]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpuidle/governors/menu.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-next
[mirror_ubuntu-bionic-kernel.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
d82b3518 15#include <linux/pm_qos_params.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
4f86d3a8 21
69d25870
AV
22#define BUCKETS 12
23#define RESOLUTION 1024
24#define DECAY 4
25#define MAX_INTERESTING 50000
26
27/*
28 * Concepts and ideas behind the menu governor
29 *
30 * For the menu governor, there are 3 decision factors for picking a C
31 * state:
32 * 1) Energy break even point
33 * 2) Performance impact
34 * 3) Latency tolerance (from pmqos infrastructure)
35 * These these three factors are treated independently.
36 *
37 * Energy break even point
38 * -----------------------
39 * C state entry and exit have an energy cost, and a certain amount of time in
40 * the C state is required to actually break even on this cost. CPUIDLE
41 * provides us this duration in the "target_residency" field. So all that we
42 * need is a good prediction of how long we'll be idle. Like the traditional
43 * menu governor, we start with the actual known "next timer event" time.
44 *
45 * Since there are other source of wakeups (interrupts for example) than
46 * the next timer event, this estimation is rather optimistic. To get a
47 * more realistic estimate, a correction factor is applied to the estimate,
48 * that is based on historic behavior. For example, if in the past the actual
49 * duration always was 50% of the next timer tick, the correction factor will
50 * be 0.5.
51 *
52 * menu uses a running average for this correction factor, however it uses a
53 * set of factors, not just a single factor. This stems from the realization
54 * that the ratio is dependent on the order of magnitude of the expected
55 * duration; if we expect 500 milliseconds of idle time the likelihood of
56 * getting an interrupt very early is much higher than if we expect 50 micro
57 * seconds of idle time. A second independent factor that has big impact on
58 * the actual factor is if there is (disk) IO outstanding or not.
59 * (as a special twist, we consider every sleep longer than 50 milliseconds
60 * as perfect; there are no power gains for sleeping longer than this)
61 *
62 * For these two reasons we keep an array of 12 independent factors, that gets
63 * indexed based on the magnitude of the expected duration as well as the
64 * "is IO outstanding" property.
65 *
66 * Limiting Performance Impact
67 * ---------------------------
68 * C states, especially those with large exit latencies, can have a real
69 * noticable impact on workloads, which is not acceptable for most sysadmins,
70 * and in addition, less performance has a power price of its own.
71 *
72 * As a general rule of thumb, menu assumes that the following heuristic
73 * holds:
74 * The busier the system, the less impact of C states is acceptable
75 *
76 * This rule-of-thumb is implemented using a performance-multiplier:
77 * If the exit latency times the performance multiplier is longer than
78 * the predicted duration, the C state is not considered a candidate
79 * for selection due to a too high performance impact. So the higher
80 * this multiplier is, the longer we need to be idle to pick a deep C
81 * state, and thus the less likely a busy CPU will hit such a deep
82 * C state.
83 *
84 * Two factors are used in determing this multiplier:
85 * a value of 10 is added for each point of "per cpu load average" we have.
86 * a value of 5 points is added for each process that is waiting for
87 * IO on this CPU.
88 * (these values are experimentally determined)
89 *
90 * The load average factor gives a longer term (few seconds) input to the
91 * decision, while the iowait value gives a cpu local instantanious input.
92 * The iowait factor may look low, but realize that this is also already
93 * represented in the system load average.
94 *
95 */
4f86d3a8
LB
96
97struct menu_device {
98 int last_state_idx;
672917dc 99 int needs_update;
4f86d3a8
LB
100
101 unsigned int expected_us;
69d25870
AV
102 u64 predicted_us;
103 unsigned int measured_us;
104 unsigned int exit_us;
105 unsigned int bucket;
106 u64 correction_factor[BUCKETS];
4f86d3a8
LB
107};
108
69d25870
AV
109
110#define LOAD_INT(x) ((x) >> FSHIFT)
111#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
112
113static int get_loadavg(void)
114{
115 unsigned long this = this_cpu_load();
116
117
118 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
119}
120
121static inline int which_bucket(unsigned int duration)
122{
123 int bucket = 0;
124
125 /*
126 * We keep two groups of stats; one with no
127 * IO pending, one without.
128 * This allows us to calculate
129 * E(duration)|iowait
130 */
131 if (nr_iowait_cpu())
132 bucket = BUCKETS/2;
133
134 if (duration < 10)
135 return bucket;
136 if (duration < 100)
137 return bucket + 1;
138 if (duration < 1000)
139 return bucket + 2;
140 if (duration < 10000)
141 return bucket + 3;
142 if (duration < 100000)
143 return bucket + 4;
144 return bucket + 5;
145}
146
147/*
148 * Return a multiplier for the exit latency that is intended
149 * to take performance requirements into account.
150 * The more performance critical we estimate the system
151 * to be, the higher this multiplier, and thus the higher
152 * the barrier to go to an expensive C state.
153 */
154static inline int performance_multiplier(void)
155{
156 int mult = 1;
157
158 /* for higher loadavg, we are more reluctant */
159
160 mult += 2 * get_loadavg();
161
162 /* for IO wait tasks (per cpu!) we add 5x each */
163 mult += 10 * nr_iowait_cpu();
164
165 return mult;
166}
167
4f86d3a8
LB
168static DEFINE_PER_CPU(struct menu_device, menu_devices);
169
672917dc
CZ
170static void menu_update(struct cpuidle_device *dev);
171
4f86d3a8
LB
172/**
173 * menu_select - selects the next idle state to enter
174 * @dev: the CPU
175 */
176static int menu_select(struct cpuidle_device *dev)
177{
178 struct menu_device *data = &__get_cpu_var(menu_devices);
a2bd9202 179 int latency_req = pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 180 int i;
69d25870
AV
181 int multiplier;
182
183 data->last_state_idx = 0;
184 data->exit_us = 0;
4f86d3a8 185
672917dc
CZ
186 if (data->needs_update) {
187 menu_update(dev);
188 data->needs_update = 0;
189 }
190
a2bd9202 191 /* Special case when user has set very strict latency requirement */
69d25870 192 if (unlikely(latency_req == 0))
a2bd9202 193 return 0;
a2bd9202 194
69d25870 195 /* determine the expected residency time, round up */
4f86d3a8 196 data->expected_us =
69d25870
AV
197 DIV_ROUND_UP((u32)ktime_to_ns(tick_nohz_get_sleep_length()), 1000);
198
199
200 data->bucket = which_bucket(data->expected_us);
201
202 multiplier = performance_multiplier();
203
204 /*
205 * if the correction factor is 0 (eg first time init or cpu hotplug
206 * etc), we actually want to start out with a unity factor.
207 */
208 if (data->correction_factor[data->bucket] == 0)
209 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
210
211 /* Make sure to round up for half microseconds */
212 data->predicted_us = DIV_ROUND_CLOSEST(
213 data->expected_us * data->correction_factor[data->bucket],
214 RESOLUTION * DECAY);
215
216 /*
217 * We want to default to C1 (hlt), not to busy polling
218 * unless the timer is happening really really soon.
219 */
220 if (data->expected_us > 5)
221 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 222
816bb611 223
4f86d3a8 224 /* find the deepest idle state that satisfies our constraints */
69d25870 225 for (i = CPUIDLE_DRIVER_STATE_START; i < dev->state_count; i++) {
4f86d3a8
LB
226 struct cpuidle_state *s = &dev->states[i];
227
4f86d3a8
LB
228 if (s->target_residency > data->predicted_us)
229 break;
a2bd9202 230 if (s->exit_latency > latency_req)
4f86d3a8 231 break;
69d25870
AV
232 if (s->exit_latency * multiplier > data->predicted_us)
233 break;
234 data->exit_us = s->exit_latency;
235 data->last_state_idx = i;
4f86d3a8
LB
236 }
237
69d25870 238 return data->last_state_idx;
4f86d3a8
LB
239}
240
241/**
672917dc 242 * menu_reflect - records that data structures need update
4f86d3a8
LB
243 * @dev: the CPU
244 *
245 * NOTE: it's important to be fast here because this operation will add to
246 * the overall exit latency.
247 */
248static void menu_reflect(struct cpuidle_device *dev)
672917dc
CZ
249{
250 struct menu_device *data = &__get_cpu_var(menu_devices);
251 data->needs_update = 1;
252}
253
254/**
255 * menu_update - attempts to guess what happened after entry
256 * @dev: the CPU
257 */
258static void menu_update(struct cpuidle_device *dev)
4f86d3a8
LB
259{
260 struct menu_device *data = &__get_cpu_var(menu_devices);
261 int last_idx = data->last_state_idx;
320eee77 262 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
4f86d3a8 263 struct cpuidle_state *target = &dev->states[last_idx];
320eee77 264 unsigned int measured_us;
69d25870 265 u64 new_factor;
4f86d3a8
LB
266
267 /*
268 * Ugh, this idle state doesn't support residency measurements, so we
269 * are basically lost in the dark. As a compromise, assume we slept
69d25870 270 * for the whole expected time.
4f86d3a8 271 */
320eee77 272 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
69d25870
AV
273 last_idle_us = data->expected_us;
274
275
276 measured_us = last_idle_us;
4f86d3a8 277
320eee77 278 /*
69d25870
AV
279 * We correct for the exit latency; we are assuming here that the
280 * exit latency happens after the event that we're interested in.
320eee77 281 */
69d25870
AV
282 if (measured_us > data->exit_us)
283 measured_us -= data->exit_us;
284
285
286 /* update our correction ratio */
287
288 new_factor = data->correction_factor[data->bucket]
289 * (DECAY - 1) / DECAY;
290
291 if (data->expected_us > 0 && data->measured_us < MAX_INTERESTING)
292 new_factor += RESOLUTION * measured_us / data->expected_us;
320eee77 293 else
69d25870
AV
294 /*
295 * we were idle so long that we count it as a perfect
296 * prediction
297 */
298 new_factor += RESOLUTION;
320eee77 299
69d25870
AV
300 /*
301 * We don't want 0 as factor; we always want at least
302 * a tiny bit of estimated time.
303 */
304 if (new_factor == 0)
305 new_factor = 1;
320eee77 306
69d25870 307 data->correction_factor[data->bucket] = new_factor;
4f86d3a8
LB
308}
309
310/**
311 * menu_enable_device - scans a CPU's states and does setup
312 * @dev: the CPU
313 */
314static int menu_enable_device(struct cpuidle_device *dev)
315{
316 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
317
318 memset(data, 0, sizeof(struct menu_device));
319
320 return 0;
321}
322
323static struct cpuidle_governor menu_governor = {
324 .name = "menu",
325 .rating = 20,
326 .enable = menu_enable_device,
327 .select = menu_select,
328 .reflect = menu_reflect,
329 .owner = THIS_MODULE,
330};
331
332/**
333 * init_menu - initializes the governor
334 */
335static int __init init_menu(void)
336{
337 return cpuidle_register_governor(&menu_governor);
338}
339
340/**
341 * exit_menu - exits the governor
342 */
343static void __exit exit_menu(void)
344{
345 cpuidle_unregister_governor(&menu_governor);
346}
347
348MODULE_LICENSE("GPL");
349module_init(init_menu);
350module_exit(exit_menu);