]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/crypto/ccp/ccp-crypto-sha.c
crypto: omap-aes - add error check for pm_runtime_get_sync
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / ccp / ccp-crypto-sha.c
CommitLineData
0ab0a1d5
TL
1/*
2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3 *
4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/module.h>
14#include <linux/sched.h>
15#include <linux/delay.h>
16#include <linux/scatterlist.h>
17#include <linux/crypto.h>
18#include <crypto/algapi.h>
19#include <crypto/hash.h>
20#include <crypto/internal/hash.h>
21#include <crypto/sha.h>
22#include <crypto/scatterwalk.h>
23
24#include "ccp-crypto.h"
25
26
27struct ccp_sha_result {
28 struct completion completion;
29 int err;
30};
31
32static void ccp_sync_hash_complete(struct crypto_async_request *req, int err)
33{
34 struct ccp_sha_result *result = req->data;
35
36 if (err == -EINPROGRESS)
37 return;
38
39 result->err = err;
40 complete(&result->completion);
41}
42
43static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf,
44 struct scatterlist *sg, unsigned int len)
45{
46 struct ccp_sha_result result;
47 struct ahash_request *req;
48 int ret;
49
50 init_completion(&result.completion);
51
52 req = ahash_request_alloc(tfm, GFP_KERNEL);
53 if (!req)
54 return -ENOMEM;
55
56 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
57 ccp_sync_hash_complete, &result);
58 ahash_request_set_crypt(req, sg, buf, len);
59
60 ret = crypto_ahash_digest(req);
61 if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
62 ret = wait_for_completion_interruptible(&result.completion);
63 if (!ret)
64 ret = result.err;
65 }
66
67 ahash_request_free(req);
68
69 return ret;
70}
71
72static int ccp_sha_finish_hmac(struct crypto_async_request *async_req)
73{
74 struct ahash_request *req = ahash_request_cast(async_req);
75 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
76 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
77 struct scatterlist sg[2];
78 unsigned int block_size =
79 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
80 unsigned int digest_size = crypto_ahash_digestsize(tfm);
81
82 sg_init_table(sg, ARRAY_SIZE(sg));
83 sg_set_buf(&sg[0], ctx->u.sha.opad, block_size);
84 sg_set_buf(&sg[1], req->result, digest_size);
85
86 return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg,
87 block_size + digest_size);
88}
89
90static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
91{
92 struct ahash_request *req = ahash_request_cast(async_req);
93 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
94 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
95 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
96 unsigned int digest_size = crypto_ahash_digestsize(tfm);
97
98 if (ret)
99 goto e_free;
100
101 if (rctx->hash_rem) {
102 /* Save remaining data to buffer */
103 scatterwalk_map_and_copy(rctx->buf, rctx->cmd.u.sha.src,
104 rctx->hash_cnt, rctx->hash_rem, 0);
105 rctx->buf_count = rctx->hash_rem;
106 } else
107 rctx->buf_count = 0;
108
109 memcpy(req->result, rctx->ctx, digest_size);
110
111 /* If we're doing an HMAC, we need to perform that on the final op */
112 if (rctx->final && ctx->u.sha.key_len)
113 ret = ccp_sha_finish_hmac(async_req);
114
115e_free:
116 sg_free_table(&rctx->data_sg);
117
118 return ret;
119}
120
121static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
122 unsigned int final)
123{
124 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
125 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
126 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
127 struct scatterlist *sg;
128 unsigned int block_size =
129 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
130 unsigned int len, sg_count;
131 int ret;
132
133 if (!final && ((nbytes + rctx->buf_count) <= block_size)) {
134 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
135 0, nbytes, 0);
136 rctx->buf_count += nbytes;
137
138 return 0;
139 }
140
141 len = rctx->buf_count + nbytes;
142
143 rctx->final = final;
144 rctx->hash_cnt = final ? len : len & ~(block_size - 1);
145 rctx->hash_rem = final ? 0 : len & (block_size - 1);
146 if (!final && (rctx->hash_cnt == len)) {
147 /* CCP can't do zero length final, so keep some data around */
148 rctx->hash_cnt -= block_size;
149 rctx->hash_rem = block_size;
150 }
151
152 /* Initialize the context scatterlist */
153 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
154
155 /* Build the data scatterlist table - allocate enough entries for all
156 * possible data pieces (hmac ipad, buffer, input data)
157 */
158 sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
159 ret = sg_alloc_table(&rctx->data_sg, sg_count, GFP_KERNEL);
160 if (ret)
161 return ret;
162
163 sg = NULL;
164 if (rctx->first && ctx->u.sha.key_len) {
165 rctx->hash_cnt += block_size;
166
167 sg_init_one(&rctx->pad_sg, ctx->u.sha.ipad, block_size);
168 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
169 }
170
171 if (rctx->buf_count) {
172 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
173 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
174 }
175
176 if (nbytes)
177 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
178
179 if (sg)
180 sg_mark_end(sg);
181
182 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
183
184 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
185 INIT_LIST_HEAD(&rctx->cmd.entry);
186 rctx->cmd.engine = CCP_ENGINE_SHA;
187 rctx->cmd.u.sha.type = rctx->type;
188 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
189 rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
190 rctx->cmd.u.sha.src = (sg) ? rctx->data_sg.sgl : NULL;
191 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
192 rctx->cmd.u.sha.final = rctx->final;
193 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
194
195 rctx->first = 0;
196
197 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
198
199 return ret;
200}
201
202static int ccp_sha_init(struct ahash_request *req)
203{
204 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
205 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
206 struct ccp_crypto_ahash_alg *alg =
207 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
208
209 memset(rctx, 0, sizeof(*rctx));
210
211 memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx));
212 rctx->type = alg->type;
213 rctx->first = 1;
214
215 return 0;
216}
217
218static int ccp_sha_update(struct ahash_request *req)
219{
220 return ccp_do_sha_update(req, req->nbytes, 0);
221}
222
223static int ccp_sha_final(struct ahash_request *req)
224{
225 return ccp_do_sha_update(req, 0, 1);
226}
227
228static int ccp_sha_finup(struct ahash_request *req)
229{
230 return ccp_do_sha_update(req, req->nbytes, 1);
231}
232
233static int ccp_sha_digest(struct ahash_request *req)
234{
235 ccp_sha_init(req);
236
237 return ccp_do_sha_update(req, req->nbytes, 1);
238}
239
240static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
241 unsigned int key_len)
242{
243 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
244 struct scatterlist sg;
245 unsigned int block_size =
246 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247 unsigned int digest_size = crypto_ahash_digestsize(tfm);
248 int i, ret;
249
250 /* Set to zero until complete */
251 ctx->u.sha.key_len = 0;
252
253 /* Clear key area to provide zero padding for keys smaller
254 * than the block size
255 */
256 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
257
258 if (key_len > block_size) {
259 /* Must hash the input key */
260 sg_init_one(&sg, key, key_len);
261 ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len);
262 if (ret) {
263 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
264 return -EINVAL;
265 }
266
267 key_len = digest_size;
268 } else
269 memcpy(ctx->u.sha.key, key, key_len);
270
271 for (i = 0; i < block_size; i++) {
272 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
273 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
274 }
275
276 ctx->u.sha.key_len = key_len;
277
278 return 0;
279}
280
281static int ccp_sha_cra_init(struct crypto_tfm *tfm)
282{
283 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
284 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
285
286 ctx->complete = ccp_sha_complete;
287 ctx->u.sha.key_len = 0;
288
289 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
290
291 return 0;
292}
293
294static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
295{
296}
297
298static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
299{
300 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
301 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
302 struct crypto_ahash *hmac_tfm;
303
304 hmac_tfm = crypto_alloc_ahash(alg->child_alg,
305 CRYPTO_ALG_TYPE_AHASH, 0);
306 if (IS_ERR(hmac_tfm)) {
307 pr_warn("could not load driver %s need for HMAC support\n",
308 alg->child_alg);
309 return PTR_ERR(hmac_tfm);
310 }
311
312 ctx->u.sha.hmac_tfm = hmac_tfm;
313
314 return ccp_sha_cra_init(tfm);
315}
316
317static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
318{
319 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
320
321 if (ctx->u.sha.hmac_tfm)
322 crypto_free_ahash(ctx->u.sha.hmac_tfm);
323
324 ccp_sha_cra_exit(tfm);
325}
326
327static const u32 sha1_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
328 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
329 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
330 cpu_to_be32(SHA1_H4), 0, 0, 0,
331};
332
333static const u32 sha224_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
334 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
335 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
336 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
337 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
338};
339
340static const u32 sha256_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
341 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
342 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
343 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
344 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
345};
346
347struct ccp_sha_def {
348 const char *name;
349 const char *drv_name;
350 const u32 *init;
351 enum ccp_sha_type type;
352 u32 digest_size;
353 u32 block_size;
354};
355
356static struct ccp_sha_def sha_algs[] = {
357 {
358 .name = "sha1",
359 .drv_name = "sha1-ccp",
360 .init = sha1_init,
361 .type = CCP_SHA_TYPE_1,
362 .digest_size = SHA1_DIGEST_SIZE,
363 .block_size = SHA1_BLOCK_SIZE,
364 },
365 {
366 .name = "sha224",
367 .drv_name = "sha224-ccp",
368 .init = sha224_init,
369 .type = CCP_SHA_TYPE_224,
370 .digest_size = SHA224_DIGEST_SIZE,
371 .block_size = SHA224_BLOCK_SIZE,
372 },
373 {
374 .name = "sha256",
375 .drv_name = "sha256-ccp",
376 .init = sha256_init,
377 .type = CCP_SHA_TYPE_256,
378 .digest_size = SHA256_DIGEST_SIZE,
379 .block_size = SHA256_BLOCK_SIZE,
380 },
381};
382
383static int ccp_register_hmac_alg(struct list_head *head,
384 const struct ccp_sha_def *def,
385 const struct ccp_crypto_ahash_alg *base_alg)
386{
387 struct ccp_crypto_ahash_alg *ccp_alg;
388 struct ahash_alg *alg;
389 struct hash_alg_common *halg;
390 struct crypto_alg *base;
391 int ret;
392
393 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
394 if (!ccp_alg)
395 return -ENOMEM;
396
397 /* Copy the base algorithm and only change what's necessary */
398 memcpy(ccp_alg, base_alg, sizeof(*ccp_alg));
399 INIT_LIST_HEAD(&ccp_alg->entry);
400
401 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
402
403 alg = &ccp_alg->alg;
404 alg->setkey = ccp_sha_setkey;
405
406 halg = &alg->halg;
407
408 base = &halg->base;
409 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
410 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
411 def->drv_name);
412 base->cra_init = ccp_hmac_sha_cra_init;
413 base->cra_exit = ccp_hmac_sha_cra_exit;
414
415 ret = crypto_register_ahash(alg);
416 if (ret) {
417 pr_err("%s ahash algorithm registration error (%d)\n",
418 base->cra_name, ret);
419 kfree(ccp_alg);
420 return ret;
421 }
422
423 list_add(&ccp_alg->entry, head);
424
425 return ret;
426}
427
428static int ccp_register_sha_alg(struct list_head *head,
429 const struct ccp_sha_def *def)
430{
431 struct ccp_crypto_ahash_alg *ccp_alg;
432 struct ahash_alg *alg;
433 struct hash_alg_common *halg;
434 struct crypto_alg *base;
435 int ret;
436
437 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
438 if (!ccp_alg)
439 return -ENOMEM;
440
441 INIT_LIST_HEAD(&ccp_alg->entry);
442
443 ccp_alg->init = def->init;
444 ccp_alg->type = def->type;
445
446 alg = &ccp_alg->alg;
447 alg->init = ccp_sha_init;
448 alg->update = ccp_sha_update;
449 alg->final = ccp_sha_final;
450 alg->finup = ccp_sha_finup;
451 alg->digest = ccp_sha_digest;
452
453 halg = &alg->halg;
454 halg->digestsize = def->digest_size;
455
456 base = &halg->base;
457 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
458 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
459 def->drv_name);
460 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
461 CRYPTO_ALG_KERN_DRIVER_ONLY |
462 CRYPTO_ALG_NEED_FALLBACK;
463 base->cra_blocksize = def->block_size;
464 base->cra_ctxsize = sizeof(struct ccp_ctx);
465 base->cra_priority = CCP_CRA_PRIORITY;
466 base->cra_type = &crypto_ahash_type;
467 base->cra_init = ccp_sha_cra_init;
468 base->cra_exit = ccp_sha_cra_exit;
469 base->cra_module = THIS_MODULE;
470
471 ret = crypto_register_ahash(alg);
472 if (ret) {
473 pr_err("%s ahash algorithm registration error (%d)\n",
474 base->cra_name, ret);
475 kfree(ccp_alg);
476 return ret;
477 }
478
479 list_add(&ccp_alg->entry, head);
480
481 ret = ccp_register_hmac_alg(head, def, ccp_alg);
482
483 return ret;
484}
485
486int ccp_register_sha_algs(struct list_head *head)
487{
488 int i, ret;
489
490 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
491 ret = ccp_register_sha_alg(head, &sha_algs[i]);
492 if (ret)
493 return ret;
494 }
495
496 return 0;
497}