]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/cpuidle/governors/teo.c
cpuidle: teo: Allow tick to be stopped if PM QoS is used
[mirror_ubuntu-focal-kernel.git] / drivers / cpuidle / governors / teo.c
CommitLineData
b26bf6ab
RW
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Timer events oriented CPU idle governor
4 *
5 * Copyright (C) 2018 Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * The idea of this governor is based on the observation that on many systems
9 * timer events are two or more orders of magnitude more frequent than any
10 * other interrupts, so they are likely to be the most significant source of CPU
11 * wakeups from idle states. Moreover, information about what happened in the
12 * (relatively recent) past can be used to estimate whether or not the deepest
13 * idle state with target residency within the time to the closest timer is
14 * likely to be suitable for the upcoming idle time of the CPU and, if not, then
15 * which of the shallower idle states to choose.
16 *
17 * Of course, non-timer wakeup sources are more important in some use cases and
18 * they can be covered by taking a few most recent idle time intervals of the
19 * CPU into account. However, even in that case it is not necessary to consider
20 * idle duration values greater than the time till the closest timer, as the
21 * patterns that they may belong to produce average values close enough to
22 * the time till the closest timer (sleep length) anyway.
23 *
24 * Thus this governor estimates whether or not the upcoming idle time of the CPU
25 * is likely to be significantly shorter than the sleep length and selects an
26 * idle state for it in accordance with that, as follows:
27 *
28 * - Find an idle state on the basis of the sleep length and state statistics
29 * collected over time:
30 *
31 * o Find the deepest idle state whose target residency is less than or equal
32 * to the sleep length.
33 *
34 * o Select it if it matched both the sleep length and the observed idle
35 * duration in the past more often than it matched the sleep length alone
36 * (i.e. the observed idle duration was significantly shorter than the sleep
37 * length matched by it).
38 *
39 * o Otherwise, select the shallower state with the greatest matched "early"
40 * wakeups metric.
41 *
42 * - If the majority of the most recent idle duration values are below the
43 * target residency of the idle state selected so far, use those values to
44 * compute the new expected idle duration and find an idle state matching it
45 * (which has to be shallower than the one selected so far).
46 */
47
48#include <linux/cpuidle.h>
49#include <linux/jiffies.h>
50#include <linux/kernel.h>
51#include <linux/sched/clock.h>
52#include <linux/tick.h>
53
54/*
55 * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
56 * is used for decreasing metrics on a regular basis.
57 */
58#define PULSE 1024
59#define DECAY_SHIFT 3
60
61/*
62 * Number of the most recent idle duration values to take into consideration for
63 * the detection of wakeup patterns.
64 */
65#define INTERVALS 8
66
67/**
68 * struct teo_idle_state - Idle state data used by the TEO cpuidle governor.
69 * @early_hits: "Early" CPU wakeups "matching" this state.
70 * @hits: "On time" CPU wakeups "matching" this state.
71 * @misses: CPU wakeups "missing" this state.
72 *
73 * A CPU wakeup is "matched" by a given idle state if the idle duration measured
74 * after the wakeup is between the target residency of that state and the target
75 * residency of the next one (or if this is the deepest available idle state, it
76 * "matches" a CPU wakeup when the measured idle duration is at least equal to
77 * its target residency).
78 *
79 * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if
80 * it occurs significantly earlier than the closest expected timer event (that
81 * is, early enough to match an idle state shallower than the one matching the
82 * time till the closest timer event). Otherwise, the wakeup is "on time", or
83 * it is a "hit".
84 *
85 * A "miss" occurs when the given state doesn't match the wakeup, but it matches
86 * the time till the closest timer event used for idle state selection.
87 */
88struct teo_idle_state {
89 unsigned int early_hits;
90 unsigned int hits;
91 unsigned int misses;
92};
93
94/**
95 * struct teo_cpu - CPU data used by the TEO cpuidle governor.
96 * @time_span_ns: Time between idle state selection and post-wakeup update.
97 * @sleep_length_ns: Time till the closest timer event (at the selection time).
98 * @states: Idle states data corresponding to this CPU.
b26bf6ab
RW
99 * @interval_idx: Index of the most recent saved idle interval.
100 * @intervals: Saved idle duration values.
101 */
102struct teo_cpu {
103 u64 time_span_ns;
104 u64 sleep_length_ns;
105 struct teo_idle_state states[CPUIDLE_STATE_MAX];
b26bf6ab
RW
106 int interval_idx;
107 unsigned int intervals[INTERVALS];
108};
109
110static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
111
112/**
113 * teo_update - Update CPU data after wakeup.
114 * @drv: cpuidle driver containing state data.
115 * @dev: Target CPU.
116 */
117static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
118{
119 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
120 unsigned int sleep_length_us = ktime_to_us(cpu_data->sleep_length_ns);
121 int i, idx_hit = -1, idx_timer = -1;
122 unsigned int measured_us;
123
124 if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) {
125 /*
126 * One of the safety nets has triggered or this was a timer
127 * wakeup (or equivalent).
128 */
129 measured_us = sleep_length_us;
130 } else {
7d4daeed
MT
131 unsigned int lat;
132
133 lat = drv->states[dev->last_state_idx].exit_latency;
b26bf6ab
RW
134
135 measured_us = ktime_to_us(cpu_data->time_span_ns);
136 /*
137 * The delay between the wakeup and the first instruction
138 * executed by the CPU is not likely to be worst-case every
139 * time, so take 1/2 of the exit latency as a very rough
140 * approximation of the average of it.
141 */
142 if (measured_us >= lat)
143 measured_us -= lat / 2;
144 else
145 measured_us /= 2;
146 }
147
148 /*
149 * Decay the "early hits" metric for all of the states and find the
150 * states matching the sleep length and the measured idle duration.
151 */
152 for (i = 0; i < drv->state_count; i++) {
153 unsigned int early_hits = cpu_data->states[i].early_hits;
154
155 cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT;
156
157 if (drv->states[i].target_residency <= sleep_length_us) {
158 idx_timer = i;
159 if (drv->states[i].target_residency <= measured_us)
160 idx_hit = i;
161 }
162 }
163
164 /*
165 * Update the "hits" and "misses" data for the state matching the sleep
166 * length. If it matches the measured idle duration too, this is a hit,
167 * so increase the "hits" metric for it then. Otherwise, this is a
168 * miss, so increase the "misses" metric for it. In the latter case
169 * also increase the "early hits" metric for the state that actually
170 * matches the measured idle duration.
171 */
172 if (idx_timer >= 0) {
173 unsigned int hits = cpu_data->states[idx_timer].hits;
174 unsigned int misses = cpu_data->states[idx_timer].misses;
175
176 hits -= hits >> DECAY_SHIFT;
177 misses -= misses >> DECAY_SHIFT;
178
179 if (idx_timer > idx_hit) {
180 misses += PULSE;
181 if (idx_hit >= 0)
182 cpu_data->states[idx_hit].early_hits += PULSE;
183 } else {
184 hits += PULSE;
185 }
186
187 cpu_data->states[idx_timer].misses = misses;
188 cpu_data->states[idx_timer].hits = hits;
189 }
190
191 /*
192 * If the total time span between idle state selection and the "reflect"
193 * callback is greater than or equal to the sleep length determined at
194 * the idle state selection time, the wakeup is likely to be due to a
195 * timer event.
196 */
197 if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns)
198 measured_us = UINT_MAX;
199
200 /*
201 * Save idle duration values corresponding to non-timer wakeups for
202 * pattern detection.
203 */
204 cpu_data->intervals[cpu_data->interval_idx++] = measured_us;
205 if (cpu_data->interval_idx > INTERVALS)
206 cpu_data->interval_idx = 0;
207}
208
209/**
210 * teo_find_shallower_state - Find shallower idle state matching given duration.
211 * @drv: cpuidle driver containing state data.
212 * @dev: Target CPU.
213 * @state_idx: Index of the capping idle state.
214 * @duration_us: Idle duration value to match.
215 */
216static int teo_find_shallower_state(struct cpuidle_driver *drv,
217 struct cpuidle_device *dev, int state_idx,
218 unsigned int duration_us)
219{
220 int i;
221
222 for (i = state_idx - 1; i >= 0; i--) {
223 if (drv->states[i].disabled || dev->states_usage[i].disable)
224 continue;
225
226 state_idx = i;
227 if (drv->states[i].target_residency <= duration_us)
228 break;
229 }
230 return state_idx;
231}
232
233/**
234 * teo_select - Selects the next idle state to enter.
235 * @drv: cpuidle driver containing state data.
236 * @dev: Target CPU.
237 * @stop_tick: Indication on whether or not to stop the scheduler tick.
238 */
239static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
240 bool *stop_tick)
241{
242 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
243 int latency_req = cpuidle_governor_latency_req(dev->cpu);
244 unsigned int duration_us, count;
cab09f3d 245 int max_early_idx, constraint_idx, idx, i;
b26bf6ab
RW
246 ktime_t delta_tick;
247
7d4daeed 248 if (dev->last_state_idx >= 0) {
b26bf6ab 249 teo_update(drv, dev);
7d4daeed 250 dev->last_state_idx = -1;
b26bf6ab
RW
251 }
252
253 cpu_data->time_span_ns = local_clock();
254
255 cpu_data->sleep_length_ns = tick_nohz_get_sleep_length(&delta_tick);
256 duration_us = ktime_to_us(cpu_data->sleep_length_ns);
257
258 count = 0;
259 max_early_idx = -1;
cab09f3d 260 constraint_idx = drv->state_count;
b26bf6ab
RW
261 idx = -1;
262
263 for (i = 0; i < drv->state_count; i++) {
264 struct cpuidle_state *s = &drv->states[i];
265 struct cpuidle_state_usage *su = &dev->states_usage[i];
266
267 if (s->disabled || su->disable) {
268 /*
269 * If the "early hits" metric of a disabled state is
270 * greater than the current maximum, it should be taken
271 * into account, because it would be a mistake to select
272 * a deeper state with lower "early hits" metric. The
273 * index cannot be changed to point to it, however, so
274 * just increase the max count alone and let the index
275 * still point to a shallower idle state.
276 */
277 if (max_early_idx >= 0 &&
278 count < cpu_data->states[i].early_hits)
279 count = cpu_data->states[i].early_hits;
280
281 continue;
282 }
283
284 if (idx < 0)
285 idx = i; /* first enabled state */
286
287 if (s->target_residency > duration_us)
288 break;
289
cab09f3d
RW
290 if (s->exit_latency > latency_req && constraint_idx > i)
291 constraint_idx = i;
b26bf6ab
RW
292
293 idx = i;
294
295 if (count < cpu_data->states[i].early_hits &&
296 !(tick_nohz_tick_stopped() &&
297 drv->states[i].target_residency < TICK_USEC)) {
298 count = cpu_data->states[i].early_hits;
299 max_early_idx = i;
300 }
301 }
302
303 /*
304 * If the "hits" metric of the idle state matching the sleep length is
305 * greater than its "misses" metric, that is the one to use. Otherwise,
306 * it is more likely that one of the shallower states will match the
307 * idle duration observed after wakeup, so take the one with the maximum
308 * "early hits" metric, but if that cannot be determined, just use the
309 * state selected so far.
310 */
311 if (cpu_data->states[idx].hits <= cpu_data->states[idx].misses &&
312 max_early_idx >= 0) {
313 idx = max_early_idx;
314 duration_us = drv->states[idx].target_residency;
315 }
316
cab09f3d
RW
317 /*
318 * If there is a latency constraint, it may be necessary to use a
319 * shallower idle state than the one selected so far.
320 */
321 if (constraint_idx < idx)
322 idx = constraint_idx;
323
b26bf6ab
RW
324 if (idx < 0) {
325 idx = 0; /* No states enabled. Must use 0. */
326 } else if (idx > 0) {
327 u64 sum = 0;
328
329 count = 0;
330
331 /*
332 * Count and sum the most recent idle duration values less than
cab09f3d 333 * the current expected idle duration value.
b26bf6ab
RW
334 */
335 for (i = 0; i < INTERVALS; i++) {
336 unsigned int val = cpu_data->intervals[i];
337
cab09f3d 338 if (val >= duration_us)
b26bf6ab
RW
339 continue;
340
341 count++;
342 sum += val;
343 }
344
345 /*
346 * Give up unless the majority of the most recent idle duration
347 * values are in the interesting range.
348 */
349 if (count > INTERVALS / 2) {
350 unsigned int avg_us = div64_u64(sum, count);
351
352 /*
353 * Avoid spending too much time in an idle state that
354 * would be too shallow.
355 */
356 if (!(tick_nohz_tick_stopped() && avg_us < TICK_USEC)) {
b26bf6ab 357 duration_us = avg_us;
cab09f3d
RW
358 if (drv->states[idx].target_residency > avg_us)
359 idx = teo_find_shallower_state(drv, dev,
360 idx, avg_us);
b26bf6ab
RW
361 }
362 }
363 }
364
365 /*
366 * Don't stop the tick if the selected state is a polling one or if the
367 * expected idle duration is shorter than the tick period length.
368 */
369 if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
370 duration_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
371 unsigned int delta_tick_us = ktime_to_us(delta_tick);
372
373 *stop_tick = false;
374
375 /*
376 * The tick is not going to be stopped, so if the target
377 * residency of the state to be returned is not within the time
378 * till the closest timer including the tick, try to correct
379 * that.
380 */
381 if (idx > 0 && drv->states[idx].target_residency > delta_tick_us)
382 idx = teo_find_shallower_state(drv, dev, idx, delta_tick_us);
383 }
384
385 return idx;
386}
387
388/**
389 * teo_reflect - Note that governor data for the CPU need to be updated.
390 * @dev: Target CPU.
391 * @state: Entered state.
392 */
393static void teo_reflect(struct cpuidle_device *dev, int state)
394{
395 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
396
7d4daeed 397 dev->last_state_idx = state;
b26bf6ab
RW
398 /*
399 * If the wakeup was not "natural", but triggered by one of the safety
400 * nets, assume that the CPU might have been idle for the entire sleep
401 * length time.
402 */
403 if (dev->poll_time_limit ||
404 (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) {
405 dev->poll_time_limit = false;
406 cpu_data->time_span_ns = cpu_data->sleep_length_ns;
407 } else {
408 cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns;
409 }
410}
411
412/**
413 * teo_enable_device - Initialize the governor's data for the target CPU.
414 * @drv: cpuidle driver (not used).
415 * @dev: Target CPU.
416 */
417static int teo_enable_device(struct cpuidle_driver *drv,
418 struct cpuidle_device *dev)
419{
420 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
421 int i;
422
423 memset(cpu_data, 0, sizeof(*cpu_data));
424
425 for (i = 0; i < INTERVALS; i++)
426 cpu_data->intervals[i] = UINT_MAX;
427
428 return 0;
429}
430
431static struct cpuidle_governor teo_governor = {
432 .name = "teo",
433 .rating = 19,
434 .enable = teo_enable_device,
435 .select = teo_select,
436 .reflect = teo_reflect,
437};
438
439static int __init teo_governor_init(void)
440{
441 return cpuidle_register_governor(&teo_governor);
442}
443
444postcore_initcall(teo_governor_init);