]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/cpufreq/intel_pstate.c
Merge remote-tracking branches 'asoc/topic/msm8916', 'asoc/topic/mtk', 'asoc/topic...
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
eabd22c6
RW
40#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
001c76f0 43#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
1b72e7fd 44#define INTEL_CPUFREQ_TRANSITION_DELAY 500
001c76f0 45
9522a2ff
SP
46#ifdef CONFIG_ACPI
47#include <acpi/processor.h>
17669006 48#include <acpi/cppc_acpi.h>
9522a2ff
SP
49#endif
50
f0fe3cd7 51#define FRAC_BITS 8
93f0822d
DB
52#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 54
a1c9787d
RW
55#define EXT_BITS 6
56#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
57#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 59
93f0822d
DB
60static inline int32_t mul_fp(int32_t x, int32_t y)
61{
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63}
64
7180dddf 65static inline int32_t div_fp(s64 x, s64 y)
93f0822d 66{
7180dddf 67 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
68}
69
d022a65e
DB
70static inline int ceiling_fp(int32_t x)
71{
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79}
80
ff35f02e
RW
81static inline int32_t percent_fp(int percent)
82{
83 return div_fp(percent, 100);
84}
85
a1c9787d
RW
86static inline u64 mul_ext_fp(u64 x, u64 y)
87{
88 return (x * y) >> EXT_FRAC_BITS;
89}
90
91static inline u64 div_ext_fp(u64 x, u64 y)
92{
93 return div64_u64(x << EXT_FRAC_BITS, y);
94}
95
e4c204ce
RW
96static inline int32_t percent_ext_fp(int percent)
97{
98 return div_ext_fp(percent, 100);
99}
100
13ad7701
SP
101/**
102 * struct sample - Store performance sample
a1c9787d 103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 106 * P state. This can be different than core_avg_perf
13ad7701
SP
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
13ad7701
SP
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
93f0822d 119struct sample {
a1c9787d 120 int32_t core_avg_perf;
157386b6 121 int32_t busy_scaled;
93f0822d
DB
122 u64 aperf;
123 u64 mperf;
4055fad3 124 u64 tsc;
a4675fbc 125 u64 time;
93f0822d
DB
126};
127
13ad7701
SP
128/**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
93f0822d
DB
144struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
3bcc6fa9 148 int max_pstate_physical;
b27580b0 149 int scaling;
93f0822d 150 int turbo_pstate;
001c76f0
RW
151 unsigned int max_freq;
152 unsigned int turbo_freq;
93f0822d
DB
153};
154
13ad7701
SP
155/**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
007bea09 168struct vid_data {
21855ff5
DB
169 int min;
170 int max;
171 int turbo;
007bea09
DB
172 int32_t ratio;
173};
174
13ad7701
SP
175/**
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
184 *
185 * Stores PID coefficients and last error for PID controller.
186 */
93f0822d
DB
187struct _pid {
188 int setpoint;
189 int32_t integral;
190 int32_t p_gain;
191 int32_t i_gain;
192 int32_t d_gain;
193 int deadband;
d253d2a5 194 int32_t last_err;
93f0822d
DB
195};
196
c5a2ee7d
RW
197/**
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
205 * P-state capacity.
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
207 * P-state capacity.
208 */
209struct global_params {
210 bool no_turbo;
211 bool turbo_disabled;
212 int max_perf_pct;
213 int min_perf_pct;
eae48f04
SP
214};
215
13ad7701
SP
216/**
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
2f1d407a 219 * @policy: CPUFreq policy value
13ad7701 220 * @update_util: CPUFreq utility callback information
4578ee7e 221 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
13ad7701
SP
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
232 * current sample
233 * @sample: Storage for storing last Sample data
e14cf885
RW
234 * @min_perf: Minimum capacity limit as a fraction of the maximum
235 * turbo P-state capacity.
236 * @max_perf: Maximum capacity limit as a fraction of the maximum
237 * turbo P-state capacity.
9522a2ff
SP
238 * @acpi_perf_data: Stores ACPI perf information read from _PSS
239 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
240 * @epp_powersave: Last saved HWP energy performance preference
241 * (EPP) or energy performance bias (EPB),
242 * when policy switched to performance
8442885f 243 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
244 * @epp_default: Power on default HWP energy performance
245 * preference/bias
246 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
247 * operation
13ad7701
SP
248 *
249 * This structure stores per CPU instance data for all CPUs.
250 */
93f0822d
DB
251struct cpudata {
252 int cpu;
253
2f1d407a 254 unsigned int policy;
a4675fbc 255 struct update_util_data update_util;
4578ee7e 256 bool update_util_set;
93f0822d 257
93f0822d 258 struct pstate_data pstate;
007bea09 259 struct vid_data vid;
93f0822d 260 struct _pid pid;
93f0822d 261
09c448d3 262 u64 last_update;
a4675fbc 263 u64 last_sample_time;
93f0822d
DB
264 u64 prev_aperf;
265 u64 prev_mperf;
4055fad3 266 u64 prev_tsc;
63d1d656 267 u64 prev_cummulative_iowait;
d37e2b76 268 struct sample sample;
e14cf885
RW
269 int32_t min_perf;
270 int32_t max_perf;
9522a2ff
SP
271#ifdef CONFIG_ACPI
272 struct acpi_processor_performance acpi_perf_data;
273 bool valid_pss_table;
274#endif
09c448d3 275 unsigned int iowait_boost;
984edbdc 276 s16 epp_powersave;
8442885f 277 s16 epp_policy;
984edbdc
SP
278 s16 epp_default;
279 s16 epp_saved;
93f0822d
DB
280};
281
282static struct cpudata **all_cpu_data;
13ad7701
SP
283
284/**
3954517e 285 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
286 * @sample_rate_ms: PID calculation sample rate in ms
287 * @sample_rate_ns: Sample rate calculation in ns
288 * @deadband: PID deadband
289 * @setpoint: PID Setpoint
290 * @p_gain_pct: PID proportional gain
291 * @i_gain_pct: PID integral gain
292 * @d_gain_pct: PID derivative gain
293 *
294 * Stores per CPU model static PID configuration data.
295 */
93f0822d
DB
296struct pstate_adjust_policy {
297 int sample_rate_ms;
a4675fbc 298 s64 sample_rate_ns;
93f0822d
DB
299 int deadband;
300 int setpoint;
301 int p_gain_pct;
302 int d_gain_pct;
303 int i_gain_pct;
304};
305
13ad7701
SP
306/**
307 * struct pstate_funcs - Per CPU model specific callbacks
308 * @get_max: Callback to get maximum non turbo effective P state
309 * @get_max_physical: Callback to get maximum non turbo physical P state
310 * @get_min: Callback to get minimum P state
311 * @get_turbo: Callback to get turbo P state
312 * @get_scaling: Callback to get frequency scaling factor
313 * @get_val: Callback to convert P state to actual MSR write value
314 * @get_vid: Callback to get VID data for Atom platforms
67dd9bf4 315 * @update_util: Active mode utilization update callback.
13ad7701
SP
316 *
317 * Core and Atom CPU models have different way to get P State limits. This
318 * structure is used to store those callbacks.
319 */
016c8150
DB
320struct pstate_funcs {
321 int (*get_max)(void);
3bcc6fa9 322 int (*get_max_physical)(void);
016c8150
DB
323 int (*get_min)(void);
324 int (*get_turbo)(void);
b27580b0 325 int (*get_scaling)(void);
fdfdb2b1 326 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 327 void (*get_vid)(struct cpudata *);
67dd9bf4
RW
328 void (*update_util)(struct update_util_data *data, u64 time,
329 unsigned int flags);
93f0822d
DB
330};
331
4a7cb7a9 332static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
333static struct pstate_adjust_policy pid_params __read_mostly = {
334 .sample_rate_ms = 10,
335 .sample_rate_ns = 10 * NSEC_PER_MSEC,
336 .deadband = 0,
337 .setpoint = 97,
338 .p_gain_pct = 20,
339 .d_gain_pct = 0,
340 .i_gain_pct = 0,
341};
342
4a7cb7a9 343static int hwp_active __read_mostly;
eae48f04 344static bool per_cpu_limits __read_mostly;
016c8150 345
ee8df89a 346static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 347
9522a2ff
SP
348#ifdef CONFIG_ACPI
349static bool acpi_ppc;
350#endif
13ad7701 351
c5a2ee7d 352static struct global_params global;
93f0822d 353
0c30b65b 354static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
355static DEFINE_MUTEX(intel_pstate_limits_lock);
356
9522a2ff 357#ifdef CONFIG_ACPI
2b3ec765
SP
358
359static bool intel_pstate_get_ppc_enable_status(void)
360{
361 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
362 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
363 return true;
364
365 return acpi_ppc;
366}
367
17669006
RW
368#ifdef CONFIG_ACPI_CPPC_LIB
369
370/* The work item is needed to avoid CPU hotplug locking issues */
371static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
372{
373 sched_set_itmt_support();
374}
375
376static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
377
378static void intel_pstate_set_itmt_prio(int cpu)
379{
380 struct cppc_perf_caps cppc_perf;
381 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
382 int ret;
383
384 ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 if (ret)
386 return;
387
388 /*
389 * The priorities can be set regardless of whether or not
390 * sched_set_itmt_support(true) has been called and it is valid to
391 * update them at any time after it has been called.
392 */
393 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
394
395 if (max_highest_perf <= min_highest_perf) {
396 if (cppc_perf.highest_perf > max_highest_perf)
397 max_highest_perf = cppc_perf.highest_perf;
398
399 if (cppc_perf.highest_perf < min_highest_perf)
400 min_highest_perf = cppc_perf.highest_perf;
401
402 if (max_highest_perf > min_highest_perf) {
403 /*
404 * This code can be run during CPU online under the
405 * CPU hotplug locks, so sched_set_itmt_support()
406 * cannot be called from here. Queue up a work item
407 * to invoke it.
408 */
409 schedule_work(&sched_itmt_work);
410 }
411 }
412}
413#else
414static void intel_pstate_set_itmt_prio(int cpu)
415{
416}
417#endif
418
9522a2ff
SP
419static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
420{
421 struct cpudata *cpu;
9522a2ff
SP
422 int ret;
423 int i;
424
17669006
RW
425 if (hwp_active) {
426 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 427 return;
17669006 428 }
e59a8f7f 429
2b3ec765 430 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
431 return;
432
433 cpu = all_cpu_data[policy->cpu];
434
435 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
436 policy->cpu);
437 if (ret)
438 return;
439
440 /*
441 * Check if the control value in _PSS is for PERF_CTL MSR, which should
442 * guarantee that the states returned by it map to the states in our
443 * list directly.
444 */
445 if (cpu->acpi_perf_data.control_register.space_id !=
446 ACPI_ADR_SPACE_FIXED_HARDWARE)
447 goto err;
448
449 /*
450 * If there is only one entry _PSS, simply ignore _PSS and continue as
451 * usual without taking _PSS into account
452 */
453 if (cpu->acpi_perf_data.state_count < 2)
454 goto err;
455
456 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
457 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
458 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
459 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
460 (u32) cpu->acpi_perf_data.states[i].core_frequency,
461 (u32) cpu->acpi_perf_data.states[i].power,
462 (u32) cpu->acpi_perf_data.states[i].control);
463 }
464
465 /*
466 * The _PSS table doesn't contain whole turbo frequency range.
467 * This just contains +1 MHZ above the max non turbo frequency,
468 * with control value corresponding to max turbo ratio. But
469 * when cpufreq set policy is called, it will call with this
470 * max frequency, which will cause a reduced performance as
471 * this driver uses real max turbo frequency as the max
472 * frequency. So correct this frequency in _PSS table to
b00345d1 473 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
474 * Also need to convert to MHz as _PSS freq is in MHz.
475 */
7de32556 476 if (!global.turbo_disabled)
9522a2ff
SP
477 cpu->acpi_perf_data.states[0].core_frequency =
478 policy->cpuinfo.max_freq / 1000;
479 cpu->valid_pss_table = true;
6cacd115 480 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
481
482 return;
483
484 err:
485 cpu->valid_pss_table = false;
486 acpi_processor_unregister_performance(policy->cpu);
487}
488
489static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490{
491 struct cpudata *cpu;
492
493 cpu = all_cpu_data[policy->cpu];
494 if (!cpu->valid_pss_table)
495 return;
496
497 acpi_processor_unregister_performance(policy->cpu);
498}
9522a2ff 499#else
7a3ba767 500static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
501{
502}
503
7a3ba767 504static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
505{
506}
507#endif
508
d253d2a5 509static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 510{
d253d2a5 511 signed int result;
93f0822d
DB
512 int32_t pterm, dterm, fp_error;
513 int32_t integral_limit;
514
b54a0dfd 515 fp_error = pid->setpoint - busy;
93f0822d 516
b54a0dfd 517 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
518 return 0;
519
520 pterm = mul_fp(pid->p_gain, fp_error);
521
522 pid->integral += fp_error;
523
e0d4c8f8
KCA
524 /*
525 * We limit the integral here so that it will never
526 * get higher than 30. This prevents it from becoming
527 * too large an input over long periods of time and allows
528 * it to get factored out sooner.
529 *
530 * The value of 30 was chosen through experimentation.
531 */
93f0822d
DB
532 integral_limit = int_tofp(30);
533 if (pid->integral > integral_limit)
534 pid->integral = integral_limit;
535 if (pid->integral < -integral_limit)
536 pid->integral = -integral_limit;
537
d253d2a5
BS
538 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
539 pid->last_err = fp_error;
93f0822d
DB
540
541 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 542 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
543 return (signed int)fp_toint(result);
544}
545
ff35f02e 546static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 547{
ff35f02e 548 struct _pid *pid = &cpu->pid;
93f0822d 549
ff35f02e
RW
550 pid->p_gain = percent_fp(pid_params.p_gain_pct);
551 pid->d_gain = percent_fp(pid_params.d_gain_pct);
552 pid->i_gain = percent_fp(pid_params.i_gain_pct);
553 pid->setpoint = int_tofp(pid_params.setpoint);
554 pid->last_err = pid->setpoint - int_tofp(100);
555 pid->deadband = int_tofp(pid_params.deadband);
556 pid->integral = 0;
93f0822d
DB
557}
558
4521e1a0
GM
559static inline void update_turbo_state(void)
560{
561 u64 misc_en;
562 struct cpudata *cpu;
563
564 cpu = all_cpu_data[0];
565 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 566 global.turbo_disabled =
4521e1a0
GM
567 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
568 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
569}
570
c5a2ee7d
RW
571static int min_perf_pct_min(void)
572{
573 struct cpudata *cpu = all_cpu_data[0];
57caf4ec 574 int turbo_pstate = cpu->pstate.turbo_pstate;
c5a2ee7d 575
57caf4ec
RW
576 return turbo_pstate ?
577 DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
c5a2ee7d
RW
578}
579
8442885f
SP
580static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
581{
582 u64 epb;
583 int ret;
584
585 if (!static_cpu_has(X86_FEATURE_EPB))
586 return -ENXIO;
587
588 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
589 if (ret)
590 return (s16)ret;
591
592 return (s16)(epb & 0x0f);
593}
594
595static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
596{
597 s16 epp;
598
984edbdc
SP
599 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
600 /*
601 * When hwp_req_data is 0, means that caller didn't read
602 * MSR_HWP_REQUEST, so need to read and get EPP.
603 */
604 if (!hwp_req_data) {
605 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
606 &hwp_req_data);
607 if (epp)
608 return epp;
609 }
8442885f 610 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 611 } else {
8442885f
SP
612 /* When there is no EPP present, HWP uses EPB settings */
613 epp = intel_pstate_get_epb(cpu_data);
984edbdc 614 }
8442885f
SP
615
616 return epp;
617}
618
984edbdc 619static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
620{
621 u64 epb;
984edbdc 622 int ret;
8442885f
SP
623
624 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 625 return -ENXIO;
8442885f 626
984edbdc
SP
627 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
628 if (ret)
629 return ret;
8442885f
SP
630
631 epb = (epb & ~0x0f) | pref;
632 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
633
634 return 0;
8442885f
SP
635}
636
984edbdc
SP
637/*
638 * EPP/EPB display strings corresponding to EPP index in the
639 * energy_perf_strings[]
640 * index String
641 *-------------------------------------
642 * 0 default
643 * 1 performance
644 * 2 balance_performance
645 * 3 balance_power
646 * 4 power
647 */
648static const char * const energy_perf_strings[] = {
649 "default",
650 "performance",
651 "balance_performance",
652 "balance_power",
653 "power",
654 NULL
655};
656
657static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
658{
659 s16 epp;
660 int index = -EINVAL;
661
662 epp = intel_pstate_get_epp(cpu_data, 0);
663 if (epp < 0)
664 return epp;
665
666 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
667 /*
668 * Range:
669 * 0x00-0x3F : Performance
670 * 0x40-0x7F : Balance performance
671 * 0x80-0xBF : Balance power
672 * 0xC0-0xFF : Power
673 * The EPP is a 8 bit value, but our ranges restrict the
674 * value which can be set. Here only using top two bits
675 * effectively.
676 */
677 index = (epp >> 6) + 1;
678 } else if (static_cpu_has(X86_FEATURE_EPB)) {
679 /*
680 * Range:
681 * 0x00-0x03 : Performance
682 * 0x04-0x07 : Balance performance
683 * 0x08-0x0B : Balance power
684 * 0x0C-0x0F : Power
685 * The EPB is a 4 bit value, but our ranges restrict the
686 * value which can be set. Here only using top two bits
687 * effectively.
688 */
689 index = (epp >> 2) + 1;
690 }
691
692 return index;
693}
694
695static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
696 int pref_index)
697{
698 int epp = -EINVAL;
699 int ret;
700
701 if (!pref_index)
702 epp = cpu_data->epp_default;
703
704 mutex_lock(&intel_pstate_limits_lock);
705
706 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
707 u64 value;
708
709 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
710 if (ret)
711 goto return_pref;
712
713 value &= ~GENMASK_ULL(31, 24);
714
715 /*
716 * If epp is not default, convert from index into
717 * energy_perf_strings to epp value, by shifting 6
718 * bits left to use only top two bits in epp.
719 * The resultant epp need to shifted by 24 bits to
720 * epp position in MSR_HWP_REQUEST.
721 */
722 if (epp == -EINVAL)
723 epp = (pref_index - 1) << 6;
724
725 value |= (u64)epp << 24;
726 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
727 } else {
728 if (epp == -EINVAL)
729 epp = (pref_index - 1) << 2;
730 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
731 }
732return_pref:
733 mutex_unlock(&intel_pstate_limits_lock);
734
735 return ret;
736}
737
738static ssize_t show_energy_performance_available_preferences(
739 struct cpufreq_policy *policy, char *buf)
740{
741 int i = 0;
742 int ret = 0;
743
744 while (energy_perf_strings[i] != NULL)
745 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
746
747 ret += sprintf(&buf[ret], "\n");
748
749 return ret;
750}
751
752cpufreq_freq_attr_ro(energy_performance_available_preferences);
753
754static ssize_t store_energy_performance_preference(
755 struct cpufreq_policy *policy, const char *buf, size_t count)
756{
757 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
758 char str_preference[21];
759 int ret, i = 0;
760
761 ret = sscanf(buf, "%20s", str_preference);
762 if (ret != 1)
763 return -EINVAL;
764
765 while (energy_perf_strings[i] != NULL) {
766 if (!strcmp(str_preference, energy_perf_strings[i])) {
767 intel_pstate_set_energy_pref_index(cpu_data, i);
768 return count;
769 }
770 ++i;
771 }
772
773 return -EINVAL;
774}
775
776static ssize_t show_energy_performance_preference(
777 struct cpufreq_policy *policy, char *buf)
778{
779 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
780 int preference;
781
782 preference = intel_pstate_get_energy_pref_index(cpu_data);
783 if (preference < 0)
784 return preference;
785
786 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
787}
788
789cpufreq_freq_attr_rw(energy_performance_preference);
790
791static struct freq_attr *hwp_cpufreq_attrs[] = {
792 &energy_performance_preference,
793 &energy_performance_available_preferences,
794 NULL,
795};
796
2bfc4cbb 797static void intel_pstate_hwp_set(unsigned int cpu)
2f86dc4c 798{
2bfc4cbb
RW
799 struct cpudata *cpu_data = all_cpu_data[cpu];
800 int min, hw_min, max, hw_max;
74da56ce 801 u64 value, cap;
2bfc4cbb 802 s16 epp;
74da56ce 803
2bfc4cbb
RW
804 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
805 hw_min = HWP_LOWEST_PERF(cap);
806 if (global.no_turbo)
807 hw_max = HWP_GUARANTEED_PERF(cap);
808 else
809 hw_max = HWP_HIGHEST_PERF(cap);
eae48f04 810
2bfc4cbb
RW
811 max = fp_ext_toint(hw_max * cpu_data->max_perf);
812 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
813 min = max;
814 else
815 min = fp_ext_toint(hw_max * cpu_data->min_perf);
3f8ed54a 816
2bfc4cbb 817 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
2f86dc4c 818
2bfc4cbb
RW
819 value &= ~HWP_MIN_PERF(~0L);
820 value |= HWP_MIN_PERF(min);
8442885f 821
2bfc4cbb
RW
822 value &= ~HWP_MAX_PERF(~0L);
823 value |= HWP_MAX_PERF(max);
8442885f 824
2bfc4cbb
RW
825 if (cpu_data->epp_policy == cpu_data->policy)
826 goto skip_epp;
8442885f 827
2bfc4cbb 828 cpu_data->epp_policy = cpu_data->policy;
984edbdc 829
2bfc4cbb
RW
830 if (cpu_data->epp_saved >= 0) {
831 epp = cpu_data->epp_saved;
832 cpu_data->epp_saved = -EINVAL;
833 goto update_epp;
834 }
8442885f 835
2bfc4cbb
RW
836 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
837 epp = intel_pstate_get_epp(cpu_data, value);
838 cpu_data->epp_powersave = epp;
839 /* If EPP read was failed, then don't try to write */
840 if (epp < 0)
841 goto skip_epp;
8442885f 842
2bfc4cbb
RW
843 epp = 0;
844 } else {
845 /* skip setting EPP, when saved value is invalid */
846 if (cpu_data->epp_powersave < 0)
847 goto skip_epp;
8442885f 848
2bfc4cbb
RW
849 /*
850 * No need to restore EPP when it is not zero. This
851 * means:
852 * - Policy is not changed
853 * - user has manually changed
854 * - Error reading EPB
855 */
856 epp = intel_pstate_get_epp(cpu_data, value);
857 if (epp)
858 goto skip_epp;
8442885f 859
2bfc4cbb
RW
860 epp = cpu_data->epp_powersave;
861 }
984edbdc 862update_epp:
2bfc4cbb
RW
863 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
864 value &= ~GENMASK_ULL(31, 24);
865 value |= (u64)epp << 24;
866 } else {
867 intel_pstate_set_epb(cpu, epp);
2f86dc4c 868 }
2bfc4cbb
RW
869skip_epp:
870 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
41cfd64c 871}
2f86dc4c 872
984edbdc
SP
873static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
874{
875 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
876
877 if (!hwp_active)
878 return 0;
879
880 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
881
882 return 0;
883}
884
8442885f
SP
885static int intel_pstate_resume(struct cpufreq_policy *policy)
886{
887 if (!hwp_active)
888 return 0;
889
aa439248
RW
890 mutex_lock(&intel_pstate_limits_lock);
891
8442885f 892 all_cpu_data[policy->cpu]->epp_policy = 0;
2bfc4cbb 893 intel_pstate_hwp_set(policy->cpu);
aa439248
RW
894
895 mutex_unlock(&intel_pstate_limits_lock);
896
5f98ced1 897 return 0;
8442885f
SP
898}
899
111b8b3f 900static void intel_pstate_update_policies(void)
41cfd64c 901{
111b8b3f
RW
902 int cpu;
903
904 for_each_possible_cpu(cpu)
905 cpufreq_update_policy(cpu);
2f86dc4c
DB
906}
907
93f0822d
DB
908/************************** debugfs begin ************************/
909static int pid_param_set(void *data, u64 val)
910{
4ddd0146
RW
911 unsigned int cpu;
912
93f0822d 913 *(u32 *)data = val;
6e7408ac 914 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
915 for_each_possible_cpu(cpu)
916 if (all_cpu_data[cpu])
ff35f02e 917 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 918
93f0822d
DB
919 return 0;
920}
845c1cbe 921
93f0822d
DB
922static int pid_param_get(void *data, u64 *val)
923{
924 *val = *(u32 *)data;
925 return 0;
926}
2d8d1f18 927DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 928
fb1fe104
RW
929static struct dentry *debugfs_parent;
930
93f0822d
DB
931struct pid_param {
932 char *name;
933 void *value;
fb1fe104 934 struct dentry *dentry;
93f0822d
DB
935};
936
937static struct pid_param pid_files[] = {
fb1fe104
RW
938 {"sample_rate_ms", &pid_params.sample_rate_ms, },
939 {"d_gain_pct", &pid_params.d_gain_pct, },
940 {"i_gain_pct", &pid_params.i_gain_pct, },
941 {"deadband", &pid_params.deadband, },
942 {"setpoint", &pid_params.setpoint, },
943 {"p_gain_pct", &pid_params.p_gain_pct, },
944 {NULL, NULL, }
93f0822d
DB
945};
946
fb1fe104 947static void intel_pstate_debug_expose_params(void)
93f0822d 948{
fb1fe104 949 int i;
93f0822d
DB
950
951 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
952 if (IS_ERR_OR_NULL(debugfs_parent))
953 return;
fb1fe104
RW
954
955 for (i = 0; pid_files[i].name; i++) {
956 struct dentry *dentry;
957
958 dentry = debugfs_create_file(pid_files[i].name, 0660,
959 debugfs_parent, pid_files[i].value,
960 &fops_pid_param);
961 if (!IS_ERR(dentry))
962 pid_files[i].dentry = dentry;
93f0822d
DB
963 }
964}
965
fb1fe104
RW
966static void intel_pstate_debug_hide_params(void)
967{
968 int i;
969
970 if (IS_ERR_OR_NULL(debugfs_parent))
971 return;
972
973 for (i = 0; pid_files[i].name; i++) {
974 debugfs_remove(pid_files[i].dentry);
975 pid_files[i].dentry = NULL;
93f0822d 976 }
fb1fe104
RW
977
978 debugfs_remove(debugfs_parent);
979 debugfs_parent = NULL;
93f0822d
DB
980}
981
982/************************** debugfs end ************************/
983
984/************************** sysfs begin ************************/
985#define show_one(file_name, object) \
986 static ssize_t show_##file_name \
987 (struct kobject *kobj, struct attribute *attr, char *buf) \
988 { \
7de32556 989 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
990 }
991
fb1fe104
RW
992static ssize_t intel_pstate_show_status(char *buf);
993static int intel_pstate_update_status(const char *buf, size_t size);
994
995static ssize_t show_status(struct kobject *kobj,
996 struct attribute *attr, char *buf)
997{
998 ssize_t ret;
999
1000 mutex_lock(&intel_pstate_driver_lock);
1001 ret = intel_pstate_show_status(buf);
1002 mutex_unlock(&intel_pstate_driver_lock);
1003
1004 return ret;
1005}
1006
1007static ssize_t store_status(struct kobject *a, struct attribute *b,
1008 const char *buf, size_t count)
1009{
1010 char *p = memchr(buf, '\n', count);
1011 int ret;
1012
1013 mutex_lock(&intel_pstate_driver_lock);
1014 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1015 mutex_unlock(&intel_pstate_driver_lock);
1016
1017 return ret < 0 ? ret : count;
1018}
1019
d01b1f48
KCA
1020static ssize_t show_turbo_pct(struct kobject *kobj,
1021 struct attribute *attr, char *buf)
1022{
1023 struct cpudata *cpu;
1024 int total, no_turbo, turbo_pct;
1025 uint32_t turbo_fp;
1026
0c30b65b
RW
1027 mutex_lock(&intel_pstate_driver_lock);
1028
ee8df89a 1029 if (!intel_pstate_driver) {
0c30b65b
RW
1030 mutex_unlock(&intel_pstate_driver_lock);
1031 return -EAGAIN;
1032 }
1033
d01b1f48
KCA
1034 cpu = all_cpu_data[0];
1035
1036 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1037 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1038 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1039 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1040
1041 mutex_unlock(&intel_pstate_driver_lock);
1042
d01b1f48
KCA
1043 return sprintf(buf, "%u\n", turbo_pct);
1044}
1045
0522424e
KCA
1046static ssize_t show_num_pstates(struct kobject *kobj,
1047 struct attribute *attr, char *buf)
1048{
1049 struct cpudata *cpu;
1050 int total;
1051
0c30b65b
RW
1052 mutex_lock(&intel_pstate_driver_lock);
1053
ee8df89a 1054 if (!intel_pstate_driver) {
0c30b65b
RW
1055 mutex_unlock(&intel_pstate_driver_lock);
1056 return -EAGAIN;
1057 }
1058
0522424e
KCA
1059 cpu = all_cpu_data[0];
1060 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1061
1062 mutex_unlock(&intel_pstate_driver_lock);
1063
0522424e
KCA
1064 return sprintf(buf, "%u\n", total);
1065}
1066
4521e1a0
GM
1067static ssize_t show_no_turbo(struct kobject *kobj,
1068 struct attribute *attr, char *buf)
1069{
1070 ssize_t ret;
1071
0c30b65b
RW
1072 mutex_lock(&intel_pstate_driver_lock);
1073
ee8df89a 1074 if (!intel_pstate_driver) {
0c30b65b
RW
1075 mutex_unlock(&intel_pstate_driver_lock);
1076 return -EAGAIN;
1077 }
1078
4521e1a0 1079 update_turbo_state();
7de32556
RW
1080 if (global.turbo_disabled)
1081 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1082 else
7de32556 1083 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1084
0c30b65b
RW
1085 mutex_unlock(&intel_pstate_driver_lock);
1086
4521e1a0
GM
1087 return ret;
1088}
1089
93f0822d 1090static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1091 const char *buf, size_t count)
93f0822d
DB
1092{
1093 unsigned int input;
1094 int ret;
845c1cbe 1095
93f0822d
DB
1096 ret = sscanf(buf, "%u", &input);
1097 if (ret != 1)
1098 return -EINVAL;
4521e1a0 1099
0c30b65b
RW
1100 mutex_lock(&intel_pstate_driver_lock);
1101
ee8df89a 1102 if (!intel_pstate_driver) {
0c30b65b
RW
1103 mutex_unlock(&intel_pstate_driver_lock);
1104 return -EAGAIN;
1105 }
1106
a410c03d
SP
1107 mutex_lock(&intel_pstate_limits_lock);
1108
4521e1a0 1109 update_turbo_state();
7de32556 1110 if (global.turbo_disabled) {
4836df17 1111 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1112 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1113 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1114 return -EPERM;
dd5fbf70 1115 }
2f86dc4c 1116
7de32556 1117 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1118
c5a2ee7d
RW
1119 if (global.no_turbo) {
1120 struct cpudata *cpu = all_cpu_data[0];
1121 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1122
1123 /* Squash the global minimum into the permitted range. */
1124 if (global.min_perf_pct > pct)
1125 global.min_perf_pct = pct;
1126 }
1127
cd59b4be
RW
1128 mutex_unlock(&intel_pstate_limits_lock);
1129
7de32556
RW
1130 intel_pstate_update_policies();
1131
0c30b65b
RW
1132 mutex_unlock(&intel_pstate_driver_lock);
1133
93f0822d
DB
1134 return count;
1135}
1136
1137static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1138 const char *buf, size_t count)
93f0822d
DB
1139{
1140 unsigned int input;
1141 int ret;
845c1cbe 1142
93f0822d
DB
1143 ret = sscanf(buf, "%u", &input);
1144 if (ret != 1)
1145 return -EINVAL;
1146
0c30b65b
RW
1147 mutex_lock(&intel_pstate_driver_lock);
1148
ee8df89a 1149 if (!intel_pstate_driver) {
0c30b65b
RW
1150 mutex_unlock(&intel_pstate_driver_lock);
1151 return -EAGAIN;
1152 }
1153
a410c03d
SP
1154 mutex_lock(&intel_pstate_limits_lock);
1155
c5a2ee7d 1156 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1157
cd59b4be
RW
1158 mutex_unlock(&intel_pstate_limits_lock);
1159
7de32556
RW
1160 intel_pstate_update_policies();
1161
0c30b65b
RW
1162 mutex_unlock(&intel_pstate_driver_lock);
1163
93f0822d
DB
1164 return count;
1165}
1166
1167static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1168 const char *buf, size_t count)
93f0822d
DB
1169{
1170 unsigned int input;
1171 int ret;
845c1cbe 1172
93f0822d
DB
1173 ret = sscanf(buf, "%u", &input);
1174 if (ret != 1)
1175 return -EINVAL;
a0475992 1176
0c30b65b
RW
1177 mutex_lock(&intel_pstate_driver_lock);
1178
ee8df89a 1179 if (!intel_pstate_driver) {
0c30b65b
RW
1180 mutex_unlock(&intel_pstate_driver_lock);
1181 return -EAGAIN;
1182 }
1183
a410c03d
SP
1184 mutex_lock(&intel_pstate_limits_lock);
1185
c5a2ee7d
RW
1186 global.min_perf_pct = clamp_t(int, input,
1187 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1188
cd59b4be
RW
1189 mutex_unlock(&intel_pstate_limits_lock);
1190
7de32556
RW
1191 intel_pstate_update_policies();
1192
0c30b65b
RW
1193 mutex_unlock(&intel_pstate_driver_lock);
1194
93f0822d
DB
1195 return count;
1196}
1197
93f0822d
DB
1198show_one(max_perf_pct, max_perf_pct);
1199show_one(min_perf_pct, min_perf_pct);
1200
fb1fe104 1201define_one_global_rw(status);
93f0822d
DB
1202define_one_global_rw(no_turbo);
1203define_one_global_rw(max_perf_pct);
1204define_one_global_rw(min_perf_pct);
d01b1f48 1205define_one_global_ro(turbo_pct);
0522424e 1206define_one_global_ro(num_pstates);
93f0822d
DB
1207
1208static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1209 &status.attr,
93f0822d 1210 &no_turbo.attr,
d01b1f48 1211 &turbo_pct.attr,
0522424e 1212 &num_pstates.attr,
93f0822d
DB
1213 NULL
1214};
1215
1216static struct attribute_group intel_pstate_attr_group = {
1217 .attrs = intel_pstate_attributes,
1218};
93f0822d 1219
317dd50e 1220static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1221{
317dd50e 1222 struct kobject *intel_pstate_kobject;
93f0822d
DB
1223 int rc;
1224
1225 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1226 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1227 if (WARN_ON(!intel_pstate_kobject))
1228 return;
1229
2d8d1f18 1230 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1231 if (WARN_ON(rc))
1232 return;
1233
1234 /*
1235 * If per cpu limits are enforced there are no global limits, so
1236 * return without creating max/min_perf_pct attributes
1237 */
1238 if (per_cpu_limits)
1239 return;
1240
1241 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1242 WARN_ON(rc);
1243
1244 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1245 WARN_ON(rc);
1246
93f0822d 1247}
93f0822d 1248/************************** sysfs end ************************/
2f86dc4c 1249
ba88d433 1250static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1251{
f05c9665 1252 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1253 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1254 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1255
ba88d433 1256 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1257 cpudata->epp_policy = 0;
984edbdc
SP
1258 if (cpudata->epp_default == -EINVAL)
1259 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1260}
1261
6e978b22
SP
1262#define MSR_IA32_POWER_CTL_BIT_EE 19
1263
1264/* Disable energy efficiency optimization */
1265static void intel_pstate_disable_ee(int cpu)
1266{
1267 u64 power_ctl;
1268 int ret;
1269
1270 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1271 if (ret)
1272 return;
1273
1274 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1275 pr_info("Disabling energy efficiency optimization\n");
1276 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1277 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1278 }
1279}
1280
938d21a2 1281static int atom_get_min_pstate(void)
19e77c28
DB
1282{
1283 u64 value;
845c1cbe 1284
92134bdb 1285 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1286 return (value >> 8) & 0x7F;
19e77c28
DB
1287}
1288
938d21a2 1289static int atom_get_max_pstate(void)
19e77c28
DB
1290{
1291 u64 value;
845c1cbe 1292
92134bdb 1293 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1294 return (value >> 16) & 0x7F;
19e77c28 1295}
93f0822d 1296
938d21a2 1297static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1298{
1299 u64 value;
845c1cbe 1300
92134bdb 1301 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1302 return value & 0x7F;
61d8d2ab
DB
1303}
1304
fdfdb2b1 1305static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1306{
1307 u64 val;
1308 int32_t vid_fp;
1309 u32 vid;
1310
144c8e17 1311 val = (u64)pstate << 8;
7de32556 1312 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1313 val |= (u64)1 << 32;
1314
1315 vid_fp = cpudata->vid.min + mul_fp(
1316 int_tofp(pstate - cpudata->pstate.min_pstate),
1317 cpudata->vid.ratio);
1318
1319 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1320 vid = ceiling_fp(vid_fp);
007bea09 1321
21855ff5
DB
1322 if (pstate > cpudata->pstate.max_pstate)
1323 vid = cpudata->vid.turbo;
1324
fdfdb2b1 1325 return val | vid;
007bea09
DB
1326}
1327
1421df63 1328static int silvermont_get_scaling(void)
b27580b0
DB
1329{
1330 u64 value;
1331 int i;
1421df63
PL
1332 /* Defined in Table 35-6 from SDM (Sept 2015) */
1333 static int silvermont_freq_table[] = {
1334 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1335
1336 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1337 i = value & 0x7;
1338 WARN_ON(i > 4);
b27580b0 1339
1421df63
PL
1340 return silvermont_freq_table[i];
1341}
b27580b0 1342
1421df63
PL
1343static int airmont_get_scaling(void)
1344{
1345 u64 value;
1346 int i;
1347 /* Defined in Table 35-10 from SDM (Sept 2015) */
1348 static int airmont_freq_table[] = {
1349 83300, 100000, 133300, 116700, 80000,
1350 93300, 90000, 88900, 87500};
1351
1352 rdmsrl(MSR_FSB_FREQ, value);
1353 i = value & 0xF;
1354 WARN_ON(i > 8);
1355
1356 return airmont_freq_table[i];
b27580b0
DB
1357}
1358
938d21a2 1359static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1360{
1361 u64 value;
1362
92134bdb 1363 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1364 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1365 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1366 cpudata->vid.ratio = div_fp(
1367 cpudata->vid.max - cpudata->vid.min,
1368 int_tofp(cpudata->pstate.max_pstate -
1369 cpudata->pstate.min_pstate));
21855ff5 1370
92134bdb 1371 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1372 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1373}
1374
016c8150 1375static int core_get_min_pstate(void)
93f0822d
DB
1376{
1377 u64 value;
845c1cbe 1378
05e99c8c 1379 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1380 return (value >> 40) & 0xFF;
1381}
1382
3bcc6fa9 1383static int core_get_max_pstate_physical(void)
93f0822d
DB
1384{
1385 u64 value;
845c1cbe 1386
05e99c8c 1387 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1388 return (value >> 8) & 0xFF;
1389}
1390
8fc7554a
SP
1391static int core_get_tdp_ratio(u64 plat_info)
1392{
1393 /* Check how many TDP levels present */
1394 if (plat_info & 0x600000000) {
1395 u64 tdp_ctrl;
1396 u64 tdp_ratio;
1397 int tdp_msr;
1398 int err;
1399
1400 /* Get the TDP level (0, 1, 2) to get ratios */
1401 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1402 if (err)
1403 return err;
1404
1405 /* TDP MSR are continuous starting at 0x648 */
1406 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1407 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1408 if (err)
1409 return err;
1410
1411 /* For level 1 and 2, bits[23:16] contain the ratio */
1412 if (tdp_ctrl & 0x03)
1413 tdp_ratio >>= 16;
1414
1415 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1416 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1417
1418 return (int)tdp_ratio;
1419 }
1420
1421 return -ENXIO;
1422}
1423
016c8150 1424static int core_get_max_pstate(void)
93f0822d 1425{
6a35fc2d
SP
1426 u64 tar;
1427 u64 plat_info;
1428 int max_pstate;
8fc7554a 1429 int tdp_ratio;
6a35fc2d
SP
1430 int err;
1431
1432 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1433 max_pstate = (plat_info >> 8) & 0xFF;
1434
8fc7554a
SP
1435 tdp_ratio = core_get_tdp_ratio(plat_info);
1436 if (tdp_ratio <= 0)
1437 return max_pstate;
1438
1439 if (hwp_active) {
1440 /* Turbo activation ratio is not used on HWP platforms */
1441 return tdp_ratio;
1442 }
1443
6a35fc2d
SP
1444 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1445 if (!err) {
8fc7554a
SP
1446 int tar_levels;
1447
6a35fc2d 1448 /* Do some sanity checking for safety */
8fc7554a
SP
1449 tar_levels = tar & 0xff;
1450 if (tdp_ratio - 1 == tar_levels) {
1451 max_pstate = tar_levels;
1452 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1453 }
1454 }
845c1cbe 1455
6a35fc2d 1456 return max_pstate;
93f0822d
DB
1457}
1458
016c8150 1459static int core_get_turbo_pstate(void)
93f0822d
DB
1460{
1461 u64 value;
1462 int nont, ret;
845c1cbe 1463
100cf6f2 1464 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1465 nont = core_get_max_pstate();
285cb990 1466 ret = (value) & 255;
93f0822d
DB
1467 if (ret <= nont)
1468 ret = nont;
1469 return ret;
1470}
1471
b27580b0
DB
1472static inline int core_get_scaling(void)
1473{
1474 return 100000;
1475}
1476
fdfdb2b1 1477static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1478{
1479 u64 val;
1480
144c8e17 1481 val = (u64)pstate << 8;
7de32556 1482 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1483 val |= (u64)1 << 32;
1484
fdfdb2b1 1485 return val;
016c8150
DB
1486}
1487
b34ef932
DC
1488static int knl_get_turbo_pstate(void)
1489{
1490 u64 value;
1491 int nont, ret;
1492
100cf6f2 1493 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1494 nont = core_get_max_pstate();
1495 ret = (((value) >> 8) & 0xFF);
1496 if (ret <= nont)
1497 ret = nont;
1498 return ret;
1499}
1500
b02aabe8 1501static int intel_pstate_get_base_pstate(struct cpudata *cpu)
93f0822d 1502{
b02aabe8
RW
1503 return global.no_turbo || global.turbo_disabled ?
1504 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
93f0822d
DB
1505}
1506
a6c6ead1 1507static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1508{
bc95a454
RW
1509 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1510 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1511 /*
1512 * Generally, there is no guarantee that this code will always run on
1513 * the CPU being updated, so force the register update to run on the
1514 * right CPU.
1515 */
1516 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1517 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1518}
1519
a6c6ead1
RW
1520static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1521{
1522 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1523}
1524
1525static void intel_pstate_max_within_limits(struct cpudata *cpu)
1526{
b02aabe8 1527 int pstate;
a6c6ead1
RW
1528
1529 update_turbo_state();
b02aabe8
RW
1530 pstate = intel_pstate_get_base_pstate(cpu);
1531 pstate = max(cpu->pstate.min_pstate,
1532 fp_ext_toint(pstate * cpu->max_perf));
1533 intel_pstate_set_pstate(cpu, pstate);
a6c6ead1
RW
1534}
1535
93f0822d
DB
1536static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1537{
016c8150
DB
1538 cpu->pstate.min_pstate = pstate_funcs.get_min();
1539 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1540 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1541 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1542 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1543 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1544 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1545
007bea09
DB
1546 if (pstate_funcs.get_vid)
1547 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1548
1549 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1550}
1551
a1c9787d 1552static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1553{
6b17ddb2 1554 struct sample *sample = &cpu->sample;
e66c1768 1555
a1c9787d 1556 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1557}
1558
4fec7ad5 1559static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1560{
93f0822d 1561 u64 aperf, mperf;
4ab60c3f 1562 unsigned long flags;
4055fad3 1563 u64 tsc;
93f0822d 1564
4ab60c3f 1565 local_irq_save(flags);
93f0822d
DB
1566 rdmsrl(MSR_IA32_APERF, aperf);
1567 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1568 tsc = rdtsc();
4fec7ad5 1569 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1570 local_irq_restore(flags);
4fec7ad5 1571 return false;
8e601a9f 1572 }
4ab60c3f 1573 local_irq_restore(flags);
b69880f9 1574
c4ee841f 1575 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1576 cpu->sample.time = time;
d37e2b76
DB
1577 cpu->sample.aperf = aperf;
1578 cpu->sample.mperf = mperf;
4055fad3 1579 cpu->sample.tsc = tsc;
d37e2b76
DB
1580 cpu->sample.aperf -= cpu->prev_aperf;
1581 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1582 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1583
93f0822d
DB
1584 cpu->prev_aperf = aperf;
1585 cpu->prev_mperf = mperf;
4055fad3 1586 cpu->prev_tsc = tsc;
febce40f
RW
1587 /*
1588 * First time this function is invoked in a given cycle, all of the
1589 * previous sample data fields are equal to zero or stale and they must
1590 * be populated with meaningful numbers for things to work, so assume
1591 * that sample.time will always be reset before setting the utilization
1592 * update hook and make the caller skip the sample then.
1593 */
eabd22c6
RW
1594 if (cpu->last_sample_time) {
1595 intel_pstate_calc_avg_perf(cpu);
1596 return true;
1597 }
1598 return false;
93f0822d
DB
1599}
1600
8fa520af
PL
1601static inline int32_t get_avg_frequency(struct cpudata *cpu)
1602{
a1c9787d
RW
1603 return mul_ext_fp(cpu->sample.core_avg_perf,
1604 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1605}
1606
bdcaa23f
PL
1607static inline int32_t get_avg_pstate(struct cpudata *cpu)
1608{
8edb0a6e
RW
1609 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1610 cpu->sample.core_avg_perf);
bdcaa23f
PL
1611}
1612
e70eed2b
PL
1613static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1614{
1615 struct sample *sample = &cpu->sample;
09c448d3 1616 int32_t busy_frac, boost;
0843e83c 1617 int target, avg_pstate;
e70eed2b 1618
67dd9bf4
RW
1619 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1620 return cpu->pstate.turbo_pstate;
1621
09c448d3 1622 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1623
09c448d3
RW
1624 boost = cpu->iowait_boost;
1625 cpu->iowait_boost >>= 1;
63d1d656 1626
09c448d3
RW
1627 if (busy_frac < boost)
1628 busy_frac = boost;
63d1d656 1629
09c448d3 1630 sample->busy_scaled = busy_frac * 100;
0843e83c 1631
7de32556 1632 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1633 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1634 target += target >> 2;
1635 target = mul_fp(target, busy_frac);
1636 if (target < cpu->pstate.min_pstate)
1637 target = cpu->pstate.min_pstate;
1638
1639 /*
1640 * If the average P-state during the previous cycle was higher than the
1641 * current target, add 50% of the difference to the target to reduce
1642 * possible performance oscillations and offset possible performance
1643 * loss related to moving the workload from one CPU to another within
1644 * a package/module.
1645 */
1646 avg_pstate = get_avg_pstate(cpu);
1647 if (avg_pstate > target)
1648 target += (avg_pstate - target) >> 1;
1649
1650 return target;
e70eed2b
PL
1651}
1652
157386b6 1653static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1654{
1aa7a6e2 1655 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1656 u64 duration_ns;
93f0822d 1657
67dd9bf4
RW
1658 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1659 return cpu->pstate.turbo_pstate;
1660
e0d4c8f8 1661 /*
f00593a4
RW
1662 * perf_scaled is the ratio of the average P-state during the last
1663 * sampling period to the P-state requested last time (in percent).
1664 *
1665 * That measures the system's response to the previous P-state
1666 * selection.
e0d4c8f8 1667 */
22590efb
RW
1668 max_pstate = cpu->pstate.max_pstate_physical;
1669 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1670 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1671 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1672
e0d4c8f8 1673 /*
a4675fbc
RW
1674 * Since our utilization update callback will not run unless we are
1675 * in C0, check if the actual elapsed time is significantly greater (3x)
1676 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1677 * enough period of time to adjust our performance metric.
e0d4c8f8 1678 */
a4675fbc 1679 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1680 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1681 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1682 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1683 } else {
1684 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1685 if (sample_ratio < int_tofp(1))
1aa7a6e2 1686 perf_scaled = 0;
c4ee841f
DB
1687 }
1688
1aa7a6e2
RW
1689 cpu->sample.busy_scaled = perf_scaled;
1690 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1691}
1692
001c76f0 1693static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1 1694{
b02aabe8
RW
1695 int max_pstate = intel_pstate_get_base_pstate(cpu);
1696 int min_pstate;
fdfdb2b1 1697
b02aabe8
RW
1698 min_pstate = max(cpu->pstate.min_pstate,
1699 fp_ext_toint(max_pstate * cpu->min_perf));
1700 max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1701 return clamp_t(int, pstate, min_pstate, max_pstate);
001c76f0
RW
1702}
1703
1704static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1705{
fdfdb2b1
RW
1706 if (pstate == cpu->pstate.current_pstate)
1707 return;
1708
bc95a454 1709 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1710 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1711}
1712
67dd9bf4 1713static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
93f0822d 1714{
67dd9bf4 1715 int from = cpu->pstate.current_pstate;
4055fad3
DS
1716 struct sample *sample;
1717
001c76f0
RW
1718 update_turbo_state();
1719
64078299
RW
1720 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1721 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1722 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1723
1724 sample = &cpu->sample;
a1c9787d 1725 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1726 fp_toint(sample->busy_scaled),
4055fad3
DS
1727 from,
1728 cpu->pstate.current_pstate,
1729 sample->mperf,
1730 sample->aperf,
1731 sample->tsc,
3ba7bcaa
SP
1732 get_avg_frequency(cpu),
1733 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1734}
1735
eabd22c6
RW
1736static void intel_pstate_update_util_hwp(struct update_util_data *data,
1737 u64 time, unsigned int flags)
1738{
1739 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1740 u64 delta_ns = time - cpu->sample.time;
1741
1742 if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1743 intel_pstate_sample(cpu, time);
1744}
1745
1746static void intel_pstate_update_util_pid(struct update_util_data *data,
1747 u64 time, unsigned int flags)
1748{
1749 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1750 u64 delta_ns = time - cpu->sample.time;
1751
1752 if ((s64)delta_ns < pid_params.sample_rate_ns)
1753 return;
1754
67dd9bf4
RW
1755 if (intel_pstate_sample(cpu, time)) {
1756 int target_pstate;
1757
1758 target_pstate = get_target_pstate_use_performance(cpu);
1759 intel_pstate_adjust_pstate(cpu, target_pstate);
1760 }
eabd22c6
RW
1761}
1762
a4675fbc 1763static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1764 unsigned int flags)
93f0822d 1765{
a4675fbc 1766 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1767 u64 delta_ns;
1768
eabd22c6
RW
1769 if (flags & SCHED_CPUFREQ_IOWAIT) {
1770 cpu->iowait_boost = int_tofp(1);
1771 } else if (cpu->iowait_boost) {
1772 /* Clear iowait_boost if the CPU may have been idle. */
1773 delta_ns = time - cpu->last_update;
1774 if (delta_ns > TICK_NSEC)
1775 cpu->iowait_boost = 0;
09c448d3 1776 }
eabd22c6 1777 cpu->last_update = time;
09c448d3 1778 delta_ns = time - cpu->sample.time;
eabd22c6
RW
1779 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1780 return;
4fec7ad5 1781
67dd9bf4
RW
1782 if (intel_pstate_sample(cpu, time)) {
1783 int target_pstate;
93f0822d 1784
67dd9bf4
RW
1785 target_pstate = get_target_pstate_use_cpu_load(cpu);
1786 intel_pstate_adjust_pstate(cpu, target_pstate);
1787 }
1788}
eabd22c6 1789
2f49afc2
RW
1790static struct pstate_funcs core_funcs = {
1791 .get_max = core_get_max_pstate,
1792 .get_max_physical = core_get_max_pstate_physical,
1793 .get_min = core_get_min_pstate,
1794 .get_turbo = core_get_turbo_pstate,
1795 .get_scaling = core_get_scaling,
1796 .get_val = core_get_val,
1797 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1798};
1799
2f49afc2
RW
1800static const struct pstate_funcs silvermont_funcs = {
1801 .get_max = atom_get_max_pstate,
1802 .get_max_physical = atom_get_max_pstate,
1803 .get_min = atom_get_min_pstate,
1804 .get_turbo = atom_get_turbo_pstate,
1805 .get_val = atom_get_val,
1806 .get_scaling = silvermont_get_scaling,
1807 .get_vid = atom_get_vid,
1808 .update_util = intel_pstate_update_util,
de4a76cb
RW
1809};
1810
2f49afc2
RW
1811static const struct pstate_funcs airmont_funcs = {
1812 .get_max = atom_get_max_pstate,
1813 .get_max_physical = atom_get_max_pstate,
1814 .get_min = atom_get_min_pstate,
1815 .get_turbo = atom_get_turbo_pstate,
1816 .get_val = atom_get_val,
1817 .get_scaling = airmont_get_scaling,
1818 .get_vid = atom_get_vid,
1819 .update_util = intel_pstate_update_util,
de4a76cb
RW
1820};
1821
2f49afc2
RW
1822static const struct pstate_funcs knl_funcs = {
1823 .get_max = core_get_max_pstate,
1824 .get_max_physical = core_get_max_pstate_physical,
1825 .get_min = core_get_min_pstate,
1826 .get_turbo = knl_get_turbo_pstate,
1827 .get_scaling = core_get_scaling,
1828 .get_val = core_get_val,
1829 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1830};
1831
2f49afc2
RW
1832static const struct pstate_funcs bxt_funcs = {
1833 .get_max = core_get_max_pstate,
1834 .get_max_physical = core_get_max_pstate_physical,
1835 .get_min = core_get_min_pstate,
1836 .get_turbo = core_get_turbo_pstate,
1837 .get_scaling = core_get_scaling,
1838 .get_val = core_get_val,
1839 .update_util = intel_pstate_update_util,
de4a76cb
RW
1840};
1841
93f0822d 1842#define ICPU(model, policy) \
6cbd7ee1
DB
1843 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1844 (unsigned long)&policy }
93f0822d
DB
1845
1846static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2f49afc2
RW
1847 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1848 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1849 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1850 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1851 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1852 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1853 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1854 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1855 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1856 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1857 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1858 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1859 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1860 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1861 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1862 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1863 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1864 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1865 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
630e5757 1866 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
93f0822d
DB
1867 {}
1868};
1869MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1870
29327c84 1871static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2f49afc2
RW
1872 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1873 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1874 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
2f86dc4c
DB
1875 {}
1876};
1877
6e978b22 1878static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2f49afc2 1879 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
6e978b22
SP
1880 {}
1881};
1882
8ca6ce37
RW
1883static bool pid_in_use(void);
1884
93f0822d
DB
1885static int intel_pstate_init_cpu(unsigned int cpunum)
1886{
93f0822d
DB
1887 struct cpudata *cpu;
1888
eae48f04
SP
1889 cpu = all_cpu_data[cpunum];
1890
1891 if (!cpu) {
c5a2ee7d 1892 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1893 if (!cpu)
1894 return -ENOMEM;
1895
1896 all_cpu_data[cpunum] = cpu;
eae48f04 1897
984edbdc
SP
1898 cpu->epp_default = -EINVAL;
1899 cpu->epp_powersave = -EINVAL;
1900 cpu->epp_saved = -EINVAL;
eae48f04 1901 }
93f0822d
DB
1902
1903 cpu = all_cpu_data[cpunum];
1904
93f0822d 1905 cpu->cpu = cpunum;
ba88d433 1906
a4675fbc 1907 if (hwp_active) {
6e978b22
SP
1908 const struct x86_cpu_id *id;
1909
1910 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1911 if (id)
1912 intel_pstate_disable_ee(cpunum);
1913
ba88d433 1914 intel_pstate_hwp_enable(cpu);
8ca6ce37 1915 } else if (pid_in_use()) {
694cb173 1916 intel_pstate_pid_reset(cpu);
a4675fbc 1917 }
ba88d433 1918
179e8471 1919 intel_pstate_get_cpu_pstates(cpu);
016c8150 1920
4836df17 1921 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1922
1923 return 0;
1924}
1925
1926static unsigned int intel_pstate_get(unsigned int cpu_num)
1927{
f96fd0c8 1928 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1929
f96fd0c8 1930 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1931}
1932
febce40f 1933static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1934{
febce40f
RW
1935 struct cpudata *cpu = all_cpu_data[cpu_num];
1936
5ab666e0
RW
1937 if (cpu->update_util_set)
1938 return;
1939
febce40f
RW
1940 /* Prevent intel_pstate_update_util() from using stale data. */
1941 cpu->sample.time = 0;
67dd9bf4
RW
1942 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1943 pstate_funcs.update_util);
4578ee7e 1944 cpu->update_util_set = true;
bb6ab52f
RW
1945}
1946
1947static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1948{
4578ee7e
CY
1949 struct cpudata *cpu_data = all_cpu_data[cpu];
1950
1951 if (!cpu_data->update_util_set)
1952 return;
1953
0bed612b 1954 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1955 cpu_data->update_util_set = false;
bb6ab52f
RW
1956 synchronize_sched();
1957}
1958
80b120ca
RW
1959static int intel_pstate_get_max_freq(struct cpudata *cpu)
1960{
1961 return global.turbo_disabled || global.no_turbo ?
1962 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1963}
1964
eae48f04 1965static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1966 struct cpudata *cpu)
eae48f04 1967{
80b120ca 1968 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1969 int32_t max_policy_perf, min_policy_perf;
a410c03d 1970
80b120ca 1971 max_policy_perf = div_ext_fp(policy->max, max_freq);
e4c204ce 1972 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 1973 if (policy->max == policy->min) {
e4c204ce 1974 min_policy_perf = max_policy_perf;
5879f877 1975 } else {
80b120ca 1976 min_policy_perf = div_ext_fp(policy->min, max_freq);
e4c204ce
RW
1977 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1978 0, max_policy_perf);
5879f877 1979 }
eae48f04 1980
e4c204ce 1981 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1982 if (per_cpu_limits) {
e14cf885
RW
1983 cpu->min_perf = min_policy_perf;
1984 cpu->max_perf = max_policy_perf;
c5a2ee7d
RW
1985 } else {
1986 int32_t global_min, global_max;
1987
1988 /* Global limits are in percent of the maximum turbo P-state. */
1989 global_max = percent_ext_fp(global.max_perf_pct);
1990 global_min = percent_ext_fp(global.min_perf_pct);
80b120ca 1991 if (max_freq != cpu->pstate.turbo_freq) {
c5a2ee7d
RW
1992 int32_t turbo_factor;
1993
1994 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1995 cpu->pstate.max_pstate);
1996 global_min = mul_ext_fp(global_min, turbo_factor);
1997 global_max = mul_ext_fp(global_max, turbo_factor);
1998 }
1999 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 2000
e14cf885
RW
2001 cpu->min_perf = max(min_policy_perf, global_min);
2002 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2003 cpu->max_perf = min(max_policy_perf, global_max);
2004 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
c5a2ee7d
RW
2005
2006 /* Make sure min_perf <= max_perf */
e14cf885 2007 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
c5a2ee7d 2008 }
eae48f04 2009
e14cf885
RW
2010 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2011 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2012
2013 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
e14cf885
RW
2014 fp_ext_toint(cpu->max_perf * 100),
2015 fp_ext_toint(cpu->min_perf * 100));
eae48f04
SP
2016}
2017
93f0822d
DB
2018static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2019{
3be9200d
SP
2020 struct cpudata *cpu;
2021
d3929b83
DB
2022 if (!policy->cpuinfo.max_freq)
2023 return -ENODEV;
2024
2c2c1af4
SP
2025 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2026 policy->cpuinfo.max_freq, policy->max);
2027
a6c6ead1 2028 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2029 cpu->policy = policy->policy;
2030
b59fe540
SP
2031 mutex_lock(&intel_pstate_limits_lock);
2032
c5a2ee7d 2033 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2034
2f1d407a 2035 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2036 /*
2037 * NOHZ_FULL CPUs need this as the governor callback may not
2038 * be invoked on them.
2039 */
2040 intel_pstate_clear_update_util_hook(policy->cpu);
2041 intel_pstate_max_within_limits(cpu);
2042 }
2043
bb6ab52f
RW
2044 intel_pstate_set_update_util_hook(policy->cpu);
2045
5f98ced1 2046 if (hwp_active)
2bfc4cbb 2047 intel_pstate_hwp_set(policy->cpu);
2f86dc4c 2048
b59fe540
SP
2049 mutex_unlock(&intel_pstate_limits_lock);
2050
93f0822d
DB
2051 return 0;
2052}
2053
80b120ca
RW
2054static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2055 struct cpudata *cpu)
2056{
2057 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2058 policy->max < policy->cpuinfo.max_freq &&
2059 policy->max > cpu->pstate.max_freq) {
2060 pr_debug("policy->max > max non turbo frequency\n");
2061 policy->max = policy->cpuinfo.max_freq;
2062 }
2063}
2064
93f0822d
DB
2065static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2066{
7d9a8a9f 2067 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2068
2069 update_turbo_state();
80b120ca
RW
2070 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2071 intel_pstate_get_max_freq(cpu));
93f0822d 2072
285cb990 2073 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2074 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2075 return -EINVAL;
2076
80b120ca
RW
2077 intel_pstate_adjust_policy_max(policy, cpu);
2078
93f0822d
DB
2079 return 0;
2080}
2081
001c76f0
RW
2082static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2083{
2084 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2085}
2086
bb18008f 2087static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2088{
001c76f0 2089 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2090
001c76f0 2091 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2092 if (hwp_active)
2093 intel_pstate_hwp_save_state(policy);
2094 else
001c76f0
RW
2095 intel_cpufreq_stop_cpu(policy);
2096}
bb18008f 2097
001c76f0
RW
2098static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2099{
2100 intel_pstate_exit_perf_limits(policy);
a4675fbc 2101
001c76f0 2102 policy->fast_switch_possible = false;
2f86dc4c 2103
001c76f0 2104 return 0;
93f0822d
DB
2105}
2106
001c76f0 2107static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2108{
93f0822d 2109 struct cpudata *cpu;
52e0a509 2110 int rc;
93f0822d
DB
2111
2112 rc = intel_pstate_init_cpu(policy->cpu);
2113 if (rc)
2114 return rc;
2115
2116 cpu = all_cpu_data[policy->cpu];
2117
e14cf885
RW
2118 cpu->max_perf = int_ext_tofp(1);
2119 cpu->min_perf = 0;
93f0822d 2120
b27580b0
DB
2121 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2122 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2123
2124 /* cpuinfo and default policy values */
b27580b0 2125 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2126 update_turbo_state();
7de32556 2127 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2128 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2129 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2130
9522a2ff 2131 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2132 cpumask_set_cpu(policy->cpu, policy->cpus);
2133
001c76f0
RW
2134 policy->fast_switch_possible = true;
2135
93f0822d
DB
2136 return 0;
2137}
2138
001c76f0 2139static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2140{
001c76f0
RW
2141 int ret = __intel_pstate_cpu_init(policy);
2142
2143 if (ret)
2144 return ret;
2145
2146 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2147 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2148 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2149 else
2150 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2151
2152 return 0;
2153}
2154
001c76f0 2155static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2156 .flags = CPUFREQ_CONST_LOOPS,
2157 .verify = intel_pstate_verify_policy,
2158 .setpolicy = intel_pstate_set_policy,
984edbdc 2159 .suspend = intel_pstate_hwp_save_state,
8442885f 2160 .resume = intel_pstate_resume,
93f0822d
DB
2161 .get = intel_pstate_get,
2162 .init = intel_pstate_cpu_init,
9522a2ff 2163 .exit = intel_pstate_cpu_exit,
bb18008f 2164 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2165 .name = "intel_pstate",
93f0822d
DB
2166};
2167
001c76f0
RW
2168static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2169{
2170 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2171
2172 update_turbo_state();
80b120ca
RW
2173 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2174 intel_pstate_get_max_freq(cpu));
001c76f0 2175
80b120ca 2176 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2177
c5a2ee7d
RW
2178 intel_pstate_update_perf_limits(policy, cpu);
2179
001c76f0
RW
2180 return 0;
2181}
2182
001c76f0
RW
2183static int intel_cpufreq_target(struct cpufreq_policy *policy,
2184 unsigned int target_freq,
2185 unsigned int relation)
2186{
2187 struct cpudata *cpu = all_cpu_data[policy->cpu];
2188 struct cpufreq_freqs freqs;
2189 int target_pstate;
2190
64897b20
RW
2191 update_turbo_state();
2192
001c76f0 2193 freqs.old = policy->cur;
64897b20 2194 freqs.new = target_freq;
001c76f0
RW
2195
2196 cpufreq_freq_transition_begin(policy, &freqs);
2197 switch (relation) {
2198 case CPUFREQ_RELATION_L:
2199 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2200 break;
2201 case CPUFREQ_RELATION_H:
2202 target_pstate = freqs.new / cpu->pstate.scaling;
2203 break;
2204 default:
2205 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2206 break;
2207 }
2208 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2209 if (target_pstate != cpu->pstate.current_pstate) {
2210 cpu->pstate.current_pstate = target_pstate;
2211 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2212 pstate_funcs.get_val(cpu, target_pstate));
2213 }
64078299 2214 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2215 cpufreq_freq_transition_end(policy, &freqs, false);
2216
2217 return 0;
2218}
2219
2220static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2221 unsigned int target_freq)
2222{
2223 struct cpudata *cpu = all_cpu_data[policy->cpu];
2224 int target_pstate;
2225
64897b20
RW
2226 update_turbo_state();
2227
001c76f0 2228 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2229 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2230 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2231 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2232}
2233
2234static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2235{
2236 int ret = __intel_pstate_cpu_init(policy);
2237
2238 if (ret)
2239 return ret;
2240
2241 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1b72e7fd 2242 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
001c76f0
RW
2243 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2244 policy->cur = policy->cpuinfo.min_freq;
2245
2246 return 0;
2247}
2248
2249static struct cpufreq_driver intel_cpufreq = {
2250 .flags = CPUFREQ_CONST_LOOPS,
2251 .verify = intel_cpufreq_verify_policy,
2252 .target = intel_cpufreq_target,
2253 .fast_switch = intel_cpufreq_fast_switch,
2254 .init = intel_cpufreq_cpu_init,
2255 .exit = intel_pstate_cpu_exit,
2256 .stop_cpu = intel_cpufreq_stop_cpu,
2257 .name = "intel_cpufreq",
2258};
2259
ee8df89a 2260static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2261
8ca6ce37
RW
2262static bool pid_in_use(void)
2263{
2264 return intel_pstate_driver == &intel_pstate &&
2265 pstate_funcs.update_util == intel_pstate_update_util_pid;
2266}
2267
fb1fe104
RW
2268static void intel_pstate_driver_cleanup(void)
2269{
2270 unsigned int cpu;
2271
2272 get_online_cpus();
2273 for_each_online_cpu(cpu) {
2274 if (all_cpu_data[cpu]) {
2275 if (intel_pstate_driver == &intel_pstate)
2276 intel_pstate_clear_update_util_hook(cpu);
2277
2278 kfree(all_cpu_data[cpu]);
2279 all_cpu_data[cpu] = NULL;
2280 }
2281 }
2282 put_online_cpus();
ee8df89a 2283 intel_pstate_driver = NULL;
fb1fe104
RW
2284}
2285
ee8df89a 2286static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2287{
2288 int ret;
2289
c5a2ee7d
RW
2290 memset(&global, 0, sizeof(global));
2291 global.max_perf_pct = 100;
c3a49c89 2292
ee8df89a 2293 intel_pstate_driver = driver;
fb1fe104
RW
2294 ret = cpufreq_register_driver(intel_pstate_driver);
2295 if (ret) {
2296 intel_pstate_driver_cleanup();
2297 return ret;
2298 }
2299
c5a2ee7d
RW
2300 global.min_perf_pct = min_perf_pct_min();
2301
8ca6ce37 2302 if (pid_in_use())
fb1fe104
RW
2303 intel_pstate_debug_expose_params();
2304
2305 return 0;
2306}
2307
2308static int intel_pstate_unregister_driver(void)
2309{
2310 if (hwp_active)
2311 return -EBUSY;
2312
8ca6ce37 2313 if (pid_in_use())
fb1fe104
RW
2314 intel_pstate_debug_hide_params();
2315
fb1fe104
RW
2316 cpufreq_unregister_driver(intel_pstate_driver);
2317 intel_pstate_driver_cleanup();
2318
2319 return 0;
2320}
2321
2322static ssize_t intel_pstate_show_status(char *buf)
2323{
ee8df89a 2324 if (!intel_pstate_driver)
fb1fe104
RW
2325 return sprintf(buf, "off\n");
2326
2327 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2328 "active" : "passive");
2329}
2330
2331static int intel_pstate_update_status(const char *buf, size_t size)
2332{
2333 int ret;
2334
2335 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2336 return intel_pstate_driver ?
fb1fe104
RW
2337 intel_pstate_unregister_driver() : -EINVAL;
2338
2339 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2340 if (intel_pstate_driver) {
fb1fe104
RW
2341 if (intel_pstate_driver == &intel_pstate)
2342 return 0;
2343
2344 ret = intel_pstate_unregister_driver();
2345 if (ret)
2346 return ret;
2347 }
2348
ee8df89a 2349 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2350 }
2351
2352 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2353 if (intel_pstate_driver) {
0042b2c0 2354 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2355 return 0;
2356
2357 ret = intel_pstate_unregister_driver();
2358 if (ret)
2359 return ret;
2360 }
2361
ee8df89a 2362 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2363 }
2364
2365 return -EINVAL;
2366}
2367
eed43609
JZ
2368static int no_load __initdata;
2369static int no_hwp __initdata;
2370static int hwp_only __initdata;
29327c84 2371static unsigned int force_load __initdata;
6be26498 2372
29327c84 2373static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2374{
016c8150 2375 if (!pstate_funcs.get_max() ||
c410833a
SK
2376 !pstate_funcs.get_min() ||
2377 !pstate_funcs.get_turbo())
b563b4e3
DB
2378 return -ENODEV;
2379
b563b4e3
DB
2380 return 0;
2381}
016c8150 2382
7f7a516e
SP
2383#ifdef CONFIG_ACPI
2384static void intel_pstate_use_acpi_profile(void)
2385{
55395345
RW
2386 switch (acpi_gbl_FADT.preferred_profile) {
2387 case PM_MOBILE:
2388 case PM_TABLET:
2389 case PM_APPLIANCE_PC:
2390 case PM_DESKTOP:
2391 case PM_WORKSTATION:
67dd9bf4 2392 pstate_funcs.update_util = intel_pstate_update_util;
55395345 2393 }
7f7a516e
SP
2394}
2395#else
2396static void intel_pstate_use_acpi_profile(void)
2397{
2398}
2399#endif
2400
29327c84 2401static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2402{
2403 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2404 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2405 pstate_funcs.get_min = funcs->get_min;
2406 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2407 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2408 pstate_funcs.get_val = funcs->get_val;
007bea09 2409 pstate_funcs.get_vid = funcs->get_vid;
67dd9bf4 2410 pstate_funcs.update_util = funcs->update_util;
157386b6 2411
7f7a516e 2412 intel_pstate_use_acpi_profile();
016c8150
DB
2413}
2414
9522a2ff 2415#ifdef CONFIG_ACPI
fbbcdc07 2416
29327c84 2417static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2418{
2419 int i;
2420
2421 for_each_possible_cpu(i) {
2422 acpi_status status;
2423 union acpi_object *pss;
2424 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2425 struct acpi_processor *pr = per_cpu(processors, i);
2426
2427 if (!pr)
2428 continue;
2429
2430 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2431 if (ACPI_FAILURE(status))
2432 continue;
2433
2434 pss = buffer.pointer;
2435 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2436 kfree(pss);
2437 return false;
2438 }
2439
2440 kfree(pss);
2441 }
2442
2443 return true;
2444}
2445
29327c84 2446static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2447{
2448 int i;
2449
2450 for_each_possible_cpu(i) {
2451 struct acpi_processor *pr = per_cpu(processors, i);
2452
2453 if (!pr)
2454 continue;
2455 if (acpi_has_method(pr->handle, "_PPC"))
2456 return true;
2457 }
2458 return false;
2459}
2460
2461enum {
2462 PSS,
2463 PPC,
2464};
2465
fbbcdc07
AH
2466struct hw_vendor_info {
2467 u16 valid;
2468 char oem_id[ACPI_OEM_ID_SIZE];
2469 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2470 int oem_pwr_table;
fbbcdc07
AH
2471};
2472
2473/* Hardware vendor-specific info that has its own power management modes */
29327c84 2474static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2475 {1, "HP ", "ProLiant", PSS},
2476 {1, "ORACLE", "X4-2 ", PPC},
2477 {1, "ORACLE", "X4-2L ", PPC},
2478 {1, "ORACLE", "X4-2B ", PPC},
2479 {1, "ORACLE", "X3-2 ", PPC},
2480 {1, "ORACLE", "X3-2L ", PPC},
2481 {1, "ORACLE", "X3-2B ", PPC},
2482 {1, "ORACLE", "X4470M2 ", PPC},
2483 {1, "ORACLE", "X4270M3 ", PPC},
2484 {1, "ORACLE", "X4270M2 ", PPC},
2485 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2486 {1, "ORACLE", "X4170 M3", PPC},
2487 {1, "ORACLE", "X4275 M3", PPC},
2488 {1, "ORACLE", "X6-2 ", PPC},
2489 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2490 {0, "", ""},
2491};
2492
29327c84 2493static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2494{
2495 struct acpi_table_header hdr;
2496 struct hw_vendor_info *v_info;
2f86dc4c
DB
2497 const struct x86_cpu_id *id;
2498 u64 misc_pwr;
2499
2500 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2501 if (id) {
2502 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2503 if ( misc_pwr & (1 << 8))
2504 return true;
2505 }
fbbcdc07 2506
c410833a
SK
2507 if (acpi_disabled ||
2508 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2509 return false;
2510
2511 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2512 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2513 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2514 ACPI_OEM_TABLE_ID_SIZE))
2515 switch (v_info->oem_pwr_table) {
2516 case PSS:
2517 return intel_pstate_no_acpi_pss();
2518 case PPC:
aa4ea34d
EZ
2519 return intel_pstate_has_acpi_ppc() &&
2520 (!force_load);
966916ea 2521 }
fbbcdc07
AH
2522 }
2523
2524 return false;
2525}
d0ea59e1
RW
2526
2527static void intel_pstate_request_control_from_smm(void)
2528{
2529 /*
2530 * It may be unsafe to request P-states control from SMM if _PPC support
2531 * has not been enabled.
2532 */
2533 if (acpi_ppc)
2534 acpi_processor_pstate_control();
2535}
fbbcdc07
AH
2536#else /* CONFIG_ACPI not enabled */
2537static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2538static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2539static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2540#endif /* CONFIG_ACPI */
2541
7791e4aa
SP
2542static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2543 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2544 {}
2545};
2546
93f0822d
DB
2547static int __init intel_pstate_init(void)
2548{
eb5139d1 2549 int rc;
93f0822d 2550
6be26498
DB
2551 if (no_load)
2552 return -ENODEV;
2553
eb5139d1 2554 if (x86_match_cpu(hwp_support_ids)) {
2f49afc2 2555 copy_cpu_funcs(&core_funcs);
eb5139d1 2556 if (no_hwp) {
67dd9bf4 2557 pstate_funcs.update_util = intel_pstate_update_util;
eb5139d1
RW
2558 } else {
2559 hwp_active++;
2560 intel_pstate.attr = hwp_cpufreq_attrs;
67dd9bf4 2561 pstate_funcs.update_util = intel_pstate_update_util_hwp;
eb5139d1
RW
2562 goto hwp_cpu_matched;
2563 }
2564 } else {
2565 const struct x86_cpu_id *id;
7791e4aa 2566
eb5139d1
RW
2567 id = x86_match_cpu(intel_pstate_cpu_ids);
2568 if (!id)
2569 return -ENODEV;
93f0822d 2570
2f49afc2 2571 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
eb5139d1 2572 }
016c8150 2573
b563b4e3
DB
2574 if (intel_pstate_msrs_not_valid())
2575 return -ENODEV;
2576
7791e4aa
SP
2577hwp_cpu_matched:
2578 /*
2579 * The Intel pstate driver will be ignored if the platform
2580 * firmware has its own power management modes.
2581 */
2582 if (intel_pstate_platform_pwr_mgmt_exists())
2583 return -ENODEV;
2584
fb1fe104
RW
2585 if (!hwp_active && hwp_only)
2586 return -ENOTSUPP;
2587
4836df17 2588 pr_info("Intel P-state driver initializing\n");
93f0822d 2589
b57ffac5 2590 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2591 if (!all_cpu_data)
2592 return -ENOMEM;
93f0822d 2593
d0ea59e1
RW
2594 intel_pstate_request_control_from_smm();
2595
93f0822d 2596 intel_pstate_sysfs_expose_params();
b69880f9 2597
0c30b65b 2598 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2599 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2600 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2601 if (rc)
2602 return rc;
366430b5 2603
7791e4aa 2604 if (hwp_active)
4836df17 2605 pr_info("HWP enabled\n");
7791e4aa 2606
fb1fe104 2607 return 0;
93f0822d
DB
2608}
2609device_initcall(intel_pstate_init);
2610
6be26498
DB
2611static int __init intel_pstate_setup(char *str)
2612{
2613 if (!str)
2614 return -EINVAL;
2615
001c76f0 2616 if (!strcmp(str, "disable")) {
6be26498 2617 no_load = 1;
001c76f0
RW
2618 } else if (!strcmp(str, "passive")) {
2619 pr_info("Passive mode enabled\n");
ee8df89a 2620 default_driver = &intel_cpufreq;
001c76f0
RW
2621 no_hwp = 1;
2622 }
539342f6 2623 if (!strcmp(str, "no_hwp")) {
4836df17 2624 pr_info("HWP disabled\n");
2f86dc4c 2625 no_hwp = 1;
539342f6 2626 }
aa4ea34d
EZ
2627 if (!strcmp(str, "force"))
2628 force_load = 1;
d64c3b0b
KCA
2629 if (!strcmp(str, "hwp_only"))
2630 hwp_only = 1;
eae48f04
SP
2631 if (!strcmp(str, "per_cpu_perf_limits"))
2632 per_cpu_limits = true;
9522a2ff
SP
2633
2634#ifdef CONFIG_ACPI
2635 if (!strcmp(str, "support_acpi_ppc"))
2636 acpi_ppc = true;
2637#endif
2638
6be26498
DB
2639 return 0;
2640}
2641early_param("intel_pstate", intel_pstate_setup);
2642
93f0822d
DB
2643MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2644MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2645MODULE_LICENSE("GPL");