data = val;
996 intel_pstate_reset_all_pid();
997 return 0;
998}
845c1cbe 999
93f0822d
DB
1000static int pid_param_get(void *data, u64 *val)
1001{
1002 *val = *(u32 *)data;
1003 return 0;
1004}
2d8d1f18 1005DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 1006
fb1fe104
RW
1007static struct dentry *debugfs_parent;
1008
93f0822d
DB
1009struct pid_param {
1010 char *name;
1011 void *value;
fb1fe104 1012 struct dentry *dentry;
93f0822d
DB
1013};
1014
1015static struct pid_param pid_files[] = {
fb1fe104
RW
1016 {"sample_rate_ms", &pid_params.sample_rate_ms, },
1017 {"d_gain_pct", &pid_params.d_gain_pct, },
1018 {"i_gain_pct", &pid_params.i_gain_pct, },
1019 {"deadband", &pid_params.deadband, },
1020 {"setpoint", &pid_params.setpoint, },
1021 {"p_gain_pct", &pid_params.p_gain_pct, },
1022 {NULL, NULL, }
93f0822d
DB
1023};
1024
fb1fe104 1025static void intel_pstate_debug_expose_params(void)
93f0822d 1026{
fb1fe104 1027 int i;
93f0822d
DB
1028
1029 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1030 if (IS_ERR_OR_NULL(debugfs_parent))
1031 return;
fb1fe104
RW
1032
1033 for (i = 0; pid_files[i].name; i++) {
1034 struct dentry *dentry;
1035
1036 dentry = debugfs_create_file(pid_files[i].name, 0660,
1037 debugfs_parent, pid_files[i].value,
1038 &fops_pid_param);
1039 if (!IS_ERR(dentry))
1040 pid_files[i].dentry = dentry;
93f0822d
DB
1041 }
1042}
1043
fb1fe104
RW
1044static void intel_pstate_debug_hide_params(void)
1045{
1046 int i;
1047
1048 if (IS_ERR_OR_NULL(debugfs_parent))
1049 return;
1050
1051 for (i = 0; pid_files[i].name; i++) {
1052 debugfs_remove(pid_files[i].dentry);
1053 pid_files[i].dentry = NULL;
93f0822d 1054 }
fb1fe104
RW
1055
1056 debugfs_remove(debugfs_parent);
1057 debugfs_parent = NULL;
93f0822d
DB
1058}
1059
1060/************************** debugfs end ************************/
1061
1062/************************** sysfs begin ************************/
1063#define show_one(file_name, object) \
1064 static ssize_t show_##file_name \
1065 (struct kobject *kobj, struct attribute *attr, char *buf) \
1066 { \
51443fbf 1067 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
1068 }
1069
fb1fe104
RW
1070static ssize_t intel_pstate_show_status(char *buf);
1071static int intel_pstate_update_status(const char *buf, size_t size);
1072
1073static ssize_t show_status(struct kobject *kobj,
1074 struct attribute *attr, char *buf)
1075{
1076 ssize_t ret;
1077
1078 mutex_lock(&intel_pstate_driver_lock);
1079 ret = intel_pstate_show_status(buf);
1080 mutex_unlock(&intel_pstate_driver_lock);
1081
1082 return ret;
1083}
1084
1085static ssize_t store_status(struct kobject *a, struct attribute *b,
1086 const char *buf, size_t count)
1087{
1088 char *p = memchr(buf, '\n', count);
1089 int ret;
1090
1091 mutex_lock(&intel_pstate_driver_lock);
1092 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1093 mutex_unlock(&intel_pstate_driver_lock);
1094
1095 return ret < 0 ? ret : count;
1096}
1097
d01b1f48
KCA
1098static ssize_t show_turbo_pct(struct kobject *kobj,
1099 struct attribute *attr, char *buf)
1100{
1101 struct cpudata *cpu;
1102 int total, no_turbo, turbo_pct;
1103 uint32_t turbo_fp;
1104
0c30b65b
RW
1105 mutex_lock(&intel_pstate_driver_lock);
1106
1107 if (!driver_registered) {
1108 mutex_unlock(&intel_pstate_driver_lock);
1109 return -EAGAIN;
1110 }
1111
d01b1f48
KCA
1112 cpu = all_cpu_data[0];
1113
1114 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1115 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1116 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1117 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1118
1119 mutex_unlock(&intel_pstate_driver_lock);
1120
d01b1f48
KCA
1121 return sprintf(buf, "%u\n", turbo_pct);
1122}
1123
0522424e
KCA
1124static ssize_t show_num_pstates(struct kobject *kobj,
1125 struct attribute *attr, char *buf)
1126{
1127 struct cpudata *cpu;
1128 int total;
1129
0c30b65b
RW
1130 mutex_lock(&intel_pstate_driver_lock);
1131
1132 if (!driver_registered) {
1133 mutex_unlock(&intel_pstate_driver_lock);
1134 return -EAGAIN;
1135 }
1136
0522424e
KCA
1137 cpu = all_cpu_data[0];
1138 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1139
1140 mutex_unlock(&intel_pstate_driver_lock);
1141
0522424e
KCA
1142 return sprintf(buf, "%u\n", total);
1143}
1144
4521e1a0
GM
1145static ssize_t show_no_turbo(struct kobject *kobj,
1146 struct attribute *attr, char *buf)
1147{
1148 ssize_t ret;
1149
0c30b65b
RW
1150 mutex_lock(&intel_pstate_driver_lock);
1151
1152 if (!driver_registered) {
1153 mutex_unlock(&intel_pstate_driver_lock);
1154 return -EAGAIN;
1155 }
1156
4521e1a0 1157 update_turbo_state();
51443fbf
PB
1158 if (limits->turbo_disabled)
1159 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 1160 else
51443fbf 1161 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0 1162
0c30b65b
RW
1163 mutex_unlock(&intel_pstate_driver_lock);
1164
4521e1a0
GM
1165 return ret;
1166}
1167
93f0822d 1168static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1169 const char *buf, size_t count)
93f0822d
DB
1170{
1171 unsigned int input;
1172 int ret;
845c1cbe 1173
93f0822d
DB
1174 ret = sscanf(buf, "%u", &input);
1175 if (ret != 1)
1176 return -EINVAL;
4521e1a0 1177
0c30b65b
RW
1178 mutex_lock(&intel_pstate_driver_lock);
1179
1180 if (!driver_registered) {
1181 mutex_unlock(&intel_pstate_driver_lock);
1182 return -EAGAIN;
1183 }
1184
a410c03d
SP
1185 mutex_lock(&intel_pstate_limits_lock);
1186
4521e1a0 1187 update_turbo_state();
51443fbf 1188 if (limits->turbo_disabled) {
4836df17 1189 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1190 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1191 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1192 return -EPERM;
dd5fbf70 1193 }
2f86dc4c 1194
51443fbf 1195 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 1196
111b8b3f
RW
1197 intel_pstate_update_policies();
1198
cd59b4be
RW
1199 mutex_unlock(&intel_pstate_limits_lock);
1200
0c30b65b
RW
1201 mutex_unlock(&intel_pstate_driver_lock);
1202
93f0822d
DB
1203 return count;
1204}
1205
1206static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1207 const char *buf, size_t count)
93f0822d
DB
1208{
1209 unsigned int input;
1210 int ret;
845c1cbe 1211
93f0822d
DB
1212 ret = sscanf(buf, "%u", &input);
1213 if (ret != 1)
1214 return -EINVAL;
1215
0c30b65b
RW
1216 mutex_lock(&intel_pstate_driver_lock);
1217
1218 if (!driver_registered) {
1219 mutex_unlock(&intel_pstate_driver_lock);
1220 return -EAGAIN;
1221 }
1222
a410c03d
SP
1223 mutex_lock(&intel_pstate_limits_lock);
1224
51443fbf
PB
1225 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1226 limits->max_perf_pct = min(limits->max_policy_pct,
1227 limits->max_sysfs_pct);
1228 limits->max_perf_pct = max(limits->min_policy_pct,
1229 limits->max_perf_pct);
1230 limits->max_perf_pct = max(limits->min_perf_pct,
1231 limits->max_perf_pct);
d5dd33d9 1232 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
845c1cbe 1233
111b8b3f
RW
1234 intel_pstate_update_policies();
1235
cd59b4be
RW
1236 mutex_unlock(&intel_pstate_limits_lock);
1237
0c30b65b
RW
1238 mutex_unlock(&intel_pstate_driver_lock);
1239
93f0822d
DB
1240 return count;
1241}
1242
1243static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1244 const char *buf, size_t count)
93f0822d
DB
1245{
1246 unsigned int input;
1247 int ret;
845c1cbe 1248
93f0822d
DB
1249 ret = sscanf(buf, "%u", &input);
1250 if (ret != 1)
1251 return -EINVAL;
a0475992 1252
0c30b65b
RW
1253 mutex_lock(&intel_pstate_driver_lock);
1254
1255 if (!driver_registered) {
1256 mutex_unlock(&intel_pstate_driver_lock);
1257 return -EAGAIN;
1258 }
1259
a410c03d
SP
1260 mutex_lock(&intel_pstate_limits_lock);
1261
51443fbf
PB
1262 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1263 limits->min_perf_pct = max(limits->min_policy_pct,
1264 limits->min_sysfs_pct);
1265 limits->min_perf_pct = min(limits->max_policy_pct,
1266 limits->min_perf_pct);
1267 limits->min_perf_pct = min(limits->max_perf_pct,
1268 limits->min_perf_pct);
d5dd33d9 1269 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
93f0822d 1270
111b8b3f
RW
1271 intel_pstate_update_policies();
1272
cd59b4be
RW
1273 mutex_unlock(&intel_pstate_limits_lock);
1274
0c30b65b
RW
1275 mutex_unlock(&intel_pstate_driver_lock);
1276
93f0822d
DB
1277 return count;
1278}
1279
93f0822d
DB
1280show_one(max_perf_pct, max_perf_pct);
1281show_one(min_perf_pct, min_perf_pct);
1282
fb1fe104 1283define_one_global_rw(status);
93f0822d
DB
1284define_one_global_rw(no_turbo);
1285define_one_global_rw(max_perf_pct);
1286define_one_global_rw(min_perf_pct);
d01b1f48 1287define_one_global_ro(turbo_pct);
0522424e 1288define_one_global_ro(num_pstates);
93f0822d
DB
1289
1290static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1291 &status.attr,
93f0822d 1292 &no_turbo.attr,
d01b1f48 1293 &turbo_pct.attr,
0522424e 1294 &num_pstates.attr,
93f0822d
DB
1295 NULL
1296};
1297
1298static struct attribute_group intel_pstate_attr_group = {
1299 .attrs = intel_pstate_attributes,
1300};
93f0822d 1301
317dd50e 1302static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1303{
317dd50e 1304 struct kobject *intel_pstate_kobject;
93f0822d
DB
1305 int rc;
1306
1307 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1308 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1309 if (WARN_ON(!intel_pstate_kobject))
1310 return;
1311
2d8d1f18 1312 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1313 if (WARN_ON(rc))
1314 return;
1315
1316 /*
1317 * If per cpu limits are enforced there are no global limits, so
1318 * return without creating max/min_perf_pct attributes
1319 */
1320 if (per_cpu_limits)
1321 return;
1322
1323 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1324 WARN_ON(rc);
1325
1326 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1327 WARN_ON(rc);
1328
93f0822d 1329}
93f0822d 1330/************************** sysfs end ************************/
2f86dc4c 1331
ba88d433 1332static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1333{
f05c9665 1334 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1335 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1336 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1337
ba88d433 1338 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1339 cpudata->epp_policy = 0;
984edbdc
SP
1340 if (cpudata->epp_default == -EINVAL)
1341 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1342}
1343
6e978b22
SP
1344#define MSR_IA32_POWER_CTL_BIT_EE 19
1345
1346/* Disable energy efficiency optimization */
1347static void intel_pstate_disable_ee(int cpu)
1348{
1349 u64 power_ctl;
1350 int ret;
1351
1352 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1353 if (ret)
1354 return;
1355
1356 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1357 pr_info("Disabling energy efficiency optimization\n");
1358 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1359 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1360 }
1361}
1362
938d21a2 1363static int atom_get_min_pstate(void)
19e77c28
DB
1364{
1365 u64 value;
845c1cbe 1366
938d21a2 1367 rdmsrl(ATOM_RATIOS, value);
c16ed060 1368 return (value >> 8) & 0x7F;
19e77c28
DB
1369}
1370
938d21a2 1371static int atom_get_max_pstate(void)
19e77c28
DB
1372{
1373 u64 value;
845c1cbe 1374
938d21a2 1375 rdmsrl(ATOM_RATIOS, value);
c16ed060 1376 return (value >> 16) & 0x7F;
19e77c28 1377}
93f0822d 1378
938d21a2 1379static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1380{
1381 u64 value;
845c1cbe 1382
938d21a2 1383 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 1384 return value & 0x7F;
61d8d2ab
DB
1385}
1386
fdfdb2b1 1387static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1388{
1389 u64 val;
1390 int32_t vid_fp;
1391 u32 vid;
1392
144c8e17 1393 val = (u64)pstate << 8;
51443fbf 1394 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
1395 val |= (u64)1 << 32;
1396
1397 vid_fp = cpudata->vid.min + mul_fp(
1398 int_tofp(pstate - cpudata->pstate.min_pstate),
1399 cpudata->vid.ratio);
1400
1401 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1402 vid = ceiling_fp(vid_fp);
007bea09 1403
21855ff5
DB
1404 if (pstate > cpudata->pstate.max_pstate)
1405 vid = cpudata->vid.turbo;
1406
fdfdb2b1 1407 return val | vid;
007bea09
DB
1408}
1409
1421df63 1410static int silvermont_get_scaling(void)
b27580b0
DB
1411{
1412 u64 value;
1413 int i;
1421df63
PL
1414 /* Defined in Table 35-6 from SDM (Sept 2015) */
1415 static int silvermont_freq_table[] = {
1416 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1417
1418 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1419 i = value & 0x7;
1420 WARN_ON(i > 4);
b27580b0 1421
1421df63
PL
1422 return silvermont_freq_table[i];
1423}
b27580b0 1424
1421df63
PL
1425static int airmont_get_scaling(void)
1426{
1427 u64 value;
1428 int i;
1429 /* Defined in Table 35-10 from SDM (Sept 2015) */
1430 static int airmont_freq_table[] = {
1431 83300, 100000, 133300, 116700, 80000,
1432 93300, 90000, 88900, 87500};
1433
1434 rdmsrl(MSR_FSB_FREQ, value);
1435 i = value & 0xF;
1436 WARN_ON(i > 8);
1437
1438 return airmont_freq_table[i];
b27580b0
DB
1439}
1440
938d21a2 1441static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1442{
1443 u64 value;
1444
938d21a2 1445 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
1446 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1447 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1448 cpudata->vid.ratio = div_fp(
1449 cpudata->vid.max - cpudata->vid.min,
1450 int_tofp(cpudata->pstate.max_pstate -
1451 cpudata->pstate.min_pstate));
21855ff5 1452
938d21a2 1453 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 1454 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1455}
1456
016c8150 1457static int core_get_min_pstate(void)
93f0822d
DB
1458{
1459 u64 value;
845c1cbe 1460
05e99c8c 1461 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1462 return (value >> 40) & 0xFF;
1463}
1464
3bcc6fa9 1465static int core_get_max_pstate_physical(void)
93f0822d
DB
1466{
1467 u64 value;
845c1cbe 1468
05e99c8c 1469 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1470 return (value >> 8) & 0xFF;
1471}
1472
8fc7554a
SP
1473static int core_get_tdp_ratio(u64 plat_info)
1474{
1475 /* Check how many TDP levels present */
1476 if (plat_info & 0x600000000) {
1477 u64 tdp_ctrl;
1478 u64 tdp_ratio;
1479 int tdp_msr;
1480 int err;
1481
1482 /* Get the TDP level (0, 1, 2) to get ratios */
1483 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1484 if (err)
1485 return err;
1486
1487 /* TDP MSR are continuous starting at 0x648 */
1488 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1489 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1490 if (err)
1491 return err;
1492
1493 /* For level 1 and 2, bits[23:16] contain the ratio */
1494 if (tdp_ctrl & 0x03)
1495 tdp_ratio >>= 16;
1496
1497 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1498 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1499
1500 return (int)tdp_ratio;
1501 }
1502
1503 return -ENXIO;
1504}
1505
016c8150 1506static int core_get_max_pstate(void)
93f0822d 1507{
6a35fc2d
SP
1508 u64 tar;
1509 u64 plat_info;
1510 int max_pstate;
8fc7554a 1511 int tdp_ratio;
6a35fc2d
SP
1512 int err;
1513
1514 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1515 max_pstate = (plat_info >> 8) & 0xFF;
1516
8fc7554a
SP
1517 tdp_ratio = core_get_tdp_ratio(plat_info);
1518 if (tdp_ratio <= 0)
1519 return max_pstate;
1520
1521 if (hwp_active) {
1522 /* Turbo activation ratio is not used on HWP platforms */
1523 return tdp_ratio;
1524 }
1525
6a35fc2d
SP
1526 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1527 if (!err) {
8fc7554a
SP
1528 int tar_levels;
1529
6a35fc2d 1530 /* Do some sanity checking for safety */
8fc7554a
SP
1531 tar_levels = tar & 0xff;
1532 if (tdp_ratio - 1 == tar_levels) {
1533 max_pstate = tar_levels;
1534 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1535 }
1536 }
845c1cbe 1537
6a35fc2d 1538 return max_pstate;
93f0822d
DB
1539}
1540
016c8150 1541static int core_get_turbo_pstate(void)
93f0822d
DB
1542{
1543 u64 value;
1544 int nont, ret;
845c1cbe 1545
100cf6f2 1546 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1547 nont = core_get_max_pstate();
285cb990 1548 ret = (value) & 255;
93f0822d
DB
1549 if (ret <= nont)
1550 ret = nont;
1551 return ret;
1552}
1553
b27580b0
DB
1554static inline int core_get_scaling(void)
1555{
1556 return 100000;
1557}
1558
fdfdb2b1 1559static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1560{
1561 u64 val;
1562
144c8e17 1563 val = (u64)pstate << 8;
51443fbf 1564 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
1565 val |= (u64)1 << 32;
1566
fdfdb2b1 1567 return val;
016c8150
DB
1568}
1569
b34ef932
DC
1570static int knl_get_turbo_pstate(void)
1571{
1572 u64 value;
1573 int nont, ret;
1574
100cf6f2 1575 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1576 nont = core_get_max_pstate();
1577 ret = (((value) >> 8) & 0xFF);
1578 if (ret <= nont)
1579 ret = nont;
1580 return ret;
1581}
1582
016c8150
DB
1583static struct cpu_defaults core_params = {
1584 .pid_policy = {
1585 .sample_rate_ms = 10,
1586 .deadband = 0,
1587 .setpoint = 97,
1588 .p_gain_pct = 20,
1589 .d_gain_pct = 0,
1590 .i_gain_pct = 0,
1591 },
1592 .funcs = {
1593 .get_max = core_get_max_pstate,
3bcc6fa9 1594 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1595 .get_min = core_get_min_pstate,
1596 .get_turbo = core_get_turbo_pstate,
b27580b0 1597 .get_scaling = core_get_scaling,
fdfdb2b1 1598 .get_val = core_get_val,
157386b6 1599 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1600 },
1601};
1602
42ce8921 1603static const struct cpu_defaults silvermont_params = {
1421df63
PL
1604 .pid_policy = {
1605 .sample_rate_ms = 10,
1606 .deadband = 0,
1607 .setpoint = 60,
1608 .p_gain_pct = 14,
1609 .d_gain_pct = 0,
1610 .i_gain_pct = 4,
1611 },
1612 .funcs = {
1613 .get_max = atom_get_max_pstate,
1614 .get_max_physical = atom_get_max_pstate,
1615 .get_min = atom_get_min_pstate,
1616 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1617 .get_val = atom_get_val,
1421df63
PL
1618 .get_scaling = silvermont_get_scaling,
1619 .get_vid = atom_get_vid,
e70eed2b 1620 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1621 },
1622};
1623
42ce8921 1624static const struct cpu_defaults airmont_params = {
19e77c28
DB
1625 .pid_policy = {
1626 .sample_rate_ms = 10,
1627 .deadband = 0,
6a82ba6d 1628 .setpoint = 60,
19e77c28
DB
1629 .p_gain_pct = 14,
1630 .d_gain_pct = 0,
1631 .i_gain_pct = 4,
1632 },
1633 .funcs = {
938d21a2
PL
1634 .get_max = atom_get_max_pstate,
1635 .get_max_physical = atom_get_max_pstate,
1636 .get_min = atom_get_min_pstate,
1637 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1638 .get_val = atom_get_val,
1421df63 1639 .get_scaling = airmont_get_scaling,
938d21a2 1640 .get_vid = atom_get_vid,
e70eed2b 1641 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1642 },
1643};
1644
42ce8921 1645static const struct cpu_defaults knl_params = {
b34ef932
DC
1646 .pid_policy = {
1647 .sample_rate_ms = 10,
1648 .deadband = 0,
1649 .setpoint = 97,
1650 .p_gain_pct = 20,
1651 .d_gain_pct = 0,
1652 .i_gain_pct = 0,
1653 },
1654 .funcs = {
1655 .get_max = core_get_max_pstate,
3bcc6fa9 1656 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1657 .get_min = core_get_min_pstate,
1658 .get_turbo = knl_get_turbo_pstate,
69cefc27 1659 .get_scaling = core_get_scaling,
fdfdb2b1 1660 .get_val = core_get_val,
157386b6 1661 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1662 },
1663};
1664
42ce8921 1665static const struct cpu_defaults bxt_params = {
41bad47f
SP
1666 .pid_policy = {
1667 .sample_rate_ms = 10,
1668 .deadband = 0,
1669 .setpoint = 60,
1670 .p_gain_pct = 14,
1671 .d_gain_pct = 0,
1672 .i_gain_pct = 4,
1673 },
1674 .funcs = {
1675 .get_max = core_get_max_pstate,
1676 .get_max_physical = core_get_max_pstate_physical,
1677 .get_min = core_get_min_pstate,
1678 .get_turbo = core_get_turbo_pstate,
1679 .get_scaling = core_get_scaling,
1680 .get_val = core_get_val,
1681 .get_target_pstate = get_target_pstate_use_cpu_load,
1682 },
1683};
1684
93f0822d
DB
1685static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1686{
1687 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1688 int max_perf_adj;
93f0822d 1689 int min_perf;
eae48f04 1690 struct perf_limits *perf_limits = limits;
845c1cbe 1691
51443fbf 1692 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
1693 max_perf = cpu->pstate.max_pstate;
1694
eae48f04
SP
1695 if (per_cpu_limits)
1696 perf_limits = cpu->perf_limits;
1697
e0d4c8f8
KCA
1698 /*
1699 * performance can be limited by user through sysfs, by cpufreq
1700 * policy, or by cpu specific default values determined through
1701 * experimentation.
1702 */
d5dd33d9 1703 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
799281a3
RW
1704 *max = clamp_t(int, max_perf_adj,
1705 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1706
d5dd33d9 1707 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
799281a3 1708 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1709}
1710
a6c6ead1 1711static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1712{
bc95a454
RW
1713 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1714 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1715 /*
1716 * Generally, there is no guarantee that this code will always run on
1717 * the CPU being updated, so force the register update to run on the
1718 * right CPU.
1719 */
1720 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1721 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1722}
1723
a6c6ead1
RW
1724static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1725{
1726 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1727}
1728
1729static void intel_pstate_max_within_limits(struct cpudata *cpu)
1730{
1731 int min_pstate, max_pstate;
1732
1733 update_turbo_state();
1734 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1735 intel_pstate_set_pstate(cpu, max_pstate);
1736}
1737
93f0822d
DB
1738static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1739{
016c8150
DB
1740 cpu->pstate.min_pstate = pstate_funcs.get_min();
1741 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1742 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1743 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1744 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1745 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1746 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1747
007bea09
DB
1748 if (pstate_funcs.get_vid)
1749 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1750
1751 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1752}
1753
a1c9787d 1754static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1755{
6b17ddb2 1756 struct sample *sample = &cpu->sample;
e66c1768 1757
a1c9787d 1758 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1759}
1760
4fec7ad5 1761static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1762{
93f0822d 1763 u64 aperf, mperf;
4ab60c3f 1764 unsigned long flags;
4055fad3 1765 u64 tsc;
93f0822d 1766
4ab60c3f 1767 local_irq_save(flags);
93f0822d
DB
1768 rdmsrl(MSR_IA32_APERF, aperf);
1769 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1770 tsc = rdtsc();
4fec7ad5 1771 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1772 local_irq_restore(flags);
4fec7ad5 1773 return false;
8e601a9f 1774 }
4ab60c3f 1775 local_irq_restore(flags);
b69880f9 1776
c4ee841f 1777 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1778 cpu->sample.time = time;
d37e2b76
DB
1779 cpu->sample.aperf = aperf;
1780 cpu->sample.mperf = mperf;
4055fad3 1781 cpu->sample.tsc = tsc;
d37e2b76
DB
1782 cpu->sample.aperf -= cpu->prev_aperf;
1783 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1784 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1785
93f0822d
DB
1786 cpu->prev_aperf = aperf;
1787 cpu->prev_mperf = mperf;
4055fad3 1788 cpu->prev_tsc = tsc;
febce40f
RW
1789 /*
1790 * First time this function is invoked in a given cycle, all of the
1791 * previous sample data fields are equal to zero or stale and they must
1792 * be populated with meaningful numbers for things to work, so assume
1793 * that sample.time will always be reset before setting the utilization
1794 * update hook and make the caller skip the sample then.
1795 */
1796 return !!cpu->last_sample_time;
93f0822d
DB
1797}
1798
8fa520af
PL
1799static inline int32_t get_avg_frequency(struct cpudata *cpu)
1800{
a1c9787d
RW
1801 return mul_ext_fp(cpu->sample.core_avg_perf,
1802 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1803}
1804
bdcaa23f
PL
1805static inline int32_t get_avg_pstate(struct cpudata *cpu)
1806{
8edb0a6e
RW
1807 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1808 cpu->sample.core_avg_perf);
bdcaa23f
PL
1809}
1810
e70eed2b
PL
1811static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1812{
1813 struct sample *sample = &cpu->sample;
09c448d3 1814 int32_t busy_frac, boost;
0843e83c 1815 int target, avg_pstate;
e70eed2b 1816
09c448d3 1817 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1818
09c448d3
RW
1819 boost = cpu->iowait_boost;
1820 cpu->iowait_boost >>= 1;
63d1d656 1821
09c448d3
RW
1822 if (busy_frac < boost)
1823 busy_frac = boost;
63d1d656 1824
09c448d3 1825 sample->busy_scaled = busy_frac * 100;
0843e83c
RW
1826
1827 target = limits->no_turbo || limits->turbo_disabled ?
1828 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1829 target += target >> 2;
1830 target = mul_fp(target, busy_frac);
1831 if (target < cpu->pstate.min_pstate)
1832 target = cpu->pstate.min_pstate;
1833
1834 /*
1835 * If the average P-state during the previous cycle was higher than the
1836 * current target, add 50% of the difference to the target to reduce
1837 * possible performance oscillations and offset possible performance
1838 * loss related to moving the workload from one CPU to another within
1839 * a package/module.
1840 */
1841 avg_pstate = get_avg_pstate(cpu);
1842 if (avg_pstate > target)
1843 target += (avg_pstate - target) >> 1;
1844
1845 return target;
e70eed2b
PL
1846}
1847
157386b6 1848static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1849{
1aa7a6e2 1850 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1851 u64 duration_ns;
93f0822d 1852
e0d4c8f8 1853 /*
f00593a4
RW
1854 * perf_scaled is the ratio of the average P-state during the last
1855 * sampling period to the P-state requested last time (in percent).
1856 *
1857 * That measures the system's response to the previous P-state
1858 * selection.
e0d4c8f8 1859 */
22590efb
RW
1860 max_pstate = cpu->pstate.max_pstate_physical;
1861 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1862 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1863 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1864
e0d4c8f8 1865 /*
a4675fbc
RW
1866 * Since our utilization update callback will not run unless we are
1867 * in C0, check if the actual elapsed time is significantly greater (3x)
1868 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1869 * enough period of time to adjust our performance metric.
e0d4c8f8 1870 */
a4675fbc 1871 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1872 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1873 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1874 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1875 } else {
1876 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1877 if (sample_ratio < int_tofp(1))
1aa7a6e2 1878 perf_scaled = 0;
c4ee841f
DB
1879 }
1880
1aa7a6e2
RW
1881 cpu->sample.busy_scaled = perf_scaled;
1882 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1883}
1884
001c76f0 1885static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1886{
1887 int max_perf, min_perf;
1888
fdfdb2b1
RW
1889 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1890 pstate = clamp_t(int, pstate, min_perf, max_perf);
001c76f0
RW
1891 return pstate;
1892}
1893
1894static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1895{
fdfdb2b1
RW
1896 if (pstate == cpu->pstate.current_pstate)
1897 return;
1898
bc95a454 1899 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1900 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1901}
1902
93f0822d
DB
1903static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1904{
157386b6 1905 int from, target_pstate;
4055fad3
DS
1906 struct sample *sample;
1907
1908 from = cpu->pstate.current_pstate;
93f0822d 1909
2f1d407a
RW
1910 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1911 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1912
001c76f0
RW
1913 update_turbo_state();
1914
64078299
RW
1915 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1916 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1917 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1918
1919 sample = &cpu->sample;
a1c9787d 1920 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1921 fp_toint(sample->busy_scaled),
4055fad3
DS
1922 from,
1923 cpu->pstate.current_pstate,
1924 sample->mperf,
1925 sample->aperf,
1926 sample->tsc,
3ba7bcaa
SP
1927 get_avg_frequency(cpu),
1928 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1929}
1930
a4675fbc 1931static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1932 unsigned int flags)
93f0822d 1933{
a4675fbc 1934 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1935 u64 delta_ns;
1936
1d29815e 1937 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1938 if (flags & SCHED_CPUFREQ_IOWAIT) {
1939 cpu->iowait_boost = int_tofp(1);
1940 } else if (cpu->iowait_boost) {
1941 /* Clear iowait_boost if the CPU may have been idle. */
1942 delta_ns = time - cpu->last_update;
1943 if (delta_ns > TICK_NSEC)
1944 cpu->iowait_boost = 0;
1945 }
1946 cpu->last_update = time;
1947 }
b69880f9 1948
09c448d3 1949 delta_ns = time - cpu->sample.time;
a4675fbc 1950 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1951 bool sample_taken = intel_pstate_sample(cpu, time);
1952
6d45b719 1953 if (sample_taken) {
a1c9787d 1954 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1955 if (!hwp_active)
1956 intel_pstate_adjust_busy_pstate(cpu);
1957 }
a4675fbc 1958 }
93f0822d
DB
1959}
1960
1961#define ICPU(model, policy) \
6cbd7ee1
DB
1962 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1963 (unsigned long)&policy }
93f0822d
DB
1964
1965static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1966 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1967 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1968 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1969 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1970 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1971 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1972 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1973 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1974 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1975 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1976 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1977 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1978 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1979 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1980 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1981 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1982 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1983 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1984 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1985 {}
1986};
1987MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1988
29327c84 1989static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1990 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1991 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1992 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1993 {}
1994};
1995
6e978b22
SP
1996static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1997 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1998 {}
1999};
2000
93f0822d
DB
2001static int intel_pstate_init_cpu(unsigned int cpunum)
2002{
93f0822d
DB
2003 struct cpudata *cpu;
2004
eae48f04
SP
2005 cpu = all_cpu_data[cpunum];
2006
2007 if (!cpu) {
2008 unsigned int size = sizeof(struct cpudata);
2009
2010 if (per_cpu_limits)
2011 size += sizeof(struct perf_limits);
2012
2013 cpu = kzalloc(size, GFP_KERNEL);
2014 if (!cpu)
2015 return -ENOMEM;
2016
2017 all_cpu_data[cpunum] = cpu;
2018 if (per_cpu_limits)
2019 cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2020
984edbdc
SP
2021 cpu->epp_default = -EINVAL;
2022 cpu->epp_powersave = -EINVAL;
2023 cpu->epp_saved = -EINVAL;
eae48f04 2024 }
93f0822d
DB
2025
2026 cpu = all_cpu_data[cpunum];
2027
93f0822d 2028 cpu->cpu = cpunum;
ba88d433 2029
a4675fbc 2030 if (hwp_active) {
6e978b22
SP
2031 const struct x86_cpu_id *id;
2032
2033 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2034 if (id)
2035 intel_pstate_disable_ee(cpunum);
2036
ba88d433 2037 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
2038 pid_params.sample_rate_ms = 50;
2039 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2040 }
ba88d433 2041
179e8471 2042 intel_pstate_get_cpu_pstates(cpu);
016c8150 2043
93f0822d 2044 intel_pstate_busy_pid_reset(cpu);
93f0822d 2045
4836df17 2046 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
2047
2048 return 0;
2049}
2050
2051static unsigned int intel_pstate_get(unsigned int cpu_num)
2052{
f96fd0c8 2053 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 2054
f96fd0c8 2055 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
2056}
2057
febce40f 2058static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 2059{
febce40f
RW
2060 struct cpudata *cpu = all_cpu_data[cpu_num];
2061
5ab666e0
RW
2062 if (cpu->update_util_set)
2063 return;
2064
febce40f
RW
2065 /* Prevent intel_pstate_update_util() from using stale data. */
2066 cpu->sample.time = 0;
0bed612b
RW
2067 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2068 intel_pstate_update_util);
4578ee7e 2069 cpu->update_util_set = true;
bb6ab52f
RW
2070}
2071
2072static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2073{
4578ee7e
CY
2074 struct cpudata *cpu_data = all_cpu_data[cpu];
2075
2076 if (!cpu_data->update_util_set)
2077 return;
2078
0bed612b 2079 cpufreq_remove_update_util_hook(cpu);
4578ee7e 2080 cpu_data->update_util_set = false;
bb6ab52f
RW
2081 synchronize_sched();
2082}
2083
eae48f04
SP
2084static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2085 struct perf_limits *limits)
2086{
a410c03d 2087
eae48f04
SP
2088 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2089 policy->cpuinfo.max_freq);
2090 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
5879f877
SP
2091 if (policy->max == policy->min) {
2092 limits->min_policy_pct = limits->max_policy_pct;
2093 } else {
46992d6b
SP
2094 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2095 policy->cpuinfo.max_freq);
5879f877
SP
2096 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2097 0, 100);
2098 }
eae48f04
SP
2099
2100 /* Normalize user input to [min_policy_pct, max_policy_pct] */
2101 limits->min_perf_pct = max(limits->min_policy_pct,
2102 limits->min_sysfs_pct);
2103 limits->min_perf_pct = min(limits->max_policy_pct,
2104 limits->min_perf_pct);
2105 limits->max_perf_pct = min(limits->max_policy_pct,
2106 limits->max_sysfs_pct);
2107 limits->max_perf_pct = max(limits->min_policy_pct,
2108 limits->max_perf_pct);
2109
2110 /* Make sure min_perf_pct <= max_perf_pct */
2111 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2112
d5dd33d9
SP
2113 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2114 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2115 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2116 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2117
2118 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2119 limits->max_perf_pct, limits->min_perf_pct);
2120}
2121
93f0822d
DB
2122static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2123{
3be9200d 2124 struct cpudata *cpu;
eae48f04 2125 struct perf_limits *perf_limits = NULL;
3be9200d 2126
d3929b83
DB
2127 if (!policy->cpuinfo.max_freq)
2128 return -ENODEV;
2129
2c2c1af4
SP
2130 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2131 policy->cpuinfo.max_freq, policy->max);
2132
a6c6ead1 2133 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2134 cpu->policy = policy->policy;
2135
c749c64f
RW
2136 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2137 policy->max < policy->cpuinfo.max_freq &&
2138 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2139 pr_debug("policy->max > max non turbo frequency\n");
2140 policy->max = policy->cpuinfo.max_freq;
3be9200d
SP
2141 }
2142
eae48f04
SP
2143 if (per_cpu_limits)
2144 perf_limits = cpu->perf_limits;
2145
b59fe540
SP
2146 mutex_lock(&intel_pstate_limits_lock);
2147
eae48f04
SP
2148 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2149 if (!perf_limits) {
2150 limits = &performance_limits;
2151 perf_limits = limits;
2152 }
1443ebba
SP
2153 if (policy->max >= policy->cpuinfo.max_freq &&
2154 !limits->no_turbo) {
4836df17 2155 pr_debug("set performance\n");
eae48f04 2156 intel_pstate_set_performance_limits(perf_limits);
30a39153
SP
2157 goto out;
2158 }
2159 } else {
4836df17 2160 pr_debug("set powersave\n");
eae48f04
SP
2161 if (!perf_limits) {
2162 limits = &powersave_limits;
2163 perf_limits = limits;
2164 }
43717aad 2165
eae48f04 2166 }
93f0822d 2167
eae48f04 2168 intel_pstate_update_perf_limits(policy, perf_limits);
bb6ab52f 2169 out:
2f1d407a 2170 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2171 /*
2172 * NOHZ_FULL CPUs need this as the governor callback may not
2173 * be invoked on them.
2174 */
2175 intel_pstate_clear_update_util_hook(policy->cpu);
2176 intel_pstate_max_within_limits(cpu);
2177 }
2178
bb6ab52f
RW
2179 intel_pstate_set_update_util_hook(policy->cpu);
2180
ba41e1bc 2181 intel_pstate_hwp_set_policy(policy);
2f86dc4c 2182
b59fe540
SP
2183 mutex_unlock(&intel_pstate_limits_lock);
2184
93f0822d
DB
2185 return 0;
2186}
2187
2188static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2189{
7d9a8a9f
SP
2190 struct cpudata *cpu = all_cpu_data[policy->cpu];
2191 struct perf_limits *perf_limits;
2192
2193 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2194 perf_limits = &performance_limits;
2195 else
2196 perf_limits = &powersave_limits;
2197
2198 update_turbo_state();
2199 policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2200 perf_limits->no_turbo ?
2201 cpu->pstate.max_freq :
2202 cpu->pstate.turbo_freq;
2203
be49e346 2204 cpufreq_verify_within_cpu_limits(policy);
93f0822d 2205
285cb990 2206 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2207 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2208 return -EINVAL;
2209
1443ebba
SP
2210 /* When per-CPU limits are used, sysfs limits are not used */
2211 if (!per_cpu_limits) {
2212 unsigned int max_freq, min_freq;
2213
2214 max_freq = policy->cpuinfo.max_freq *
d74b1992 2215 perf_limits->max_sysfs_pct / 100;
1443ebba 2216 min_freq = policy->cpuinfo.max_freq *
d74b1992 2217 perf_limits->min_sysfs_pct / 100;
1443ebba
SP
2218 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2219 }
2220
93f0822d
DB
2221 return 0;
2222}
2223
001c76f0
RW
2224static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2225{
2226 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2227}
2228
bb18008f 2229static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2230{
001c76f0 2231 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2232
001c76f0 2233 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2234 if (hwp_active)
2235 intel_pstate_hwp_save_state(policy);
2236 else
001c76f0
RW
2237 intel_cpufreq_stop_cpu(policy);
2238}
bb18008f 2239
001c76f0
RW
2240static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2241{
2242 intel_pstate_exit_perf_limits(policy);
a4675fbc 2243
001c76f0 2244 policy->fast_switch_possible = false;
2f86dc4c 2245
001c76f0 2246 return 0;
93f0822d
DB
2247}
2248
001c76f0 2249static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2250{
93f0822d 2251 struct cpudata *cpu;
52e0a509 2252 int rc;
93f0822d
DB
2253
2254 rc = intel_pstate_init_cpu(policy->cpu);
2255 if (rc)
2256 return rc;
2257
2258 cpu = all_cpu_data[policy->cpu];
2259
eae48f04
SP
2260 /*
2261 * We need sane value in the cpu->perf_limits, so inherit from global
2262 * perf_limits limits, which are seeded with values based on the
2263 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2264 */
2265 if (per_cpu_limits)
2266 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
93f0822d 2267
b27580b0
DB
2268 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2269 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2270
2271 /* cpuinfo and default policy values */
b27580b0 2272 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e
SP
2273 update_turbo_state();
2274 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2275 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2276 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2277
9522a2ff 2278 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2279 cpumask_set_cpu(policy->cpu, policy->cpus);
2280
001c76f0
RW
2281 policy->fast_switch_possible = true;
2282
93f0822d
DB
2283 return 0;
2284}
2285
001c76f0 2286static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2287{
001c76f0
RW
2288 int ret = __intel_pstate_cpu_init(policy);
2289
2290 if (ret)
2291 return ret;
2292
2293 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2294 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2295 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2296 else
2297 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2298
2299 return 0;
2300}
2301
001c76f0 2302static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2303 .flags = CPUFREQ_CONST_LOOPS,
2304 .verify = intel_pstate_verify_policy,
2305 .setpolicy = intel_pstate_set_policy,
984edbdc 2306 .suspend = intel_pstate_hwp_save_state,
8442885f 2307 .resume = intel_pstate_resume,
93f0822d
DB
2308 .get = intel_pstate_get,
2309 .init = intel_pstate_cpu_init,
9522a2ff 2310 .exit = intel_pstate_cpu_exit,
bb18008f 2311 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2312 .name = "intel_pstate",
93f0822d
DB
2313};
2314
001c76f0
RW
2315static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2316{
2317 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2318
2319 update_turbo_state();
2320 policy->cpuinfo.max_freq = limits->turbo_disabled ?
2321 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2322
2323 cpufreq_verify_within_cpu_limits(policy);
2324
001c76f0
RW
2325 return 0;
2326}
2327
2328static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2329 struct cpufreq_policy *policy,
2330 unsigned int target_freq)
2331{
2332 unsigned int max_freq;
2333
2334 update_turbo_state();
2335
2336 max_freq = limits->no_turbo || limits->turbo_disabled ?
2337 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2338 policy->cpuinfo.max_freq = max_freq;
2339 if (policy->max > max_freq)
2340 policy->max = max_freq;
2341
2342 if (target_freq > max_freq)
2343 target_freq = max_freq;
2344
2345 return target_freq;
2346}
2347
2348static int intel_cpufreq_target(struct cpufreq_policy *policy,
2349 unsigned int target_freq,
2350 unsigned int relation)
2351{
2352 struct cpudata *cpu = all_cpu_data[policy->cpu];
2353 struct cpufreq_freqs freqs;
2354 int target_pstate;
2355
2356 freqs.old = policy->cur;
2357 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2358
2359 cpufreq_freq_transition_begin(policy, &freqs);
2360 switch (relation) {
2361 case CPUFREQ_RELATION_L:
2362 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2363 break;
2364 case CPUFREQ_RELATION_H:
2365 target_pstate = freqs.new / cpu->pstate.scaling;
2366 break;
2367 default:
2368 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2369 break;
2370 }
2371 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2372 if (target_pstate != cpu->pstate.current_pstate) {
2373 cpu->pstate.current_pstate = target_pstate;
2374 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2375 pstate_funcs.get_val(cpu, target_pstate));
2376 }
64078299 2377 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2378 cpufreq_freq_transition_end(policy, &freqs, false);
2379
2380 return 0;
2381}
2382
2383static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2384 unsigned int target_freq)
2385{
2386 struct cpudata *cpu = all_cpu_data[policy->cpu];
2387 int target_pstate;
2388
2389 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2390 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2391 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2392 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2393 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2394}
2395
2396static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2397{
2398 int ret = __intel_pstate_cpu_init(policy);
2399
2400 if (ret)
2401 return ret;
2402
2403 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2404 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2405 policy->cur = policy->cpuinfo.min_freq;
2406
2407 return 0;
2408}
2409
2410static struct cpufreq_driver intel_cpufreq = {
2411 .flags = CPUFREQ_CONST_LOOPS,
2412 .verify = intel_cpufreq_verify_policy,
2413 .target = intel_cpufreq_target,
2414 .fast_switch = intel_cpufreq_fast_switch,
2415 .init = intel_cpufreq_cpu_init,
2416 .exit = intel_pstate_cpu_exit,
2417 .stop_cpu = intel_cpufreq_stop_cpu,
2418 .name = "intel_cpufreq",
2419};
2420
2421static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2422
fb1fe104
RW
2423static void intel_pstate_driver_cleanup(void)
2424{
2425 unsigned int cpu;
2426
2427 get_online_cpus();
2428 for_each_online_cpu(cpu) {
2429 if (all_cpu_data[cpu]) {
2430 if (intel_pstate_driver == &intel_pstate)
2431 intel_pstate_clear_update_util_hook(cpu);
2432
2433 kfree(all_cpu_data[cpu]);
2434 all_cpu_data[cpu] = NULL;
2435 }
2436 }
2437 put_online_cpus();
2438}
2439
2440static int intel_pstate_register_driver(void)
2441{
2442 int ret;
2443
c3a49c89
RW
2444 intel_pstate_init_limits(&powersave_limits);
2445 intel_pstate_set_performance_limits(&performance_limits);
2bc756e7
RW
2446 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
2447 intel_pstate_driver == &intel_pstate)
2448 limits = &performance_limits;
2449 else
2450 limits = &powersave_limits;
c3a49c89 2451
fb1fe104
RW
2452 ret = cpufreq_register_driver(intel_pstate_driver);
2453 if (ret) {
2454 intel_pstate_driver_cleanup();
2455 return ret;
2456 }
2457
2458 mutex_lock(&intel_pstate_limits_lock);
2459 driver_registered = true;
2460 mutex_unlock(&intel_pstate_limits_lock);
2461
2462 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2463 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2464 intel_pstate_debug_expose_params();
2465
2466 return 0;
2467}
2468
2469static int intel_pstate_unregister_driver(void)
2470{
2471 if (hwp_active)
2472 return -EBUSY;
2473
2474 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2475 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2476 intel_pstate_debug_hide_params();
2477
2478 mutex_lock(&intel_pstate_limits_lock);
2479 driver_registered = false;
2480 mutex_unlock(&intel_pstate_limits_lock);
2481
2482 cpufreq_unregister_driver(intel_pstate_driver);
2483 intel_pstate_driver_cleanup();
2484
2485 return 0;
2486}
2487
2488static ssize_t intel_pstate_show_status(char *buf)
2489{
2490 if (!driver_registered)
2491 return sprintf(buf, "off\n");
2492
2493 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2494 "active" : "passive");
2495}
2496
2497static int intel_pstate_update_status(const char *buf, size_t size)
2498{
2499 int ret;
2500
2501 if (size == 3 && !strncmp(buf, "off", size))
2502 return driver_registered ?
2503 intel_pstate_unregister_driver() : -EINVAL;
2504
2505 if (size == 6 && !strncmp(buf, "active", size)) {
2506 if (driver_registered) {
2507 if (intel_pstate_driver == &intel_pstate)
2508 return 0;
2509
2510 ret = intel_pstate_unregister_driver();
2511 if (ret)
2512 return ret;
2513 }
2514
2515 intel_pstate_driver = &intel_pstate;
2516 return intel_pstate_register_driver();
2517 }
2518
2519 if (size == 7 && !strncmp(buf, "passive", size)) {
2520 if (driver_registered) {
2521 if (intel_pstate_driver != &intel_pstate)
2522 return 0;
2523
2524 ret = intel_pstate_unregister_driver();
2525 if (ret)
2526 return ret;
2527 }
2528
2529 intel_pstate_driver = &intel_cpufreq;
2530 return intel_pstate_register_driver();
2531 }
2532
2533 return -EINVAL;
2534}
2535
eed43609
JZ
2536static int no_load __initdata;
2537static int no_hwp __initdata;
2538static int hwp_only __initdata;
29327c84 2539static unsigned int force_load __initdata;
6be26498 2540
29327c84 2541static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2542{
016c8150 2543 if (!pstate_funcs.get_max() ||
c410833a
SK
2544 !pstate_funcs.get_min() ||
2545 !pstate_funcs.get_turbo())
b563b4e3
DB
2546 return -ENODEV;
2547
b563b4e3
DB
2548 return 0;
2549}
016c8150 2550
29327c84 2551static void __init copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
2552{
2553 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 2554 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
2555 pid_params.p_gain_pct = policy->p_gain_pct;
2556 pid_params.i_gain_pct = policy->i_gain_pct;
2557 pid_params.d_gain_pct = policy->d_gain_pct;
2558 pid_params.deadband = policy->deadband;
2559 pid_params.setpoint = policy->setpoint;
2560}
2561
7f7a516e
SP
2562#ifdef CONFIG_ACPI
2563static void intel_pstate_use_acpi_profile(void)
2564{
2565 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2566 pstate_funcs.get_target_pstate =
2567 get_target_pstate_use_cpu_load;
2568}
2569#else
2570static void intel_pstate_use_acpi_profile(void)
2571{
2572}
2573#endif
2574
29327c84 2575static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2576{
2577 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2578 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2579 pstate_funcs.get_min = funcs->get_min;
2580 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2581 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2582 pstate_funcs.get_val = funcs->get_val;
007bea09 2583 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2584 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2585
7f7a516e 2586 intel_pstate_use_acpi_profile();
016c8150
DB
2587}
2588
9522a2ff 2589#ifdef CONFIG_ACPI
fbbcdc07 2590
29327c84 2591static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2592{
2593 int i;
2594
2595 for_each_possible_cpu(i) {
2596 acpi_status status;
2597 union acpi_object *pss;
2598 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2599 struct acpi_processor *pr = per_cpu(processors, i);
2600
2601 if (!pr)
2602 continue;
2603
2604 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2605 if (ACPI_FAILURE(status))
2606 continue;
2607
2608 pss = buffer.pointer;
2609 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2610 kfree(pss);
2611 return false;
2612 }
2613
2614 kfree(pss);
2615 }
2616
2617 return true;
2618}
2619
29327c84 2620static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2621{
2622 int i;
2623
2624 for_each_possible_cpu(i) {
2625 struct acpi_processor *pr = per_cpu(processors, i);
2626
2627 if (!pr)
2628 continue;
2629 if (acpi_has_method(pr->handle, "_PPC"))
2630 return true;
2631 }
2632 return false;
2633}
2634
2635enum {
2636 PSS,
2637 PPC,
2638};
2639
fbbcdc07
AH
2640struct hw_vendor_info {
2641 u16 valid;
2642 char oem_id[ACPI_OEM_ID_SIZE];
2643 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2644 int oem_pwr_table;
fbbcdc07
AH
2645};
2646
2647/* Hardware vendor-specific info that has its own power management modes */
29327c84 2648static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2649 {1, "HP ", "ProLiant", PSS},
2650 {1, "ORACLE", "X4-2 ", PPC},
2651 {1, "ORACLE", "X4-2L ", PPC},
2652 {1, "ORACLE", "X4-2B ", PPC},
2653 {1, "ORACLE", "X3-2 ", PPC},
2654 {1, "ORACLE", "X3-2L ", PPC},
2655 {1, "ORACLE", "X3-2B ", PPC},
2656 {1, "ORACLE", "X4470M2 ", PPC},
2657 {1, "ORACLE", "X4270M3 ", PPC},
2658 {1, "ORACLE", "X4270M2 ", PPC},
2659 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2660 {1, "ORACLE", "X4170 M3", PPC},
2661 {1, "ORACLE", "X4275 M3", PPC},
2662 {1, "ORACLE", "X6-2 ", PPC},
2663 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2664 {0, "", ""},
2665};
2666
29327c84 2667static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2668{
2669 struct acpi_table_header hdr;
2670 struct hw_vendor_info *v_info;
2f86dc4c
DB
2671 const struct x86_cpu_id *id;
2672 u64 misc_pwr;
2673
2674 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2675 if (id) {
2676 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2677 if ( misc_pwr & (1 << 8))
2678 return true;
2679 }
fbbcdc07 2680
c410833a
SK
2681 if (acpi_disabled ||
2682 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2683 return false;
2684
2685 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2686 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2687 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2688 ACPI_OEM_TABLE_ID_SIZE))
2689 switch (v_info->oem_pwr_table) {
2690 case PSS:
2691 return intel_pstate_no_acpi_pss();
2692 case PPC:
aa4ea34d
EZ
2693 return intel_pstate_has_acpi_ppc() &&
2694 (!force_load);
966916ea 2695 }
fbbcdc07
AH
2696 }
2697
2698 return false;
2699}
d0ea59e1
RW
2700
2701static void intel_pstate_request_control_from_smm(void)
2702{
2703 /*
2704 * It may be unsafe to request P-states control from SMM if _PPC support
2705 * has not been enabled.
2706 */
2707 if (acpi_ppc)
2708 acpi_processor_pstate_control();
2709}
fbbcdc07
AH
2710#else /* CONFIG_ACPI not enabled */
2711static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2712static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2713static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2714#endif /* CONFIG_ACPI */
2715
7791e4aa
SP
2716static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2717 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2718 {}
2719};
2720
93f0822d
DB
2721static int __init intel_pstate_init(void)
2722{
93f0822d 2723 const struct x86_cpu_id *id;
64df1fdf 2724 struct cpu_defaults *cpu_def;
fb1fe104 2725 int rc = 0;
93f0822d 2726
6be26498
DB
2727 if (no_load)
2728 return -ENODEV;
2729
7791e4aa
SP
2730 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2731 copy_cpu_funcs(&core_params.funcs);
2732 hwp_active++;
984edbdc 2733 intel_pstate.attr = hwp_cpufreq_attrs;
7791e4aa
SP
2734 goto hwp_cpu_matched;
2735 }
2736
93f0822d
DB
2737 id = x86_match_cpu(intel_pstate_cpu_ids);
2738 if (!id)
2739 return -ENODEV;
2740
64df1fdf 2741 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 2742
64df1fdf
BP
2743 copy_pid_params(&cpu_def->pid_policy);
2744 copy_cpu_funcs(&cpu_def->funcs);
016c8150 2745
b563b4e3
DB
2746 if (intel_pstate_msrs_not_valid())
2747 return -ENODEV;
2748
7791e4aa
SP
2749hwp_cpu_matched:
2750 /*
2751 * The Intel pstate driver will be ignored if the platform
2752 * firmware has its own power management modes.
2753 */
2754 if (intel_pstate_platform_pwr_mgmt_exists())
2755 return -ENODEV;
2756
fb1fe104
RW
2757 if (!hwp_active && hwp_only)
2758 return -ENOTSUPP;
2759
4836df17 2760 pr_info("Intel P-state driver initializing\n");
93f0822d 2761
b57ffac5 2762 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2763 if (!all_cpu_data)
2764 return -ENOMEM;
93f0822d 2765
d0ea59e1
RW
2766 intel_pstate_request_control_from_smm();
2767
93f0822d 2768 intel_pstate_sysfs_expose_params();
b69880f9 2769
0c30b65b 2770 mutex_lock(&intel_pstate_driver_lock);
fb1fe104 2771 rc = intel_pstate_register_driver();
0c30b65b 2772 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2773 if (rc)
2774 return rc;
366430b5 2775
7791e4aa 2776 if (hwp_active)
4836df17 2777 pr_info("HWP enabled\n");
7791e4aa 2778
fb1fe104 2779 return 0;
93f0822d
DB
2780}
2781device_initcall(intel_pstate_init);
2782
6be26498
DB
2783static int __init intel_pstate_setup(char *str)
2784{
2785 if (!str)
2786 return -EINVAL;
2787
001c76f0 2788 if (!strcmp(str, "disable")) {
6be26498 2789 no_load = 1;
001c76f0
RW
2790 } else if (!strcmp(str, "passive")) {
2791 pr_info("Passive mode enabled\n");
2792 intel_pstate_driver = &intel_cpufreq;
2793 no_hwp = 1;
2794 }
539342f6 2795 if (!strcmp(str, "no_hwp")) {
4836df17 2796 pr_info("HWP disabled\n");
2f86dc4c 2797 no_hwp = 1;
539342f6 2798 }
aa4ea34d
EZ
2799 if (!strcmp(str, "force"))
2800 force_load = 1;
d64c3b0b
KCA
2801 if (!strcmp(str, "hwp_only"))
2802 hwp_only = 1;
eae48f04
SP
2803 if (!strcmp(str, "per_cpu_perf_limits"))
2804 per_cpu_limits = true;
9522a2ff
SP
2805
2806#ifdef CONFIG_ACPI
2807 if (!strcmp(str, "support_acpi_ppc"))
2808 acpi_ppc = true;
2809#endif
2810
6be26498
DB
2811 return 0;
2812}
2813early_param("intel_pstate", intel_pstate_setup);
2814
93f0822d
DB
2815MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2816MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2817MODULE_LICENSE("GPL");