]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Move cpu_defaults definitions
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
eabd22c6
RW
40#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
001c76f0
RW
43#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44
9522a2ff
SP
45#ifdef CONFIG_ACPI
46#include <acpi/processor.h>
17669006 47#include <acpi/cppc_acpi.h>
9522a2ff
SP
48#endif
49
f0fe3cd7 50#define FRAC_BITS 8
93f0822d
DB
51#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 53
a1c9787d
RW
54#define EXT_BITS 6
55#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
56#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 58
93f0822d
DB
59static inline int32_t mul_fp(int32_t x, int32_t y)
60{
61 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62}
63
7180dddf 64static inline int32_t div_fp(s64 x, s64 y)
93f0822d 65{
7180dddf 66 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
67}
68
d022a65e
DB
69static inline int ceiling_fp(int32_t x)
70{
71 int mask, ret;
72
73 ret = fp_toint(x);
74 mask = (1 << FRAC_BITS) - 1;
75 if (x & mask)
76 ret += 1;
77 return ret;
78}
79
ff35f02e
RW
80static inline int32_t percent_fp(int percent)
81{
82 return div_fp(percent, 100);
83}
84
a1c9787d
RW
85static inline u64 mul_ext_fp(u64 x, u64 y)
86{
87 return (x * y) >> EXT_FRAC_BITS;
88}
89
90static inline u64 div_ext_fp(u64 x, u64 y)
91{
92 return div64_u64(x << EXT_FRAC_BITS, y);
93}
94
e4c204ce
RW
95static inline int32_t percent_ext_fp(int percent)
96{
97 return div_ext_fp(percent, 100);
98}
99
13ad7701
SP
100/**
101 * struct sample - Store performance sample
a1c9787d 102 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
103 * performance during last sample period
104 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 105 * P state. This can be different than core_avg_perf
13ad7701
SP
106 * to account for cpu idle period
107 * @aperf: Difference of actual performance frequency clock count
108 * read from APERF MSR between last and current sample
109 * @mperf: Difference of maximum performance frequency clock count
110 * read from MPERF MSR between last and current sample
111 * @tsc: Difference of time stamp counter between last and
112 * current sample
13ad7701
SP
113 * @time: Current time from scheduler
114 *
115 * This structure is used in the cpudata structure to store performance sample
116 * data for choosing next P State.
117 */
93f0822d 118struct sample {
a1c9787d 119 int32_t core_avg_perf;
157386b6 120 int32_t busy_scaled;
93f0822d
DB
121 u64 aperf;
122 u64 mperf;
4055fad3 123 u64 tsc;
a4675fbc 124 u64 time;
93f0822d
DB
125};
126
13ad7701
SP
127/**
128 * struct pstate_data - Store P state data
129 * @current_pstate: Current requested P state
130 * @min_pstate: Min P state possible for this platform
131 * @max_pstate: Max P state possible for this platform
132 * @max_pstate_physical:This is physical Max P state for a processor
133 * This can be higher than the max_pstate which can
134 * be limited by platform thermal design power limits
135 * @scaling: Scaling factor to convert frequency to cpufreq
136 * frequency units
137 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
138 * @max_freq: @max_pstate frequency in cpufreq units
139 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
140 *
141 * Stores the per cpu model P state limits and current P state.
142 */
93f0822d
DB
143struct pstate_data {
144 int current_pstate;
145 int min_pstate;
146 int max_pstate;
3bcc6fa9 147 int max_pstate_physical;
b27580b0 148 int scaling;
93f0822d 149 int turbo_pstate;
001c76f0
RW
150 unsigned int max_freq;
151 unsigned int turbo_freq;
93f0822d
DB
152};
153
13ad7701
SP
154/**
155 * struct vid_data - Stores voltage information data
156 * @min: VID data for this platform corresponding to
157 * the lowest P state
158 * @max: VID data corresponding to the highest P State.
159 * @turbo: VID data for turbo P state
160 * @ratio: Ratio of (vid max - vid min) /
161 * (max P state - Min P State)
162 *
163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164 * This data is used in Atom platforms, where in addition to target P state,
165 * the voltage data needs to be specified to select next P State.
166 */
007bea09 167struct vid_data {
21855ff5
DB
168 int min;
169 int max;
170 int turbo;
007bea09
DB
171 int32_t ratio;
172};
173
13ad7701
SP
174/**
175 * struct _pid - Stores PID data
176 * @setpoint: Target set point for busyness or performance
177 * @integral: Storage for accumulated error values
178 * @p_gain: PID proportional gain
179 * @i_gain: PID integral gain
180 * @d_gain: PID derivative gain
181 * @deadband: PID deadband
182 * @last_err: Last error storage for integral part of PID calculation
183 *
184 * Stores PID coefficients and last error for PID controller.
185 */
93f0822d
DB
186struct _pid {
187 int setpoint;
188 int32_t integral;
189 int32_t p_gain;
190 int32_t i_gain;
191 int32_t d_gain;
192 int deadband;
d253d2a5 193 int32_t last_err;
93f0822d
DB
194};
195
c5a2ee7d
RW
196/**
197 * struct global_params - Global parameters, mostly tunable via sysfs.
198 * @no_turbo: Whether or not to use turbo P-states.
199 * @turbo_disabled: Whethet or not turbo P-states are available at all,
200 * based on the MSR_IA32_MISC_ENABLE value and whether or
201 * not the maximum reported turbo P-state is different from
202 * the maximum reported non-turbo one.
203 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
204 * P-state capacity.
205 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
206 * P-state capacity.
207 */
208struct global_params {
209 bool no_turbo;
210 bool turbo_disabled;
211 int max_perf_pct;
212 int min_perf_pct;
eae48f04
SP
213};
214
13ad7701
SP
215/**
216 * struct cpudata - Per CPU instance data storage
217 * @cpu: CPU number for this instance data
2f1d407a 218 * @policy: CPUFreq policy value
13ad7701 219 * @update_util: CPUFreq utility callback information
4578ee7e 220 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
221 * @iowait_boost: iowait-related boost fraction
222 * @last_update: Time of the last update.
13ad7701
SP
223 * @pstate: Stores P state limits for this CPU
224 * @vid: Stores VID limits for this CPU
225 * @pid: Stores PID parameters for this CPU
226 * @last_sample_time: Last Sample time
227 * @prev_aperf: Last APERF value read from APERF MSR
228 * @prev_mperf: Last MPERF value read from MPERF MSR
229 * @prev_tsc: Last timestamp counter (TSC) value
230 * @prev_cummulative_iowait: IO Wait time difference from last and
231 * current sample
232 * @sample: Storage for storing last Sample data
e14cf885
RW
233 * @min_perf: Minimum capacity limit as a fraction of the maximum
234 * turbo P-state capacity.
235 * @max_perf: Maximum capacity limit as a fraction of the maximum
236 * turbo P-state capacity.
9522a2ff
SP
237 * @acpi_perf_data: Stores ACPI perf information read from _PSS
238 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
239 * @epp_powersave: Last saved HWP energy performance preference
240 * (EPP) or energy performance bias (EPB),
241 * when policy switched to performance
8442885f 242 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
243 * @epp_default: Power on default HWP energy performance
244 * preference/bias
245 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
246 * operation
13ad7701
SP
247 *
248 * This structure stores per CPU instance data for all CPUs.
249 */
93f0822d
DB
250struct cpudata {
251 int cpu;
252
2f1d407a 253 unsigned int policy;
a4675fbc 254 struct update_util_data update_util;
4578ee7e 255 bool update_util_set;
93f0822d 256
93f0822d 257 struct pstate_data pstate;
007bea09 258 struct vid_data vid;
93f0822d 259 struct _pid pid;
93f0822d 260
09c448d3 261 u64 last_update;
a4675fbc 262 u64 last_sample_time;
93f0822d
DB
263 u64 prev_aperf;
264 u64 prev_mperf;
4055fad3 265 u64 prev_tsc;
63d1d656 266 u64 prev_cummulative_iowait;
d37e2b76 267 struct sample sample;
e14cf885
RW
268 int32_t min_perf;
269 int32_t max_perf;
9522a2ff
SP
270#ifdef CONFIG_ACPI
271 struct acpi_processor_performance acpi_perf_data;
272 bool valid_pss_table;
273#endif
09c448d3 274 unsigned int iowait_boost;
984edbdc 275 s16 epp_powersave;
8442885f 276 s16 epp_policy;
984edbdc
SP
277 s16 epp_default;
278 s16 epp_saved;
93f0822d
DB
279};
280
281static struct cpudata **all_cpu_data;
13ad7701
SP
282
283/**
3954517e 284 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
285 * @sample_rate_ms: PID calculation sample rate in ms
286 * @sample_rate_ns: Sample rate calculation in ns
287 * @deadband: PID deadband
288 * @setpoint: PID Setpoint
289 * @p_gain_pct: PID proportional gain
290 * @i_gain_pct: PID integral gain
291 * @d_gain_pct: PID derivative gain
292 *
293 * Stores per CPU model static PID configuration data.
294 */
93f0822d
DB
295struct pstate_adjust_policy {
296 int sample_rate_ms;
a4675fbc 297 s64 sample_rate_ns;
93f0822d
DB
298 int deadband;
299 int setpoint;
300 int p_gain_pct;
301 int d_gain_pct;
302 int i_gain_pct;
303};
304
13ad7701
SP
305/**
306 * struct pstate_funcs - Per CPU model specific callbacks
307 * @get_max: Callback to get maximum non turbo effective P state
308 * @get_max_physical: Callback to get maximum non turbo physical P state
309 * @get_min: Callback to get minimum P state
310 * @get_turbo: Callback to get turbo P state
311 * @get_scaling: Callback to get frequency scaling factor
312 * @get_val: Callback to convert P state to actual MSR write value
313 * @get_vid: Callback to get VID data for Atom platforms
67dd9bf4 314 * @update_util: Active mode utilization update callback.
13ad7701
SP
315 *
316 * Core and Atom CPU models have different way to get P State limits. This
317 * structure is used to store those callbacks.
318 */
016c8150
DB
319struct pstate_funcs {
320 int (*get_max)(void);
3bcc6fa9 321 int (*get_max_physical)(void);
016c8150
DB
322 int (*get_min)(void);
323 int (*get_turbo)(void);
b27580b0 324 int (*get_scaling)(void);
fdfdb2b1 325 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 326 void (*get_vid)(struct cpudata *);
67dd9bf4
RW
327 void (*update_util)(struct update_util_data *data, u64 time,
328 unsigned int flags);
93f0822d
DB
329};
330
13ad7701
SP
331/**
332 * struct cpu_defaults- Per CPU model default config data
13ad7701
SP
333 * @funcs: Callback function data
334 */
016c8150 335struct cpu_defaults {
016c8150 336 struct pstate_funcs funcs;
93f0822d
DB
337};
338
4a7cb7a9 339static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
340static struct pstate_adjust_policy pid_params __read_mostly = {
341 .sample_rate_ms = 10,
342 .sample_rate_ns = 10 * NSEC_PER_MSEC,
343 .deadband = 0,
344 .setpoint = 97,
345 .p_gain_pct = 20,
346 .d_gain_pct = 0,
347 .i_gain_pct = 0,
348};
349
4a7cb7a9 350static int hwp_active __read_mostly;
eae48f04 351static bool per_cpu_limits __read_mostly;
016c8150 352
ee8df89a 353static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 354
9522a2ff
SP
355#ifdef CONFIG_ACPI
356static bool acpi_ppc;
357#endif
13ad7701 358
c5a2ee7d 359static struct global_params global;
93f0822d 360
0c30b65b 361static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
362static DEFINE_MUTEX(intel_pstate_limits_lock);
363
9522a2ff 364#ifdef CONFIG_ACPI
2b3ec765
SP
365
366static bool intel_pstate_get_ppc_enable_status(void)
367{
368 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 return true;
371
372 return acpi_ppc;
373}
374
17669006
RW
375#ifdef CONFIG_ACPI_CPPC_LIB
376
377/* The work item is needed to avoid CPU hotplug locking issues */
378static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
379{
380 sched_set_itmt_support();
381}
382
383static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
384
385static void intel_pstate_set_itmt_prio(int cpu)
386{
387 struct cppc_perf_caps cppc_perf;
388 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
389 int ret;
390
391 ret = cppc_get_perf_caps(cpu, &cppc_perf);
392 if (ret)
393 return;
394
395 /*
396 * The priorities can be set regardless of whether or not
397 * sched_set_itmt_support(true) has been called and it is valid to
398 * update them at any time after it has been called.
399 */
400 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
401
402 if (max_highest_perf <= min_highest_perf) {
403 if (cppc_perf.highest_perf > max_highest_perf)
404 max_highest_perf = cppc_perf.highest_perf;
405
406 if (cppc_perf.highest_perf < min_highest_perf)
407 min_highest_perf = cppc_perf.highest_perf;
408
409 if (max_highest_perf > min_highest_perf) {
410 /*
411 * This code can be run during CPU online under the
412 * CPU hotplug locks, so sched_set_itmt_support()
413 * cannot be called from here. Queue up a work item
414 * to invoke it.
415 */
416 schedule_work(&sched_itmt_work);
417 }
418 }
419}
420#else
421static void intel_pstate_set_itmt_prio(int cpu)
422{
423}
424#endif
425
9522a2ff
SP
426static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
427{
428 struct cpudata *cpu;
9522a2ff
SP
429 int ret;
430 int i;
431
17669006
RW
432 if (hwp_active) {
433 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 434 return;
17669006 435 }
e59a8f7f 436
2b3ec765 437 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
438 return;
439
440 cpu = all_cpu_data[policy->cpu];
441
442 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
443 policy->cpu);
444 if (ret)
445 return;
446
447 /*
448 * Check if the control value in _PSS is for PERF_CTL MSR, which should
449 * guarantee that the states returned by it map to the states in our
450 * list directly.
451 */
452 if (cpu->acpi_perf_data.control_register.space_id !=
453 ACPI_ADR_SPACE_FIXED_HARDWARE)
454 goto err;
455
456 /*
457 * If there is only one entry _PSS, simply ignore _PSS and continue as
458 * usual without taking _PSS into account
459 */
460 if (cpu->acpi_perf_data.state_count < 2)
461 goto err;
462
463 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
464 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
465 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
466 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
467 (u32) cpu->acpi_perf_data.states[i].core_frequency,
468 (u32) cpu->acpi_perf_data.states[i].power,
469 (u32) cpu->acpi_perf_data.states[i].control);
470 }
471
472 /*
473 * The _PSS table doesn't contain whole turbo frequency range.
474 * This just contains +1 MHZ above the max non turbo frequency,
475 * with control value corresponding to max turbo ratio. But
476 * when cpufreq set policy is called, it will call with this
477 * max frequency, which will cause a reduced performance as
478 * this driver uses real max turbo frequency as the max
479 * frequency. So correct this frequency in _PSS table to
b00345d1 480 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
481 * Also need to convert to MHz as _PSS freq is in MHz.
482 */
7de32556 483 if (!global.turbo_disabled)
9522a2ff
SP
484 cpu->acpi_perf_data.states[0].core_frequency =
485 policy->cpuinfo.max_freq / 1000;
486 cpu->valid_pss_table = true;
6cacd115 487 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
488
489 return;
490
491 err:
492 cpu->valid_pss_table = false;
493 acpi_processor_unregister_performance(policy->cpu);
494}
495
496static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
497{
498 struct cpudata *cpu;
499
500 cpu = all_cpu_data[policy->cpu];
501 if (!cpu->valid_pss_table)
502 return;
503
504 acpi_processor_unregister_performance(policy->cpu);
505}
9522a2ff 506#else
7a3ba767 507static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
508{
509}
510
7a3ba767 511static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
512{
513}
514#endif
515
d253d2a5 516static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 517{
d253d2a5 518 signed int result;
93f0822d
DB
519 int32_t pterm, dterm, fp_error;
520 int32_t integral_limit;
521
b54a0dfd 522 fp_error = pid->setpoint - busy;
93f0822d 523
b54a0dfd 524 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
525 return 0;
526
527 pterm = mul_fp(pid->p_gain, fp_error);
528
529 pid->integral += fp_error;
530
e0d4c8f8
KCA
531 /*
532 * We limit the integral here so that it will never
533 * get higher than 30. This prevents it from becoming
534 * too large an input over long periods of time and allows
535 * it to get factored out sooner.
536 *
537 * The value of 30 was chosen through experimentation.
538 */
93f0822d
DB
539 integral_limit = int_tofp(30);
540 if (pid->integral > integral_limit)
541 pid->integral = integral_limit;
542 if (pid->integral < -integral_limit)
543 pid->integral = -integral_limit;
544
d253d2a5
BS
545 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
546 pid->last_err = fp_error;
93f0822d
DB
547
548 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 549 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
550 return (signed int)fp_toint(result);
551}
552
ff35f02e 553static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 554{
ff35f02e 555 struct _pid *pid = &cpu->pid;
93f0822d 556
ff35f02e
RW
557 pid->p_gain = percent_fp(pid_params.p_gain_pct);
558 pid->d_gain = percent_fp(pid_params.d_gain_pct);
559 pid->i_gain = percent_fp(pid_params.i_gain_pct);
560 pid->setpoint = int_tofp(pid_params.setpoint);
561 pid->last_err = pid->setpoint - int_tofp(100);
562 pid->deadband = int_tofp(pid_params.deadband);
563 pid->integral = 0;
93f0822d
DB
564}
565
4521e1a0
GM
566static inline void update_turbo_state(void)
567{
568 u64 misc_en;
569 struct cpudata *cpu;
570
571 cpu = all_cpu_data[0];
572 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 573 global.turbo_disabled =
4521e1a0
GM
574 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
575 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
576}
577
c5a2ee7d
RW
578static int min_perf_pct_min(void)
579{
580 struct cpudata *cpu = all_cpu_data[0];
581
582 return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
583 cpu->pstate.turbo_pstate);
584}
585
8442885f
SP
586static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
587{
588 u64 epb;
589 int ret;
590
591 if (!static_cpu_has(X86_FEATURE_EPB))
592 return -ENXIO;
593
594 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
595 if (ret)
596 return (s16)ret;
597
598 return (s16)(epb & 0x0f);
599}
600
601static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
602{
603 s16 epp;
604
984edbdc
SP
605 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
606 /*
607 * When hwp_req_data is 0, means that caller didn't read
608 * MSR_HWP_REQUEST, so need to read and get EPP.
609 */
610 if (!hwp_req_data) {
611 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
612 &hwp_req_data);
613 if (epp)
614 return epp;
615 }
8442885f 616 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 617 } else {
8442885f
SP
618 /* When there is no EPP present, HWP uses EPB settings */
619 epp = intel_pstate_get_epb(cpu_data);
984edbdc 620 }
8442885f
SP
621
622 return epp;
623}
624
984edbdc 625static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
626{
627 u64 epb;
984edbdc 628 int ret;
8442885f
SP
629
630 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 631 return -ENXIO;
8442885f 632
984edbdc
SP
633 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
634 if (ret)
635 return ret;
8442885f
SP
636
637 epb = (epb & ~0x0f) | pref;
638 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
639
640 return 0;
8442885f
SP
641}
642
984edbdc
SP
643/*
644 * EPP/EPB display strings corresponding to EPP index in the
645 * energy_perf_strings[]
646 * index String
647 *-------------------------------------
648 * 0 default
649 * 1 performance
650 * 2 balance_performance
651 * 3 balance_power
652 * 4 power
653 */
654static const char * const energy_perf_strings[] = {
655 "default",
656 "performance",
657 "balance_performance",
658 "balance_power",
659 "power",
660 NULL
661};
662
663static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
664{
665 s16 epp;
666 int index = -EINVAL;
667
668 epp = intel_pstate_get_epp(cpu_data, 0);
669 if (epp < 0)
670 return epp;
671
672 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
673 /*
674 * Range:
675 * 0x00-0x3F : Performance
676 * 0x40-0x7F : Balance performance
677 * 0x80-0xBF : Balance power
678 * 0xC0-0xFF : Power
679 * The EPP is a 8 bit value, but our ranges restrict the
680 * value which can be set. Here only using top two bits
681 * effectively.
682 */
683 index = (epp >> 6) + 1;
684 } else if (static_cpu_has(X86_FEATURE_EPB)) {
685 /*
686 * Range:
687 * 0x00-0x03 : Performance
688 * 0x04-0x07 : Balance performance
689 * 0x08-0x0B : Balance power
690 * 0x0C-0x0F : Power
691 * The EPB is a 4 bit value, but our ranges restrict the
692 * value which can be set. Here only using top two bits
693 * effectively.
694 */
695 index = (epp >> 2) + 1;
696 }
697
698 return index;
699}
700
701static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
702 int pref_index)
703{
704 int epp = -EINVAL;
705 int ret;
706
707 if (!pref_index)
708 epp = cpu_data->epp_default;
709
710 mutex_lock(&intel_pstate_limits_lock);
711
712 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
713 u64 value;
714
715 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
716 if (ret)
717 goto return_pref;
718
719 value &= ~GENMASK_ULL(31, 24);
720
721 /*
722 * If epp is not default, convert from index into
723 * energy_perf_strings to epp value, by shifting 6
724 * bits left to use only top two bits in epp.
725 * The resultant epp need to shifted by 24 bits to
726 * epp position in MSR_HWP_REQUEST.
727 */
728 if (epp == -EINVAL)
729 epp = (pref_index - 1) << 6;
730
731 value |= (u64)epp << 24;
732 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
733 } else {
734 if (epp == -EINVAL)
735 epp = (pref_index - 1) << 2;
736 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
737 }
738return_pref:
739 mutex_unlock(&intel_pstate_limits_lock);
740
741 return ret;
742}
743
744static ssize_t show_energy_performance_available_preferences(
745 struct cpufreq_policy *policy, char *buf)
746{
747 int i = 0;
748 int ret = 0;
749
750 while (energy_perf_strings[i] != NULL)
751 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
752
753 ret += sprintf(&buf[ret], "\n");
754
755 return ret;
756}
757
758cpufreq_freq_attr_ro(energy_performance_available_preferences);
759
760static ssize_t store_energy_performance_preference(
761 struct cpufreq_policy *policy, const char *buf, size_t count)
762{
763 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
764 char str_preference[21];
765 int ret, i = 0;
766
767 ret = sscanf(buf, "%20s", str_preference);
768 if (ret != 1)
769 return -EINVAL;
770
771 while (energy_perf_strings[i] != NULL) {
772 if (!strcmp(str_preference, energy_perf_strings[i])) {
773 intel_pstate_set_energy_pref_index(cpu_data, i);
774 return count;
775 }
776 ++i;
777 }
778
779 return -EINVAL;
780}
781
782static ssize_t show_energy_performance_preference(
783 struct cpufreq_policy *policy, char *buf)
784{
785 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
786 int preference;
787
788 preference = intel_pstate_get_energy_pref_index(cpu_data);
789 if (preference < 0)
790 return preference;
791
792 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
793}
794
795cpufreq_freq_attr_rw(energy_performance_preference);
796
797static struct freq_attr *hwp_cpufreq_attrs[] = {
798 &energy_performance_preference,
799 &energy_performance_available_preferences,
800 NULL,
801};
802
111b8b3f 803static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 804{
3f8ed54a 805 int min, hw_min, max, hw_max, cpu;
74da56ce
KCA
806 u64 value, cap;
807
111b8b3f 808 for_each_cpu(cpu, policy->cpus) {
8442885f
SP
809 struct cpudata *cpu_data = all_cpu_data[cpu];
810 s16 epp;
eae48f04 811
f9f4872d
SP
812 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
813 hw_min = HWP_LOWEST_PERF(cap);
7de32556 814 if (global.no_turbo)
4e5d3f71
SP
815 hw_max = HWP_GUARANTEED_PERF(cap);
816 else
817 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d 818
e14cf885 819 max = fp_ext_toint(hw_max * cpu_data->max_perf);
7de32556
RW
820 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
821 min = max;
822 else
e14cf885 823 min = fp_ext_toint(hw_max * cpu_data->min_perf);
eae48f04 824
2f86dc4c 825 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
3f8ed54a 826
2f86dc4c
DB
827 value &= ~HWP_MIN_PERF(~0L);
828 value |= HWP_MIN_PERF(min);
829
2f86dc4c
DB
830 value &= ~HWP_MAX_PERF(~0L);
831 value |= HWP_MAX_PERF(max);
8442885f
SP
832
833 if (cpu_data->epp_policy == cpu_data->policy)
834 goto skip_epp;
835
836 cpu_data->epp_policy = cpu_data->policy;
837
984edbdc
SP
838 if (cpu_data->epp_saved >= 0) {
839 epp = cpu_data->epp_saved;
840 cpu_data->epp_saved = -EINVAL;
841 goto update_epp;
842 }
843
8442885f
SP
844 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
845 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 846 cpu_data->epp_powersave = epp;
8442885f 847 /* If EPP read was failed, then don't try to write */
984edbdc 848 if (epp < 0)
8442885f 849 goto skip_epp;
8442885f 850
8442885f
SP
851
852 epp = 0;
853 } else {
854 /* skip setting EPP, when saved value is invalid */
984edbdc 855 if (cpu_data->epp_powersave < 0)
8442885f
SP
856 goto skip_epp;
857
858 /*
859 * No need to restore EPP when it is not zero. This
860 * means:
861 * - Policy is not changed
862 * - user has manually changed
863 * - Error reading EPB
864 */
865 epp = intel_pstate_get_epp(cpu_data, value);
866 if (epp)
867 goto skip_epp;
868
984edbdc 869 epp = cpu_data->epp_powersave;
8442885f 870 }
984edbdc 871update_epp:
8442885f
SP
872 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
873 value &= ~GENMASK_ULL(31, 24);
874 value |= (u64)epp << 24;
875 } else {
876 intel_pstate_set_epb(cpu, epp);
877 }
878skip_epp:
2f86dc4c
DB
879 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
880 }
41cfd64c 881}
2f86dc4c 882
984edbdc
SP
883static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
884{
885 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
886
887 if (!hwp_active)
888 return 0;
889
890 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
891
892 return 0;
893}
894
8442885f
SP
895static int intel_pstate_resume(struct cpufreq_policy *policy)
896{
897 if (!hwp_active)
898 return 0;
899
aa439248
RW
900 mutex_lock(&intel_pstate_limits_lock);
901
8442885f 902 all_cpu_data[policy->cpu]->epp_policy = 0;
5f98ced1 903 intel_pstate_hwp_set(policy);
aa439248
RW
904
905 mutex_unlock(&intel_pstate_limits_lock);
906
5f98ced1 907 return 0;
8442885f
SP
908}
909
111b8b3f 910static void intel_pstate_update_policies(void)
41cfd64c 911{
111b8b3f
RW
912 int cpu;
913
914 for_each_possible_cpu(cpu)
915 cpufreq_update_policy(cpu);
2f86dc4c
DB
916}
917
93f0822d
DB
918/************************** debugfs begin ************************/
919static int pid_param_set(void *data, u64 val)
920{
4ddd0146
RW
921 unsigned int cpu;
922
93f0822d 923 *(u32 *)data = val;
6e7408ac 924 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
925 for_each_possible_cpu(cpu)
926 if (all_cpu_data[cpu])
ff35f02e 927 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 928
93f0822d
DB
929 return 0;
930}
845c1cbe 931
93f0822d
DB
932static int pid_param_get(void *data, u64 *val)
933{
934 *val = *(u32 *)data;
935 return 0;
936}
2d8d1f18 937DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 938
fb1fe104
RW
939static struct dentry *debugfs_parent;
940
93f0822d
DB
941struct pid_param {
942 char *name;
943 void *value;
fb1fe104 944 struct dentry *dentry;
93f0822d
DB
945};
946
947static struct pid_param pid_files[] = {
fb1fe104
RW
948 {"sample_rate_ms", &pid_params.sample_rate_ms, },
949 {"d_gain_pct", &pid_params.d_gain_pct, },
950 {"i_gain_pct", &pid_params.i_gain_pct, },
951 {"deadband", &pid_params.deadband, },
952 {"setpoint", &pid_params.setpoint, },
953 {"p_gain_pct", &pid_params.p_gain_pct, },
954 {NULL, NULL, }
93f0822d
DB
955};
956
fb1fe104 957static void intel_pstate_debug_expose_params(void)
93f0822d 958{
fb1fe104 959 int i;
93f0822d
DB
960
961 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
962 if (IS_ERR_OR_NULL(debugfs_parent))
963 return;
fb1fe104
RW
964
965 for (i = 0; pid_files[i].name; i++) {
966 struct dentry *dentry;
967
968 dentry = debugfs_create_file(pid_files[i].name, 0660,
969 debugfs_parent, pid_files[i].value,
970 &fops_pid_param);
971 if (!IS_ERR(dentry))
972 pid_files[i].dentry = dentry;
93f0822d
DB
973 }
974}
975
fb1fe104
RW
976static void intel_pstate_debug_hide_params(void)
977{
978 int i;
979
980 if (IS_ERR_OR_NULL(debugfs_parent))
981 return;
982
983 for (i = 0; pid_files[i].name; i++) {
984 debugfs_remove(pid_files[i].dentry);
985 pid_files[i].dentry = NULL;
93f0822d 986 }
fb1fe104
RW
987
988 debugfs_remove(debugfs_parent);
989 debugfs_parent = NULL;
93f0822d
DB
990}
991
992/************************** debugfs end ************************/
993
994/************************** sysfs begin ************************/
995#define show_one(file_name, object) \
996 static ssize_t show_##file_name \
997 (struct kobject *kobj, struct attribute *attr, char *buf) \
998 { \
7de32556 999 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
1000 }
1001
fb1fe104
RW
1002static ssize_t intel_pstate_show_status(char *buf);
1003static int intel_pstate_update_status(const char *buf, size_t size);
1004
1005static ssize_t show_status(struct kobject *kobj,
1006 struct attribute *attr, char *buf)
1007{
1008 ssize_t ret;
1009
1010 mutex_lock(&intel_pstate_driver_lock);
1011 ret = intel_pstate_show_status(buf);
1012 mutex_unlock(&intel_pstate_driver_lock);
1013
1014 return ret;
1015}
1016
1017static ssize_t store_status(struct kobject *a, struct attribute *b,
1018 const char *buf, size_t count)
1019{
1020 char *p = memchr(buf, '\n', count);
1021 int ret;
1022
1023 mutex_lock(&intel_pstate_driver_lock);
1024 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1025 mutex_unlock(&intel_pstate_driver_lock);
1026
1027 return ret < 0 ? ret : count;
1028}
1029
d01b1f48
KCA
1030static ssize_t show_turbo_pct(struct kobject *kobj,
1031 struct attribute *attr, char *buf)
1032{
1033 struct cpudata *cpu;
1034 int total, no_turbo, turbo_pct;
1035 uint32_t turbo_fp;
1036
0c30b65b
RW
1037 mutex_lock(&intel_pstate_driver_lock);
1038
ee8df89a 1039 if (!intel_pstate_driver) {
0c30b65b
RW
1040 mutex_unlock(&intel_pstate_driver_lock);
1041 return -EAGAIN;
1042 }
1043
d01b1f48
KCA
1044 cpu = all_cpu_data[0];
1045
1046 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1047 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1048 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1049 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1050
1051 mutex_unlock(&intel_pstate_driver_lock);
1052
d01b1f48
KCA
1053 return sprintf(buf, "%u\n", turbo_pct);
1054}
1055
0522424e
KCA
1056static ssize_t show_num_pstates(struct kobject *kobj,
1057 struct attribute *attr, char *buf)
1058{
1059 struct cpudata *cpu;
1060 int total;
1061
0c30b65b
RW
1062 mutex_lock(&intel_pstate_driver_lock);
1063
ee8df89a 1064 if (!intel_pstate_driver) {
0c30b65b
RW
1065 mutex_unlock(&intel_pstate_driver_lock);
1066 return -EAGAIN;
1067 }
1068
0522424e
KCA
1069 cpu = all_cpu_data[0];
1070 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1071
1072 mutex_unlock(&intel_pstate_driver_lock);
1073
0522424e
KCA
1074 return sprintf(buf, "%u\n", total);
1075}
1076
4521e1a0
GM
1077static ssize_t show_no_turbo(struct kobject *kobj,
1078 struct attribute *attr, char *buf)
1079{
1080 ssize_t ret;
1081
0c30b65b
RW
1082 mutex_lock(&intel_pstate_driver_lock);
1083
ee8df89a 1084 if (!intel_pstate_driver) {
0c30b65b
RW
1085 mutex_unlock(&intel_pstate_driver_lock);
1086 return -EAGAIN;
1087 }
1088
4521e1a0 1089 update_turbo_state();
7de32556
RW
1090 if (global.turbo_disabled)
1091 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1092 else
7de32556 1093 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1094
0c30b65b
RW
1095 mutex_unlock(&intel_pstate_driver_lock);
1096
4521e1a0
GM
1097 return ret;
1098}
1099
93f0822d 1100static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1101 const char *buf, size_t count)
93f0822d
DB
1102{
1103 unsigned int input;
1104 int ret;
845c1cbe 1105
93f0822d
DB
1106 ret = sscanf(buf, "%u", &input);
1107 if (ret != 1)
1108 return -EINVAL;
4521e1a0 1109
0c30b65b
RW
1110 mutex_lock(&intel_pstate_driver_lock);
1111
ee8df89a 1112 if (!intel_pstate_driver) {
0c30b65b
RW
1113 mutex_unlock(&intel_pstate_driver_lock);
1114 return -EAGAIN;
1115 }
1116
a410c03d
SP
1117 mutex_lock(&intel_pstate_limits_lock);
1118
4521e1a0 1119 update_turbo_state();
7de32556 1120 if (global.turbo_disabled) {
4836df17 1121 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1122 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1123 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1124 return -EPERM;
dd5fbf70 1125 }
2f86dc4c 1126
7de32556 1127 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1128
c5a2ee7d
RW
1129 if (global.no_turbo) {
1130 struct cpudata *cpu = all_cpu_data[0];
1131 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1132
1133 /* Squash the global minimum into the permitted range. */
1134 if (global.min_perf_pct > pct)
1135 global.min_perf_pct = pct;
1136 }
1137
cd59b4be
RW
1138 mutex_unlock(&intel_pstate_limits_lock);
1139
7de32556
RW
1140 intel_pstate_update_policies();
1141
0c30b65b
RW
1142 mutex_unlock(&intel_pstate_driver_lock);
1143
93f0822d
DB
1144 return count;
1145}
1146
1147static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1148 const char *buf, size_t count)
93f0822d
DB
1149{
1150 unsigned int input;
1151 int ret;
845c1cbe 1152
93f0822d
DB
1153 ret = sscanf(buf, "%u", &input);
1154 if (ret != 1)
1155 return -EINVAL;
1156
0c30b65b
RW
1157 mutex_lock(&intel_pstate_driver_lock);
1158
ee8df89a 1159 if (!intel_pstate_driver) {
0c30b65b
RW
1160 mutex_unlock(&intel_pstate_driver_lock);
1161 return -EAGAIN;
1162 }
1163
a410c03d
SP
1164 mutex_lock(&intel_pstate_limits_lock);
1165
c5a2ee7d 1166 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1167
cd59b4be
RW
1168 mutex_unlock(&intel_pstate_limits_lock);
1169
7de32556
RW
1170 intel_pstate_update_policies();
1171
0c30b65b
RW
1172 mutex_unlock(&intel_pstate_driver_lock);
1173
93f0822d
DB
1174 return count;
1175}
1176
1177static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1178 const char *buf, size_t count)
93f0822d
DB
1179{
1180 unsigned int input;
1181 int ret;
845c1cbe 1182
93f0822d
DB
1183 ret = sscanf(buf, "%u", &input);
1184 if (ret != 1)
1185 return -EINVAL;
a0475992 1186
0c30b65b
RW
1187 mutex_lock(&intel_pstate_driver_lock);
1188
ee8df89a 1189 if (!intel_pstate_driver) {
0c30b65b
RW
1190 mutex_unlock(&intel_pstate_driver_lock);
1191 return -EAGAIN;
1192 }
1193
a410c03d
SP
1194 mutex_lock(&intel_pstate_limits_lock);
1195
c5a2ee7d
RW
1196 global.min_perf_pct = clamp_t(int, input,
1197 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1198
cd59b4be
RW
1199 mutex_unlock(&intel_pstate_limits_lock);
1200
7de32556
RW
1201 intel_pstate_update_policies();
1202
0c30b65b
RW
1203 mutex_unlock(&intel_pstate_driver_lock);
1204
93f0822d
DB
1205 return count;
1206}
1207
93f0822d
DB
1208show_one(max_perf_pct, max_perf_pct);
1209show_one(min_perf_pct, min_perf_pct);
1210
fb1fe104 1211define_one_global_rw(status);
93f0822d
DB
1212define_one_global_rw(no_turbo);
1213define_one_global_rw(max_perf_pct);
1214define_one_global_rw(min_perf_pct);
d01b1f48 1215define_one_global_ro(turbo_pct);
0522424e 1216define_one_global_ro(num_pstates);
93f0822d
DB
1217
1218static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1219 &status.attr,
93f0822d 1220 &no_turbo.attr,
d01b1f48 1221 &turbo_pct.attr,
0522424e 1222 &num_pstates.attr,
93f0822d
DB
1223 NULL
1224};
1225
1226static struct attribute_group intel_pstate_attr_group = {
1227 .attrs = intel_pstate_attributes,
1228};
93f0822d 1229
317dd50e 1230static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1231{
317dd50e 1232 struct kobject *intel_pstate_kobject;
93f0822d
DB
1233 int rc;
1234
1235 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1236 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1237 if (WARN_ON(!intel_pstate_kobject))
1238 return;
1239
2d8d1f18 1240 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1241 if (WARN_ON(rc))
1242 return;
1243
1244 /*
1245 * If per cpu limits are enforced there are no global limits, so
1246 * return without creating max/min_perf_pct attributes
1247 */
1248 if (per_cpu_limits)
1249 return;
1250
1251 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1252 WARN_ON(rc);
1253
1254 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1255 WARN_ON(rc);
1256
93f0822d 1257}
93f0822d 1258/************************** sysfs end ************************/
2f86dc4c 1259
ba88d433 1260static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1261{
f05c9665 1262 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1263 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1264 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1265
ba88d433 1266 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1267 cpudata->epp_policy = 0;
984edbdc
SP
1268 if (cpudata->epp_default == -EINVAL)
1269 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1270}
1271
6e978b22
SP
1272#define MSR_IA32_POWER_CTL_BIT_EE 19
1273
1274/* Disable energy efficiency optimization */
1275static void intel_pstate_disable_ee(int cpu)
1276{
1277 u64 power_ctl;
1278 int ret;
1279
1280 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1281 if (ret)
1282 return;
1283
1284 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1285 pr_info("Disabling energy efficiency optimization\n");
1286 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1287 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1288 }
1289}
1290
938d21a2 1291static int atom_get_min_pstate(void)
19e77c28
DB
1292{
1293 u64 value;
845c1cbe 1294
92134bdb 1295 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1296 return (value >> 8) & 0x7F;
19e77c28
DB
1297}
1298
938d21a2 1299static int atom_get_max_pstate(void)
19e77c28
DB
1300{
1301 u64 value;
845c1cbe 1302
92134bdb 1303 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1304 return (value >> 16) & 0x7F;
19e77c28 1305}
93f0822d 1306
938d21a2 1307static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1308{
1309 u64 value;
845c1cbe 1310
92134bdb 1311 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1312 return value & 0x7F;
61d8d2ab
DB
1313}
1314
fdfdb2b1 1315static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1316{
1317 u64 val;
1318 int32_t vid_fp;
1319 u32 vid;
1320
144c8e17 1321 val = (u64)pstate << 8;
7de32556 1322 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1323 val |= (u64)1 << 32;
1324
1325 vid_fp = cpudata->vid.min + mul_fp(
1326 int_tofp(pstate - cpudata->pstate.min_pstate),
1327 cpudata->vid.ratio);
1328
1329 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1330 vid = ceiling_fp(vid_fp);
007bea09 1331
21855ff5
DB
1332 if (pstate > cpudata->pstate.max_pstate)
1333 vid = cpudata->vid.turbo;
1334
fdfdb2b1 1335 return val | vid;
007bea09
DB
1336}
1337
1421df63 1338static int silvermont_get_scaling(void)
b27580b0
DB
1339{
1340 u64 value;
1341 int i;
1421df63
PL
1342 /* Defined in Table 35-6 from SDM (Sept 2015) */
1343 static int silvermont_freq_table[] = {
1344 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1345
1346 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1347 i = value & 0x7;
1348 WARN_ON(i > 4);
b27580b0 1349
1421df63
PL
1350 return silvermont_freq_table[i];
1351}
b27580b0 1352
1421df63
PL
1353static int airmont_get_scaling(void)
1354{
1355 u64 value;
1356 int i;
1357 /* Defined in Table 35-10 from SDM (Sept 2015) */
1358 static int airmont_freq_table[] = {
1359 83300, 100000, 133300, 116700, 80000,
1360 93300, 90000, 88900, 87500};
1361
1362 rdmsrl(MSR_FSB_FREQ, value);
1363 i = value & 0xF;
1364 WARN_ON(i > 8);
1365
1366 return airmont_freq_table[i];
b27580b0
DB
1367}
1368
938d21a2 1369static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1370{
1371 u64 value;
1372
92134bdb 1373 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1374 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1375 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1376 cpudata->vid.ratio = div_fp(
1377 cpudata->vid.max - cpudata->vid.min,
1378 int_tofp(cpudata->pstate.max_pstate -
1379 cpudata->pstate.min_pstate));
21855ff5 1380
92134bdb 1381 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1382 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1383}
1384
016c8150 1385static int core_get_min_pstate(void)
93f0822d
DB
1386{
1387 u64 value;
845c1cbe 1388
05e99c8c 1389 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1390 return (value >> 40) & 0xFF;
1391}
1392
3bcc6fa9 1393static int core_get_max_pstate_physical(void)
93f0822d
DB
1394{
1395 u64 value;
845c1cbe 1396
05e99c8c 1397 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1398 return (value >> 8) & 0xFF;
1399}
1400
8fc7554a
SP
1401static int core_get_tdp_ratio(u64 plat_info)
1402{
1403 /* Check how many TDP levels present */
1404 if (plat_info & 0x600000000) {
1405 u64 tdp_ctrl;
1406 u64 tdp_ratio;
1407 int tdp_msr;
1408 int err;
1409
1410 /* Get the TDP level (0, 1, 2) to get ratios */
1411 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1412 if (err)
1413 return err;
1414
1415 /* TDP MSR are continuous starting at 0x648 */
1416 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1417 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1418 if (err)
1419 return err;
1420
1421 /* For level 1 and 2, bits[23:16] contain the ratio */
1422 if (tdp_ctrl & 0x03)
1423 tdp_ratio >>= 16;
1424
1425 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1426 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1427
1428 return (int)tdp_ratio;
1429 }
1430
1431 return -ENXIO;
1432}
1433
016c8150 1434static int core_get_max_pstate(void)
93f0822d 1435{
6a35fc2d
SP
1436 u64 tar;
1437 u64 plat_info;
1438 int max_pstate;
8fc7554a 1439 int tdp_ratio;
6a35fc2d
SP
1440 int err;
1441
1442 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1443 max_pstate = (plat_info >> 8) & 0xFF;
1444
8fc7554a
SP
1445 tdp_ratio = core_get_tdp_ratio(plat_info);
1446 if (tdp_ratio <= 0)
1447 return max_pstate;
1448
1449 if (hwp_active) {
1450 /* Turbo activation ratio is not used on HWP platforms */
1451 return tdp_ratio;
1452 }
1453
6a35fc2d
SP
1454 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1455 if (!err) {
8fc7554a
SP
1456 int tar_levels;
1457
6a35fc2d 1458 /* Do some sanity checking for safety */
8fc7554a
SP
1459 tar_levels = tar & 0xff;
1460 if (tdp_ratio - 1 == tar_levels) {
1461 max_pstate = tar_levels;
1462 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1463 }
1464 }
845c1cbe 1465
6a35fc2d 1466 return max_pstate;
93f0822d
DB
1467}
1468
016c8150 1469static int core_get_turbo_pstate(void)
93f0822d
DB
1470{
1471 u64 value;
1472 int nont, ret;
845c1cbe 1473
100cf6f2 1474 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1475 nont = core_get_max_pstate();
285cb990 1476 ret = (value) & 255;
93f0822d
DB
1477 if (ret <= nont)
1478 ret = nont;
1479 return ret;
1480}
1481
b27580b0
DB
1482static inline int core_get_scaling(void)
1483{
1484 return 100000;
1485}
1486
fdfdb2b1 1487static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1488{
1489 u64 val;
1490
144c8e17 1491 val = (u64)pstate << 8;
7de32556 1492 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1493 val |= (u64)1 << 32;
1494
fdfdb2b1 1495 return val;
016c8150
DB
1496}
1497
b34ef932
DC
1498static int knl_get_turbo_pstate(void)
1499{
1500 u64 value;
1501 int nont, ret;
1502
100cf6f2 1503 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1504 nont = core_get_max_pstate();
1505 ret = (((value) >> 8) & 0xFF);
1506 if (ret <= nont)
1507 ret = nont;
1508 return ret;
1509}
1510
93f0822d
DB
1511static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1512{
1513 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1514 int max_perf_adj;
93f0822d 1515 int min_perf;
845c1cbe 1516
7de32556 1517 if (global.no_turbo || global.turbo_disabled)
93f0822d
DB
1518 max_perf = cpu->pstate.max_pstate;
1519
e0d4c8f8
KCA
1520 /*
1521 * performance can be limited by user through sysfs, by cpufreq
1522 * policy, or by cpu specific default values determined through
1523 * experimentation.
1524 */
e14cf885 1525 max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
799281a3
RW
1526 *max = clamp_t(int, max_perf_adj,
1527 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1528
e14cf885 1529 min_perf = fp_ext_toint(max_perf * cpu->min_perf);
799281a3 1530 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1531}
1532
a6c6ead1 1533static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1534{
bc95a454
RW
1535 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1536 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1537 /*
1538 * Generally, there is no guarantee that this code will always run on
1539 * the CPU being updated, so force the register update to run on the
1540 * right CPU.
1541 */
1542 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1543 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1544}
1545
a6c6ead1
RW
1546static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1547{
1548 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1549}
1550
1551static void intel_pstate_max_within_limits(struct cpudata *cpu)
1552{
1553 int min_pstate, max_pstate;
1554
1555 update_turbo_state();
1556 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1557 intel_pstate_set_pstate(cpu, max_pstate);
1558}
1559
93f0822d
DB
1560static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1561{
016c8150
DB
1562 cpu->pstate.min_pstate = pstate_funcs.get_min();
1563 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1564 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1565 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1566 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1567 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1569
007bea09
DB
1570 if (pstate_funcs.get_vid)
1571 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1572
1573 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1574}
1575
a1c9787d 1576static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1577{
6b17ddb2 1578 struct sample *sample = &cpu->sample;
e66c1768 1579
a1c9787d 1580 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1581}
1582
4fec7ad5 1583static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1584{
93f0822d 1585 u64 aperf, mperf;
4ab60c3f 1586 unsigned long flags;
4055fad3 1587 u64 tsc;
93f0822d 1588
4ab60c3f 1589 local_irq_save(flags);
93f0822d
DB
1590 rdmsrl(MSR_IA32_APERF, aperf);
1591 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1592 tsc = rdtsc();
4fec7ad5 1593 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1594 local_irq_restore(flags);
4fec7ad5 1595 return false;
8e601a9f 1596 }
4ab60c3f 1597 local_irq_restore(flags);
b69880f9 1598
c4ee841f 1599 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1600 cpu->sample.time = time;
d37e2b76
DB
1601 cpu->sample.aperf = aperf;
1602 cpu->sample.mperf = mperf;
4055fad3 1603 cpu->sample.tsc = tsc;
d37e2b76
DB
1604 cpu->sample.aperf -= cpu->prev_aperf;
1605 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1606 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1607
93f0822d
DB
1608 cpu->prev_aperf = aperf;
1609 cpu->prev_mperf = mperf;
4055fad3 1610 cpu->prev_tsc = tsc;
febce40f
RW
1611 /*
1612 * First time this function is invoked in a given cycle, all of the
1613 * previous sample data fields are equal to zero or stale and they must
1614 * be populated with meaningful numbers for things to work, so assume
1615 * that sample.time will always be reset before setting the utilization
1616 * update hook and make the caller skip the sample then.
1617 */
eabd22c6
RW
1618 if (cpu->last_sample_time) {
1619 intel_pstate_calc_avg_perf(cpu);
1620 return true;
1621 }
1622 return false;
93f0822d
DB
1623}
1624
8fa520af
PL
1625static inline int32_t get_avg_frequency(struct cpudata *cpu)
1626{
a1c9787d
RW
1627 return mul_ext_fp(cpu->sample.core_avg_perf,
1628 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1629}
1630
bdcaa23f
PL
1631static inline int32_t get_avg_pstate(struct cpudata *cpu)
1632{
8edb0a6e
RW
1633 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1634 cpu->sample.core_avg_perf);
bdcaa23f
PL
1635}
1636
e70eed2b
PL
1637static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1638{
1639 struct sample *sample = &cpu->sample;
09c448d3 1640 int32_t busy_frac, boost;
0843e83c 1641 int target, avg_pstate;
e70eed2b 1642
67dd9bf4
RW
1643 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1644 return cpu->pstate.turbo_pstate;
1645
09c448d3 1646 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1647
09c448d3
RW
1648 boost = cpu->iowait_boost;
1649 cpu->iowait_boost >>= 1;
63d1d656 1650
09c448d3
RW
1651 if (busy_frac < boost)
1652 busy_frac = boost;
63d1d656 1653
09c448d3 1654 sample->busy_scaled = busy_frac * 100;
0843e83c 1655
7de32556 1656 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1657 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1658 target += target >> 2;
1659 target = mul_fp(target, busy_frac);
1660 if (target < cpu->pstate.min_pstate)
1661 target = cpu->pstate.min_pstate;
1662
1663 /*
1664 * If the average P-state during the previous cycle was higher than the
1665 * current target, add 50% of the difference to the target to reduce
1666 * possible performance oscillations and offset possible performance
1667 * loss related to moving the workload from one CPU to another within
1668 * a package/module.
1669 */
1670 avg_pstate = get_avg_pstate(cpu);
1671 if (avg_pstate > target)
1672 target += (avg_pstate - target) >> 1;
1673
1674 return target;
e70eed2b
PL
1675}
1676
157386b6 1677static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1678{
1aa7a6e2 1679 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1680 u64 duration_ns;
93f0822d 1681
67dd9bf4
RW
1682 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1683 return cpu->pstate.turbo_pstate;
1684
e0d4c8f8 1685 /*
f00593a4
RW
1686 * perf_scaled is the ratio of the average P-state during the last
1687 * sampling period to the P-state requested last time (in percent).
1688 *
1689 * That measures the system's response to the previous P-state
1690 * selection.
e0d4c8f8 1691 */
22590efb
RW
1692 max_pstate = cpu->pstate.max_pstate_physical;
1693 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1694 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1695 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1696
e0d4c8f8 1697 /*
a4675fbc
RW
1698 * Since our utilization update callback will not run unless we are
1699 * in C0, check if the actual elapsed time is significantly greater (3x)
1700 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1701 * enough period of time to adjust our performance metric.
e0d4c8f8 1702 */
a4675fbc 1703 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1704 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1705 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1706 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1707 } else {
1708 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1709 if (sample_ratio < int_tofp(1))
1aa7a6e2 1710 perf_scaled = 0;
c4ee841f
DB
1711 }
1712
1aa7a6e2
RW
1713 cpu->sample.busy_scaled = perf_scaled;
1714 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1715}
1716
001c76f0 1717static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1718{
1719 int max_perf, min_perf;
1720
fdfdb2b1
RW
1721 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1722 pstate = clamp_t(int, pstate, min_perf, max_perf);
001c76f0
RW
1723 return pstate;
1724}
1725
1726static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1727{
fdfdb2b1
RW
1728 if (pstate == cpu->pstate.current_pstate)
1729 return;
1730
bc95a454 1731 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1732 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1733}
1734
67dd9bf4 1735static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
93f0822d 1736{
67dd9bf4 1737 int from = cpu->pstate.current_pstate;
4055fad3
DS
1738 struct sample *sample;
1739
001c76f0
RW
1740 update_turbo_state();
1741
64078299
RW
1742 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1743 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1744 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1745
1746 sample = &cpu->sample;
a1c9787d 1747 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1748 fp_toint(sample->busy_scaled),
4055fad3
DS
1749 from,
1750 cpu->pstate.current_pstate,
1751 sample->mperf,
1752 sample->aperf,
1753 sample->tsc,
3ba7bcaa
SP
1754 get_avg_frequency(cpu),
1755 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1756}
1757
eabd22c6
RW
1758static void intel_pstate_update_util_hwp(struct update_util_data *data,
1759 u64 time, unsigned int flags)
1760{
1761 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1762 u64 delta_ns = time - cpu->sample.time;
1763
1764 if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1765 intel_pstate_sample(cpu, time);
1766}
1767
1768static void intel_pstate_update_util_pid(struct update_util_data *data,
1769 u64 time, unsigned int flags)
1770{
1771 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1772 u64 delta_ns = time - cpu->sample.time;
1773
1774 if ((s64)delta_ns < pid_params.sample_rate_ns)
1775 return;
1776
67dd9bf4
RW
1777 if (intel_pstate_sample(cpu, time)) {
1778 int target_pstate;
1779
1780 target_pstate = get_target_pstate_use_performance(cpu);
1781 intel_pstate_adjust_pstate(cpu, target_pstate);
1782 }
eabd22c6
RW
1783}
1784
a4675fbc 1785static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1786 unsigned int flags)
93f0822d 1787{
a4675fbc 1788 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1789 u64 delta_ns;
1790
eabd22c6
RW
1791 if (flags & SCHED_CPUFREQ_IOWAIT) {
1792 cpu->iowait_boost = int_tofp(1);
1793 } else if (cpu->iowait_boost) {
1794 /* Clear iowait_boost if the CPU may have been idle. */
1795 delta_ns = time - cpu->last_update;
1796 if (delta_ns > TICK_NSEC)
1797 cpu->iowait_boost = 0;
09c448d3 1798 }
eabd22c6 1799 cpu->last_update = time;
09c448d3 1800 delta_ns = time - cpu->sample.time;
eabd22c6
RW
1801 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1802 return;
4fec7ad5 1803
67dd9bf4
RW
1804 if (intel_pstate_sample(cpu, time)) {
1805 int target_pstate;
93f0822d 1806
67dd9bf4
RW
1807 target_pstate = get_target_pstate_use_cpu_load(cpu);
1808 intel_pstate_adjust_pstate(cpu, target_pstate);
1809 }
1810}
eabd22c6 1811
de4a76cb
RW
1812static struct cpu_defaults core_params = {
1813 .funcs = {
1814 .get_max = core_get_max_pstate,
1815 .get_max_physical = core_get_max_pstate_physical,
1816 .get_min = core_get_min_pstate,
1817 .get_turbo = core_get_turbo_pstate,
1818 .get_scaling = core_get_scaling,
1819 .get_val = core_get_val,
1820 .update_util = intel_pstate_update_util_pid,
1821 },
1822};
1823
1824static const struct cpu_defaults silvermont_params = {
1825 .funcs = {
1826 .get_max = atom_get_max_pstate,
1827 .get_max_physical = atom_get_max_pstate,
1828 .get_min = atom_get_min_pstate,
1829 .get_turbo = atom_get_turbo_pstate,
1830 .get_val = atom_get_val,
1831 .get_scaling = silvermont_get_scaling,
1832 .get_vid = atom_get_vid,
1833 .update_util = intel_pstate_update_util,
1834 },
1835};
1836
1837static const struct cpu_defaults airmont_params = {
1838 .funcs = {
1839 .get_max = atom_get_max_pstate,
1840 .get_max_physical = atom_get_max_pstate,
1841 .get_min = atom_get_min_pstate,
1842 .get_turbo = atom_get_turbo_pstate,
1843 .get_val = atom_get_val,
1844 .get_scaling = airmont_get_scaling,
1845 .get_vid = atom_get_vid,
1846 .update_util = intel_pstate_update_util,
1847 },
1848};
1849
1850static const struct cpu_defaults knl_params = {
1851 .funcs = {
1852 .get_max = core_get_max_pstate,
1853 .get_max_physical = core_get_max_pstate_physical,
1854 .get_min = core_get_min_pstate,
1855 .get_turbo = knl_get_turbo_pstate,
1856 .get_scaling = core_get_scaling,
1857 .get_val = core_get_val,
1858 .update_util = intel_pstate_update_util_pid,
1859 },
1860};
1861
1862static const struct cpu_defaults bxt_params = {
1863 .funcs = {
1864 .get_max = core_get_max_pstate,
1865 .get_max_physical = core_get_max_pstate_physical,
1866 .get_min = core_get_min_pstate,
1867 .get_turbo = core_get_turbo_pstate,
1868 .get_scaling = core_get_scaling,
1869 .get_val = core_get_val,
1870 .update_util = intel_pstate_update_util,
1871 },
1872};
1873
93f0822d 1874#define ICPU(model, policy) \
6cbd7ee1
DB
1875 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1876 (unsigned long)&policy }
93f0822d
DB
1877
1878static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1879 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1880 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1881 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1882 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1883 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1884 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1885 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1886 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1887 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1888 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1889 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1890 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1891 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1892 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1893 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1894 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1895 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1896 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1897 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1898 {}
1899};
1900MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1901
29327c84 1902static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1903 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1904 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1905 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1906 {}
1907};
1908
6e978b22
SP
1909static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1910 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1911 {}
1912};
1913
93f0822d
DB
1914static int intel_pstate_init_cpu(unsigned int cpunum)
1915{
93f0822d
DB
1916 struct cpudata *cpu;
1917
eae48f04
SP
1918 cpu = all_cpu_data[cpunum];
1919
1920 if (!cpu) {
c5a2ee7d 1921 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1922 if (!cpu)
1923 return -ENOMEM;
1924
1925 all_cpu_data[cpunum] = cpu;
eae48f04 1926
984edbdc
SP
1927 cpu->epp_default = -EINVAL;
1928 cpu->epp_powersave = -EINVAL;
1929 cpu->epp_saved = -EINVAL;
eae48f04 1930 }
93f0822d
DB
1931
1932 cpu = all_cpu_data[cpunum];
1933
93f0822d 1934 cpu->cpu = cpunum;
ba88d433 1935
a4675fbc 1936 if (hwp_active) {
6e978b22
SP
1937 const struct x86_cpu_id *id;
1938
1939 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1940 if (id)
1941 intel_pstate_disable_ee(cpunum);
1942
ba88d433 1943 intel_pstate_hwp_enable(cpu);
67dd9bf4 1944 } else if (pstate_funcs.update_util == intel_pstate_update_util_pid) {
694cb173 1945 intel_pstate_pid_reset(cpu);
a4675fbc 1946 }
ba88d433 1947
179e8471 1948 intel_pstate_get_cpu_pstates(cpu);
016c8150 1949
4836df17 1950 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1951
1952 return 0;
1953}
1954
1955static unsigned int intel_pstate_get(unsigned int cpu_num)
1956{
f96fd0c8 1957 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1958
f96fd0c8 1959 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1960}
1961
febce40f 1962static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1963{
febce40f
RW
1964 struct cpudata *cpu = all_cpu_data[cpu_num];
1965
5ab666e0
RW
1966 if (cpu->update_util_set)
1967 return;
1968
febce40f
RW
1969 /* Prevent intel_pstate_update_util() from using stale data. */
1970 cpu->sample.time = 0;
67dd9bf4
RW
1971 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1972 pstate_funcs.update_util);
4578ee7e 1973 cpu->update_util_set = true;
bb6ab52f
RW
1974}
1975
1976static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1977{
4578ee7e
CY
1978 struct cpudata *cpu_data = all_cpu_data[cpu];
1979
1980 if (!cpu_data->update_util_set)
1981 return;
1982
0bed612b 1983 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1984 cpu_data->update_util_set = false;
bb6ab52f
RW
1985 synchronize_sched();
1986}
1987
80b120ca
RW
1988static int intel_pstate_get_max_freq(struct cpudata *cpu)
1989{
1990 return global.turbo_disabled || global.no_turbo ?
1991 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1992}
1993
eae48f04 1994static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1995 struct cpudata *cpu)
eae48f04 1996{
80b120ca 1997 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1998 int32_t max_policy_perf, min_policy_perf;
a410c03d 1999
80b120ca 2000 max_policy_perf = div_ext_fp(policy->max, max_freq);
e4c204ce 2001 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 2002 if (policy->max == policy->min) {
e4c204ce 2003 min_policy_perf = max_policy_perf;
5879f877 2004 } else {
80b120ca 2005 min_policy_perf = div_ext_fp(policy->min, max_freq);
e4c204ce
RW
2006 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2007 0, max_policy_perf);
5879f877 2008 }
eae48f04 2009
e4c204ce 2010 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 2011 if (per_cpu_limits) {
e14cf885
RW
2012 cpu->min_perf = min_policy_perf;
2013 cpu->max_perf = max_policy_perf;
c5a2ee7d
RW
2014 } else {
2015 int32_t global_min, global_max;
2016
2017 /* Global limits are in percent of the maximum turbo P-state. */
2018 global_max = percent_ext_fp(global.max_perf_pct);
2019 global_min = percent_ext_fp(global.min_perf_pct);
80b120ca 2020 if (max_freq != cpu->pstate.turbo_freq) {
c5a2ee7d
RW
2021 int32_t turbo_factor;
2022
2023 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2024 cpu->pstate.max_pstate);
2025 global_min = mul_ext_fp(global_min, turbo_factor);
2026 global_max = mul_ext_fp(global_max, turbo_factor);
2027 }
2028 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 2029
e14cf885
RW
2030 cpu->min_perf = max(min_policy_perf, global_min);
2031 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2032 cpu->max_perf = min(max_policy_perf, global_max);
2033 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
c5a2ee7d
RW
2034
2035 /* Make sure min_perf <= max_perf */
e14cf885 2036 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
c5a2ee7d 2037 }
eae48f04 2038
e14cf885
RW
2039 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2040 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2041
2042 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
e14cf885
RW
2043 fp_ext_toint(cpu->max_perf * 100),
2044 fp_ext_toint(cpu->min_perf * 100));
eae48f04
SP
2045}
2046
93f0822d
DB
2047static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2048{
3be9200d
SP
2049 struct cpudata *cpu;
2050
d3929b83
DB
2051 if (!policy->cpuinfo.max_freq)
2052 return -ENODEV;
2053
2c2c1af4
SP
2054 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2055 policy->cpuinfo.max_freq, policy->max);
2056
a6c6ead1 2057 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2058 cpu->policy = policy->policy;
2059
b59fe540
SP
2060 mutex_lock(&intel_pstate_limits_lock);
2061
c5a2ee7d 2062 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2063
2f1d407a 2064 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2065 /*
2066 * NOHZ_FULL CPUs need this as the governor callback may not
2067 * be invoked on them.
2068 */
2069 intel_pstate_clear_update_util_hook(policy->cpu);
2070 intel_pstate_max_within_limits(cpu);
2071 }
2072
bb6ab52f
RW
2073 intel_pstate_set_update_util_hook(policy->cpu);
2074
5f98ced1
RW
2075 if (hwp_active)
2076 intel_pstate_hwp_set(policy);
2f86dc4c 2077
b59fe540
SP
2078 mutex_unlock(&intel_pstate_limits_lock);
2079
93f0822d
DB
2080 return 0;
2081}
2082
80b120ca
RW
2083static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2084 struct cpudata *cpu)
2085{
2086 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2087 policy->max < policy->cpuinfo.max_freq &&
2088 policy->max > cpu->pstate.max_freq) {
2089 pr_debug("policy->max > max non turbo frequency\n");
2090 policy->max = policy->cpuinfo.max_freq;
2091 }
2092}
2093
93f0822d
DB
2094static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2095{
7d9a8a9f 2096 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2097
2098 update_turbo_state();
80b120ca
RW
2099 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2100 intel_pstate_get_max_freq(cpu));
93f0822d 2101
285cb990 2102 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2103 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2104 return -EINVAL;
2105
80b120ca
RW
2106 intel_pstate_adjust_policy_max(policy, cpu);
2107
93f0822d
DB
2108 return 0;
2109}
2110
001c76f0
RW
2111static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2112{
2113 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2114}
2115
bb18008f 2116static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2117{
001c76f0 2118 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2119
001c76f0 2120 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2121 if (hwp_active)
2122 intel_pstate_hwp_save_state(policy);
2123 else
001c76f0
RW
2124 intel_cpufreq_stop_cpu(policy);
2125}
bb18008f 2126
001c76f0
RW
2127static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2128{
2129 intel_pstate_exit_perf_limits(policy);
a4675fbc 2130
001c76f0 2131 policy->fast_switch_possible = false;
2f86dc4c 2132
001c76f0 2133 return 0;
93f0822d
DB
2134}
2135
001c76f0 2136static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2137{
93f0822d 2138 struct cpudata *cpu;
52e0a509 2139 int rc;
93f0822d
DB
2140
2141 rc = intel_pstate_init_cpu(policy->cpu);
2142 if (rc)
2143 return rc;
2144
2145 cpu = all_cpu_data[policy->cpu];
2146
e14cf885
RW
2147 cpu->max_perf = int_ext_tofp(1);
2148 cpu->min_perf = 0;
93f0822d 2149
b27580b0
DB
2150 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2151 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2152
2153 /* cpuinfo and default policy values */
b27580b0 2154 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2155 update_turbo_state();
7de32556 2156 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2157 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2158 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2159
9522a2ff 2160 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2161 cpumask_set_cpu(policy->cpu, policy->cpus);
2162
001c76f0
RW
2163 policy->fast_switch_possible = true;
2164
93f0822d
DB
2165 return 0;
2166}
2167
001c76f0 2168static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2169{
001c76f0
RW
2170 int ret = __intel_pstate_cpu_init(policy);
2171
2172 if (ret)
2173 return ret;
2174
2175 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2176 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2177 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2178 else
2179 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2180
2181 return 0;
2182}
2183
001c76f0 2184static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2185 .flags = CPUFREQ_CONST_LOOPS,
2186 .verify = intel_pstate_verify_policy,
2187 .setpolicy = intel_pstate_set_policy,
984edbdc 2188 .suspend = intel_pstate_hwp_save_state,
8442885f 2189 .resume = intel_pstate_resume,
93f0822d
DB
2190 .get = intel_pstate_get,
2191 .init = intel_pstate_cpu_init,
9522a2ff 2192 .exit = intel_pstate_cpu_exit,
bb18008f 2193 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2194 .name = "intel_pstate",
93f0822d
DB
2195};
2196
001c76f0
RW
2197static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2198{
2199 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2200
2201 update_turbo_state();
80b120ca
RW
2202 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2203 intel_pstate_get_max_freq(cpu));
001c76f0 2204
80b120ca 2205 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2206
c5a2ee7d
RW
2207 intel_pstate_update_perf_limits(policy, cpu);
2208
001c76f0
RW
2209 return 0;
2210}
2211
001c76f0
RW
2212static int intel_cpufreq_target(struct cpufreq_policy *policy,
2213 unsigned int target_freq,
2214 unsigned int relation)
2215{
2216 struct cpudata *cpu = all_cpu_data[policy->cpu];
2217 struct cpufreq_freqs freqs;
2218 int target_pstate;
2219
64897b20
RW
2220 update_turbo_state();
2221
001c76f0 2222 freqs.old = policy->cur;
64897b20 2223 freqs.new = target_freq;
001c76f0
RW
2224
2225 cpufreq_freq_transition_begin(policy, &freqs);
2226 switch (relation) {
2227 case CPUFREQ_RELATION_L:
2228 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2229 break;
2230 case CPUFREQ_RELATION_H:
2231 target_pstate = freqs.new / cpu->pstate.scaling;
2232 break;
2233 default:
2234 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2235 break;
2236 }
2237 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2238 if (target_pstate != cpu->pstate.current_pstate) {
2239 cpu->pstate.current_pstate = target_pstate;
2240 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2241 pstate_funcs.get_val(cpu, target_pstate));
2242 }
64078299 2243 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2244 cpufreq_freq_transition_end(policy, &freqs, false);
2245
2246 return 0;
2247}
2248
2249static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2250 unsigned int target_freq)
2251{
2252 struct cpudata *cpu = all_cpu_data[policy->cpu];
2253 int target_pstate;
2254
64897b20
RW
2255 update_turbo_state();
2256
001c76f0 2257 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2258 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2259 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2260 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2261}
2262
2263static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2264{
2265 int ret = __intel_pstate_cpu_init(policy);
2266
2267 if (ret)
2268 return ret;
2269
2270 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2271 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2272 policy->cur = policy->cpuinfo.min_freq;
2273
2274 return 0;
2275}
2276
2277static struct cpufreq_driver intel_cpufreq = {
2278 .flags = CPUFREQ_CONST_LOOPS,
2279 .verify = intel_cpufreq_verify_policy,
2280 .target = intel_cpufreq_target,
2281 .fast_switch = intel_cpufreq_fast_switch,
2282 .init = intel_cpufreq_cpu_init,
2283 .exit = intel_pstate_cpu_exit,
2284 .stop_cpu = intel_cpufreq_stop_cpu,
2285 .name = "intel_cpufreq",
2286};
2287
ee8df89a 2288static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2289
fb1fe104
RW
2290static void intel_pstate_driver_cleanup(void)
2291{
2292 unsigned int cpu;
2293
2294 get_online_cpus();
2295 for_each_online_cpu(cpu) {
2296 if (all_cpu_data[cpu]) {
2297 if (intel_pstate_driver == &intel_pstate)
2298 intel_pstate_clear_update_util_hook(cpu);
2299
2300 kfree(all_cpu_data[cpu]);
2301 all_cpu_data[cpu] = NULL;
2302 }
2303 }
2304 put_online_cpus();
ee8df89a 2305 intel_pstate_driver = NULL;
fb1fe104
RW
2306}
2307
ee8df89a 2308static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2309{
2310 int ret;
2311
c5a2ee7d
RW
2312 memset(&global, 0, sizeof(global));
2313 global.max_perf_pct = 100;
c3a49c89 2314
ee8df89a 2315 intel_pstate_driver = driver;
fb1fe104
RW
2316 ret = cpufreq_register_driver(intel_pstate_driver);
2317 if (ret) {
2318 intel_pstate_driver_cleanup();
2319 return ret;
2320 }
2321
c5a2ee7d
RW
2322 global.min_perf_pct = min_perf_pct_min();
2323
fb1fe104 2324 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
67dd9bf4 2325 pstate_funcs.update_util == intel_pstate_update_util_pid)
fb1fe104
RW
2326 intel_pstate_debug_expose_params();
2327
2328 return 0;
2329}
2330
2331static int intel_pstate_unregister_driver(void)
2332{
2333 if (hwp_active)
2334 return -EBUSY;
2335
67dd9bf4
RW
2336 if (intel_pstate_driver == &intel_pstate &&
2337 pstate_funcs.update_util == intel_pstate_update_util_pid)
fb1fe104
RW
2338 intel_pstate_debug_hide_params();
2339
fb1fe104
RW
2340 cpufreq_unregister_driver(intel_pstate_driver);
2341 intel_pstate_driver_cleanup();
2342
2343 return 0;
2344}
2345
2346static ssize_t intel_pstate_show_status(char *buf)
2347{
ee8df89a 2348 if (!intel_pstate_driver)
fb1fe104
RW
2349 return sprintf(buf, "off\n");
2350
2351 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2352 "active" : "passive");
2353}
2354
2355static int intel_pstate_update_status(const char *buf, size_t size)
2356{
2357 int ret;
2358
2359 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2360 return intel_pstate_driver ?
fb1fe104
RW
2361 intel_pstate_unregister_driver() : -EINVAL;
2362
2363 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2364 if (intel_pstate_driver) {
fb1fe104
RW
2365 if (intel_pstate_driver == &intel_pstate)
2366 return 0;
2367
2368 ret = intel_pstate_unregister_driver();
2369 if (ret)
2370 return ret;
2371 }
2372
ee8df89a 2373 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2374 }
2375
2376 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2377 if (intel_pstate_driver) {
0042b2c0 2378 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2379 return 0;
2380
2381 ret = intel_pstate_unregister_driver();
2382 if (ret)
2383 return ret;
2384 }
2385
ee8df89a 2386 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2387 }
2388
2389 return -EINVAL;
2390}
2391
eed43609
JZ
2392static int no_load __initdata;
2393static int no_hwp __initdata;
2394static int hwp_only __initdata;
29327c84 2395static unsigned int force_load __initdata;
6be26498 2396
29327c84 2397static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2398{
016c8150 2399 if (!pstate_funcs.get_max() ||
c410833a
SK
2400 !pstate_funcs.get_min() ||
2401 !pstate_funcs.get_turbo())
b563b4e3
DB
2402 return -ENODEV;
2403
b563b4e3
DB
2404 return 0;
2405}
016c8150 2406
7f7a516e
SP
2407#ifdef CONFIG_ACPI
2408static void intel_pstate_use_acpi_profile(void)
2409{
55395345
RW
2410 switch (acpi_gbl_FADT.preferred_profile) {
2411 case PM_MOBILE:
2412 case PM_TABLET:
2413 case PM_APPLIANCE_PC:
2414 case PM_DESKTOP:
2415 case PM_WORKSTATION:
67dd9bf4 2416 pstate_funcs.update_util = intel_pstate_update_util;
55395345 2417 }
7f7a516e
SP
2418}
2419#else
2420static void intel_pstate_use_acpi_profile(void)
2421{
2422}
2423#endif
2424
29327c84 2425static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2426{
2427 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2428 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2429 pstate_funcs.get_min = funcs->get_min;
2430 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2431 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2432 pstate_funcs.get_val = funcs->get_val;
007bea09 2433 pstate_funcs.get_vid = funcs->get_vid;
67dd9bf4 2434 pstate_funcs.update_util = funcs->update_util;
157386b6 2435
7f7a516e 2436 intel_pstate_use_acpi_profile();
016c8150
DB
2437}
2438
9522a2ff 2439#ifdef CONFIG_ACPI
fbbcdc07 2440
29327c84 2441static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2442{
2443 int i;
2444
2445 for_each_possible_cpu(i) {
2446 acpi_status status;
2447 union acpi_object *pss;
2448 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2449 struct acpi_processor *pr = per_cpu(processors, i);
2450
2451 if (!pr)
2452 continue;
2453
2454 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2455 if (ACPI_FAILURE(status))
2456 continue;
2457
2458 pss = buffer.pointer;
2459 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2460 kfree(pss);
2461 return false;
2462 }
2463
2464 kfree(pss);
2465 }
2466
2467 return true;
2468}
2469
29327c84 2470static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2471{
2472 int i;
2473
2474 for_each_possible_cpu(i) {
2475 struct acpi_processor *pr = per_cpu(processors, i);
2476
2477 if (!pr)
2478 continue;
2479 if (acpi_has_method(pr->handle, "_PPC"))
2480 return true;
2481 }
2482 return false;
2483}
2484
2485enum {
2486 PSS,
2487 PPC,
2488};
2489
fbbcdc07
AH
2490struct hw_vendor_info {
2491 u16 valid;
2492 char oem_id[ACPI_OEM_ID_SIZE];
2493 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2494 int oem_pwr_table;
fbbcdc07
AH
2495};
2496
2497/* Hardware vendor-specific info that has its own power management modes */
29327c84 2498static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2499 {1, "HP ", "ProLiant", PSS},
2500 {1, "ORACLE", "X4-2 ", PPC},
2501 {1, "ORACLE", "X4-2L ", PPC},
2502 {1, "ORACLE", "X4-2B ", PPC},
2503 {1, "ORACLE", "X3-2 ", PPC},
2504 {1, "ORACLE", "X3-2L ", PPC},
2505 {1, "ORACLE", "X3-2B ", PPC},
2506 {1, "ORACLE", "X4470M2 ", PPC},
2507 {1, "ORACLE", "X4270M3 ", PPC},
2508 {1, "ORACLE", "X4270M2 ", PPC},
2509 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2510 {1, "ORACLE", "X4170 M3", PPC},
2511 {1, "ORACLE", "X4275 M3", PPC},
2512 {1, "ORACLE", "X6-2 ", PPC},
2513 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2514 {0, "", ""},
2515};
2516
29327c84 2517static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2518{
2519 struct acpi_table_header hdr;
2520 struct hw_vendor_info *v_info;
2f86dc4c
DB
2521 const struct x86_cpu_id *id;
2522 u64 misc_pwr;
2523
2524 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2525 if (id) {
2526 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2527 if ( misc_pwr & (1 << 8))
2528 return true;
2529 }
fbbcdc07 2530
c410833a
SK
2531 if (acpi_disabled ||
2532 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2533 return false;
2534
2535 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2536 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2537 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2538 ACPI_OEM_TABLE_ID_SIZE))
2539 switch (v_info->oem_pwr_table) {
2540 case PSS:
2541 return intel_pstate_no_acpi_pss();
2542 case PPC:
aa4ea34d
EZ
2543 return intel_pstate_has_acpi_ppc() &&
2544 (!force_load);
966916ea 2545 }
fbbcdc07
AH
2546 }
2547
2548 return false;
2549}
d0ea59e1
RW
2550
2551static void intel_pstate_request_control_from_smm(void)
2552{
2553 /*
2554 * It may be unsafe to request P-states control from SMM if _PPC support
2555 * has not been enabled.
2556 */
2557 if (acpi_ppc)
2558 acpi_processor_pstate_control();
2559}
fbbcdc07
AH
2560#else /* CONFIG_ACPI not enabled */
2561static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2562static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2563static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2564#endif /* CONFIG_ACPI */
2565
7791e4aa
SP
2566static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2567 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2568 {}
2569};
2570
93f0822d
DB
2571static int __init intel_pstate_init(void)
2572{
eb5139d1 2573 int rc;
93f0822d 2574
6be26498
DB
2575 if (no_load)
2576 return -ENODEV;
2577
eb5139d1 2578 if (x86_match_cpu(hwp_support_ids)) {
7791e4aa 2579 copy_cpu_funcs(&core_params.funcs);
eb5139d1 2580 if (no_hwp) {
67dd9bf4 2581 pstate_funcs.update_util = intel_pstate_update_util;
eb5139d1
RW
2582 } else {
2583 hwp_active++;
2584 intel_pstate.attr = hwp_cpufreq_attrs;
67dd9bf4 2585 pstate_funcs.update_util = intel_pstate_update_util_hwp;
eb5139d1
RW
2586 goto hwp_cpu_matched;
2587 }
2588 } else {
2589 const struct x86_cpu_id *id;
2590 struct cpu_defaults *cpu_def;
7791e4aa 2591
eb5139d1
RW
2592 id = x86_match_cpu(intel_pstate_cpu_ids);
2593 if (!id)
2594 return -ENODEV;
93f0822d 2595
eb5139d1 2596 cpu_def = (struct cpu_defaults *)id->driver_data;
eb5139d1
RW
2597 copy_cpu_funcs(&cpu_def->funcs);
2598 }
016c8150 2599
b563b4e3
DB
2600 if (intel_pstate_msrs_not_valid())
2601 return -ENODEV;
2602
7791e4aa
SP
2603hwp_cpu_matched:
2604 /*
2605 * The Intel pstate driver will be ignored if the platform
2606 * firmware has its own power management modes.
2607 */
2608 if (intel_pstate_platform_pwr_mgmt_exists())
2609 return -ENODEV;
2610
fb1fe104
RW
2611 if (!hwp_active && hwp_only)
2612 return -ENOTSUPP;
2613
4836df17 2614 pr_info("Intel P-state driver initializing\n");
93f0822d 2615
b57ffac5 2616 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2617 if (!all_cpu_data)
2618 return -ENOMEM;
93f0822d 2619
d0ea59e1
RW
2620 intel_pstate_request_control_from_smm();
2621
93f0822d 2622 intel_pstate_sysfs_expose_params();
b69880f9 2623
0c30b65b 2624 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2625 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2626 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2627 if (rc)
2628 return rc;
366430b5 2629
7791e4aa 2630 if (hwp_active)
4836df17 2631 pr_info("HWP enabled\n");
7791e4aa 2632
fb1fe104 2633 return 0;
93f0822d
DB
2634}
2635device_initcall(intel_pstate_init);
2636
6be26498
DB
2637static int __init intel_pstate_setup(char *str)
2638{
2639 if (!str)
2640 return -EINVAL;
2641
001c76f0 2642 if (!strcmp(str, "disable")) {
6be26498 2643 no_load = 1;
001c76f0
RW
2644 } else if (!strcmp(str, "passive")) {
2645 pr_info("Passive mode enabled\n");
ee8df89a 2646 default_driver = &intel_cpufreq;
001c76f0
RW
2647 no_hwp = 1;
2648 }
539342f6 2649 if (!strcmp(str, "no_hwp")) {
4836df17 2650 pr_info("HWP disabled\n");
2f86dc4c 2651 no_hwp = 1;
539342f6 2652 }
aa4ea34d
EZ
2653 if (!strcmp(str, "force"))
2654 force_load = 1;
d64c3b0b
KCA
2655 if (!strcmp(str, "hwp_only"))
2656 hwp_only = 1;
eae48f04
SP
2657 if (!strcmp(str, "per_cpu_perf_limits"))
2658 per_cpu_limits = true;
9522a2ff
SP
2659
2660#ifdef CONFIG_ACPI
2661 if (!strcmp(str, "support_acpi_ppc"))
2662 acpi_ppc = true;
2663#endif
2664
6be26498
DB
2665 return 0;
2666}
2667early_param("intel_pstate", intel_pstate_setup);
2668
93f0822d
DB
2669MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2670MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2671MODULE_LICENSE("GPL");