]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/cpuidle/governors/menu.c
Merge branches 'acpi-scan', 'acpi-utils' and 'acpi-pm'
[mirror_ubuntu-bionic-kernel.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
e8db0be1 15#include <linux/pm_qos.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
884b17e1 22#include <linux/module.h>
4f86d3a8 23
decd51bb
TT
24/*
25 * Please note when changing the tuning values:
26 * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27 * a scaling operation multiplication may overflow on 32 bit platforms.
28 * In that case, #define RESOLUTION as ULL to get 64 bit result:
29 * #define RESOLUTION 1024ULL
30 *
31 * The default values do not overflow.
32 */
69d25870 33#define BUCKETS 12
ae779300
MG
34#define INTERVAL_SHIFT 3
35#define INTERVALS (1UL << INTERVAL_SHIFT)
69d25870 36#define RESOLUTION 1024
1f85f87d 37#define DECAY 8
69d25870 38#define MAX_INTERESTING 50000
1f85f87d 39
69d25870
AV
40
41/*
42 * Concepts and ideas behind the menu governor
43 *
44 * For the menu governor, there are 3 decision factors for picking a C
45 * state:
46 * 1) Energy break even point
47 * 2) Performance impact
48 * 3) Latency tolerance (from pmqos infrastructure)
49 * These these three factors are treated independently.
50 *
51 * Energy break even point
52 * -----------------------
53 * C state entry and exit have an energy cost, and a certain amount of time in
54 * the C state is required to actually break even on this cost. CPUIDLE
55 * provides us this duration in the "target_residency" field. So all that we
56 * need is a good prediction of how long we'll be idle. Like the traditional
57 * menu governor, we start with the actual known "next timer event" time.
58 *
59 * Since there are other source of wakeups (interrupts for example) than
60 * the next timer event, this estimation is rather optimistic. To get a
61 * more realistic estimate, a correction factor is applied to the estimate,
62 * that is based on historic behavior. For example, if in the past the actual
63 * duration always was 50% of the next timer tick, the correction factor will
64 * be 0.5.
65 *
66 * menu uses a running average for this correction factor, however it uses a
67 * set of factors, not just a single factor. This stems from the realization
68 * that the ratio is dependent on the order of magnitude of the expected
69 * duration; if we expect 500 milliseconds of idle time the likelihood of
70 * getting an interrupt very early is much higher than if we expect 50 micro
71 * seconds of idle time. A second independent factor that has big impact on
72 * the actual factor is if there is (disk) IO outstanding or not.
73 * (as a special twist, we consider every sleep longer than 50 milliseconds
74 * as perfect; there are no power gains for sleeping longer than this)
75 *
76 * For these two reasons we keep an array of 12 independent factors, that gets
77 * indexed based on the magnitude of the expected duration as well as the
78 * "is IO outstanding" property.
79 *
1f85f87d
AV
80 * Repeatable-interval-detector
81 * ----------------------------
82 * There are some cases where "next timer" is a completely unusable predictor:
83 * Those cases where the interval is fixed, for example due to hardware
84 * interrupt mitigation, but also due to fixed transfer rate devices such as
85 * mice.
86 * For this, we use a different predictor: We track the duration of the last 8
87 * intervals and if the stand deviation of these 8 intervals is below a
88 * threshold value, we use the average of these intervals as prediction.
89 *
69d25870
AV
90 * Limiting Performance Impact
91 * ---------------------------
92 * C states, especially those with large exit latencies, can have a real
20e3341b 93 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
94 * and in addition, less performance has a power price of its own.
95 *
96 * As a general rule of thumb, menu assumes that the following heuristic
97 * holds:
98 * The busier the system, the less impact of C states is acceptable
99 *
100 * This rule-of-thumb is implemented using a performance-multiplier:
101 * If the exit latency times the performance multiplier is longer than
102 * the predicted duration, the C state is not considered a candidate
103 * for selection due to a too high performance impact. So the higher
104 * this multiplier is, the longer we need to be idle to pick a deep C
105 * state, and thus the less likely a busy CPU will hit such a deep
106 * C state.
107 *
108 * Two factors are used in determing this multiplier:
109 * a value of 10 is added for each point of "per cpu load average" we have.
110 * a value of 5 points is added for each process that is waiting for
111 * IO on this CPU.
112 * (these values are experimentally determined)
113 *
114 * The load average factor gives a longer term (few seconds) input to the
115 * decision, while the iowait value gives a cpu local instantanious input.
116 * The iowait factor may look low, but realize that this is also already
117 * represented in the system load average.
118 *
119 */
4f86d3a8
LB
120
121struct menu_device {
122 int last_state_idx;
672917dc 123 int needs_update;
4f86d3a8 124
5dc2f5a3 125 unsigned int next_timer_us;
51f245b8 126 unsigned int predicted_us;
69d25870 127 unsigned int bucket;
51f245b8 128 unsigned int correction_factor[BUCKETS];
939e33b7 129 unsigned int intervals[INTERVALS];
1f85f87d 130 int interval_ptr;
4f86d3a8
LB
131};
132
69d25870
AV
133
134#define LOAD_INT(x) ((x) >> FSHIFT)
135#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136
372ba8cb 137static inline int get_loadavg(unsigned long load)
69d25870 138{
372ba8cb 139 return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
69d25870
AV
140}
141
64b4ca5c 142static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
69d25870
AV
143{
144 int bucket = 0;
145
146 /*
147 * We keep two groups of stats; one with no
148 * IO pending, one without.
149 * This allows us to calculate
150 * E(duration)|iowait
151 */
64b4ca5c 152 if (nr_iowaiters)
69d25870
AV
153 bucket = BUCKETS/2;
154
155 if (duration < 10)
156 return bucket;
157 if (duration < 100)
158 return bucket + 1;
159 if (duration < 1000)
160 return bucket + 2;
161 if (duration < 10000)
162 return bucket + 3;
163 if (duration < 100000)
164 return bucket + 4;
165 return bucket + 5;
166}
167
168/*
169 * Return a multiplier for the exit latency that is intended
170 * to take performance requirements into account.
171 * The more performance critical we estimate the system
172 * to be, the higher this multiplier, and thus the higher
173 * the barrier to go to an expensive C state.
174 */
372ba8cb 175static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
69d25870
AV
176{
177 int mult = 1;
178
179 /* for higher loadavg, we are more reluctant */
180
372ba8cb 181 mult += 2 * get_loadavg(load);
69d25870
AV
182
183 /* for IO wait tasks (per cpu!) we add 5x each */
64b4ca5c 184 mult += 10 * nr_iowaiters;
69d25870
AV
185
186 return mult;
187}
188
4f86d3a8
LB
189static DEFINE_PER_CPU(struct menu_device, menu_devices);
190
46bcfad7 191static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
672917dc 192
5787536e
SH
193/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
194static u64 div_round64(u64 dividend, u32 divisor)
195{
196 return div_u64(dividend + (divisor / 2), divisor);
197}
198
1f85f87d
AV
199/*
200 * Try detecting repeating patterns by keeping track of the last 8
201 * intervals, and checking if the standard deviation of that set
202 * of points is below a threshold. If it is... then use the
203 * average of these 8 points as the estimated value.
204 */
14851912 205static void get_typical_interval(struct menu_device *data)
1f85f87d 206{
4cd46bca 207 int i, divisor;
0e96d5ad
TT
208 unsigned int max, thresh;
209 uint64_t avg, stddev;
210
211 thresh = UINT_MAX; /* Discard outliers above this value */
1f85f87d 212
c96ca4fb 213again:
1f85f87d 214
0e96d5ad 215 /* First calculate the average of past intervals */
4cd46bca
TT
216 max = 0;
217 avg = 0;
218 divisor = 0;
c96ca4fb 219 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 220 unsigned int value = data->intervals[i];
c96ca4fb
YS
221 if (value <= thresh) {
222 avg += value;
223 divisor++;
224 if (value > max)
225 max = value;
226 }
227 }
ae779300
MG
228 if (divisor == INTERVALS)
229 avg >>= INTERVAL_SHIFT;
230 else
231 do_div(avg, divisor);
c96ca4fb 232
0e96d5ad
TT
233 /* Then try to determine standard deviation */
234 stddev = 0;
c96ca4fb 235 for (i = 0; i < INTERVALS; i++) {
0e96d5ad 236 unsigned int value = data->intervals[i];
c96ca4fb
YS
237 if (value <= thresh) {
238 int64_t diff = value - avg;
239 stddev += diff * diff;
240 }
241 }
ae779300
MG
242 if (divisor == INTERVALS)
243 stddev >>= INTERVAL_SHIFT;
244 else
245 do_div(stddev, divisor);
246
1f85f87d 247 /*
c96ca4fb
YS
248 * The typical interval is obtained when standard deviation is small
249 * or standard deviation is small compared to the average interval.
330647a9 250 *
0d6a7ffa
TT
251 * int_sqrt() formal parameter type is unsigned long. When the
252 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
253 * the resulting squared standard deviation exceeds the input domain
254 * of int_sqrt on platforms where unsigned long is 32 bits in size.
255 * In such case reject the candidate average.
256 *
330647a9 257 * Use this result only if there is no timer to wake us up sooner.
1f85f87d 258 */
0d6a7ffa
TT
259 if (likely(stddev <= ULONG_MAX)) {
260 stddev = int_sqrt(stddev);
261 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
c96ca4fb 262 || stddev <= 20) {
5dc2f5a3 263 if (data->next_timer_us > avg)
0d6a7ffa
TT
264 data->predicted_us = avg;
265 return;
266 }
69a37bea 267 }
017099e2
TT
268
269 /*
270 * If we have outliers to the upside in our distribution, discard
271 * those by setting the threshold to exclude these outliers, then
272 * calculate the average and standard deviation again. Once we get
273 * down to the bottom 3/4 of our samples, stop excluding samples.
274 *
275 * This can deal with workloads that have long pauses interspersed
276 * with sporadic activity with a bunch of short pauses.
277 */
278 if ((divisor * 4) <= INTERVALS * 3)
279 return;
280
281 thresh = max - 1;
282 goto again;
1f85f87d
AV
283}
284
4f86d3a8
LB
285/**
286 * menu_select - selects the next idle state to enter
46bcfad7 287 * @drv: cpuidle driver containing state data
4f86d3a8
LB
288 * @dev: the CPU
289 */
46bcfad7 290static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 291{
229b6863 292 struct menu_device *data = this_cpu_ptr(&menu_devices);
ed77134b 293 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
4f86d3a8 294 int i;
96e95182 295 unsigned int interactivity_req;
372ba8cb 296 unsigned long nr_iowaiters, cpu_load;
69d25870 297
672917dc 298 if (data->needs_update) {
46bcfad7 299 menu_update(drv, dev);
672917dc
CZ
300 data->needs_update = 0;
301 }
302
3836785a 303 data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
1c6fe036 304
a2bd9202 305 /* Special case when user has set very strict latency requirement */
69d25870 306 if (unlikely(latency_req == 0))
a2bd9202 307 return 0;
a2bd9202 308
69d25870 309 /* determine the expected residency time, round up */
107d4f46 310 data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
69d25870 311
372ba8cb 312 get_iowait_load(&nr_iowaiters, &cpu_load);
64b4ca5c 313 data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
69d25870 314
51f245b8
TT
315 /*
316 * Force the result of multiplication to be 64 bits even if both
317 * operands are 32 bits.
318 * Make sure to round up for half microseconds.
319 */
5dc2f5a3 320 data->predicted_us = div_round64((uint64_t)data->next_timer_us *
51f245b8 321 data->correction_factor[data->bucket],
5787536e 322 RESOLUTION * DECAY);
69d25870 323
14851912 324 get_typical_interval(data);
1f85f87d 325
96e95182 326 /*
327 * Performance multiplier defines a minimum predicted idle
328 * duration / latency ratio. Adjust the latency limit if
329 * necessary.
330 */
372ba8cb 331 interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
96e95182 332 if (latency_req > interactivity_req)
333 latency_req = interactivity_req;
334
69d25870
AV
335 /*
336 * We want to default to C1 (hlt), not to busy polling
337 * unless the timer is happening really really soon.
338 */
5dc2f5a3 339 if (data->next_timer_us > 5 &&
cbc9ef02 340 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
dc7fd275 341 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
69d25870 342 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 343
71abbbf8
AL
344 /*
345 * Find the idle state with the lowest power while satisfying
346 * our constraints.
347 */
46bcfad7
DD
348 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
349 struct cpuidle_state *s = &drv->states[i];
dc7fd275 350 struct cpuidle_state_usage *su = &dev->states_usage[i];
4f86d3a8 351
cbc9ef02 352 if (s->disabled || su->disable)
3a53396b 353 continue;
14851912 354 if (s->target_residency > data->predicted_us)
71abbbf8 355 continue;
a2bd9202 356 if (s->exit_latency > latency_req)
71abbbf8 357 continue;
71abbbf8 358
8aef33a7 359 data->last_state_idx = i;
4f86d3a8
LB
360 }
361
69d25870 362 return data->last_state_idx;
4f86d3a8
LB
363}
364
365/**
672917dc 366 * menu_reflect - records that data structures need update
4f86d3a8 367 * @dev: the CPU
e978aa7d 368 * @index: the index of actual entered state
4f86d3a8
LB
369 *
370 * NOTE: it's important to be fast here because this operation will add to
371 * the overall exit latency.
372 */
e978aa7d 373static void menu_reflect(struct cpuidle_device *dev, int index)
672917dc 374{
229b6863 375 struct menu_device *data = this_cpu_ptr(&menu_devices);
e978aa7d
DD
376 data->last_state_idx = index;
377 if (index >= 0)
378 data->needs_update = 1;
672917dc
CZ
379}
380
381/**
382 * menu_update - attempts to guess what happened after entry
46bcfad7 383 * @drv: cpuidle driver containing state data
672917dc
CZ
384 * @dev: the CPU
385 */
46bcfad7 386static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
4f86d3a8 387{
229b6863 388 struct menu_device *data = this_cpu_ptr(&menu_devices);
4f86d3a8 389 int last_idx = data->last_state_idx;
46bcfad7 390 struct cpuidle_state *target = &drv->states[last_idx];
320eee77 391 unsigned int measured_us;
51f245b8 392 unsigned int new_factor;
4f86d3a8
LB
393
394 /*
61c66d6e 395 * Try to figure out how much time passed between entry to low
396 * power state and occurrence of the wakeup event.
397 *
398 * If the entered idle state didn't support residency measurements,
399 * we are basically lost in the dark how much time passed.
400 * As a compromise, assume we slept for the whole expected time.
401 *
402 * Any measured amount of time will include the exit latency.
403 * Since we are interested in when the wakeup begun, not when it
2fba5376 404 * was completed, we must subtract the exit latency. However, if
61c66d6e 405 * the measured amount of time is less than the exit latency,
406 * assume the state was never reached and the exit latency is 0.
4f86d3a8 407 */
b82b6cca 408 if (unlikely(target->flags & CPUIDLE_FLAG_TIME_INVALID)) {
61c66d6e 409 /* Use timer value as is */
410 measured_us = data->next_timer_us;
69d25870 411
61c66d6e 412 } else {
413 /* Use measured value */
414 measured_us = cpuidle_get_last_residency(dev);
4f86d3a8 415
61c66d6e 416 /* Deduct exit latency */
417 if (measured_us > target->exit_latency)
418 measured_us -= target->exit_latency;
69d25870 419
61c66d6e 420 /* Make sure our coefficients do not exceed unity */
421 if (measured_us > data->next_timer_us)
422 measured_us = data->next_timer_us;
423 }
69d25870 424
51f245b8
TT
425 /* Update our correction ratio */
426 new_factor = data->correction_factor[data->bucket];
427 new_factor -= new_factor / DECAY;
69d25870 428
5dc2f5a3 429 if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
430 new_factor += RESOLUTION * measured_us / data->next_timer_us;
320eee77 431 else
69d25870
AV
432 /*
433 * we were idle so long that we count it as a perfect
434 * prediction
435 */
436 new_factor += RESOLUTION;
320eee77 437
69d25870
AV
438 /*
439 * We don't want 0 as factor; we always want at least
51f245b8
TT
440 * a tiny bit of estimated time. Fortunately, due to rounding,
441 * new_factor will stay nonzero regardless of measured_us values
442 * and the compiler can eliminate this test as long as DECAY > 1.
69d25870 443 */
51f245b8 444 if (DECAY == 1 && unlikely(new_factor == 0))
69d25870 445 new_factor = 1;
320eee77 446
69d25870 447 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
448
449 /* update the repeating-pattern data */
61c66d6e 450 data->intervals[data->interval_ptr++] = measured_us;
1f85f87d
AV
451 if (data->interval_ptr >= INTERVALS)
452 data->interval_ptr = 0;
4f86d3a8
LB
453}
454
455/**
456 * menu_enable_device - scans a CPU's states and does setup
46bcfad7 457 * @drv: cpuidle driver
4f86d3a8
LB
458 * @dev: the CPU
459 */
46bcfad7
DD
460static int menu_enable_device(struct cpuidle_driver *drv,
461 struct cpuidle_device *dev)
4f86d3a8
LB
462{
463 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
bed4d597 464 int i;
4f86d3a8
LB
465
466 memset(data, 0, sizeof(struct menu_device));
467
bed4d597
CK
468 /*
469 * if the correction factor is 0 (eg first time init or cpu hotplug
470 * etc), we actually want to start out with a unity factor.
471 */
472 for(i = 0; i < BUCKETS; i++)
473 data->correction_factor[i] = RESOLUTION * DECAY;
474
4f86d3a8
LB
475 return 0;
476}
477
478static struct cpuidle_governor menu_governor = {
479 .name = "menu",
480 .rating = 20,
481 .enable = menu_enable_device,
482 .select = menu_select,
483 .reflect = menu_reflect,
484 .owner = THIS_MODULE,
485};
486
487/**
488 * init_menu - initializes the governor
489 */
490static int __init init_menu(void)
491{
492 return cpuidle_register_governor(&menu_governor);
493}
494
137b944e 495postcore_initcall(init_menu);