]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Clean up after performance governor changes
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
eabd22c6
RW
40#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
42
001c76f0 43#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
1b72e7fd 44#define INTEL_CPUFREQ_TRANSITION_DELAY 500
001c76f0 45
9522a2ff
SP
46#ifdef CONFIG_ACPI
47#include <acpi/processor.h>
17669006 48#include <acpi/cppc_acpi.h>
9522a2ff
SP
49#endif
50
f0fe3cd7 51#define FRAC_BITS 8
93f0822d
DB
52#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 54
a1c9787d
RW
55#define EXT_BITS 6
56#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
57#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 59
93f0822d
DB
60static inline int32_t mul_fp(int32_t x, int32_t y)
61{
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63}
64
7180dddf 65static inline int32_t div_fp(s64 x, s64 y)
93f0822d 66{
7180dddf 67 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
68}
69
d022a65e
DB
70static inline int ceiling_fp(int32_t x)
71{
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79}
80
ff35f02e
RW
81static inline int32_t percent_fp(int percent)
82{
83 return div_fp(percent, 100);
84}
85
a1c9787d
RW
86static inline u64 mul_ext_fp(u64 x, u64 y)
87{
88 return (x * y) >> EXT_FRAC_BITS;
89}
90
91static inline u64 div_ext_fp(u64 x, u64 y)
92{
93 return div64_u64(x << EXT_FRAC_BITS, y);
94}
95
e4c204ce
RW
96static inline int32_t percent_ext_fp(int percent)
97{
98 return div_ext_fp(percent, 100);
99}
100
13ad7701
SP
101/**
102 * struct sample - Store performance sample
a1c9787d 103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 106 * P state. This can be different than core_avg_perf
13ad7701
SP
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
113 * current sample
13ad7701
SP
114 * @time: Current time from scheduler
115 *
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
118 */
93f0822d 119struct sample {
a1c9787d 120 int32_t core_avg_perf;
157386b6 121 int32_t busy_scaled;
93f0822d
DB
122 u64 aperf;
123 u64 mperf;
4055fad3 124 u64 tsc;
a4675fbc 125 u64 time;
93f0822d
DB
126};
127
13ad7701
SP
128/**
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
137 * frequency units
138 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
141 *
142 * Stores the per cpu model P state limits and current P state.
143 */
93f0822d
DB
144struct pstate_data {
145 int current_pstate;
146 int min_pstate;
147 int max_pstate;
3bcc6fa9 148 int max_pstate_physical;
b27580b0 149 int scaling;
93f0822d 150 int turbo_pstate;
001c76f0
RW
151 unsigned int max_freq;
152 unsigned int turbo_freq;
93f0822d
DB
153};
154
13ad7701
SP
155/**
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
158 * the lowest P state
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
163 *
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
167 */
007bea09 168struct vid_data {
21855ff5
DB
169 int min;
170 int max;
171 int turbo;
007bea09
DB
172 int32_t ratio;
173};
174
13ad7701
SP
175/**
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
184 *
185 * Stores PID coefficients and last error for PID controller.
186 */
93f0822d
DB
187struct _pid {
188 int setpoint;
189 int32_t integral;
190 int32_t p_gain;
191 int32_t i_gain;
192 int32_t d_gain;
193 int deadband;
d253d2a5 194 int32_t last_err;
93f0822d
DB
195};
196
c5a2ee7d
RW
197/**
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
205 * P-state capacity.
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
207 * P-state capacity.
208 */
209struct global_params {
210 bool no_turbo;
211 bool turbo_disabled;
212 int max_perf_pct;
213 int min_perf_pct;
eae48f04
SP
214};
215
13ad7701
SP
216/**
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
2f1d407a 219 * @policy: CPUFreq policy value
13ad7701 220 * @update_util: CPUFreq utility callback information
4578ee7e 221 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
13ad7701
SP
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
232 * current sample
233 * @sample: Storage for storing last Sample data
1a4fe38a
SP
234 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
235 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
9522a2ff
SP
236 * @acpi_perf_data: Stores ACPI perf information read from _PSS
237 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
238 * @epp_powersave: Last saved HWP energy performance preference
239 * (EPP) or energy performance bias (EPB),
240 * when policy switched to performance
8442885f 241 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
242 * @epp_default: Power on default HWP energy performance
243 * preference/bias
244 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
245 * operation
13ad7701
SP
246 *
247 * This structure stores per CPU instance data for all CPUs.
248 */
93f0822d
DB
249struct cpudata {
250 int cpu;
251
2f1d407a 252 unsigned int policy;
a4675fbc 253 struct update_util_data update_util;
4578ee7e 254 bool update_util_set;
93f0822d 255
93f0822d 256 struct pstate_data pstate;
007bea09 257 struct vid_data vid;
93f0822d 258 struct _pid pid;
93f0822d 259
09c448d3 260 u64 last_update;
a4675fbc 261 u64 last_sample_time;
93f0822d
DB
262 u64 prev_aperf;
263 u64 prev_mperf;
4055fad3 264 u64 prev_tsc;
63d1d656 265 u64 prev_cummulative_iowait;
d37e2b76 266 struct sample sample;
1a4fe38a
SP
267 int32_t min_perf_ratio;
268 int32_t max_perf_ratio;
9522a2ff
SP
269#ifdef CONFIG_ACPI
270 struct acpi_processor_performance acpi_perf_data;
271 bool valid_pss_table;
272#endif
09c448d3 273 unsigned int iowait_boost;
984edbdc 274 s16 epp_powersave;
8442885f 275 s16 epp_policy;
984edbdc
SP
276 s16 epp_default;
277 s16 epp_saved;
93f0822d
DB
278};
279
280static struct cpudata **all_cpu_data;
13ad7701
SP
281
282/**
3954517e 283 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
284 * @sample_rate_ms: PID calculation sample rate in ms
285 * @sample_rate_ns: Sample rate calculation in ns
286 * @deadband: PID deadband
287 * @setpoint: PID Setpoint
288 * @p_gain_pct: PID proportional gain
289 * @i_gain_pct: PID integral gain
290 * @d_gain_pct: PID derivative gain
291 *
292 * Stores per CPU model static PID configuration data.
293 */
93f0822d
DB
294struct pstate_adjust_policy {
295 int sample_rate_ms;
a4675fbc 296 s64 sample_rate_ns;
93f0822d
DB
297 int deadband;
298 int setpoint;
299 int p_gain_pct;
300 int d_gain_pct;
301 int i_gain_pct;
302};
303
13ad7701
SP
304/**
305 * struct pstate_funcs - Per CPU model specific callbacks
306 * @get_max: Callback to get maximum non turbo effective P state
307 * @get_max_physical: Callback to get maximum non turbo physical P state
308 * @get_min: Callback to get minimum P state
309 * @get_turbo: Callback to get turbo P state
310 * @get_scaling: Callback to get frequency scaling factor
311 * @get_val: Callback to convert P state to actual MSR write value
312 * @get_vid: Callback to get VID data for Atom platforms
67dd9bf4 313 * @update_util: Active mode utilization update callback.
13ad7701
SP
314 *
315 * Core and Atom CPU models have different way to get P State limits. This
316 * structure is used to store those callbacks.
317 */
016c8150
DB
318struct pstate_funcs {
319 int (*get_max)(void);
3bcc6fa9 320 int (*get_max_physical)(void);
016c8150
DB
321 int (*get_min)(void);
322 int (*get_turbo)(void);
b27580b0 323 int (*get_scaling)(void);
fdfdb2b1 324 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 325 void (*get_vid)(struct cpudata *);
67dd9bf4
RW
326 void (*update_util)(struct update_util_data *data, u64 time,
327 unsigned int flags);
93f0822d
DB
328};
329
4a7cb7a9 330static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
331static struct pstate_adjust_policy pid_params __read_mostly = {
332 .sample_rate_ms = 10,
333 .sample_rate_ns = 10 * NSEC_PER_MSEC,
334 .deadband = 0,
335 .setpoint = 97,
336 .p_gain_pct = 20,
337 .d_gain_pct = 0,
338 .i_gain_pct = 0,
339};
340
4a7cb7a9 341static int hwp_active __read_mostly;
eae48f04 342static bool per_cpu_limits __read_mostly;
016c8150 343
ee8df89a 344static struct cpufreq_driver *intel_pstate_driver __read_mostly;
0c30b65b 345
9522a2ff
SP
346#ifdef CONFIG_ACPI
347static bool acpi_ppc;
348#endif
13ad7701 349
c5a2ee7d 350static struct global_params global;
93f0822d 351
0c30b65b 352static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
353static DEFINE_MUTEX(intel_pstate_limits_lock);
354
9522a2ff 355#ifdef CONFIG_ACPI
2b3ec765
SP
356
357static bool intel_pstate_get_ppc_enable_status(void)
358{
359 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
360 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
361 return true;
362
363 return acpi_ppc;
364}
365
17669006
RW
366#ifdef CONFIG_ACPI_CPPC_LIB
367
368/* The work item is needed to avoid CPU hotplug locking issues */
369static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
370{
371 sched_set_itmt_support();
372}
373
374static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
375
376static void intel_pstate_set_itmt_prio(int cpu)
377{
378 struct cppc_perf_caps cppc_perf;
379 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return;
385
386 /*
387 * The priorities can be set regardless of whether or not
388 * sched_set_itmt_support(true) has been called and it is valid to
389 * update them at any time after it has been called.
390 */
391 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
392
393 if (max_highest_perf <= min_highest_perf) {
394 if (cppc_perf.highest_perf > max_highest_perf)
395 max_highest_perf = cppc_perf.highest_perf;
396
397 if (cppc_perf.highest_perf < min_highest_perf)
398 min_highest_perf = cppc_perf.highest_perf;
399
400 if (max_highest_perf > min_highest_perf) {
401 /*
402 * This code can be run during CPU online under the
403 * CPU hotplug locks, so sched_set_itmt_support()
404 * cannot be called from here. Queue up a work item
405 * to invoke it.
406 */
407 schedule_work(&sched_itmt_work);
408 }
409 }
410}
411#else
412static void intel_pstate_set_itmt_prio(int cpu)
413{
414}
415#endif
416
9522a2ff
SP
417static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418{
419 struct cpudata *cpu;
9522a2ff
SP
420 int ret;
421 int i;
422
17669006
RW
423 if (hwp_active) {
424 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 425 return;
17669006 426 }
e59a8f7f 427
2b3ec765 428 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
429 return;
430
431 cpu = all_cpu_data[policy->cpu];
432
433 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 policy->cpu);
435 if (ret)
436 return;
437
438 /*
439 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 * guarantee that the states returned by it map to the states in our
441 * list directly.
442 */
443 if (cpu->acpi_perf_data.control_register.space_id !=
444 ACPI_ADR_SPACE_FIXED_HARDWARE)
445 goto err;
446
447 /*
448 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 * usual without taking _PSS into account
450 */
451 if (cpu->acpi_perf_data.state_count < 2)
452 goto err;
453
454 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
457 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 (u32) cpu->acpi_perf_data.states[i].power,
460 (u32) cpu->acpi_perf_data.states[i].control);
461 }
462
463 /*
464 * The _PSS table doesn't contain whole turbo frequency range.
465 * This just contains +1 MHZ above the max non turbo frequency,
466 * with control value corresponding to max turbo ratio. But
467 * when cpufreq set policy is called, it will call with this
468 * max frequency, which will cause a reduced performance as
469 * this driver uses real max turbo frequency as the max
470 * frequency. So correct this frequency in _PSS table to
b00345d1 471 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
472 * Also need to convert to MHz as _PSS freq is in MHz.
473 */
7de32556 474 if (!global.turbo_disabled)
9522a2ff
SP
475 cpu->acpi_perf_data.states[0].core_frequency =
476 policy->cpuinfo.max_freq / 1000;
477 cpu->valid_pss_table = true;
6cacd115 478 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
479
480 return;
481
482 err:
483 cpu->valid_pss_table = false;
484 acpi_processor_unregister_performance(policy->cpu);
485}
486
487static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488{
489 struct cpudata *cpu;
490
491 cpu = all_cpu_data[policy->cpu];
492 if (!cpu->valid_pss_table)
493 return;
494
495 acpi_processor_unregister_performance(policy->cpu);
496}
9522a2ff 497#else
7a3ba767 498static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
499{
500}
501
7a3ba767 502static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
503{
504}
505#endif
506
d253d2a5 507static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 508{
d253d2a5 509 signed int result;
93f0822d
DB
510 int32_t pterm, dterm, fp_error;
511 int32_t integral_limit;
512
b54a0dfd 513 fp_error = pid->setpoint - busy;
93f0822d 514
b54a0dfd 515 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
516 return 0;
517
518 pterm = mul_fp(pid->p_gain, fp_error);
519
520 pid->integral += fp_error;
521
e0d4c8f8
KCA
522 /*
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
527 *
528 * The value of 30 was chosen through experimentation.
529 */
93f0822d
DB
530 integral_limit = int_tofp(30);
531 if (pid->integral > integral_limit)
532 pid->integral = integral_limit;
533 if (pid->integral < -integral_limit)
534 pid->integral = -integral_limit;
535
d253d2a5
BS
536 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 pid->last_err = fp_error;
93f0822d
DB
538
539 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 540 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
541 return (signed int)fp_toint(result);
542}
543
ff35f02e 544static inline void intel_pstate_pid_reset(struct cpudata *cpu)
93f0822d 545{
ff35f02e 546 struct _pid *pid = &cpu->pid;
93f0822d 547
ff35f02e
RW
548 pid->p_gain = percent_fp(pid_params.p_gain_pct);
549 pid->d_gain = percent_fp(pid_params.d_gain_pct);
550 pid->i_gain = percent_fp(pid_params.i_gain_pct);
551 pid->setpoint = int_tofp(pid_params.setpoint);
552 pid->last_err = pid->setpoint - int_tofp(100);
553 pid->deadband = int_tofp(pid_params.deadband);
554 pid->integral = 0;
93f0822d
DB
555}
556
4521e1a0
GM
557static inline void update_turbo_state(void)
558{
559 u64 misc_en;
560 struct cpudata *cpu;
561
562 cpu = all_cpu_data[0];
563 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 564 global.turbo_disabled =
4521e1a0
GM
565 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567}
568
c5a2ee7d
RW
569static int min_perf_pct_min(void)
570{
571 struct cpudata *cpu = all_cpu_data[0];
57caf4ec 572 int turbo_pstate = cpu->pstate.turbo_pstate;
c5a2ee7d 573
57caf4ec
RW
574 return turbo_pstate ?
575 DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
c5a2ee7d
RW
576}
577
8442885f
SP
578static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579{
580 u64 epb;
581 int ret;
582
583 if (!static_cpu_has(X86_FEATURE_EPB))
584 return -ENXIO;
585
586 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 if (ret)
588 return (s16)ret;
589
590 return (s16)(epb & 0x0f);
591}
592
593static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594{
595 s16 epp;
596
984edbdc
SP
597 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 /*
599 * When hwp_req_data is 0, means that caller didn't read
600 * MSR_HWP_REQUEST, so need to read and get EPP.
601 */
602 if (!hwp_req_data) {
603 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 &hwp_req_data);
605 if (epp)
606 return epp;
607 }
8442885f 608 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 609 } else {
8442885f
SP
610 /* When there is no EPP present, HWP uses EPB settings */
611 epp = intel_pstate_get_epb(cpu_data);
984edbdc 612 }
8442885f
SP
613
614 return epp;
615}
616
984edbdc 617static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
618{
619 u64 epb;
984edbdc 620 int ret;
8442885f
SP
621
622 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 623 return -ENXIO;
8442885f 624
984edbdc
SP
625 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return ret;
8442885f
SP
628
629 epb = (epb & ~0x0f) | pref;
630 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
631
632 return 0;
8442885f
SP
633}
634
984edbdc
SP
635/*
636 * EPP/EPB display strings corresponding to EPP index in the
637 * energy_perf_strings[]
638 * index String
639 *-------------------------------------
640 * 0 default
641 * 1 performance
642 * 2 balance_performance
643 * 3 balance_power
644 * 4 power
645 */
646static const char * const energy_perf_strings[] = {
647 "default",
648 "performance",
649 "balance_performance",
650 "balance_power",
651 "power",
652 NULL
653};
654
655static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
656{
657 s16 epp;
658 int index = -EINVAL;
659
660 epp = intel_pstate_get_epp(cpu_data, 0);
661 if (epp < 0)
662 return epp;
663
664 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 /*
666 * Range:
667 * 0x00-0x3F : Performance
668 * 0x40-0x7F : Balance performance
669 * 0x80-0xBF : Balance power
670 * 0xC0-0xFF : Power
671 * The EPP is a 8 bit value, but our ranges restrict the
672 * value which can be set. Here only using top two bits
673 * effectively.
674 */
675 index = (epp >> 6) + 1;
676 } else if (static_cpu_has(X86_FEATURE_EPB)) {
677 /*
678 * Range:
679 * 0x00-0x03 : Performance
680 * 0x04-0x07 : Balance performance
681 * 0x08-0x0B : Balance power
682 * 0x0C-0x0F : Power
683 * The EPB is a 4 bit value, but our ranges restrict the
684 * value which can be set. Here only using top two bits
685 * effectively.
686 */
687 index = (epp >> 2) + 1;
688 }
689
690 return index;
691}
692
693static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
694 int pref_index)
695{
696 int epp = -EINVAL;
697 int ret;
698
699 if (!pref_index)
700 epp = cpu_data->epp_default;
701
702 mutex_lock(&intel_pstate_limits_lock);
703
704 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
705 u64 value;
706
707 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
708 if (ret)
709 goto return_pref;
710
711 value &= ~GENMASK_ULL(31, 24);
712
713 /*
714 * If epp is not default, convert from index into
715 * energy_perf_strings to epp value, by shifting 6
716 * bits left to use only top two bits in epp.
717 * The resultant epp need to shifted by 24 bits to
718 * epp position in MSR_HWP_REQUEST.
719 */
720 if (epp == -EINVAL)
721 epp = (pref_index - 1) << 6;
722
723 value |= (u64)epp << 24;
724 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
725 } else {
726 if (epp == -EINVAL)
727 epp = (pref_index - 1) << 2;
728 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
729 }
730return_pref:
731 mutex_unlock(&intel_pstate_limits_lock);
732
733 return ret;
734}
735
736static ssize_t show_energy_performance_available_preferences(
737 struct cpufreq_policy *policy, char *buf)
738{
739 int i = 0;
740 int ret = 0;
741
742 while (energy_perf_strings[i] != NULL)
743 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
744
745 ret += sprintf(&buf[ret], "\n");
746
747 return ret;
748}
749
750cpufreq_freq_attr_ro(energy_performance_available_preferences);
751
752static ssize_t store_energy_performance_preference(
753 struct cpufreq_policy *policy, const char *buf, size_t count)
754{
755 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
756 char str_preference[21];
757 int ret, i = 0;
758
759 ret = sscanf(buf, "%20s", str_preference);
760 if (ret != 1)
761 return -EINVAL;
762
763 while (energy_perf_strings[i] != NULL) {
764 if (!strcmp(str_preference, energy_perf_strings[i])) {
765 intel_pstate_set_energy_pref_index(cpu_data, i);
766 return count;
767 }
768 ++i;
769 }
770
771 return -EINVAL;
772}
773
774static ssize_t show_energy_performance_preference(
775 struct cpufreq_policy *policy, char *buf)
776{
777 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
778 int preference;
779
780 preference = intel_pstate_get_energy_pref_index(cpu_data);
781 if (preference < 0)
782 return preference;
783
784 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
785}
786
787cpufreq_freq_attr_rw(energy_performance_preference);
788
789static struct freq_attr *hwp_cpufreq_attrs[] = {
790 &energy_performance_preference,
791 &energy_performance_available_preferences,
792 NULL,
793};
794
1a4fe38a
SP
795static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
796 int *current_max)
2f86dc4c 797{
1a4fe38a 798 u64 cap;
74da56ce 799
2bfc4cbb 800 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
2bfc4cbb 801 if (global.no_turbo)
1a4fe38a 802 *current_max = HWP_GUARANTEED_PERF(cap);
2bfc4cbb 803 else
1a4fe38a
SP
804 *current_max = HWP_HIGHEST_PERF(cap);
805
806 *phy_max = HWP_HIGHEST_PERF(cap);
807}
808
809static void intel_pstate_hwp_set(unsigned int cpu)
810{
811 struct cpudata *cpu_data = all_cpu_data[cpu];
812 int max, min;
813 u64 value;
814 s16 epp;
815
816 max = cpu_data->max_perf_ratio;
817 min = cpu_data->min_perf_ratio;
eae48f04 818
2bfc4cbb
RW
819 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820 min = max;
3f8ed54a 821
2bfc4cbb 822 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
2f86dc4c 823
2bfc4cbb
RW
824 value &= ~HWP_MIN_PERF(~0L);
825 value |= HWP_MIN_PERF(min);
8442885f 826
2bfc4cbb
RW
827 value &= ~HWP_MAX_PERF(~0L);
828 value |= HWP_MAX_PERF(max);
8442885f 829
2bfc4cbb
RW
830 if (cpu_data->epp_policy == cpu_data->policy)
831 goto skip_epp;
8442885f 832
2bfc4cbb 833 cpu_data->epp_policy = cpu_data->policy;
984edbdc 834
2bfc4cbb
RW
835 if (cpu_data->epp_saved >= 0) {
836 epp = cpu_data->epp_saved;
837 cpu_data->epp_saved = -EINVAL;
838 goto update_epp;
839 }
8442885f 840
2bfc4cbb
RW
841 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
842 epp = intel_pstate_get_epp(cpu_data, value);
843 cpu_data->epp_powersave = epp;
844 /* If EPP read was failed, then don't try to write */
845 if (epp < 0)
846 goto skip_epp;
8442885f 847
2bfc4cbb
RW
848 epp = 0;
849 } else {
850 /* skip setting EPP, when saved value is invalid */
851 if (cpu_data->epp_powersave < 0)
852 goto skip_epp;
8442885f 853
2bfc4cbb
RW
854 /*
855 * No need to restore EPP when it is not zero. This
856 * means:
857 * - Policy is not changed
858 * - user has manually changed
859 * - Error reading EPB
860 */
861 epp = intel_pstate_get_epp(cpu_data, value);
862 if (epp)
863 goto skip_epp;
8442885f 864
2bfc4cbb
RW
865 epp = cpu_data->epp_powersave;
866 }
984edbdc 867update_epp:
2bfc4cbb
RW
868 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
869 value &= ~GENMASK_ULL(31, 24);
870 value |= (u64)epp << 24;
871 } else {
872 intel_pstate_set_epb(cpu, epp);
2f86dc4c 873 }
2bfc4cbb
RW
874skip_epp:
875 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
41cfd64c 876}
2f86dc4c 877
984edbdc
SP
878static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
879{
880 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
881
882 if (!hwp_active)
883 return 0;
884
885 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
886
887 return 0;
888}
889
8442885f
SP
890static int intel_pstate_resume(struct cpufreq_policy *policy)
891{
892 if (!hwp_active)
893 return 0;
894
aa439248
RW
895 mutex_lock(&intel_pstate_limits_lock);
896
8442885f 897 all_cpu_data[policy->cpu]->epp_policy = 0;
2bfc4cbb 898 intel_pstate_hwp_set(policy->cpu);
aa439248
RW
899
900 mutex_unlock(&intel_pstate_limits_lock);
901
5f98ced1 902 return 0;
8442885f
SP
903}
904
111b8b3f 905static void intel_pstate_update_policies(void)
41cfd64c 906{
111b8b3f
RW
907 int cpu;
908
909 for_each_possible_cpu(cpu)
910 cpufreq_update_policy(cpu);
2f86dc4c
DB
911}
912
93f0822d
DB
913/************************** debugfs begin ************************/
914static int pid_param_set(void *data, u64 val)
915{
4ddd0146
RW
916 unsigned int cpu;
917
93f0822d 918 *(u32 *)data = val;
6e7408ac 919 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
920 for_each_possible_cpu(cpu)
921 if (all_cpu_data[cpu])
ff35f02e 922 intel_pstate_pid_reset(all_cpu_data[cpu]);
4ddd0146 923
93f0822d
DB
924 return 0;
925}
845c1cbe 926
93f0822d
DB
927static int pid_param_get(void *data, u64 *val)
928{
929 *val = *(u32 *)data;
930 return 0;
931}
2d8d1f18 932DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 933
fb1fe104
RW
934static struct dentry *debugfs_parent;
935
93f0822d
DB
936struct pid_param {
937 char *name;
938 void *value;
fb1fe104 939 struct dentry *dentry;
93f0822d
DB
940};
941
942static struct pid_param pid_files[] = {
fb1fe104
RW
943 {"sample_rate_ms", &pid_params.sample_rate_ms, },
944 {"d_gain_pct", &pid_params.d_gain_pct, },
945 {"i_gain_pct", &pid_params.i_gain_pct, },
946 {"deadband", &pid_params.deadband, },
947 {"setpoint", &pid_params.setpoint, },
948 {"p_gain_pct", &pid_params.p_gain_pct, },
949 {NULL, NULL, }
93f0822d
DB
950};
951
fb1fe104 952static void intel_pstate_debug_expose_params(void)
93f0822d 953{
fb1fe104 954 int i;
93f0822d
DB
955
956 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
957 if (IS_ERR_OR_NULL(debugfs_parent))
958 return;
fb1fe104
RW
959
960 for (i = 0; pid_files[i].name; i++) {
961 struct dentry *dentry;
962
963 dentry = debugfs_create_file(pid_files[i].name, 0660,
964 debugfs_parent, pid_files[i].value,
965 &fops_pid_param);
966 if (!IS_ERR(dentry))
967 pid_files[i].dentry = dentry;
93f0822d
DB
968 }
969}
970
fb1fe104
RW
971static void intel_pstate_debug_hide_params(void)
972{
973 int i;
974
975 if (IS_ERR_OR_NULL(debugfs_parent))
976 return;
977
978 for (i = 0; pid_files[i].name; i++) {
979 debugfs_remove(pid_files[i].dentry);
980 pid_files[i].dentry = NULL;
93f0822d 981 }
fb1fe104
RW
982
983 debugfs_remove(debugfs_parent);
984 debugfs_parent = NULL;
93f0822d
DB
985}
986
987/************************** debugfs end ************************/
988
989/************************** sysfs begin ************************/
990#define show_one(file_name, object) \
991 static ssize_t show_##file_name \
992 (struct kobject *kobj, struct attribute *attr, char *buf) \
993 { \
7de32556 994 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
995 }
996
fb1fe104
RW
997static ssize_t intel_pstate_show_status(char *buf);
998static int intel_pstate_update_status(const char *buf, size_t size);
999
1000static ssize_t show_status(struct kobject *kobj,
1001 struct attribute *attr, char *buf)
1002{
1003 ssize_t ret;
1004
1005 mutex_lock(&intel_pstate_driver_lock);
1006 ret = intel_pstate_show_status(buf);
1007 mutex_unlock(&intel_pstate_driver_lock);
1008
1009 return ret;
1010}
1011
1012static ssize_t store_status(struct kobject *a, struct attribute *b,
1013 const char *buf, size_t count)
1014{
1015 char *p = memchr(buf, '\n', count);
1016 int ret;
1017
1018 mutex_lock(&intel_pstate_driver_lock);
1019 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1020 mutex_unlock(&intel_pstate_driver_lock);
1021
1022 return ret < 0 ? ret : count;
1023}
1024
d01b1f48
KCA
1025static ssize_t show_turbo_pct(struct kobject *kobj,
1026 struct attribute *attr, char *buf)
1027{
1028 struct cpudata *cpu;
1029 int total, no_turbo, turbo_pct;
1030 uint32_t turbo_fp;
1031
0c30b65b
RW
1032 mutex_lock(&intel_pstate_driver_lock);
1033
ee8df89a 1034 if (!intel_pstate_driver) {
0c30b65b
RW
1035 mutex_unlock(&intel_pstate_driver_lock);
1036 return -EAGAIN;
1037 }
1038
d01b1f48
KCA
1039 cpu = all_cpu_data[0];
1040
1041 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1042 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1043 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1044 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1045
1046 mutex_unlock(&intel_pstate_driver_lock);
1047
d01b1f48
KCA
1048 return sprintf(buf, "%u\n", turbo_pct);
1049}
1050
0522424e
KCA
1051static ssize_t show_num_pstates(struct kobject *kobj,
1052 struct attribute *attr, char *buf)
1053{
1054 struct cpudata *cpu;
1055 int total;
1056
0c30b65b
RW
1057 mutex_lock(&intel_pstate_driver_lock);
1058
ee8df89a 1059 if (!intel_pstate_driver) {
0c30b65b
RW
1060 mutex_unlock(&intel_pstate_driver_lock);
1061 return -EAGAIN;
1062 }
1063
0522424e
KCA
1064 cpu = all_cpu_data[0];
1065 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1066
1067 mutex_unlock(&intel_pstate_driver_lock);
1068
0522424e
KCA
1069 return sprintf(buf, "%u\n", total);
1070}
1071
4521e1a0
GM
1072static ssize_t show_no_turbo(struct kobject *kobj,
1073 struct attribute *attr, char *buf)
1074{
1075 ssize_t ret;
1076
0c30b65b
RW
1077 mutex_lock(&intel_pstate_driver_lock);
1078
ee8df89a 1079 if (!intel_pstate_driver) {
0c30b65b
RW
1080 mutex_unlock(&intel_pstate_driver_lock);
1081 return -EAGAIN;
1082 }
1083
4521e1a0 1084 update_turbo_state();
7de32556
RW
1085 if (global.turbo_disabled)
1086 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1087 else
7de32556 1088 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1089
0c30b65b
RW
1090 mutex_unlock(&intel_pstate_driver_lock);
1091
4521e1a0
GM
1092 return ret;
1093}
1094
93f0822d 1095static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1096 const char *buf, size_t count)
93f0822d
DB
1097{
1098 unsigned int input;
1099 int ret;
845c1cbe 1100
93f0822d
DB
1101 ret = sscanf(buf, "%u", &input);
1102 if (ret != 1)
1103 return -EINVAL;
4521e1a0 1104
0c30b65b
RW
1105 mutex_lock(&intel_pstate_driver_lock);
1106
ee8df89a 1107 if (!intel_pstate_driver) {
0c30b65b
RW
1108 mutex_unlock(&intel_pstate_driver_lock);
1109 return -EAGAIN;
1110 }
1111
a410c03d
SP
1112 mutex_lock(&intel_pstate_limits_lock);
1113
4521e1a0 1114 update_turbo_state();
7de32556 1115 if (global.turbo_disabled) {
4836df17 1116 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1117 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1118 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1119 return -EPERM;
dd5fbf70 1120 }
2f86dc4c 1121
7de32556 1122 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1123
c5a2ee7d
RW
1124 if (global.no_turbo) {
1125 struct cpudata *cpu = all_cpu_data[0];
1126 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1127
1128 /* Squash the global minimum into the permitted range. */
1129 if (global.min_perf_pct > pct)
1130 global.min_perf_pct = pct;
1131 }
1132
cd59b4be
RW
1133 mutex_unlock(&intel_pstate_limits_lock);
1134
7de32556
RW
1135 intel_pstate_update_policies();
1136
0c30b65b
RW
1137 mutex_unlock(&intel_pstate_driver_lock);
1138
93f0822d
DB
1139 return count;
1140}
1141
1142static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1143 const char *buf, size_t count)
93f0822d
DB
1144{
1145 unsigned int input;
1146 int ret;
845c1cbe 1147
93f0822d
DB
1148 ret = sscanf(buf, "%u", &input);
1149 if (ret != 1)
1150 return -EINVAL;
1151
0c30b65b
RW
1152 mutex_lock(&intel_pstate_driver_lock);
1153
ee8df89a 1154 if (!intel_pstate_driver) {
0c30b65b
RW
1155 mutex_unlock(&intel_pstate_driver_lock);
1156 return -EAGAIN;
1157 }
1158
a410c03d
SP
1159 mutex_lock(&intel_pstate_limits_lock);
1160
c5a2ee7d 1161 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1162
cd59b4be
RW
1163 mutex_unlock(&intel_pstate_limits_lock);
1164
7de32556
RW
1165 intel_pstate_update_policies();
1166
0c30b65b
RW
1167 mutex_unlock(&intel_pstate_driver_lock);
1168
93f0822d
DB
1169 return count;
1170}
1171
1172static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1173 const char *buf, size_t count)
93f0822d
DB
1174{
1175 unsigned int input;
1176 int ret;
845c1cbe 1177
93f0822d
DB
1178 ret = sscanf(buf, "%u", &input);
1179 if (ret != 1)
1180 return -EINVAL;
a0475992 1181
0c30b65b
RW
1182 mutex_lock(&intel_pstate_driver_lock);
1183
ee8df89a 1184 if (!intel_pstate_driver) {
0c30b65b
RW
1185 mutex_unlock(&intel_pstate_driver_lock);
1186 return -EAGAIN;
1187 }
1188
a410c03d
SP
1189 mutex_lock(&intel_pstate_limits_lock);
1190
c5a2ee7d
RW
1191 global.min_perf_pct = clamp_t(int, input,
1192 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1193
cd59b4be
RW
1194 mutex_unlock(&intel_pstate_limits_lock);
1195
7de32556
RW
1196 intel_pstate_update_policies();
1197
0c30b65b
RW
1198 mutex_unlock(&intel_pstate_driver_lock);
1199
93f0822d
DB
1200 return count;
1201}
1202
93f0822d
DB
1203show_one(max_perf_pct, max_perf_pct);
1204show_one(min_perf_pct, min_perf_pct);
1205
fb1fe104 1206define_one_global_rw(status);
93f0822d
DB
1207define_one_global_rw(no_turbo);
1208define_one_global_rw(max_perf_pct);
1209define_one_global_rw(min_perf_pct);
d01b1f48 1210define_one_global_ro(turbo_pct);
0522424e 1211define_one_global_ro(num_pstates);
93f0822d
DB
1212
1213static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1214 &status.attr,
93f0822d 1215 &no_turbo.attr,
d01b1f48 1216 &turbo_pct.attr,
0522424e 1217 &num_pstates.attr,
93f0822d
DB
1218 NULL
1219};
1220
1221static struct attribute_group intel_pstate_attr_group = {
1222 .attrs = intel_pstate_attributes,
1223};
93f0822d 1224
317dd50e 1225static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1226{
317dd50e 1227 struct kobject *intel_pstate_kobject;
93f0822d
DB
1228 int rc;
1229
1230 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1231 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1232 if (WARN_ON(!intel_pstate_kobject))
1233 return;
1234
2d8d1f18 1235 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1236 if (WARN_ON(rc))
1237 return;
1238
1239 /*
1240 * If per cpu limits are enforced there are no global limits, so
1241 * return without creating max/min_perf_pct attributes
1242 */
1243 if (per_cpu_limits)
1244 return;
1245
1246 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1247 WARN_ON(rc);
1248
1249 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1250 WARN_ON(rc);
1251
93f0822d 1252}
93f0822d 1253/************************** sysfs end ************************/
2f86dc4c 1254
ba88d433 1255static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1256{
f05c9665 1257 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1258 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1259 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1260
ba88d433 1261 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1262 cpudata->epp_policy = 0;
984edbdc
SP
1263 if (cpudata->epp_default == -EINVAL)
1264 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1265}
1266
6e978b22
SP
1267#define MSR_IA32_POWER_CTL_BIT_EE 19
1268
1269/* Disable energy efficiency optimization */
1270static void intel_pstate_disable_ee(int cpu)
1271{
1272 u64 power_ctl;
1273 int ret;
1274
1275 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1276 if (ret)
1277 return;
1278
1279 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1280 pr_info("Disabling energy efficiency optimization\n");
1281 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1282 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1283 }
1284}
1285
938d21a2 1286static int atom_get_min_pstate(void)
19e77c28
DB
1287{
1288 u64 value;
845c1cbe 1289
92134bdb 1290 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1291 return (value >> 8) & 0x7F;
19e77c28
DB
1292}
1293
938d21a2 1294static int atom_get_max_pstate(void)
19e77c28
DB
1295{
1296 u64 value;
845c1cbe 1297
92134bdb 1298 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1299 return (value >> 16) & 0x7F;
19e77c28 1300}
93f0822d 1301
938d21a2 1302static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1303{
1304 u64 value;
845c1cbe 1305
92134bdb 1306 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1307 return value & 0x7F;
61d8d2ab
DB
1308}
1309
fdfdb2b1 1310static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1311{
1312 u64 val;
1313 int32_t vid_fp;
1314 u32 vid;
1315
144c8e17 1316 val = (u64)pstate << 8;
7de32556 1317 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1318 val |= (u64)1 << 32;
1319
1320 vid_fp = cpudata->vid.min + mul_fp(
1321 int_tofp(pstate - cpudata->pstate.min_pstate),
1322 cpudata->vid.ratio);
1323
1324 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1325 vid = ceiling_fp(vid_fp);
007bea09 1326
21855ff5
DB
1327 if (pstate > cpudata->pstate.max_pstate)
1328 vid = cpudata->vid.turbo;
1329
fdfdb2b1 1330 return val | vid;
007bea09
DB
1331}
1332
1421df63 1333static int silvermont_get_scaling(void)
b27580b0
DB
1334{
1335 u64 value;
1336 int i;
1421df63
PL
1337 /* Defined in Table 35-6 from SDM (Sept 2015) */
1338 static int silvermont_freq_table[] = {
1339 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1340
1341 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1342 i = value & 0x7;
1343 WARN_ON(i > 4);
b27580b0 1344
1421df63
PL
1345 return silvermont_freq_table[i];
1346}
b27580b0 1347
1421df63
PL
1348static int airmont_get_scaling(void)
1349{
1350 u64 value;
1351 int i;
1352 /* Defined in Table 35-10 from SDM (Sept 2015) */
1353 static int airmont_freq_table[] = {
1354 83300, 100000, 133300, 116700, 80000,
1355 93300, 90000, 88900, 87500};
1356
1357 rdmsrl(MSR_FSB_FREQ, value);
1358 i = value & 0xF;
1359 WARN_ON(i > 8);
1360
1361 return airmont_freq_table[i];
b27580b0
DB
1362}
1363
938d21a2 1364static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1365{
1366 u64 value;
1367
92134bdb 1368 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1369 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1370 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1371 cpudata->vid.ratio = div_fp(
1372 cpudata->vid.max - cpudata->vid.min,
1373 int_tofp(cpudata->pstate.max_pstate -
1374 cpudata->pstate.min_pstate));
21855ff5 1375
92134bdb 1376 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1377 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1378}
1379
016c8150 1380static int core_get_min_pstate(void)
93f0822d
DB
1381{
1382 u64 value;
845c1cbe 1383
05e99c8c 1384 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1385 return (value >> 40) & 0xFF;
1386}
1387
3bcc6fa9 1388static int core_get_max_pstate_physical(void)
93f0822d
DB
1389{
1390 u64 value;
845c1cbe 1391
05e99c8c 1392 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1393 return (value >> 8) & 0xFF;
1394}
1395
8fc7554a
SP
1396static int core_get_tdp_ratio(u64 plat_info)
1397{
1398 /* Check how many TDP levels present */
1399 if (plat_info & 0x600000000) {
1400 u64 tdp_ctrl;
1401 u64 tdp_ratio;
1402 int tdp_msr;
1403 int err;
1404
1405 /* Get the TDP level (0, 1, 2) to get ratios */
1406 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1407 if (err)
1408 return err;
1409
1410 /* TDP MSR are continuous starting at 0x648 */
1411 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1412 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1413 if (err)
1414 return err;
1415
1416 /* For level 1 and 2, bits[23:16] contain the ratio */
1417 if (tdp_ctrl & 0x03)
1418 tdp_ratio >>= 16;
1419
1420 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1421 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1422
1423 return (int)tdp_ratio;
1424 }
1425
1426 return -ENXIO;
1427}
1428
016c8150 1429static int core_get_max_pstate(void)
93f0822d 1430{
6a35fc2d
SP
1431 u64 tar;
1432 u64 plat_info;
1433 int max_pstate;
8fc7554a 1434 int tdp_ratio;
6a35fc2d
SP
1435 int err;
1436
1437 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1438 max_pstate = (plat_info >> 8) & 0xFF;
1439
8fc7554a
SP
1440 tdp_ratio = core_get_tdp_ratio(plat_info);
1441 if (tdp_ratio <= 0)
1442 return max_pstate;
1443
1444 if (hwp_active) {
1445 /* Turbo activation ratio is not used on HWP platforms */
1446 return tdp_ratio;
1447 }
1448
6a35fc2d
SP
1449 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1450 if (!err) {
8fc7554a
SP
1451 int tar_levels;
1452
6a35fc2d 1453 /* Do some sanity checking for safety */
8fc7554a
SP
1454 tar_levels = tar & 0xff;
1455 if (tdp_ratio - 1 == tar_levels) {
1456 max_pstate = tar_levels;
1457 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1458 }
1459 }
845c1cbe 1460
6a35fc2d 1461 return max_pstate;
93f0822d
DB
1462}
1463
016c8150 1464static int core_get_turbo_pstate(void)
93f0822d
DB
1465{
1466 u64 value;
1467 int nont, ret;
845c1cbe 1468
100cf6f2 1469 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1470 nont = core_get_max_pstate();
285cb990 1471 ret = (value) & 255;
93f0822d
DB
1472 if (ret <= nont)
1473 ret = nont;
1474 return ret;
1475}
1476
b27580b0
DB
1477static inline int core_get_scaling(void)
1478{
1479 return 100000;
1480}
1481
fdfdb2b1 1482static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1483{
1484 u64 val;
1485
144c8e17 1486 val = (u64)pstate << 8;
7de32556 1487 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1488 val |= (u64)1 << 32;
1489
fdfdb2b1 1490 return val;
016c8150
DB
1491}
1492
b34ef932
DC
1493static int knl_get_turbo_pstate(void)
1494{
1495 u64 value;
1496 int nont, ret;
1497
100cf6f2 1498 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1499 nont = core_get_max_pstate();
1500 ret = (((value) >> 8) & 0xFF);
1501 if (ret <= nont)
1502 ret = nont;
1503 return ret;
1504}
1505
b02aabe8 1506static int intel_pstate_get_base_pstate(struct cpudata *cpu)
93f0822d 1507{
b02aabe8
RW
1508 return global.no_turbo || global.turbo_disabled ?
1509 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
93f0822d
DB
1510}
1511
a6c6ead1 1512static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1513{
bc95a454
RW
1514 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1515 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1516 /*
1517 * Generally, there is no guarantee that this code will always run on
1518 * the CPU being updated, so force the register update to run on the
1519 * right CPU.
1520 */
1521 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1522 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1523}
1524
a6c6ead1
RW
1525static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1526{
1527 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1528}
1529
1530static void intel_pstate_max_within_limits(struct cpudata *cpu)
1531{
b02aabe8 1532 int pstate;
a6c6ead1
RW
1533
1534 update_turbo_state();
b02aabe8 1535 pstate = intel_pstate_get_base_pstate(cpu);
1a4fe38a 1536 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
b02aabe8 1537 intel_pstate_set_pstate(cpu, pstate);
a6c6ead1
RW
1538}
1539
93f0822d
DB
1540static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1541{
016c8150
DB
1542 cpu->pstate.min_pstate = pstate_funcs.get_min();
1543 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1544 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1545 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1546 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1547 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1548 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1549
007bea09
DB
1550 if (pstate_funcs.get_vid)
1551 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1552
1553 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1554}
1555
a1c9787d 1556static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1557{
6b17ddb2 1558 struct sample *sample = &cpu->sample;
e66c1768 1559
a1c9787d 1560 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1561}
1562
4fec7ad5 1563static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1564{
93f0822d 1565 u64 aperf, mperf;
4ab60c3f 1566 unsigned long flags;
4055fad3 1567 u64 tsc;
93f0822d 1568
4ab60c3f 1569 local_irq_save(flags);
93f0822d
DB
1570 rdmsrl(MSR_IA32_APERF, aperf);
1571 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1572 tsc = rdtsc();
4fec7ad5 1573 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1574 local_irq_restore(flags);
4fec7ad5 1575 return false;
8e601a9f 1576 }
4ab60c3f 1577 local_irq_restore(flags);
b69880f9 1578
c4ee841f 1579 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1580 cpu->sample.time = time;
d37e2b76
DB
1581 cpu->sample.aperf = aperf;
1582 cpu->sample.mperf = mperf;
4055fad3 1583 cpu->sample.tsc = tsc;
d37e2b76
DB
1584 cpu->sample.aperf -= cpu->prev_aperf;
1585 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1586 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1587
93f0822d
DB
1588 cpu->prev_aperf = aperf;
1589 cpu->prev_mperf = mperf;
4055fad3 1590 cpu->prev_tsc = tsc;
febce40f
RW
1591 /*
1592 * First time this function is invoked in a given cycle, all of the
1593 * previous sample data fields are equal to zero or stale and they must
1594 * be populated with meaningful numbers for things to work, so assume
1595 * that sample.time will always be reset before setting the utilization
1596 * update hook and make the caller skip the sample then.
1597 */
eabd22c6
RW
1598 if (cpu->last_sample_time) {
1599 intel_pstate_calc_avg_perf(cpu);
1600 return true;
1601 }
1602 return false;
93f0822d
DB
1603}
1604
8fa520af
PL
1605static inline int32_t get_avg_frequency(struct cpudata *cpu)
1606{
a1c9787d
RW
1607 return mul_ext_fp(cpu->sample.core_avg_perf,
1608 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1609}
1610
bdcaa23f
PL
1611static inline int32_t get_avg_pstate(struct cpudata *cpu)
1612{
8edb0a6e
RW
1613 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1614 cpu->sample.core_avg_perf);
bdcaa23f
PL
1615}
1616
e70eed2b
PL
1617static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1618{
1619 struct sample *sample = &cpu->sample;
09c448d3 1620 int32_t busy_frac, boost;
0843e83c 1621 int target, avg_pstate;
e70eed2b 1622
09c448d3 1623 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1624
09c448d3
RW
1625 boost = cpu->iowait_boost;
1626 cpu->iowait_boost >>= 1;
63d1d656 1627
09c448d3
RW
1628 if (busy_frac < boost)
1629 busy_frac = boost;
63d1d656 1630
09c448d3 1631 sample->busy_scaled = busy_frac * 100;
0843e83c 1632
7de32556 1633 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1634 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1635 target += target >> 2;
1636 target = mul_fp(target, busy_frac);
1637 if (target < cpu->pstate.min_pstate)
1638 target = cpu->pstate.min_pstate;
1639
1640 /*
1641 * If the average P-state during the previous cycle was higher than the
1642 * current target, add 50% of the difference to the target to reduce
1643 * possible performance oscillations and offset possible performance
1644 * loss related to moving the workload from one CPU to another within
1645 * a package/module.
1646 */
1647 avg_pstate = get_avg_pstate(cpu);
1648 if (avg_pstate > target)
1649 target += (avg_pstate - target) >> 1;
1650
1651 return target;
e70eed2b
PL
1652}
1653
157386b6 1654static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1655{
1aa7a6e2 1656 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1657 u64 duration_ns;
93f0822d 1658
e0d4c8f8 1659 /*
f00593a4
RW
1660 * perf_scaled is the ratio of the average P-state during the last
1661 * sampling period to the P-state requested last time (in percent).
1662 *
1663 * That measures the system's response to the previous P-state
1664 * selection.
e0d4c8f8 1665 */
22590efb
RW
1666 max_pstate = cpu->pstate.max_pstate_physical;
1667 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1668 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1669 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1670
e0d4c8f8 1671 /*
a4675fbc
RW
1672 * Since our utilization update callback will not run unless we are
1673 * in C0, check if the actual elapsed time is significantly greater (3x)
1674 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1675 * enough period of time to adjust our performance metric.
e0d4c8f8 1676 */
a4675fbc 1677 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1678 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1679 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1680 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1681 } else {
1682 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1683 if (sample_ratio < int_tofp(1))
1aa7a6e2 1684 perf_scaled = 0;
c4ee841f
DB
1685 }
1686
1aa7a6e2
RW
1687 cpu->sample.busy_scaled = perf_scaled;
1688 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1689}
1690
001c76f0 1691static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1 1692{
b02aabe8
RW
1693 int max_pstate = intel_pstate_get_base_pstate(cpu);
1694 int min_pstate;
fdfdb2b1 1695
1a4fe38a
SP
1696 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1697 max_pstate = max(min_pstate, cpu->max_perf_ratio);
b02aabe8 1698 return clamp_t(int, pstate, min_pstate, max_pstate);
001c76f0
RW
1699}
1700
1701static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1702{
fdfdb2b1
RW
1703 if (pstate == cpu->pstate.current_pstate)
1704 return;
1705
bc95a454 1706 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1707 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1708}
1709
67dd9bf4 1710static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
93f0822d 1711{
67dd9bf4 1712 int from = cpu->pstate.current_pstate;
4055fad3
DS
1713 struct sample *sample;
1714
001c76f0
RW
1715 update_turbo_state();
1716
64078299
RW
1717 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1718 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1719 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1720
1721 sample = &cpu->sample;
a1c9787d 1722 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1723 fp_toint(sample->busy_scaled),
4055fad3
DS
1724 from,
1725 cpu->pstate.current_pstate,
1726 sample->mperf,
1727 sample->aperf,
1728 sample->tsc,
3ba7bcaa
SP
1729 get_avg_frequency(cpu),
1730 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1731}
1732
eabd22c6
RW
1733static void intel_pstate_update_util_pid(struct update_util_data *data,
1734 u64 time, unsigned int flags)
1735{
1736 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1737 u64 delta_ns = time - cpu->sample.time;
1738
1739 if ((s64)delta_ns < pid_params.sample_rate_ns)
1740 return;
1741
67dd9bf4
RW
1742 if (intel_pstate_sample(cpu, time)) {
1743 int target_pstate;
1744
1745 target_pstate = get_target_pstate_use_performance(cpu);
1746 intel_pstate_adjust_pstate(cpu, target_pstate);
1747 }
eabd22c6
RW
1748}
1749
a4675fbc 1750static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1751 unsigned int flags)
93f0822d 1752{
a4675fbc 1753 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1754 u64 delta_ns;
1755
eabd22c6
RW
1756 if (flags & SCHED_CPUFREQ_IOWAIT) {
1757 cpu->iowait_boost = int_tofp(1);
1758 } else if (cpu->iowait_boost) {
1759 /* Clear iowait_boost if the CPU may have been idle. */
1760 delta_ns = time - cpu->last_update;
1761 if (delta_ns > TICK_NSEC)
1762 cpu->iowait_boost = 0;
09c448d3 1763 }
eabd22c6 1764 cpu->last_update = time;
09c448d3 1765 delta_ns = time - cpu->sample.time;
eabd22c6
RW
1766 if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1767 return;
4fec7ad5 1768
67dd9bf4
RW
1769 if (intel_pstate_sample(cpu, time)) {
1770 int target_pstate;
93f0822d 1771
67dd9bf4
RW
1772 target_pstate = get_target_pstate_use_cpu_load(cpu);
1773 intel_pstate_adjust_pstate(cpu, target_pstate);
1774 }
1775}
eabd22c6 1776
2f49afc2
RW
1777static struct pstate_funcs core_funcs = {
1778 .get_max = core_get_max_pstate,
1779 .get_max_physical = core_get_max_pstate_physical,
1780 .get_min = core_get_min_pstate,
1781 .get_turbo = core_get_turbo_pstate,
1782 .get_scaling = core_get_scaling,
1783 .get_val = core_get_val,
1784 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1785};
1786
2f49afc2
RW
1787static const struct pstate_funcs silvermont_funcs = {
1788 .get_max = atom_get_max_pstate,
1789 .get_max_physical = atom_get_max_pstate,
1790 .get_min = atom_get_min_pstate,
1791 .get_turbo = atom_get_turbo_pstate,
1792 .get_val = atom_get_val,
1793 .get_scaling = silvermont_get_scaling,
1794 .get_vid = atom_get_vid,
1795 .update_util = intel_pstate_update_util,
de4a76cb
RW
1796};
1797
2f49afc2
RW
1798static const struct pstate_funcs airmont_funcs = {
1799 .get_max = atom_get_max_pstate,
1800 .get_max_physical = atom_get_max_pstate,
1801 .get_min = atom_get_min_pstate,
1802 .get_turbo = atom_get_turbo_pstate,
1803 .get_val = atom_get_val,
1804 .get_scaling = airmont_get_scaling,
1805 .get_vid = atom_get_vid,
1806 .update_util = intel_pstate_update_util,
de4a76cb
RW
1807};
1808
2f49afc2
RW
1809static const struct pstate_funcs knl_funcs = {
1810 .get_max = core_get_max_pstate,
1811 .get_max_physical = core_get_max_pstate_physical,
1812 .get_min = core_get_min_pstate,
1813 .get_turbo = knl_get_turbo_pstate,
1814 .get_scaling = core_get_scaling,
1815 .get_val = core_get_val,
1816 .update_util = intel_pstate_update_util_pid,
de4a76cb
RW
1817};
1818
2f49afc2
RW
1819static const struct pstate_funcs bxt_funcs = {
1820 .get_max = core_get_max_pstate,
1821 .get_max_physical = core_get_max_pstate_physical,
1822 .get_min = core_get_min_pstate,
1823 .get_turbo = core_get_turbo_pstate,
1824 .get_scaling = core_get_scaling,
1825 .get_val = core_get_val,
1826 .update_util = intel_pstate_update_util,
de4a76cb
RW
1827};
1828
93f0822d 1829#define ICPU(model, policy) \
6cbd7ee1
DB
1830 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1831 (unsigned long)&policy }
93f0822d
DB
1832
1833static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2f49afc2
RW
1834 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1835 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1836 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1837 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1838 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1839 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1840 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1841 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1842 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1843 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1844 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1845 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1846 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1847 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1848 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1849 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1850 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1851 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1852 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_funcs),
630e5757 1853 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, bxt_funcs),
93f0822d
DB
1854 {}
1855};
1856MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1857
29327c84 1858static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2f49afc2
RW
1859 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1860 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1861 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
2f86dc4c
DB
1862 {}
1863};
1864
6e978b22 1865static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2f49afc2 1866 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
6e978b22
SP
1867 {}
1868};
1869
8ca6ce37
RW
1870static bool pid_in_use(void);
1871
93f0822d
DB
1872static int intel_pstate_init_cpu(unsigned int cpunum)
1873{
93f0822d
DB
1874 struct cpudata *cpu;
1875
eae48f04
SP
1876 cpu = all_cpu_data[cpunum];
1877
1878 if (!cpu) {
c5a2ee7d 1879 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1880 if (!cpu)
1881 return -ENOMEM;
1882
1883 all_cpu_data[cpunum] = cpu;
eae48f04 1884
984edbdc
SP
1885 cpu->epp_default = -EINVAL;
1886 cpu->epp_powersave = -EINVAL;
1887 cpu->epp_saved = -EINVAL;
eae48f04 1888 }
93f0822d
DB
1889
1890 cpu = all_cpu_data[cpunum];
1891
93f0822d 1892 cpu->cpu = cpunum;
ba88d433 1893
a4675fbc 1894 if (hwp_active) {
6e978b22
SP
1895 const struct x86_cpu_id *id;
1896
1897 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1898 if (id)
1899 intel_pstate_disable_ee(cpunum);
1900
ba88d433 1901 intel_pstate_hwp_enable(cpu);
8ca6ce37 1902 } else if (pid_in_use()) {
694cb173 1903 intel_pstate_pid_reset(cpu);
a4675fbc 1904 }
ba88d433 1905
179e8471 1906 intel_pstate_get_cpu_pstates(cpu);
016c8150 1907
4836df17 1908 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1909
1910 return 0;
1911}
1912
1913static unsigned int intel_pstate_get(unsigned int cpu_num)
1914{
f96fd0c8 1915 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1916
f96fd0c8 1917 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1918}
1919
febce40f 1920static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1921{
febce40f
RW
1922 struct cpudata *cpu = all_cpu_data[cpu_num];
1923
62611cb9
LB
1924 if (hwp_active)
1925 return;
1926
5ab666e0
RW
1927 if (cpu->update_util_set)
1928 return;
1929
febce40f
RW
1930 /* Prevent intel_pstate_update_util() from using stale data. */
1931 cpu->sample.time = 0;
67dd9bf4
RW
1932 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1933 pstate_funcs.update_util);
4578ee7e 1934 cpu->update_util_set = true;
bb6ab52f
RW
1935}
1936
1937static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1938{
4578ee7e
CY
1939 struct cpudata *cpu_data = all_cpu_data[cpu];
1940
1941 if (!cpu_data->update_util_set)
1942 return;
1943
0bed612b 1944 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1945 cpu_data->update_util_set = false;
bb6ab52f
RW
1946 synchronize_sched();
1947}
1948
80b120ca
RW
1949static int intel_pstate_get_max_freq(struct cpudata *cpu)
1950{
1951 return global.turbo_disabled || global.no_turbo ?
1952 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1953}
1954
eae48f04 1955static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1956 struct cpudata *cpu)
eae48f04 1957{
80b120ca 1958 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1959 int32_t max_policy_perf, min_policy_perf;
1a4fe38a 1960 int max_state, turbo_max;
a410c03d 1961
1a4fe38a
SP
1962 /*
1963 * HWP needs some special consideration, because on BDX the
1964 * HWP_REQUEST uses abstract value to represent performance
1965 * rather than pure ratios.
1966 */
1967 if (hwp_active) {
1968 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1969 } else {
1970 max_state = intel_pstate_get_base_pstate(cpu);
1971 turbo_max = cpu->pstate.turbo_pstate;
1972 }
1973
1974 max_policy_perf = max_state * policy->max / max_freq;
5879f877 1975 if (policy->max == policy->min) {
e4c204ce 1976 min_policy_perf = max_policy_perf;
5879f877 1977 } else {
1a4fe38a 1978 min_policy_perf = max_state * policy->min / max_freq;
e4c204ce
RW
1979 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1980 0, max_policy_perf);
5879f877 1981 }
eae48f04 1982
1a4fe38a
SP
1983 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1984 policy->cpu, max_state,
1985 min_policy_perf, max_policy_perf);
1986
e4c204ce 1987 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1988 if (per_cpu_limits) {
1a4fe38a
SP
1989 cpu->min_perf_ratio = min_policy_perf;
1990 cpu->max_perf_ratio = max_policy_perf;
c5a2ee7d
RW
1991 } else {
1992 int32_t global_min, global_max;
1993
1994 /* Global limits are in percent of the maximum turbo P-state. */
1a4fe38a
SP
1995 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1996 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
c5a2ee7d 1997 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 1998
1a4fe38a
SP
1999 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2000 global_min, global_max);
c5a2ee7d 2001
1a4fe38a
SP
2002 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2003 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2004 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2005 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
eae48f04 2006
1a4fe38a
SP
2007 /* Make sure min_perf <= max_perf */
2008 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2009 cpu->max_perf_ratio);
eae48f04 2010
1a4fe38a
SP
2011 }
2012 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2013 cpu->max_perf_ratio,
2014 cpu->min_perf_ratio);
eae48f04
SP
2015}
2016
93f0822d
DB
2017static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018{
3be9200d
SP
2019 struct cpudata *cpu;
2020
d3929b83
DB
2021 if (!policy->cpuinfo.max_freq)
2022 return -ENODEV;
2023
2c2c1af4
SP
2024 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025 policy->cpuinfo.max_freq, policy->max);
2026
a6c6ead1 2027 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2028 cpu->policy = policy->policy;
2029
b59fe540
SP
2030 mutex_lock(&intel_pstate_limits_lock);
2031
c5a2ee7d 2032 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2033
2f1d407a 2034 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2035 /*
2036 * NOHZ_FULL CPUs need this as the governor callback may not
2037 * be invoked on them.
2038 */
2039 intel_pstate_clear_update_util_hook(policy->cpu);
2040 intel_pstate_max_within_limits(cpu);
82b4e03e
LB
2041 } else {
2042 intel_pstate_set_update_util_hook(policy->cpu);
a6c6ead1
RW
2043 }
2044
5f98ced1 2045 if (hwp_active)
2bfc4cbb 2046 intel_pstate_hwp_set(policy->cpu);
2f86dc4c 2047
b59fe540
SP
2048 mutex_unlock(&intel_pstate_limits_lock);
2049
93f0822d
DB
2050 return 0;
2051}
2052
80b120ca
RW
2053static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054 struct cpudata *cpu)
2055{
2056 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057 policy->max < policy->cpuinfo.max_freq &&
2058 policy->max > cpu->pstate.max_freq) {
2059 pr_debug("policy->max > max non turbo frequency\n");
2060 policy->max = policy->cpuinfo.max_freq;
2061 }
2062}
2063
93f0822d
DB
2064static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065{
7d9a8a9f 2066 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2067
2068 update_turbo_state();
80b120ca
RW
2069 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070 intel_pstate_get_max_freq(cpu));
93f0822d 2071
285cb990 2072 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2073 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2074 return -EINVAL;
2075
80b120ca
RW
2076 intel_pstate_adjust_policy_max(policy, cpu);
2077
93f0822d
DB
2078 return 0;
2079}
2080
001c76f0
RW
2081static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082{
2083 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084}
2085
bb18008f 2086static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2087{
001c76f0 2088 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2089
001c76f0 2090 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2091 if (hwp_active)
2092 intel_pstate_hwp_save_state(policy);
2093 else
001c76f0
RW
2094 intel_cpufreq_stop_cpu(policy);
2095}
bb18008f 2096
001c76f0
RW
2097static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098{
2099 intel_pstate_exit_perf_limits(policy);
a4675fbc 2100
001c76f0 2101 policy->fast_switch_possible = false;
2f86dc4c 2102
001c76f0 2103 return 0;
93f0822d
DB
2104}
2105
001c76f0 2106static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2107{
93f0822d 2108 struct cpudata *cpu;
52e0a509 2109 int rc;
93f0822d
DB
2110
2111 rc = intel_pstate_init_cpu(policy->cpu);
2112 if (rc)
2113 return rc;
2114
2115 cpu = all_cpu_data[policy->cpu];
2116
1a4fe38a
SP
2117 cpu->max_perf_ratio = 0xFF;
2118 cpu->min_perf_ratio = 0;
93f0822d 2119
b27580b0
DB
2120 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2122
2123 /* cpuinfo and default policy values */
b27580b0 2124 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2125 update_turbo_state();
7de32556 2126 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2127 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129
9522a2ff 2130 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2131 cpumask_set_cpu(policy->cpu, policy->cpus);
2132
001c76f0
RW
2133 policy->fast_switch_possible = true;
2134
93f0822d
DB
2135 return 0;
2136}
2137
001c76f0 2138static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2139{
001c76f0
RW
2140 int ret = __intel_pstate_cpu_init(policy);
2141
2142 if (ret)
2143 return ret;
2144
2145 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2146 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2147 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148 else
2149 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2150
2151 return 0;
2152}
2153
001c76f0 2154static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2155 .flags = CPUFREQ_CONST_LOOPS,
2156 .verify = intel_pstate_verify_policy,
2157 .setpolicy = intel_pstate_set_policy,
984edbdc 2158 .suspend = intel_pstate_hwp_save_state,
8442885f 2159 .resume = intel_pstate_resume,
93f0822d
DB
2160 .get = intel_pstate_get,
2161 .init = intel_pstate_cpu_init,
9522a2ff 2162 .exit = intel_pstate_cpu_exit,
bb18008f 2163 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2164 .name = "intel_pstate",
93f0822d
DB
2165};
2166
001c76f0
RW
2167static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168{
2169 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2170
2171 update_turbo_state();
80b120ca
RW
2172 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 intel_pstate_get_max_freq(cpu));
001c76f0 2174
80b120ca 2175 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2176
c5a2ee7d
RW
2177 intel_pstate_update_perf_limits(policy, cpu);
2178
001c76f0
RW
2179 return 0;
2180}
2181
001c76f0
RW
2182static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 unsigned int target_freq,
2184 unsigned int relation)
2185{
2186 struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 struct cpufreq_freqs freqs;
2188 int target_pstate;
2189
64897b20
RW
2190 update_turbo_state();
2191
001c76f0 2192 freqs.old = policy->cur;
64897b20 2193 freqs.new = target_freq;
001c76f0
RW
2194
2195 cpufreq_freq_transition_begin(policy, &freqs);
2196 switch (relation) {
2197 case CPUFREQ_RELATION_L:
2198 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 break;
2200 case CPUFREQ_RELATION_H:
2201 target_pstate = freqs.new / cpu->pstate.scaling;
2202 break;
2203 default:
2204 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 break;
2206 }
2207 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 if (target_pstate != cpu->pstate.current_pstate) {
2209 cpu->pstate.current_pstate = target_pstate;
2210 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211 pstate_funcs.get_val(cpu, target_pstate));
2212 }
64078299 2213 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2214 cpufreq_freq_transition_end(policy, &freqs, false);
2215
2216 return 0;
2217}
2218
2219static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220 unsigned int target_freq)
2221{
2222 struct cpudata *cpu = all_cpu_data[policy->cpu];
2223 int target_pstate;
2224
64897b20
RW
2225 update_turbo_state();
2226
001c76f0 2227 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2228 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2229 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2230 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2231}
2232
2233static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234{
2235 int ret = __intel_pstate_cpu_init(policy);
2236
2237 if (ret)
2238 return ret;
2239
2240 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
1b72e7fd 2241 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
001c76f0
RW
2242 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2243 policy->cur = policy->cpuinfo.min_freq;
2244
2245 return 0;
2246}
2247
2248static struct cpufreq_driver intel_cpufreq = {
2249 .flags = CPUFREQ_CONST_LOOPS,
2250 .verify = intel_cpufreq_verify_policy,
2251 .target = intel_cpufreq_target,
2252 .fast_switch = intel_cpufreq_fast_switch,
2253 .init = intel_cpufreq_cpu_init,
2254 .exit = intel_pstate_cpu_exit,
2255 .stop_cpu = intel_cpufreq_stop_cpu,
2256 .name = "intel_cpufreq",
2257};
2258
ee8df89a 2259static struct cpufreq_driver *default_driver = &intel_pstate;
001c76f0 2260
8ca6ce37
RW
2261static bool pid_in_use(void)
2262{
2263 return intel_pstate_driver == &intel_pstate &&
2264 pstate_funcs.update_util == intel_pstate_update_util_pid;
2265}
2266
fb1fe104
RW
2267static void intel_pstate_driver_cleanup(void)
2268{
2269 unsigned int cpu;
2270
2271 get_online_cpus();
2272 for_each_online_cpu(cpu) {
2273 if (all_cpu_data[cpu]) {
2274 if (intel_pstate_driver == &intel_pstate)
2275 intel_pstate_clear_update_util_hook(cpu);
2276
2277 kfree(all_cpu_data[cpu]);
2278 all_cpu_data[cpu] = NULL;
2279 }
2280 }
2281 put_online_cpus();
ee8df89a 2282 intel_pstate_driver = NULL;
fb1fe104
RW
2283}
2284
ee8df89a 2285static int intel_pstate_register_driver(struct cpufreq_driver *driver)
fb1fe104
RW
2286{
2287 int ret;
2288
c5a2ee7d
RW
2289 memset(&global, 0, sizeof(global));
2290 global.max_perf_pct = 100;
c3a49c89 2291
ee8df89a 2292 intel_pstate_driver = driver;
fb1fe104
RW
2293 ret = cpufreq_register_driver(intel_pstate_driver);
2294 if (ret) {
2295 intel_pstate_driver_cleanup();
2296 return ret;
2297 }
2298
c5a2ee7d
RW
2299 global.min_perf_pct = min_perf_pct_min();
2300
8ca6ce37 2301 if (pid_in_use())
fb1fe104
RW
2302 intel_pstate_debug_expose_params();
2303
2304 return 0;
2305}
2306
2307static int intel_pstate_unregister_driver(void)
2308{
2309 if (hwp_active)
2310 return -EBUSY;
2311
8ca6ce37 2312 if (pid_in_use())
fb1fe104
RW
2313 intel_pstate_debug_hide_params();
2314
fb1fe104
RW
2315 cpufreq_unregister_driver(intel_pstate_driver);
2316 intel_pstate_driver_cleanup();
2317
2318 return 0;
2319}
2320
2321static ssize_t intel_pstate_show_status(char *buf)
2322{
ee8df89a 2323 if (!intel_pstate_driver)
fb1fe104
RW
2324 return sprintf(buf, "off\n");
2325
2326 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2327 "active" : "passive");
2328}
2329
2330static int intel_pstate_update_status(const char *buf, size_t size)
2331{
2332 int ret;
2333
2334 if (size == 3 && !strncmp(buf, "off", size))
ee8df89a 2335 return intel_pstate_driver ?
fb1fe104
RW
2336 intel_pstate_unregister_driver() : -EINVAL;
2337
2338 if (size == 6 && !strncmp(buf, "active", size)) {
ee8df89a 2339 if (intel_pstate_driver) {
fb1fe104
RW
2340 if (intel_pstate_driver == &intel_pstate)
2341 return 0;
2342
2343 ret = intel_pstate_unregister_driver();
2344 if (ret)
2345 return ret;
2346 }
2347
ee8df89a 2348 return intel_pstate_register_driver(&intel_pstate);
fb1fe104
RW
2349 }
2350
2351 if (size == 7 && !strncmp(buf, "passive", size)) {
ee8df89a 2352 if (intel_pstate_driver) {
0042b2c0 2353 if (intel_pstate_driver == &intel_cpufreq)
fb1fe104
RW
2354 return 0;
2355
2356 ret = intel_pstate_unregister_driver();
2357 if (ret)
2358 return ret;
2359 }
2360
ee8df89a 2361 return intel_pstate_register_driver(&intel_cpufreq);
fb1fe104
RW
2362 }
2363
2364 return -EINVAL;
2365}
2366
eed43609
JZ
2367static int no_load __initdata;
2368static int no_hwp __initdata;
2369static int hwp_only __initdata;
29327c84 2370static unsigned int force_load __initdata;
6be26498 2371
29327c84 2372static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2373{
016c8150 2374 if (!pstate_funcs.get_max() ||
c410833a
SK
2375 !pstate_funcs.get_min() ||
2376 !pstate_funcs.get_turbo())
b563b4e3
DB
2377 return -ENODEV;
2378
b563b4e3
DB
2379 return 0;
2380}
016c8150 2381
7f7a516e
SP
2382#ifdef CONFIG_ACPI
2383static void intel_pstate_use_acpi_profile(void)
2384{
55395345
RW
2385 switch (acpi_gbl_FADT.preferred_profile) {
2386 case PM_MOBILE:
2387 case PM_TABLET:
2388 case PM_APPLIANCE_PC:
2389 case PM_DESKTOP:
2390 case PM_WORKSTATION:
67dd9bf4 2391 pstate_funcs.update_util = intel_pstate_update_util;
55395345 2392 }
7f7a516e
SP
2393}
2394#else
2395static void intel_pstate_use_acpi_profile(void)
2396{
2397}
2398#endif
2399
29327c84 2400static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2401{
2402 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2403 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2404 pstate_funcs.get_min = funcs->get_min;
2405 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2406 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2407 pstate_funcs.get_val = funcs->get_val;
007bea09 2408 pstate_funcs.get_vid = funcs->get_vid;
67dd9bf4 2409 pstate_funcs.update_util = funcs->update_util;
157386b6 2410
7f7a516e 2411 intel_pstate_use_acpi_profile();
016c8150
DB
2412}
2413
9522a2ff 2414#ifdef CONFIG_ACPI
fbbcdc07 2415
29327c84 2416static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2417{
2418 int i;
2419
2420 for_each_possible_cpu(i) {
2421 acpi_status status;
2422 union acpi_object *pss;
2423 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2424 struct acpi_processor *pr = per_cpu(processors, i);
2425
2426 if (!pr)
2427 continue;
2428
2429 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2430 if (ACPI_FAILURE(status))
2431 continue;
2432
2433 pss = buffer.pointer;
2434 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2435 kfree(pss);
2436 return false;
2437 }
2438
2439 kfree(pss);
2440 }
2441
2442 return true;
2443}
2444
29327c84 2445static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2446{
2447 int i;
2448
2449 for_each_possible_cpu(i) {
2450 struct acpi_processor *pr = per_cpu(processors, i);
2451
2452 if (!pr)
2453 continue;
2454 if (acpi_has_method(pr->handle, "_PPC"))
2455 return true;
2456 }
2457 return false;
2458}
2459
2460enum {
2461 PSS,
2462 PPC,
2463};
2464
fbbcdc07
AH
2465struct hw_vendor_info {
2466 u16 valid;
2467 char oem_id[ACPI_OEM_ID_SIZE];
2468 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2469 int oem_pwr_table;
fbbcdc07
AH
2470};
2471
2472/* Hardware vendor-specific info that has its own power management modes */
29327c84 2473static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2474 {1, "HP ", "ProLiant", PSS},
2475 {1, "ORACLE", "X4-2 ", PPC},
2476 {1, "ORACLE", "X4-2L ", PPC},
2477 {1, "ORACLE", "X4-2B ", PPC},
2478 {1, "ORACLE", "X3-2 ", PPC},
2479 {1, "ORACLE", "X3-2L ", PPC},
2480 {1, "ORACLE", "X3-2B ", PPC},
2481 {1, "ORACLE", "X4470M2 ", PPC},
2482 {1, "ORACLE", "X4270M3 ", PPC},
2483 {1, "ORACLE", "X4270M2 ", PPC},
2484 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2485 {1, "ORACLE", "X4170 M3", PPC},
2486 {1, "ORACLE", "X4275 M3", PPC},
2487 {1, "ORACLE", "X6-2 ", PPC},
2488 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2489 {0, "", ""},
2490};
2491
29327c84 2492static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2493{
2494 struct acpi_table_header hdr;
2495 struct hw_vendor_info *v_info;
2f86dc4c
DB
2496 const struct x86_cpu_id *id;
2497 u64 misc_pwr;
2498
2499 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2500 if (id) {
2501 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2502 if ( misc_pwr & (1 << 8))
2503 return true;
2504 }
fbbcdc07 2505
c410833a
SK
2506 if (acpi_disabled ||
2507 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2508 return false;
2509
2510 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2511 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2512 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2513 ACPI_OEM_TABLE_ID_SIZE))
2514 switch (v_info->oem_pwr_table) {
2515 case PSS:
2516 return intel_pstate_no_acpi_pss();
2517 case PPC:
aa4ea34d
EZ
2518 return intel_pstate_has_acpi_ppc() &&
2519 (!force_load);
966916ea 2520 }
fbbcdc07
AH
2521 }
2522
2523 return false;
2524}
d0ea59e1
RW
2525
2526static void intel_pstate_request_control_from_smm(void)
2527{
2528 /*
2529 * It may be unsafe to request P-states control from SMM if _PPC support
2530 * has not been enabled.
2531 */
2532 if (acpi_ppc)
2533 acpi_processor_pstate_control();
2534}
fbbcdc07
AH
2535#else /* CONFIG_ACPI not enabled */
2536static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2537static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2538static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2539#endif /* CONFIG_ACPI */
2540
7791e4aa
SP
2541static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2542 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2543 {}
2544};
2545
93f0822d
DB
2546static int __init intel_pstate_init(void)
2547{
eb5139d1 2548 int rc;
93f0822d 2549
6be26498
DB
2550 if (no_load)
2551 return -ENODEV;
2552
eb5139d1 2553 if (x86_match_cpu(hwp_support_ids)) {
2f49afc2 2554 copy_cpu_funcs(&core_funcs);
eb5139d1 2555 if (no_hwp) {
67dd9bf4 2556 pstate_funcs.update_util = intel_pstate_update_util;
eb5139d1
RW
2557 } else {
2558 hwp_active++;
2559 intel_pstate.attr = hwp_cpufreq_attrs;
2560 goto hwp_cpu_matched;
2561 }
2562 } else {
2563 const struct x86_cpu_id *id;
7791e4aa 2564
eb5139d1
RW
2565 id = x86_match_cpu(intel_pstate_cpu_ids);
2566 if (!id)
2567 return -ENODEV;
93f0822d 2568
2f49afc2 2569 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
eb5139d1 2570 }
016c8150 2571
b563b4e3
DB
2572 if (intel_pstate_msrs_not_valid())
2573 return -ENODEV;
2574
7791e4aa
SP
2575hwp_cpu_matched:
2576 /*
2577 * The Intel pstate driver will be ignored if the platform
2578 * firmware has its own power management modes.
2579 */
2580 if (intel_pstate_platform_pwr_mgmt_exists())
2581 return -ENODEV;
2582
fb1fe104
RW
2583 if (!hwp_active && hwp_only)
2584 return -ENOTSUPP;
2585
4836df17 2586 pr_info("Intel P-state driver initializing\n");
93f0822d 2587
b57ffac5 2588 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2589 if (!all_cpu_data)
2590 return -ENOMEM;
93f0822d 2591
d0ea59e1
RW
2592 intel_pstate_request_control_from_smm();
2593
93f0822d 2594 intel_pstate_sysfs_expose_params();
b69880f9 2595
0c30b65b 2596 mutex_lock(&intel_pstate_driver_lock);
ee8df89a 2597 rc = intel_pstate_register_driver(default_driver);
0c30b65b 2598 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2599 if (rc)
2600 return rc;
366430b5 2601
7791e4aa 2602 if (hwp_active)
4836df17 2603 pr_info("HWP enabled\n");
7791e4aa 2604
fb1fe104 2605 return 0;
93f0822d
DB
2606}
2607device_initcall(intel_pstate_init);
2608
6be26498
DB
2609static int __init intel_pstate_setup(char *str)
2610{
2611 if (!str)
2612 return -EINVAL;
2613
001c76f0 2614 if (!strcmp(str, "disable")) {
6be26498 2615 no_load = 1;
001c76f0
RW
2616 } else if (!strcmp(str, "passive")) {
2617 pr_info("Passive mode enabled\n");
ee8df89a 2618 default_driver = &intel_cpufreq;
001c76f0
RW
2619 no_hwp = 1;
2620 }
539342f6 2621 if (!strcmp(str, "no_hwp")) {
4836df17 2622 pr_info("HWP disabled\n");
2f86dc4c 2623 no_hwp = 1;
539342f6 2624 }
aa4ea34d
EZ
2625 if (!strcmp(str, "force"))
2626 force_load = 1;
d64c3b0b
KCA
2627 if (!strcmp(str, "hwp_only"))
2628 hwp_only = 1;
eae48f04
SP
2629 if (!strcmp(str, "per_cpu_perf_limits"))
2630 per_cpu_limits = true;
9522a2ff
SP
2631
2632#ifdef CONFIG_ACPI
2633 if (!strcmp(str, "support_acpi_ppc"))
2634 acpi_ppc = true;
2635#endif
2636
6be26498
DB
2637 return 0;
2638}
2639early_param("intel_pstate", intel_pstate_setup);
2640
93f0822d
DB
2641MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2642MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2643MODULE_LICENSE("GPL");