]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Drop driver_registered variable
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
9522a2ff
SP
42#ifdef CONFIG_ACPI
43#include <acpi/processor.h>
17669006 44#include <acpi/cppc_acpi.h>
9522a2ff
SP
45#endif
46
f0fe3cd7 47#define FRAC_BITS 8
93f0822d
DB
48#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 50
a1c9787d
RW
51#define EXT_BITS 6
52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
ff35f02e
RW
77static inline int32_t percent_fp(int percent)
78{
79 return div_fp(percent, 100);
80}
81
a1c9787d
RW
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
e4c204ce
RW
92static inline int32_t percent_ext_fp(int percent)
93{
94 return div_ext_fp(percent, 100);
95}
96
13ad7701
SP
97/**
98 * struct sample - Store performance sample
a1c9787d 99 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
100 * performance during last sample period
101 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 102 * P state. This can be different than core_avg_perf
13ad7701
SP
103 * to account for cpu idle period
104 * @aperf: Difference of actual performance frequency clock count
105 * read from APERF MSR between last and current sample
106 * @mperf: Difference of maximum performance frequency clock count
107 * read from MPERF MSR between last and current sample
108 * @tsc: Difference of time stamp counter between last and
109 * current sample
13ad7701
SP
110 * @time: Current time from scheduler
111 *
112 * This structure is used in the cpudata structure to store performance sample
113 * data for choosing next P State.
114 */
93f0822d 115struct sample {
a1c9787d 116 int32_t core_avg_perf;
157386b6 117 int32_t busy_scaled;
93f0822d
DB
118 u64 aperf;
119 u64 mperf;
4055fad3 120 u64 tsc;
a4675fbc 121 u64 time;
93f0822d
DB
122};
123
13ad7701
SP
124/**
125 * struct pstate_data - Store P state data
126 * @current_pstate: Current requested P state
127 * @min_pstate: Min P state possible for this platform
128 * @max_pstate: Max P state possible for this platform
129 * @max_pstate_physical:This is physical Max P state for a processor
130 * This can be higher than the max_pstate which can
131 * be limited by platform thermal design power limits
132 * @scaling: Scaling factor to convert frequency to cpufreq
133 * frequency units
134 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
135 * @max_freq: @max_pstate frequency in cpufreq units
136 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
137 *
138 * Stores the per cpu model P state limits and current P state.
139 */
93f0822d
DB
140struct pstate_data {
141 int current_pstate;
142 int min_pstate;
143 int max_pstate;
3bcc6fa9 144 int max_pstate_physical;
b27580b0 145 int scaling;
93f0822d 146 int turbo_pstate;
001c76f0
RW
147 unsigned int max_freq;
148 unsigned int turbo_freq;
93f0822d
DB
149};
150
13ad7701
SP
151/**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
007bea09 164struct vid_data {
21855ff5
DB
165 int min;
166 int max;
167 int turbo;
007bea09
DB
168 int32_t ratio;
169};
170
13ad7701
SP
171/**
172 * struct _pid - Stores PID data
173 * @setpoint: Target set point for busyness or performance
174 * @integral: Storage for accumulated error values
175 * @p_gain: PID proportional gain
176 * @i_gain: PID integral gain
177 * @d_gain: PID derivative gain
178 * @deadband: PID deadband
179 * @last_err: Last error storage for integral part of PID calculation
180 *
181 * Stores PID coefficients and last error for PID controller.
182 */
93f0822d
DB
183struct _pid {
184 int setpoint;
185 int32_t integral;
186 int32_t p_gain;
187 int32_t i_gain;
188 int32_t d_gain;
189 int deadband;
d253d2a5 190 int32_t last_err;
93f0822d
DB
191};
192
c5a2ee7d
RW
193/**
194 * struct global_params - Global parameters, mostly tunable via sysfs.
195 * @no_turbo: Whether or not to use turbo P-states.
196 * @turbo_disabled: Whethet or not turbo P-states are available at all,
197 * based on the MSR_IA32_MISC_ENABLE value and whether or
198 * not the maximum reported turbo P-state is different from
199 * the maximum reported non-turbo one.
200 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
201 * P-state capacity.
202 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
203 * P-state capacity.
204 */
205struct global_params {
206 bool no_turbo;
207 bool turbo_disabled;
208 int max_perf_pct;
209 int min_perf_pct;
eae48f04
SP
210};
211
13ad7701
SP
212/**
213 * struct cpudata - Per CPU instance data storage
214 * @cpu: CPU number for this instance data
2f1d407a 215 * @policy: CPUFreq policy value
13ad7701 216 * @update_util: CPUFreq utility callback information
4578ee7e 217 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
218 * @iowait_boost: iowait-related boost fraction
219 * @last_update: Time of the last update.
13ad7701
SP
220 * @pstate: Stores P state limits for this CPU
221 * @vid: Stores VID limits for this CPU
222 * @pid: Stores PID parameters for this CPU
223 * @last_sample_time: Last Sample time
224 * @prev_aperf: Last APERF value read from APERF MSR
225 * @prev_mperf: Last MPERF value read from MPERF MSR
226 * @prev_tsc: Last timestamp counter (TSC) value
227 * @prev_cummulative_iowait: IO Wait time difference from last and
228 * current sample
229 * @sample: Storage for storing last Sample data
e14cf885
RW
230 * @min_perf: Minimum capacity limit as a fraction of the maximum
231 * turbo P-state capacity.
232 * @max_perf: Maximum capacity limit as a fraction of the maximum
233 * turbo P-state capacity.
9522a2ff
SP
234 * @acpi_perf_data: Stores ACPI perf information read from _PSS
235 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
236 * @epp_powersave: Last saved HWP energy performance preference
237 * (EPP) or energy performance bias (EPB),
238 * when policy switched to performance
8442885f 239 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
240 * @epp_default: Power on default HWP energy performance
241 * preference/bias
242 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
243 * operation
13ad7701
SP
244 *
245 * This structure stores per CPU instance data for all CPUs.
246 */
93f0822d
DB
247struct cpudata {
248 int cpu;
249
2f1d407a 250 unsigned int policy;
a4675fbc 251 struct update_util_data update_util;
4578ee7e 252 bool update_util_set;
93f0822d 253
93f0822d 254 struct pstate_data pstate;
007bea09 255 struct vid_data vid;
93f0822d 256 struct _pid pid;
93f0822d 257
09c448d3 258 u64 last_update;
a4675fbc 259 u64 last_sample_time;
93f0822d
DB
260 u64 prev_aperf;
261 u64 prev_mperf;
4055fad3 262 u64 prev_tsc;
63d1d656 263 u64 prev_cummulative_iowait;
d37e2b76 264 struct sample sample;
e14cf885
RW
265 int32_t min_perf;
266 int32_t max_perf;
9522a2ff
SP
267#ifdef CONFIG_ACPI
268 struct acpi_processor_performance acpi_perf_data;
269 bool valid_pss_table;
270#endif
09c448d3 271 unsigned int iowait_boost;
984edbdc 272 s16 epp_powersave;
8442885f 273 s16 epp_policy;
984edbdc
SP
274 s16 epp_default;
275 s16 epp_saved;
93f0822d
DB
276};
277
278static struct cpudata **all_cpu_data;
13ad7701
SP
279
280/**
3954517e 281 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
282 * @sample_rate_ms: PID calculation sample rate in ms
283 * @sample_rate_ns: Sample rate calculation in ns
284 * @deadband: PID deadband
285 * @setpoint: PID Setpoint
286 * @p_gain_pct: PID proportional gain
287 * @i_gain_pct: PID integral gain
288 * @d_gain_pct: PID derivative gain
289 *
290 * Stores per CPU model static PID configuration data.
291 */
93f0822d
DB
292struct pstate_adjust_policy {
293 int sample_rate_ms;
a4675fbc 294 s64 sample_rate_ns;
93f0822d
DB
295 int deadband;
296 int setpoint;
297 int p_gain_pct;
298 int d_gain_pct;
299 int i_gain_pct;
300};
301
13ad7701
SP
302/**
303 * struct pstate_funcs - Per CPU model specific callbacks
304 * @get_max: Callback to get maximum non turbo effective P state
305 * @get_max_physical: Callback to get maximum non turbo physical P state
306 * @get_min: Callback to get minimum P state
307 * @get_turbo: Callback to get turbo P state
308 * @get_scaling: Callback to get frequency scaling factor
309 * @get_val: Callback to convert P state to actual MSR write value
310 * @get_vid: Callback to get VID data for Atom platforms
311 * @get_target_pstate: Callback to a function to calculate next P state to use
312 *
313 * Core and Atom CPU models have different way to get P State limits. This
314 * structure is used to store those callbacks.
315 */
016c8150
DB
316struct pstate_funcs {
317 int (*get_max)(void);
3bcc6fa9 318 int (*get_max_physical)(void);
016c8150
DB
319 int (*get_min)(void);
320 int (*get_turbo)(void);
b27580b0 321 int (*get_scaling)(void);
fdfdb2b1 322 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 323 void (*get_vid)(struct cpudata *);
157386b6 324 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
325};
326
13ad7701
SP
327/**
328 * struct cpu_defaults- Per CPU model default config data
13ad7701
SP
329 * @funcs: Callback function data
330 */
016c8150 331struct cpu_defaults {
016c8150 332 struct pstate_funcs funcs;
93f0822d
DB
333};
334
157386b6 335static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 336static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 337
4a7cb7a9 338static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
339static struct pstate_adjust_policy pid_params __read_mostly = {
340 .sample_rate_ms = 10,
341 .sample_rate_ns = 10 * NSEC_PER_MSEC,
342 .deadband = 0,
343 .setpoint = 97,
344 .p_gain_pct = 20,
345 .d_gain_pct = 0,
346 .i_gain_pct = 0,
347};
348
4a7cb7a9 349static int hwp_active __read_mostly;
eae48f04 350static bool per_cpu_limits __read_mostly;
016c8150 351
ee8df89a 352static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 353
9522a2ff
SP
354#ifdef CONFIG_ACPI
355static bool acpi_ppc;
356#endif
13ad7701 357
c5a2ee7d 358static struct global_params global;
93f0822d 359
0c30b65b 360static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
361static DEFINE_MUTEX(intel_pstate_limits_lock);
362
9522a2ff 363#ifdef CONFIG_ACPI
2b3ec765
SP
364
365static bool intel_pstate_get_ppc_enable_status(void)
366{
367 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 return true;
370
371 return acpi_ppc;
372}
373
17669006
RW
374#ifdef CONFIG_ACPI_CPPC_LIB
375
376/* The work item is needed to avoid CPU hotplug locking issues */
377static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
378{
379 sched_set_itmt_support();
380}
381
382static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
383
384static void intel_pstate_set_itmt_prio(int cpu)
385{
386 struct cppc_perf_caps cppc_perf;
387 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
388 int ret;
389
390 ret = cppc_get_perf_caps(cpu, &cppc_perf);
391 if (ret)
392 return;
393
394 /*
395 * The priorities can be set regardless of whether or not
396 * sched_set_itmt_support(true) has been called and it is valid to
397 * update them at any time after it has been called.
398 */
399 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
400
401 if (max_highest_perf <= min_highest_perf) {
402 if (cppc_perf.highest_perf > max_highest_perf)
403 max_highest_perf = cppc_perf.highest_perf;
404
405 if (cppc_perf.highest_perf < min_highest_perf)
406 min_highest_perf = cppc_perf.highest_perf;
407
408 if (max_highest_perf > min_highest_perf) {
409 /*
410 * This code can be run during CPU online under the
411 * CPU hotplug locks, so sched_set_itmt_support()
412 * cannot be called from here. Queue up a work item
413 * to invoke it.
414 */
415 schedule_work(&sched_itmt_work);
416 }
417 }
418}
419#else
420static void intel_pstate_set_itmt_prio(int cpu)
421{
422}
423#endif
424
9522a2ff
SP
425static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
426{
427 struct cpudata *cpu;
9522a2ff
SP
428 int ret;
429 int i;
430
17669006
RW
431 if (hwp_active) {
432 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 433 return;
17669006 434 }
e59a8f7f 435
2b3ec765 436 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
437 return;
438
439 cpu = all_cpu_data[policy->cpu];
440
441 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
442 policy->cpu);
443 if (ret)
444 return;
445
446 /*
447 * Check if the control value in _PSS is for PERF_CTL MSR, which should
448 * guarantee that the states returned by it map to the states in our
449 * list directly.
450 */
451 if (cpu->acpi_perf_data.control_register.space_id !=
452 ACPI_ADR_SPACE_FIXED_HARDWARE)
453 goto err;
454
455 /*
456 * If there is only one entry _PSS, simply ignore _PSS and continue as
457 * usual without taking _PSS into account
458 */
459 if (cpu->acpi_perf_data.state_count < 2)
460 goto err;
461
462 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
463 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
464 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
465 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
466 (u32) cpu->acpi_perf_data.states[i].core_frequency,
467 (u32) cpu->acpi_perf_data.states[i].power,
468 (u32) cpu->acpi_perf_data.states[i].control);
469 }
470
471 /*
472 * The _PSS table doesn't contain whole turbo frequency range.
473 * This just contains +1 MHZ above the max non turbo frequency,
474 * with control value corresponding to max turbo ratio. But
475 * when cpufreq set policy is called, it will call with this
476 * max frequency, which will cause a reduced performance as
477 * this driver uses real max turbo frequency as the max
478 * frequency. So correct this frequency in _PSS table to
b00345d1 479 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
480 * Also need to convert to MHz as _PSS freq is in MHz.
481 */
7de32556 482 if (!global.turbo_disabled)
9522a2ff
SP
483 cpu->acpi_perf_data.states[0].core_frequency =
484 policy->cpuinfo.max_freq / 1000;
485 cpu->valid_pss_table = true;
6cacd115 486 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
487
488 return;
489
490 err:
491 cpu->valid_pss_table = false;
492 acpi_processor_unregister_performance(policy->cpu);
493}
494
495static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496{
497 struct cpudata *cpu;
498
499 cpu = all_cpu_data[policy->cpu];
500 if (!cpu->valid_pss_table)
501 return;
502
503 acpi_processor_unregister_performance(policy->cpu);
504}
9522a2ff 505#else
7a3ba767 506static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
507{
508}
509
7a3ba767 510static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
511{
512}
513#endif
514
d253d2a5 515static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 516{
d253d2a5 517 signed int result;
93f0822d
DB
518 int32_t pterm, dterm, fp_error;
519 int32_t integral_limit;
520
b54a0dfd 521 fp_error = pid->setpoint - busy;
93f0822d 522
b54a0dfd 523 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
524 return 0;
525
526 pterm = mul_fp(pid->p_gain, fp_error);
527
528 pid->integral += fp_error;
529
e0d4c8f8
KCA
530 /*
531 * We limit the integral here so that it will never
532 * get higher than 30. This prevents it from becoming
533 * too large an input over long periods of time and allows
534 * it to get factored out sooner.
535 *
536 * The value of 30 was chosen through experimentation.
537 */
93f0822d
DB
538 integral_limit = int_tofp(30);
539 if (pid->integral > integral_limit)
540 pid->integral = integral_limit;
541 if (pid->integral < -integral_limit)
542 pid->integral = -integral_limit;
543
d253d2a5
BS
544 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
545 pid->last_err = fp_error;
93f0822d
DB
546
547 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 548 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
549 return (signed int)fp_toint(result);
550}
551
ff35f02e 552static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 553{
ff35f02e 554 struct _pid *pid = &cpu->pid;
93f0822d 555
ff35f02e
RW
556 pid->p_gain = percent_fp(pid_params.p_gain_pct);
557 pid->d_gain = percent_fp(pid_params.d_gain_pct);
558 pid->i_gain = percent_fp(pid_params.i_gain_pct);
559 pid->setpoint = int_tofp(pid_params.setpoint);
560 pid->last_err = pid->setpoint - int_tofp(100);
561 pid->deadband = int_tofp(pid_params.deadband);
562 pid->integral = 0;
93f0822d
DB
563}
564
4521e1a0
GM
565static inline void update_turbo_state(void)
566{
567 u64 misc_en;
568 struct cpudata *cpu;
569
570 cpu = all_cpu_data[0];
571 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 572 global.turbo_disabled =
4521e1a0
GM
573 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
574 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
575}
576
c5a2ee7d
RW
577static int min_perf_pct_min(void)
578{
579 struct cpudata *cpu = all_cpu_data[0];
580
581 return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
582 cpu->pstate.turbo_pstate);
583}
584
8442885f
SP
585static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
586{
587 u64 epb;
588 int ret;
589
590 if (!static_cpu_has(X86_FEATURE_EPB))
591 return -ENXIO;
592
593 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
594 if (ret)
595 return (s16)ret;
596
597 return (s16)(epb & 0x0f);
598}
599
600static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
601{
602 s16 epp;
603
984edbdc
SP
604 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
605 /*
606 * When hwp_req_data is 0, means that caller didn't read
607 * MSR_HWP_REQUEST, so need to read and get EPP.
608 */
609 if (!hwp_req_data) {
610 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
611 &hwp_req_data);
612 if (epp)
613 return epp;
614 }
8442885f 615 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 616 } else {
8442885f
SP
617 /* When there is no EPP present, HWP uses EPB settings */
618 epp = intel_pstate_get_epb(cpu_data);
984edbdc 619 }
8442885f
SP
620
621 return epp;
622}
623
984edbdc 624static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
625{
626 u64 epb;
984edbdc 627 int ret;
8442885f
SP
628
629 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 630 return -ENXIO;
8442885f 631
984edbdc
SP
632 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 if (ret)
634 return ret;
8442885f
SP
635
636 epb = (epb & ~0x0f) | pref;
637 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
638
639 return 0;
8442885f
SP
640}
641
984edbdc
SP
642/*
643 * EPP/EPB display strings corresponding to EPP index in the
644 * energy_perf_strings[]
645 * index String
646 *-------------------------------------
647 * 0 default
648 * 1 performance
649 * 2 balance_performance
650 * 3 balance_power
651 * 4 power
652 */
653static const char * const energy_perf_strings[] = {
654 "default",
655 "performance",
656 "balance_performance",
657 "balance_power",
658 "power",
659 NULL
660};
661
662static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
663{
664 s16 epp;
665 int index = -EINVAL;
666
667 epp = intel_pstate_get_epp(cpu_data, 0);
668 if (epp < 0)
669 return epp;
670
671 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
672 /*
673 * Range:
674 * 0x00-0x3F : Performance
675 * 0x40-0x7F : Balance performance
676 * 0x80-0xBF : Balance power
677 * 0xC0-0xFF : Power
678 * The EPP is a 8 bit value, but our ranges restrict the
679 * value which can be set. Here only using top two bits
680 * effectively.
681 */
682 index = (epp >> 6) + 1;
683 } else if (static_cpu_has(X86_FEATURE_EPB)) {
684 /*
685 * Range:
686 * 0x00-0x03 : Performance
687 * 0x04-0x07 : Balance performance
688 * 0x08-0x0B : Balance power
689 * 0x0C-0x0F : Power
690 * The EPB is a 4 bit value, but our ranges restrict the
691 * value which can be set. Here only using top two bits
692 * effectively.
693 */
694 index = (epp >> 2) + 1;
695 }
696
697 return index;
698}
699
700static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
701 int pref_index)
702{
703 int epp = -EINVAL;
704 int ret;
705
706 if (!pref_index)
707 epp = cpu_data->epp_default;
708
709 mutex_lock(&intel_pstate_limits_lock);
710
711 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
712 u64 value;
713
714 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
715 if (ret)
716 goto return_pref;
717
718 value &= ~GENMASK_ULL(31, 24);
719
720 /*
721 * If epp is not default, convert from index into
722 * energy_perf_strings to epp value, by shifting 6
723 * bits left to use only top two bits in epp.
724 * The resultant epp need to shifted by 24 bits to
725 * epp position in MSR_HWP_REQUEST.
726 */
727 if (epp == -EINVAL)
728 epp = (pref_index - 1) << 6;
729
730 value |= (u64)epp << 24;
731 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
732 } else {
733 if (epp == -EINVAL)
734 epp = (pref_index - 1) << 2;
735 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
736 }
737return_pref:
738 mutex_unlock(&intel_pstate_limits_lock);
739
740 return ret;
741}
742
743static ssize_t show_energy_performance_available_preferences(
744 struct cpufreq_policy *policy, char *buf)
745{
746 int i = 0;
747 int ret = 0;
748
749 while (energy_perf_strings[i] != NULL)
750 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
751
752 ret += sprintf(&buf[ret], "\n");
753
754 return ret;
755}
756
757cpufreq_freq_attr_ro(energy_performance_available_preferences);
758
759static ssize_t store_energy_performance_preference(
760 struct cpufreq_policy *policy, const char *buf, size_t count)
761{
762 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
763 char str_preference[21];
764 int ret, i = 0;
765
766 ret = sscanf(buf, "%20s", str_preference);
767 if (ret != 1)
768 return -EINVAL;
769
770 while (energy_perf_strings[i] != NULL) {
771 if (!strcmp(str_preference, energy_perf_strings[i])) {
772 intel_pstate_set_energy_pref_index(cpu_data, i);
773 return count;
774 }
775 ++i;
776 }
777
778 return -EINVAL;
779}
780
781static ssize_t show_energy_performance_preference(
782 struct cpufreq_policy *policy, char *buf)
783{
784 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
785 int preference;
786
787 preference = intel_pstate_get_energy_pref_index(cpu_data);
788 if (preference < 0)
789 return preference;
790
791 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
792}
793
794cpufreq_freq_attr_rw(energy_performance_preference);
795
796static struct freq_attr *hwp_cpufreq_attrs[] = {
797 &energy_performance_preference,
798 &energy_performance_available_preferences,
799 NULL,
800};
801
111b8b3f 802static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 803{
3f8ed54a 804 int min, hw_min, max, hw_max, cpu;
74da56ce
KCA
805 u64 value, cap;
806
111b8b3f 807 for_each_cpu(cpu, policy->cpus) {
8442885f
SP
808 struct cpudata *cpu_data = all_cpu_data[cpu];
809 s16 epp;
eae48f04 810
f9f4872d
SP
811 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
812 hw_min = HWP_LOWEST_PERF(cap);
7de32556 813 if (global.no_turbo)
4e5d3f71
SP
814 hw_max = HWP_GUARANTEED_PERF(cap);
815 else
816 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d 817
e14cf885 818 max = fp_ext_toint(hw_max * cpu_data->max_perf);
7de32556
RW
819 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820 min = max;
821 else
e14cf885 822 min = fp_ext_toint(hw_max * cpu_data->min_perf);
eae48f04 823
2f86dc4c 824 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
3f8ed54a 825
2f86dc4c
DB
826 value &= ~HWP_MIN_PERF(~0L);
827 value |= HWP_MIN_PERF(min);
828
2f86dc4c
DB
829 value &= ~HWP_MAX_PERF(~0L);
830 value |= HWP_MAX_PERF(max);
8442885f
SP
831
832 if (cpu_data->epp_policy == cpu_data->policy)
833 goto skip_epp;
834
835 cpu_data->epp_policy = cpu_data->policy;
836
984edbdc
SP
837 if (cpu_data->epp_saved >= 0) {
838 epp = cpu_data->epp_saved;
839 cpu_data->epp_saved = -EINVAL;
840 goto update_epp;
841 }
842
8442885f
SP
843 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
844 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 845 cpu_data->epp_powersave = epp;
8442885f 846 /* If EPP read was failed, then don't try to write */
984edbdc 847 if (epp < 0)
8442885f 848 goto skip_epp;
8442885f 849
8442885f
SP
850
851 epp = 0;
852 } else {
853 /* skip setting EPP, when saved value is invalid */
984edbdc 854 if (cpu_data->epp_powersave < 0)
8442885f
SP
855 goto skip_epp;
856
857 /*
858 * No need to restore EPP when it is not zero. This
859 * means:
860 * - Policy is not changed
861 * - user has manually changed
862 * - Error reading EPB
863 */
864 epp = intel_pstate_get_epp(cpu_data, value);
865 if (epp)
866 goto skip_epp;
867
984edbdc 868 epp = cpu_data->epp_powersave;
8442885f 869 }
984edbdc 870update_epp:
8442885f
SP
871 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
872 value &= ~GENMASK_ULL(31, 24);
873 value |= (u64)epp << 24;
874 } else {
875 intel_pstate_set_epb(cpu, epp);
876 }
877skip_epp:
2f86dc4c
DB
878 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
879 }
41cfd64c 880}
2f86dc4c 881
984edbdc
SP
882static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
883{
884 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
885
886 if (!hwp_active)
887 return 0;
888
889 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
890
891 return 0;
892}
893
8442885f
SP
894static int intel_pstate_resume(struct cpufreq_policy *policy)
895{
896 if (!hwp_active)
897 return 0;
898
aa439248
RW
899 mutex_lock(&intel_pstate_limits_lock);
900
8442885f 901 all_cpu_data[policy->cpu]->epp_policy = 0;
5f98ced1 902 intel_pstate_hwp_set(policy);
aa439248
RW
903
904 mutex_unlock(&intel_pstate_limits_lock);
905
5f98ced1 906 return 0;
8442885f
SP
907}
908
111b8b3f 909static void intel_pstate_update_policies(void)
41cfd64c 910{
111b8b3f
RW
911 int cpu;
912
913 for_each_possible_cpu(cpu)
914 cpufreq_update_policy(cpu);
2f86dc4c
DB
915}
916
93f0822d
DB
917/************************** debugfs begin ************************/
918static int pid_param_set(void *data, u64 val)
919{
4ddd0146
RW
920 unsigned int cpu;
921
93f0822d 922 *(u32 *)data = val;
6e7408ac 923 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
924 for_each_possible_cpu(cpu)
925 if (all_cpu_data[cpu])
ff35f02e 926 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 927
93f0822d
DB
928 return 0;
929}
845c1cbe 930
93f0822d
DB
931static int pid_param_get(void *data, u64 *val)
932{
933 *val = *(u32 *)data;
934 return 0;
935}
2d8d1f18 936DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 937
fb1fe104
RW
938static struct dentry *debugfs_parent;
939
93f0822d
DB
940struct pid_param {
941 char *name;
942 void *value;
fb1fe104 943 struct dentry *dentry;
93f0822d
DB
944};
945
946static struct pid_param pid_files[] = {
fb1fe104
RW
947 {"sample_rate_ms", &pid_params.sample_rate_ms, },
948 {"d_gain_pct", &pid_params.d_gain_pct, },
949 {"i_gain_pct", &pid_params.i_gain_pct, },
950 {"deadband", &pid_params.deadband, },
951 {"setpoint", &pid_params.setpoint, },
952 {"p_gain_pct", &pid_params.p_gain_pct, },
953 {NULL, NULL, }
93f0822d
DB
954};
955
fb1fe104 956static void intel_pstate_debug_expose_params(void)
93f0822d 957{
fb1fe104 958 int i;
93f0822d
DB
959
960 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
961 if (IS_ERR_OR_NULL(debugfs_parent))
962 return;
fb1fe104
RW
963
964 for (i = 0; pid_files[i].name; i++) {
965 struct dentry *dentry;
966
967 dentry = debugfs_create_file(pid_files[i].name, 0660,
968 debugfs_parent, pid_files[i].value,
969 &fops_pid_param);
970 if (!IS_ERR(dentry))
971 pid_files[i].dentry = dentry;
93f0822d
DB
972 }
973}
974
fb1fe104
RW
975static void intel_pstate_debug_hide_params(void)
976{
977 int i;
978
979 if (IS_ERR_OR_NULL(debugfs_parent))
980 return;
981
982 for (i = 0; pid_files[i].name; i++) {
983 debugfs_remove(pid_files[i].dentry);
984 pid_files[i].dentry = NULL;
93f0822d 985 }
fb1fe104
RW
986
987 debugfs_remove(debugfs_parent);
988 debugfs_parent = NULL;
93f0822d
DB
989}
990
991/************************** debugfs end ************************/
992
993/************************** sysfs begin ************************/
994#define show_one(file_name, object) \
995 static ssize_t show_##file_name \
996 (struct kobject *kobj, struct attribute *attr, char *buf) \
997 { \
7de32556 998 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
999 }
1000
fb1fe104
RW
1001static ssize_t intel_pstate_show_status(char *buf);
1002static int intel_pstate_update_status(const char *buf, size_t size);
1003
1004static ssize_t show_status(struct kobject *kobj,
1005 struct attribute *attr, char *buf)
1006{
1007 ssize_t ret;
1008
1009 mutex_lock(&intel_pstate_driver_lock);
1010 ret = intel_pstate_show_status(buf);
1011 mutex_unlock(&intel_pstate_driver_lock);
1012
1013 return ret;
1014}
1015
1016static ssize_t store_status(struct kobject *a, struct attribute *b,
1017 const char *buf, size_t count)
1018{
1019 char *p = memchr(buf, '\n', count);
1020 int ret;
1021
1022 mutex_lock(&intel_pstate_driver_lock);
1023 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1024 mutex_unlock(&intel_pstate_driver_lock);
1025
1026 return ret < 0 ? ret : count;
1027}
1028
d01b1f48
KCA
1029static ssize_t show_turbo_pct(struct kobject *kobj,
1030 struct attribute *attr, char *buf)
1031{
1032 struct cpudata *cpu;
1033 int total, no_turbo, turbo_pct;
1034 uint32_t turbo_fp;
1035
0c30b65b
RW
1036 mutex_lock(&intel_pstate_driver_lock);
1037
ee8df89a 1038 if (!intel_pstate_driver) {
0c30b65b
RW
1039 mutex_unlock(&intel_pstate_driver_lock);
1040 return -EAGAIN;
1041 }
1042
d01b1f48
KCA
1043 cpu = all_cpu_data[0];
1044
1045 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1046 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1047 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1048 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1049
1050 mutex_unlock(&intel_pstate_driver_lock);
1051
d01b1f48
KCA
1052 return sprintf(buf, "%u\n", turbo_pct);
1053}
1054
0522424e
KCA
1055static ssize_t show_num_pstates(struct kobject *kobj,
1056 struct attribute *attr, char *buf)
1057{
1058 struct cpudata *cpu;
1059 int total;
1060
0c30b65b
RW
1061 mutex_lock(&intel_pstate_driver_lock);
1062
ee8df89a 1063 if (!intel_pstate_driver) {
0c30b65b
RW
1064 mutex_unlock(&intel_pstate_driver_lock);
1065 return -EAGAIN;
1066 }
1067
0522424e
KCA
1068 cpu = all_cpu_data[0];
1069 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1070
1071 mutex_unlock(&intel_pstate_driver_lock);
1072
0522424e
KCA
1073 return sprintf(buf, "%u\n", total);
1074}
1075
4521e1a0
GM
1076static ssize_t show_no_turbo(struct kobject *kobj,
1077 struct attribute *attr, char *buf)
1078{
1079 ssize_t ret;
1080
0c30b65b
RW
1081 mutex_lock(&intel_pstate_driver_lock);
1082
ee8df89a 1083 if (!intel_pstate_driver) {
0c30b65b
RW
1084 mutex_unlock(&intel_pstate_driver_lock);
1085 return -EAGAIN;
1086 }
1087
4521e1a0 1088 update_turbo_state();
7de32556
RW
1089 if (global.turbo_disabled)
1090 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1091 else
7de32556 1092 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1093
0c30b65b
RW
1094 mutex_unlock(&intel_pstate_driver_lock);
1095
4521e1a0
GM
1096 return ret;
1097}
1098
93f0822d 1099static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1100 const char *buf, size_t count)
93f0822d
DB
1101{
1102 unsigned int input;
1103 int ret;
845c1cbe 1104
93f0822d
DB
1105 ret = sscanf(buf, "%u", &input);
1106 if (ret != 1)
1107 return -EINVAL;
4521e1a0 1108
0c30b65b
RW
1109 mutex_lock(&intel_pstate_driver_lock);
1110
ee8df89a 1111 if (!intel_pstate_driver) {
0c30b65b
RW
1112 mutex_unlock(&intel_pstate_driver_lock);
1113 return -EAGAIN;
1114 }
1115
a410c03d
SP
1116 mutex_lock(&intel_pstate_limits_lock);
1117
4521e1a0 1118 update_turbo_state();
7de32556 1119 if (global.turbo_disabled) {
4836df17 1120 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1121 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1122 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1123 return -EPERM;
dd5fbf70 1124 }
2f86dc4c 1125
7de32556 1126 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1127
c5a2ee7d
RW
1128 if (global.no_turbo) {
1129 struct cpudata *cpu = all_cpu_data[0];
1130 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1131
1132 /* Squash the global minimum into the permitted range. */
1133 if (global.min_perf_pct > pct)
1134 global.min_perf_pct = pct;
1135 }
1136
cd59b4be
RW
1137 mutex_unlock(&intel_pstate_limits_lock);
1138
7de32556
RW
1139 intel_pstate_update_policies();
1140
0c30b65b
RW
1141 mutex_unlock(&intel_pstate_driver_lock);
1142
93f0822d
DB
1143 return count;
1144}
1145
1146static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1147 const char *buf, size_t count)
93f0822d
DB
1148{
1149 unsigned int input;
1150 int ret;
845c1cbe 1151
93f0822d
DB
1152 ret = sscanf(buf, "%u", &input);
1153 if (ret != 1)
1154 return -EINVAL;
1155
0c30b65b
RW
1156 mutex_lock(&intel_pstate_driver_lock);
1157
ee8df89a 1158 if (!intel_pstate_driver) {
0c30b65b
RW
1159 mutex_unlock(&intel_pstate_driver_lock);
1160 return -EAGAIN;
1161 }
1162
a410c03d
SP
1163 mutex_lock(&intel_pstate_limits_lock);
1164
c5a2ee7d 1165 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1166
cd59b4be
RW
1167 mutex_unlock(&intel_pstate_limits_lock);
1168
7de32556
RW
1169 intel_pstate_update_policies();
1170
0c30b65b
RW
1171 mutex_unlock(&intel_pstate_driver_lock);
1172
93f0822d
DB
1173 return count;
1174}
1175
1176static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1177 const char *buf, size_t count)
93f0822d
DB
1178{
1179 unsigned int input;
1180 int ret;
845c1cbe 1181
93f0822d
DB
1182 ret = sscanf(buf, "%u", &input);
1183 if (ret != 1)
1184 return -EINVAL;
a0475992 1185
0c30b65b
RW
1186 mutex_lock(&intel_pstate_driver_lock);
1187
ee8df89a 1188 if (!intel_pstate_driver) {
0c30b65b
RW
1189 mutex_unlock(&intel_pstate_driver_lock);
1190 return -EAGAIN;
1191 }
1192
a410c03d
SP
1193 mutex_lock(&intel_pstate_limits_lock);
1194
c5a2ee7d
RW
1195 global.min_perf_pct = clamp_t(int, input,
1196 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1197
cd59b4be
RW
1198 mutex_unlock(&intel_pstate_limits_lock);
1199
7de32556
RW
1200 intel_pstate_update_policies();
1201
0c30b65b
RW
1202 mutex_unlock(&intel_pstate_driver_lock);
1203
93f0822d
DB
1204 return count;
1205}
1206
93f0822d
DB
1207show_one(max_perf_pct, max_perf_pct);
1208show_one(min_perf_pct, min_perf_pct);
1209
fb1fe104 1210define_one_global_rw(status);
93f0822d
DB
1211define_one_global_rw(no_turbo);
1212define_one_global_rw(max_perf_pct);
1213define_one_global_rw(min_perf_pct);
d01b1f48 1214define_one_global_ro(turbo_pct);
0522424e 1215define_one_global_ro(num_pstates);
93f0822d
DB
1216
1217static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1218 &status.attr,
93f0822d 1219 &no_turbo.attr,
d01b1f48 1220 &turbo_pct.attr,
0522424e 1221 &num_pstates.attr,
93f0822d
DB
1222 NULL
1223};
1224
1225static struct attribute_group intel_pstate_attr_group = {
1226 .attrs = intel_pstate_attributes,
1227};
93f0822d 1228
317dd50e 1229static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1230{
317dd50e 1231 struct kobject *intel_pstate_kobject;
93f0822d
DB
1232 int rc;
1233
1234 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1235 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1236 if (WARN_ON(!intel_pstate_kobject))
1237 return;
1238
2d8d1f18 1239 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1240 if (WARN_ON(rc))
1241 return;
1242
1243 /*
1244 * If per cpu limits are enforced there are no global limits, so
1245 * return without creating max/min_perf_pct attributes
1246 */
1247 if (per_cpu_limits)
1248 return;
1249
1250 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1251 WARN_ON(rc);
1252
1253 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1254 WARN_ON(rc);
1255
93f0822d 1256}
93f0822d 1257/************************** sysfs end ************************/
2f86dc4c 1258
ba88d433 1259static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1260{
f05c9665 1261 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1262 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1263 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1264
ba88d433 1265 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1266 cpudata->epp_policy = 0;
984edbdc
SP
1267 if (cpudata->epp_default == -EINVAL)
1268 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1269}
1270
6e978b22
SP
1271#define MSR_IA32_POWER_CTL_BIT_EE 19
1272
1273/* Disable energy efficiency optimization */
1274static void intel_pstate_disable_ee(int cpu)
1275{
1276 u64 power_ctl;
1277 int ret;
1278
1279 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1280 if (ret)
1281 return;
1282
1283 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1284 pr_info("Disabling energy efficiency optimization\n");
1285 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1286 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1287 }
1288}
1289
938d21a2 1290static int atom_get_min_pstate(void)
19e77c28
DB
1291{
1292 u64 value;
845c1cbe 1293
92134bdb 1294 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1295 return (value >> 8) & 0x7F;
19e77c28
DB
1296}
1297
938d21a2 1298static int atom_get_max_pstate(void)
19e77c28
DB
1299{
1300 u64 value;
845c1cbe 1301
92134bdb 1302 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1303 return (value >> 16) & 0x7F;
19e77c28 1304}
93f0822d 1305
938d21a2 1306static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1307{
1308 u64 value;
845c1cbe 1309
92134bdb 1310 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1311 return value & 0x7F;
61d8d2ab
DB
1312}
1313
fdfdb2b1 1314static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1315{
1316 u64 val;
1317 int32_t vid_fp;
1318 u32 vid;
1319
144c8e17 1320 val = (u64)pstate << 8;
7de32556 1321 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1322 val |= (u64)1 << 32;
1323
1324 vid_fp = cpudata->vid.min + mul_fp(
1325 int_tofp(pstate - cpudata->pstate.min_pstate),
1326 cpudata->vid.ratio);
1327
1328 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1329 vid = ceiling_fp(vid_fp);
007bea09 1330
21855ff5
DB
1331 if (pstate > cpudata->pstate.max_pstate)
1332 vid = cpudata->vid.turbo;
1333
fdfdb2b1 1334 return val | vid;
007bea09
DB
1335}
1336
1421df63 1337static int silvermont_get_scaling(void)
b27580b0
DB
1338{
1339 u64 value;
1340 int i;
1421df63
PL
1341 /* Defined in Table 35-6 from SDM (Sept 2015) */
1342 static int silvermont_freq_table[] = {
1343 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1344
1345 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1346 i = value & 0x7;
1347 WARN_ON(i > 4);
b27580b0 1348
1421df63
PL
1349 return silvermont_freq_table[i];
1350}
b27580b0 1351
1421df63
PL
1352static int airmont_get_scaling(void)
1353{
1354 u64 value;
1355 int i;
1356 /* Defined in Table 35-10 from SDM (Sept 2015) */
1357 static int airmont_freq_table[] = {
1358 83300, 100000, 133300, 116700, 80000,
1359 93300, 90000, 88900, 87500};
1360
1361 rdmsrl(MSR_FSB_FREQ, value);
1362 i = value & 0xF;
1363 WARN_ON(i > 8);
1364
1365 return airmont_freq_table[i];
b27580b0
DB
1366}
1367
938d21a2 1368static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1369{
1370 u64 value;
1371
92134bdb 1372 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1373 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1374 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1375 cpudata->vid.ratio = div_fp(
1376 cpudata->vid.max - cpudata->vid.min,
1377 int_tofp(cpudata->pstate.max_pstate -
1378 cpudata->pstate.min_pstate));
21855ff5 1379
92134bdb 1380 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1381 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1382}
1383
016c8150 1384static int core_get_min_pstate(void)
93f0822d
DB
1385{
1386 u64 value;
845c1cbe 1387
05e99c8c 1388 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1389 return (value >> 40) & 0xFF;
1390}
1391
3bcc6fa9 1392static int core_get_max_pstate_physical(void)
93f0822d
DB
1393{
1394 u64 value;
845c1cbe 1395
05e99c8c 1396 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1397 return (value >> 8) & 0xFF;
1398}
1399
8fc7554a
SP
1400static int core_get_tdp_ratio(u64 plat_info)
1401{
1402 /* Check how many TDP levels present */
1403 if (plat_info & 0x600000000) {
1404 u64 tdp_ctrl;
1405 u64 tdp_ratio;
1406 int tdp_msr;
1407 int err;
1408
1409 /* Get the TDP level (0, 1, 2) to get ratios */
1410 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1411 if (err)
1412 return err;
1413
1414 /* TDP MSR are continuous starting at 0x648 */
1415 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1416 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1417 if (err)
1418 return err;
1419
1420 /* For level 1 and 2, bits[23:16] contain the ratio */
1421 if (tdp_ctrl & 0x03)
1422 tdp_ratio >>= 16;
1423
1424 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1425 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1426
1427 return (int)tdp_ratio;
1428 }
1429
1430 return -ENXIO;
1431}
1432
016c8150 1433static int core_get_max_pstate(void)
93f0822d 1434{
6a35fc2d
SP
1435 u64 tar;
1436 u64 plat_info;
1437 int max_pstate;
8fc7554a 1438 int tdp_ratio;
6a35fc2d
SP
1439 int err;
1440
1441 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1442 max_pstate = (plat_info >> 8) & 0xFF;
1443
8fc7554a
SP
1444 tdp_ratio = core_get_tdp_ratio(plat_info);
1445 if (tdp_ratio <= 0)
1446 return max_pstate;
1447
1448 if (hwp_active) {
1449 /* Turbo activation ratio is not used on HWP platforms */
1450 return tdp_ratio;
1451 }
1452
6a35fc2d
SP
1453 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1454 if (!err) {
8fc7554a
SP
1455 int tar_levels;
1456
6a35fc2d 1457 /* Do some sanity checking for safety */
8fc7554a
SP
1458 tar_levels = tar & 0xff;
1459 if (tdp_ratio - 1 == tar_levels) {
1460 max_pstate = tar_levels;
1461 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1462 }
1463 }
845c1cbe 1464
6a35fc2d 1465 return max_pstate;
93f0822d
DB
1466}
1467
016c8150 1468static int core_get_turbo_pstate(void)
93f0822d
DB
1469{
1470 u64 value;
1471 int nont, ret;
845c1cbe 1472
100cf6f2 1473 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1474 nont = core_get_max_pstate();
285cb990 1475 ret = (value) & 255;
93f0822d
DB
1476 if (ret <= nont)
1477 ret = nont;
1478 return ret;
1479}
1480
b27580b0
DB
1481static inline int core_get_scaling(void)
1482{
1483 return 100000;
1484}
1485
fdfdb2b1 1486static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1487{
1488 u64 val;
1489
144c8e17 1490 val = (u64)pstate << 8;
7de32556 1491 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1492 val |= (u64)1 << 32;
1493
fdfdb2b1 1494 return val;
016c8150
DB
1495}
1496
b34ef932
DC
1497static int knl_get_turbo_pstate(void)
1498{
1499 u64 value;
1500 int nont, ret;
1501
100cf6f2 1502 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1503 nont = core_get_max_pstate();
1504 ret = (((value) >> 8) & 0xFF);
1505 if (ret <= nont)
1506 ret = nont;
1507 return ret;
1508}
1509
016c8150 1510static struct cpu_defaults core_params = {
016c8150
DB
1511 .funcs = {
1512 .get_max = core_get_max_pstate,
3bcc6fa9 1513 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1514 .get_min = core_get_min_pstate,
1515 .get_turbo = core_get_turbo_pstate,
b27580b0 1516 .get_scaling = core_get_scaling,
fdfdb2b1 1517 .get_val = core_get_val,
157386b6 1518 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1519 },
1520};
1521
42ce8921 1522static const struct cpu_defaults silvermont_params = {
1421df63
PL
1523 .funcs = {
1524 .get_max = atom_get_max_pstate,
1525 .get_max_physical = atom_get_max_pstate,
1526 .get_min = atom_get_min_pstate,
1527 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1528 .get_val = atom_get_val,
1421df63
PL
1529 .get_scaling = silvermont_get_scaling,
1530 .get_vid = atom_get_vid,
e70eed2b 1531 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1532 },
1533};
1534
42ce8921 1535static const struct cpu_defaults airmont_params = {
19e77c28 1536 .funcs = {
938d21a2
PL
1537 .get_max = atom_get_max_pstate,
1538 .get_max_physical = atom_get_max_pstate,
1539 .get_min = atom_get_min_pstate,
1540 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1541 .get_val = atom_get_val,
1421df63 1542 .get_scaling = airmont_get_scaling,
938d21a2 1543 .get_vid = atom_get_vid,
e70eed2b 1544 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1545 },
1546};
1547
42ce8921 1548static const struct cpu_defaults knl_params = {
b34ef932
DC
1549 .funcs = {
1550 .get_max = core_get_max_pstate,
3bcc6fa9 1551 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1552 .get_min = core_get_min_pstate,
1553 .get_turbo = knl_get_turbo_pstate,
69cefc27 1554 .get_scaling = core_get_scaling,
fdfdb2b1 1555 .get_val = core_get_val,
157386b6 1556 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1557 },
1558};
1559
42ce8921 1560static const struct cpu_defaults bxt_params = {
41bad47f
SP
1561 .funcs = {
1562 .get_max = core_get_max_pstate,
1563 .get_max_physical = core_get_max_pstate_physical,
1564 .get_min = core_get_min_pstate,
1565 .get_turbo = core_get_turbo_pstate,
1566 .get_scaling = core_get_scaling,
1567 .get_val = core_get_val,
1568 .get_target_pstate = get_target_pstate_use_cpu_load,
1569 },
1570};
1571
93f0822d
DB
1572static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1573{
1574 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1575 int max_perf_adj;
93f0822d 1576 int min_perf;
845c1cbe 1577
7de32556 1578 if (global.no_turbo || global.turbo_disabled)
93f0822d
DB
1579 max_perf = cpu->pstate.max_pstate;
1580
e0d4c8f8
KCA
1581 /*
1582 * performance can be limited by user through sysfs, by cpufreq
1583 * policy, or by cpu specific default values determined through
1584 * experimentation.
1585 */
e14cf885 1586 max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
799281a3
RW
1587 *max = clamp_t(int, max_perf_adj,
1588 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1589
e14cf885 1590 min_perf = fp_ext_toint(max_perf * cpu->min_perf);
799281a3 1591 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1592}
1593
a6c6ead1 1594static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1595{
bc95a454
RW
1596 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1597 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1598 /*
1599 * Generally, there is no guarantee that this code will always run on
1600 * the CPU being updated, so force the register update to run on the
1601 * right CPU.
1602 */
1603 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1604 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1605}
1606
a6c6ead1
RW
1607static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1608{
1609 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1610}
1611
1612static void intel_pstate_max_within_limits(struct cpudata *cpu)
1613{
1614 int min_pstate, max_pstate;
1615
1616 update_turbo_state();
1617 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1618 intel_pstate_set_pstate(cpu, max_pstate);
1619}
1620
93f0822d
DB
1621static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1622{
016c8150
DB
1623 cpu->pstate.min_pstate = pstate_funcs.get_min();
1624 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1625 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1626 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1627 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1628 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1629 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1630
007bea09
DB
1631 if (pstate_funcs.get_vid)
1632 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1633
1634 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1635}
1636
a1c9787d 1637static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1638{
6b17ddb2 1639 struct sample *sample = &cpu->sample;
e66c1768 1640
a1c9787d 1641 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1642}
1643
4fec7ad5 1644static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1645{
93f0822d 1646 u64 aperf, mperf;
4ab60c3f 1647 unsigned long flags;
4055fad3 1648 u64 tsc;
93f0822d 1649
4ab60c3f 1650 local_irq_save(flags);
93f0822d
DB
1651 rdmsrl(MSR_IA32_APERF, aperf);
1652 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1653 tsc = rdtsc();
4fec7ad5 1654 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1655 local_irq_restore(flags);
4fec7ad5 1656 return false;
8e601a9f 1657 }
4ab60c3f 1658 local_irq_restore(flags);
b69880f9 1659
c4ee841f 1660 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1661 cpu->sample.time = time;
d37e2b76
DB
1662 cpu->sample.aperf = aperf;
1663 cpu->sample.mperf = mperf;
4055fad3 1664 cpu->sample.tsc = tsc;
d37e2b76
DB
1665 cpu->sample.aperf -= cpu->prev_aperf;
1666 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1667 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1668
93f0822d
DB
1669 cpu->prev_aperf = aperf;
1670 cpu->prev_mperf = mperf;
4055fad3 1671 cpu->prev_tsc = tsc;
febce40f
RW
1672 /*
1673 * First time this function is invoked in a given cycle, all of the
1674 * previous sample data fields are equal to zero or stale and they must
1675 * be populated with meaningful numbers for things to work, so assume
1676 * that sample.time will always be reset before setting the utilization
1677 * update hook and make the caller skip the sample then.
1678 */
1679 return !!cpu->last_sample_time;
93f0822d
DB
1680}
1681
8fa520af
PL
1682static inline int32_t get_avg_frequency(struct cpudata *cpu)
1683{
a1c9787d
RW
1684 return mul_ext_fp(cpu->sample.core_avg_perf,
1685 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1686}
1687
bdcaa23f
PL
1688static inline int32_t get_avg_pstate(struct cpudata *cpu)
1689{
8edb0a6e
RW
1690 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1691 cpu->sample.core_avg_perf);
bdcaa23f
PL
1692}
1693
e70eed2b
PL
1694static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1695{
1696 struct sample *sample = &cpu->sample;
09c448d3 1697 int32_t busy_frac, boost;
0843e83c 1698 int target, avg_pstate;
e70eed2b 1699
09c448d3 1700 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1701
09c448d3
RW
1702 boost = cpu->iowait_boost;
1703 cpu->iowait_boost >>= 1;
63d1d656 1704
09c448d3
RW
1705 if (busy_frac < boost)
1706 busy_frac = boost;
63d1d656 1707
09c448d3 1708 sample->busy_scaled = busy_frac * 100;
0843e83c 1709
7de32556 1710 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1711 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1712 target += target >> 2;
1713 target = mul_fp(target, busy_frac);
1714 if (target < cpu->pstate.min_pstate)
1715 target = cpu->pstate.min_pstate;
1716
1717 /*
1718 * If the average P-state during the previous cycle was higher than the
1719 * current target, add 50% of the difference to the target to reduce
1720 * possible performance oscillations and offset possible performance
1721 * loss related to moving the workload from one CPU to another within
1722 * a package/module.
1723 */
1724 avg_pstate = get_avg_pstate(cpu);
1725 if (avg_pstate > target)
1726 target += (avg_pstate - target) >> 1;
1727
1728 return target;
e70eed2b
PL
1729}
1730
157386b6 1731static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1732{
1aa7a6e2 1733 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1734 u64 duration_ns;
93f0822d 1735
e0d4c8f8 1736 /*
f00593a4
RW
1737 * perf_scaled is the ratio of the average P-state during the last
1738 * sampling period to the P-state requested last time (in percent).
1739 *
1740 * That measures the system's response to the previous P-state
1741 * selection.
e0d4c8f8 1742 */
22590efb
RW
1743 max_pstate = cpu->pstate.max_pstate_physical;
1744 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1745 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1746 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1747
e0d4c8f8 1748 /*
a4675fbc
RW
1749 * Since our utilization update callback will not run unless we are
1750 * in C0, check if the actual elapsed time is significantly greater (3x)
1751 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1752 * enough period of time to adjust our performance metric.
e0d4c8f8 1753 */
a4675fbc 1754 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1755 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1756 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1757 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1758 } else {
1759 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1760 if (sample_ratio < int_tofp(1))
1aa7a6e2 1761 perf_scaled = 0;
c4ee841f
DB
1762 }
1763
1aa7a6e2
RW
1764 cpu->sample.busy_scaled = perf_scaled;
1765 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1766}
1767
001c76f0 1768static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1769{
1770 int max_perf, min_perf;
1771
fdfdb2b1
RW
1772 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1773 pstate = clamp_t(int, pstate, min_perf, max_perf);
001c76f0
RW
1774 return pstate;
1775}
1776
1777static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1778{
fdfdb2b1
RW
1779 if (pstate == cpu->pstate.current_pstate)
1780 return;
1781
bc95a454 1782 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1783 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1784}
1785
93f0822d
DB
1786static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1787{
157386b6 1788 int from, target_pstate;
4055fad3
DS
1789 struct sample *sample;
1790
1791 from = cpu->pstate.current_pstate;
93f0822d 1792
2f1d407a
RW
1793 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1794 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1795
001c76f0
RW
1796 update_turbo_state();
1797
64078299
RW
1798 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1799 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1800 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1801
1802 sample = &cpu->sample;
a1c9787d 1803 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1804 fp_toint(sample->busy_scaled),
4055fad3
DS
1805 from,
1806 cpu->pstate.current_pstate,
1807 sample->mperf,
1808 sample->aperf,
1809 sample->tsc,
3ba7bcaa
SP
1810 get_avg_frequency(cpu),
1811 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1812}
1813
a4675fbc 1814static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1815 unsigned int flags)
93f0822d 1816{
a4675fbc 1817 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1818 u64 delta_ns;
1819
1d29815e 1820 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1821 if (flags & SCHED_CPUFREQ_IOWAIT) {
1822 cpu->iowait_boost = int_tofp(1);
1823 } else if (cpu->iowait_boost) {
1824 /* Clear iowait_boost if the CPU may have been idle. */
1825 delta_ns = time - cpu->last_update;
1826 if (delta_ns > TICK_NSEC)
1827 cpu->iowait_boost = 0;
1828 }
1829 cpu->last_update = time;
1830 }
b69880f9 1831
09c448d3 1832 delta_ns = time - cpu->sample.time;
a4675fbc 1833 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1834 bool sample_taken = intel_pstate_sample(cpu, time);
1835
6d45b719 1836 if (sample_taken) {
a1c9787d 1837 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1838 if (!hwp_active)
1839 intel_pstate_adjust_busy_pstate(cpu);
1840 }
a4675fbc 1841 }
93f0822d
DB
1842}
1843
1844#define ICPU(model, policy) \
6cbd7ee1
DB
1845 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1846 (unsigned long)&policy }
93f0822d
DB
1847
1848static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1849 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1850 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1851 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1852 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1853 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1854 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1855 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1856 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1857 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1858 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1859 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1860 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1861 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1862 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1863 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1864 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1865 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1866 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1867 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1868 {}
1869};
1870MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1871
29327c84 1872static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1873 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1874 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1875 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1876 {}
1877};
1878
6e978b22
SP
1879static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1880 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1881 {}
1882};
1883
93f0822d
DB
1884static int intel_pstate_init_cpu(unsigned int cpunum)
1885{
93f0822d
DB
1886 struct cpudata *cpu;
1887
eae48f04
SP
1888 cpu = all_cpu_data[cpunum];
1889
1890 if (!cpu) {
c5a2ee7d 1891 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1892 if (!cpu)
1893 return -ENOMEM;
1894
1895 all_cpu_data[cpunum] = cpu;
eae48f04 1896
984edbdc
SP
1897 cpu->epp_default = -EINVAL;
1898 cpu->epp_powersave = -EINVAL;
1899 cpu->epp_saved = -EINVAL;
eae48f04 1900 }
93f0822d
DB
1901
1902 cpu = all_cpu_data[cpunum];
1903
93f0822d 1904 cpu->cpu = cpunum;
ba88d433 1905
a4675fbc 1906 if (hwp_active) {
6e978b22
SP
1907 const struct x86_cpu_id *id;
1908
1909 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910 if (id)
1911 intel_pstate_disable_ee(cpunum);
1912
ba88d433 1913 intel_pstate_hwp_enable(cpu);
694cb173
RW
1914 } else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
1915 intel_pstate_pid_reset(cpu);
a4675fbc 1916 }
ba88d433 1917
179e8471 1918 intel_pstate_get_cpu_pstates(cpu);
016c8150 1919
4836df17 1920 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1921
1922 return 0;
1923}
1924
1925static unsigned int intel_pstate_get(unsigned int cpu_num)
1926{
f96fd0c8 1927 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1928
f96fd0c8 1929 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1930}
1931
febce40f 1932static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1933{
febce40f
RW
1934 struct cpudata *cpu = all_cpu_data[cpu_num];
1935
5ab666e0
RW
1936 if (cpu->update_util_set)
1937 return;
1938
febce40f
RW
1939 /* Prevent intel_pstate_update_util() from using stale data. */
1940 cpu->sample.time = 0;
0bed612b
RW
1941 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1942 intel_pstate_update_util);
4578ee7e 1943 cpu->update_util_set = true;
bb6ab52f
RW
1944}
1945
1946static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947{
4578ee7e
CY
1948 struct cpudata *cpu_data = all_cpu_data[cpu];
1949
1950 if (!cpu_data->update_util_set)
1951 return;
1952
0bed612b 1953 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1954 cpu_data->update_util_set = false;
bb6ab52f
RW
1955 synchronize_sched();
1956}
1957
80b120ca
RW
1958static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959{
1960 return global.turbo_disabled || global.no_turbo ?
1961 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962}
1963
eae48f04 1964static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1965 struct cpudata *cpu)
eae48f04 1966{
80b120ca 1967 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1968 int32_t max_policy_perf, min_policy_perf;
a410c03d 1969
80b120ca 1970 max_policy_perf = div_ext_fp(policy->max, max_freq);
e4c204ce 1971 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 1972 if (policy->max == policy->min) {
e4c204ce 1973 min_policy_perf = max_policy_perf;
5879f877 1974 } else {
80b120ca 1975 min_policy_perf = div_ext_fp(policy->min, max_freq);
e4c204ce
RW
1976 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1977 0, max_policy_perf);
5879f877 1978 }
eae48f04 1979
e4c204ce 1980 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1981 if (per_cpu_limits) {
e14cf885
RW
1982 cpu->min_perf = min_policy_perf;
1983 cpu->max_perf = max_policy_perf;
c5a2ee7d
RW
1984 } else {
1985 int32_t global_min, global_max;
1986
1987 /* Global limits are in percent of the maximum turbo P-state. */
1988 global_max = percent_ext_fp(global.max_perf_pct);
1989 global_min = percent_ext_fp(global.min_perf_pct);
80b120ca 1990 if (max_freq != cpu->pstate.turbo_freq) {
c5a2ee7d
RW
1991 int32_t turbo_factor;
1992
1993 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1994 cpu->pstate.max_pstate);
1995 global_min = mul_ext_fp(global_min, turbo_factor);
1996 global_max = mul_ext_fp(global_max, turbo_factor);
1997 }
1998 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 1999
e14cf885
RW
2000 cpu->min_perf = max(min_policy_perf, global_min);
2001 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2002 cpu->max_perf = min(max_policy_perf, global_max);
2003 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
c5a2ee7d
RW
2004
2005 /* Make sure min_perf <= max_perf */
e14cf885 2006 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
c5a2ee7d 2007 }
eae48f04 2008
e14cf885
RW
2009 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2010 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2011
2012 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
e14cf885
RW
2013 fp_ext_toint(cpu->max_perf * 100),
2014 fp_ext_toint(cpu->min_perf * 100));
eae48f04
SP
2015}
2016
93f0822d
DB
2017static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018{
3be9200d
SP
2019 struct cpudata *cpu;
2020
d3929b83
DB
2021 if (!policy->cpuinfo.max_freq)
2022 return -ENODEV;
2023
2c2c1af4
SP
2024 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025 policy->cpuinfo.max_freq, policy->max);
2026
a6c6ead1 2027 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2028 cpu->policy = policy->policy;
2029
b59fe540
SP
2030 mutex_lock(&intel_pstate_limits_lock);
2031
c5a2ee7d 2032 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2033
2f1d407a 2034 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2035 /*
2036 * NOHZ_FULL CPUs need this as the governor callback may not
2037 * be invoked on them.
2038 */
2039 intel_pstate_clear_update_util_hook(policy->cpu);
2040 intel_pstate_max_within_limits(cpu);
2041 }
2042
bb6ab52f
RW
2043 intel_pstate_set_update_util_hook(policy->cpu);
2044
5f98ced1
RW
2045 if (hwp_active)
2046 intel_pstate_hwp_set(policy);
2f86dc4c 2047
b59fe540
SP
2048 mutex_unlock(&intel_pstate_limits_lock);
2049
93f0822d
DB
2050 return 0;
2051}
2052
80b120ca
RW
2053static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054 struct cpudata *cpu)
2055{
2056 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057 policy->max < policy->cpuinfo.max_freq &&
2058 policy->max > cpu->pstate.max_freq) {
2059 pr_debug("policy->max > max non turbo frequency\n");
2060 policy->max = policy->cpuinfo.max_freq;
2061 }
2062}
2063
93f0822d
DB
2064static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065{
7d9a8a9f 2066 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2067
2068 update_turbo_state();
80b120ca
RW
2069 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070 intel_pstate_get_max_freq(cpu));
93f0822d 2071
285cb990 2072 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2073 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2074 return -EINVAL;
2075
80b120ca
RW
2076 intel_pstate_adjust_policy_max(policy, cpu);
2077
93f0822d
DB
2078 return 0;
2079}
2080
001c76f0
RW
2081static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082{
2083 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084}
2085
bb18008f 2086static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2087{
001c76f0 2088 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2089
001c76f0 2090 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2091 if (hwp_active)
2092 intel_pstate_hwp_save_state(policy);
2093 else
001c76f0
RW
2094 intel_cpufreq_stop_cpu(policy);
2095}
bb18008f 2096
001c76f0
RW
2097static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098{
2099 intel_pstate_exit_perf_limits(policy);
a4675fbc 2100
001c76f0 2101 policy->fast_switch_possible = false;
2f86dc4c 2102
001c76f0 2103 return 0;
93f0822d
DB
2104}
2105
001c76f0 2106static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2107{
93f0822d 2108 struct cpudata *cpu;
52e0a509 2109 int rc;
93f0822d
DB
2110
2111 rc = intel_pstate_init_cpu(policy->cpu);
2112 if (rc)
2113 return rc;
2114
2115 cpu = all_cpu_data[policy->cpu];
2116
e14cf885
RW
2117 cpu->max_perf = int_ext_tofp(1);
2118 cpu->min_perf = 0;
93f0822d 2119
b27580b0
DB
2120 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2122
2123 /* cpuinfo and default policy values */
b27580b0 2124 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2125 update_turbo_state();
7de32556 2126 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2127 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129
9522a2ff 2130 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2131 cpumask_set_cpu(policy->cpu, policy->cpus);
2132
001c76f0
RW
2133 policy->fast_switch_possible = true;
2134
93f0822d
DB
2135 return 0;
2136}
2137
001c76f0 2138static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2139{
001c76f0
RW
2140 int ret = __intel_pstate_cpu_init(policy);
2141
2142 if (ret)
2143 return ret;
2144
2145 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2146 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2147 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148 else
2149 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2150
2151 return 0;
2152}
2153
001c76f0 2154static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2155 .flags = CPUFREQ_CONST_LOOPS,
2156 .verify = intel_pstate_verify_policy,
2157 .setpolicy = intel_pstate_set_policy,
984edbdc 2158 .suspend = intel_pstate_hwp_save_state,
8442885f 2159 .resume = intel_pstate_resume,
93f0822d
DB
2160 .get = intel_pstate_get,
2161 .init = intel_pstate_cpu_init,
9522a2ff 2162 .exit = intel_pstate_cpu_exit,
bb18008f 2163 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2164 .name = "intel_pstate",
93f0822d
DB
2165};
2166
001c76f0
RW
2167static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168{
2169 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2170
2171 update_turbo_state();
80b120ca
RW
2172 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 intel_pstate_get_max_freq(cpu));
001c76f0 2174
80b120ca 2175 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2176
c5a2ee7d
RW
2177 intel_pstate_update_perf_limits(policy, cpu);
2178
001c76f0
RW
2179 return 0;
2180}
2181
001c76f0
RW
2182static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 unsigned int target_freq,
2184 unsigned int relation)
2185{
2186 struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 struct cpufreq_freqs freqs;
2188 int target_pstate;
2189
64897b20
RW
2190 update_turbo_state();
2191
001c76f0 2192 freqs.old = policy->cur;
64897b20 2193 freqs.new = target_freq;
001c76f0
RW
2194
2195 cpufreq_freq_transition_begin(policy, &freqs);
2196 switch (relation) {
2197 case CPUFREQ_RELATION_L:
2198 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 break;
2200 case CPUFREQ_RELATION_H:
2201 target_pstate = freqs.new / cpu->pstate.scaling;
2202 break;
2203 default:
2204 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 break;
2206 }
2207 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 if (target_pstate != cpu->pstate.current_pstate) {
2209 cpu->pstate.current_pstate = target_pstate;
2210 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211 pstate_funcs.get_val(cpu, target_pstate));
2212 }
64078299 2213 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2214 cpufreq_freq_transition_end(policy, &freqs, false);
2215
2216 return 0;
2217}
2218
2219static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220 unsigned int target_freq)
2221{
2222 struct cpudata *cpu = all_cpu_data[policy->cpu];
2223 int target_pstate;
2224
64897b20
RW
2225 update_turbo_state();
2226
001c76f0 2227 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2228 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2229 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2230 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2231}
2232
2233static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234{
2235 int ret = __intel_pstate_cpu_init(policy);
2236
2237 if (ret)
2238 return ret;
2239
2240 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2242 policy->cur = policy->cpuinfo.min_freq;
2243
2244 return 0;
2245}
2246
2247static struct cpufreq_driver intel_cpufreq = {
2248 .flags = CPUFREQ_CONST_LOOPS,
2249 .verify = intel_cpufreq_verify_policy,
2250 .target = intel_cpufreq_target,
2251 .fast_switch = intel_cpufreq_fast_switch,
2252 .init = intel_cpufreq_cpu_init,
2253 .exit = intel_pstate_cpu_exit,
2254 .stop_cpu = intel_cpufreq_stop_cpu,
2255 .name = "intel_cpufreq",
2256};
2257
ee8df89a 2258static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2259
fb1fe104
RW
2260static void intel_pstate_driver_cleanup(void)
2261{
2262 unsigned int cpu;
2263
2264 get_online_cpus();
2265 for_each_online_cpu(cpu) {
2266 if (all_cpu_data[cpu]) {
2267 if (intel_pstate_driver == &intel_pstate)
2268 intel_pstate_clear_update_util_hook(cpu);
2269
2270 kfree(all_cpu_data[cpu]);
2271 all_cpu_data[cpu] = NULL;
2272 }
2273 }
2274 put_online_cpus();
ee8df89a 2275 intel_pstate_driver = NULL;
fb1fe104
RW
2276}
2277
ee8df89a 2278static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2279{
2280 int ret;
2281
c5a2ee7d
RW
2282 memset(&global, 0, sizeof(global));
2283 global.max_perf_pct = 100;
c3a49c89 2284
ee8df89a 2285 intel_pstate_driver = driver;
fb1fe104
RW
2286 ret = cpufreq_register_driver(intel_pstate_driver);
2287 if (ret) {
2288 intel_pstate_driver_cleanup();
2289 return ret;
2290 }
2291
c5a2ee7d
RW
2292 global.min_perf_pct = min_perf_pct_min();
2293
fb1fe104
RW
2294 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2295 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2296 intel_pstate_debug_expose_params();
2297
2298 return 0;
2299}
2300
2301static int intel_pstate_unregister_driver(void)
2302{
2303 if (hwp_active)
2304 return -EBUSY;
2305
2306 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2307 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2308 intel_pstate_debug_hide_params();
2309
fb1fe104
RW
2310 cpufreq_unregister_driver(intel_pstate_driver);
2311 intel_pstate_driver_cleanup();
2312
2313 return 0;
2314}
2315
2316static ssize_t intel_pstate_show_status(char *buf)
2317{
ee8df89a 2318 if (!intel_pstate_driver)
fb1fe104
RW
2319 return sprintf(buf, "off\n");
2320
2321 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2322 "active" : "passive");
2323}
2324
2325static int intel_pstate_update_status(const char *buf, size_t size)
2326{
2327 int ret;
2328
2329 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2330 return intel_pstate_driver ?
fb1fe104
RW
2331 intel_pstate_unregister_driver() : -EINVAL;
2332
2333 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2334 if (intel_pstate_driver) {
fb1fe104
RW
2335 if (intel_pstate_driver == &intel_pstate)
2336 return 0;
2337
2338 ret = intel_pstate_unregister_driver();
2339 if (ret)
2340 return ret;
2341 }
2342
ee8df89a 2343 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2344 }
2345
2346 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2347 if (intel_pstate_driver) {
fb1fe104
RW
2348 if (intel_pstate_driver != &intel_pstate)
2349 return 0;
2350
2351 ret = intel_pstate_unregister_driver();
2352 if (ret)
2353 return ret;
2354 }
2355
ee8df89a 2356 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2357 }
2358
2359 return -EINVAL;
2360}
2361
eed43609
JZ
2362static int no_load __initdata;
2363static int no_hwp __initdata;
2364static int hwp_only __initdata;
29327c84 2365static unsigned int force_load __initdata;
6be26498 2366
29327c84 2367static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2368{
016c8150 2369 if (!pstate_funcs.get_max() ||
c410833a
SK
2370 !pstate_funcs.get_min() ||
2371 !pstate_funcs.get_turbo())
b563b4e3
DB
2372 return -ENODEV;
2373
b563b4e3
DB
2374 return 0;
2375}
016c8150 2376
7f7a516e
SP
2377#ifdef CONFIG_ACPI
2378static void intel_pstate_use_acpi_profile(void)
2379{
55395345
RW
2380 switch (acpi_gbl_FADT.preferred_profile) {
2381 case PM_MOBILE:
2382 case PM_TABLET:
2383 case PM_APPLIANCE_PC:
2384 case PM_DESKTOP:
2385 case PM_WORKSTATION:
7f7a516e
SP
2386 pstate_funcs.get_target_pstate =
2387 get_target_pstate_use_cpu_load;
55395345 2388 }
7f7a516e
SP
2389}
2390#else
2391static void intel_pstate_use_acpi_profile(void)
2392{
2393}
2394#endif
2395
29327c84 2396static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2397{
2398 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2399 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2400 pstate_funcs.get_min = funcs->get_min;
2401 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2402 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2403 pstate_funcs.get_val = funcs->get_val;
007bea09 2404 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2405 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2406
7f7a516e 2407 intel_pstate_use_acpi_profile();
016c8150
DB
2408}
2409
9522a2ff 2410#ifdef CONFIG_ACPI
fbbcdc07 2411
29327c84 2412static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2413{
2414 int i;
2415
2416 for_each_possible_cpu(i) {
2417 acpi_status status;
2418 union acpi_object *pss;
2419 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420 struct acpi_processor *pr = per_cpu(processors, i);
2421
2422 if (!pr)
2423 continue;
2424
2425 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426 if (ACPI_FAILURE(status))
2427 continue;
2428
2429 pss = buffer.pointer;
2430 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431 kfree(pss);
2432 return false;
2433 }
2434
2435 kfree(pss);
2436 }
2437
2438 return true;
2439}
2440
29327c84 2441static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2442{
2443 int i;
2444
2445 for_each_possible_cpu(i) {
2446 struct acpi_processor *pr = per_cpu(processors, i);
2447
2448 if (!pr)
2449 continue;
2450 if (acpi_has_method(pr->handle, "_PPC"))
2451 return true;
2452 }
2453 return false;
2454}
2455
2456enum {
2457 PSS,
2458 PPC,
2459};
2460
fbbcdc07
AH
2461struct hw_vendor_info {
2462 u16 valid;
2463 char oem_id[ACPI_OEM_ID_SIZE];
2464 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2465 int oem_pwr_table;
fbbcdc07
AH
2466};
2467
2468/* Hardware vendor-specific info that has its own power management modes */
29327c84 2469static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2470 {1, "HP ", "ProLiant", PSS},
2471 {1, "ORACLE", "X4-2 ", PPC},
2472 {1, "ORACLE", "X4-2L ", PPC},
2473 {1, "ORACLE", "X4-2B ", PPC},
2474 {1, "ORACLE", "X3-2 ", PPC},
2475 {1, "ORACLE", "X3-2L ", PPC},
2476 {1, "ORACLE", "X3-2B ", PPC},
2477 {1, "ORACLE", "X4470M2 ", PPC},
2478 {1, "ORACLE", "X4270M3 ", PPC},
2479 {1, "ORACLE", "X4270M2 ", PPC},
2480 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2481 {1, "ORACLE", "X4170 M3", PPC},
2482 {1, "ORACLE", "X4275 M3", PPC},
2483 {1, "ORACLE", "X6-2 ", PPC},
2484 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2485 {0, "", ""},
2486};
2487
29327c84 2488static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2489{
2490 struct acpi_table_header hdr;
2491 struct hw_vendor_info *v_info;
2f86dc4c
DB
2492 const struct x86_cpu_id *id;
2493 u64 misc_pwr;
2494
2495 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496 if (id) {
2497 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498 if ( misc_pwr & (1 << 8))
2499 return true;
2500 }
fbbcdc07 2501
c410833a
SK
2502 if (acpi_disabled ||
2503 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2504 return false;
2505
2506 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2507 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2508 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509 ACPI_OEM_TABLE_ID_SIZE))
2510 switch (v_info->oem_pwr_table) {
2511 case PSS:
2512 return intel_pstate_no_acpi_pss();
2513 case PPC:
aa4ea34d
EZ
2514 return intel_pstate_has_acpi_ppc() &&
2515 (!force_load);
966916ea 2516 }
fbbcdc07
AH
2517 }
2518
2519 return false;
2520}
d0ea59e1
RW
2521
2522static void intel_pstate_request_control_from_smm(void)
2523{
2524 /*
2525 * It may be unsafe to request P-states control from SMM if _PPC support
2526 * has not been enabled.
2527 */
2528 if (acpi_ppc)
2529 acpi_processor_pstate_control();
2530}
fbbcdc07
AH
2531#else /* CONFIG_ACPI not enabled */
2532static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2533static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2534static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2535#endif /* CONFIG_ACPI */
2536
7791e4aa
SP
2537static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539 {}
2540};
2541
93f0822d
DB
2542static int __init intel_pstate_init(void)
2543{
eb5139d1 2544 int rc;
93f0822d 2545
6be26498
DB
2546 if (no_load)
2547 return -ENODEV;
2548
eb5139d1 2549 if (x86_match_cpu(hwp_support_ids)) {
7791e4aa 2550 copy_cpu_funcs(&core_params.funcs);
eb5139d1
RW
2551 if (no_hwp) {
2552 pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2553 } else {
2554 hwp_active++;
2555 intel_pstate.attr = hwp_cpufreq_attrs;
7aec5b50 2556 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
eb5139d1
RW
2557 goto hwp_cpu_matched;
2558 }
2559 } else {
2560 const struct x86_cpu_id *id;
2561 struct cpu_defaults *cpu_def;
7791e4aa 2562
eb5139d1
RW
2563 id = x86_match_cpu(intel_pstate_cpu_ids);
2564 if (!id)
2565 return -ENODEV;
93f0822d 2566
eb5139d1 2567 cpu_def = (struct cpu_defaults *)id->driver_data;
eb5139d1
RW
2568 copy_cpu_funcs(&cpu_def->funcs);
2569 }
016c8150 2570
b563b4e3
DB
2571 if (intel_pstate_msrs_not_valid())
2572 return -ENODEV;
2573
7791e4aa
SP
2574hwp_cpu_matched:
2575 /*
2576 * The Intel pstate driver will be ignored if the platform
2577 * firmware has its own power management modes.
2578 */
2579 if (intel_pstate_platform_pwr_mgmt_exists())
2580 return -ENODEV;
2581
fb1fe104
RW
2582 if (!hwp_active && hwp_only)
2583 return -ENOTSUPP;
2584
4836df17 2585 pr_info("Intel P-state driver initializing\n");
93f0822d 2586
b57ffac5 2587 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2588 if (!all_cpu_data)
2589 return -ENOMEM;
93f0822d 2590
d0ea59e1
RW
2591 intel_pstate_request_control_from_smm();
2592
93f0822d 2593 intel_pstate_sysfs_expose_params();
b69880f9 2594
0c30b65b 2595 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2596 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2597 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2598 if (rc)
2599 return rc;
366430b5 2600
7791e4aa 2601 if (hwp_active)
4836df17 2602 pr_info("HWP enabled\n");
7791e4aa 2603
fb1fe104 2604 return 0;
93f0822d
DB
2605}
2606device_initcall(intel_pstate_init);
2607
6be26498
DB
2608static int __init intel_pstate_setup(char *str)
2609{
2610 if (!str)
2611 return -EINVAL;
2612
001c76f0 2613 if (!strcmp(str, "disable")) {
6be26498 2614 no_load = 1;
001c76f0
RW
2615 } else if (!strcmp(str, "passive")) {
2616 pr_info("Passive mode enabled\n");
ee8df89a 2617 default_driver = &intel_cpufreq;
001c76f0
RW
2618 no_hwp = 1;
2619 }
539342f6 2620 if (!strcmp(str, "no_hwp")) {
4836df17 2621 pr_info("HWP disabled\n");
2f86dc4c 2622 no_hwp = 1;
539342f6 2623 }
aa4ea34d
EZ
2624 if (!strcmp(str, "force"))
2625 force_load = 1;
d64c3b0b
KCA
2626 if (!strcmp(str, "hwp_only"))
2627 hwp_only = 1;
eae48f04
SP
2628 if (!strcmp(str, "per_cpu_perf_limits"))
2629 per_cpu_limits = true;
9522a2ff
SP
2630
2631#ifdef CONFIG_ACPI
2632 if (!strcmp(str, "support_acpi_ppc"))
2633 acpi_ppc = true;
2634#endif
2635
6be26498
DB
2636 return 0;
2637}
2638early_param("intel_pstate", intel_pstate_setup);
2639
93f0822d
DB
2640MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2641MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2642MODULE_LICENSE("GPL");