]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/crypto/ccp/ccp-dev-v3.c
crypto: ccp - Abstract PCI info for the CCP
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / ccp / ccp-dev-v3.c
CommitLineData
ea0375af
GH
1/*
2 * AMD Cryptographic Coprocessor (CCP) driver
3 *
4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
fba8855c 7 * Author: Gary R Hook <gary.hook@amd.com>
ea0375af
GH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/pci.h>
17#include <linux/kthread.h>
18#include <linux/interrupt.h>
19#include <linux/ccp.h>
20
21#include "ccp-dev.h"
22
23static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
24{
25 struct ccp_cmd_queue *cmd_q = op->cmd_q;
26 struct ccp_device *ccp = cmd_q->ccp;
27 void __iomem *cr_addr;
28 u32 cr0, cmd;
29 unsigned int i;
30 int ret = 0;
31
32 /* We could read a status register to see how many free slots
33 * are actually available, but reading that register resets it
34 * and you could lose some error information.
35 */
36 cmd_q->free_slots--;
37
38 cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
39 | (op->jobid << REQ0_JOBID_SHIFT)
40 | REQ0_WAIT_FOR_WRITE;
41
42 if (op->soc)
43 cr0 |= REQ0_STOP_ON_COMPLETE
44 | REQ0_INT_ON_COMPLETE;
45
46 if (op->ioc || !cmd_q->free_slots)
47 cr0 |= REQ0_INT_ON_COMPLETE;
48
49 /* Start at CMD_REQ1 */
50 cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
51
52 mutex_lock(&ccp->req_mutex);
53
54 /* Write CMD_REQ1 through CMD_REQx first */
55 for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
56 iowrite32(*(cr + i), cr_addr);
57
58 /* Tell the CCP to start */
59 wmb();
60 iowrite32(cr0, ccp->io_regs + CMD_REQ0);
61
62 mutex_unlock(&ccp->req_mutex);
63
64 if (cr0 & REQ0_INT_ON_COMPLETE) {
65 /* Wait for the job to complete */
66 ret = wait_event_interruptible(cmd_q->int_queue,
67 cmd_q->int_rcvd);
68 if (ret || cmd_q->cmd_error) {
69 /* On error delete all related jobs from the queue */
70 cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
71 | op->jobid;
72
73 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
74
75 if (!ret)
76 ret = -EIO;
77 } else if (op->soc) {
78 /* Delete just head job from the queue on SoC */
79 cmd = DEL_Q_ACTIVE
80 | (cmd_q->id << DEL_Q_ID_SHIFT)
81 | op->jobid;
82
83 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
84 }
85
86 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
87
88 cmd_q->int_rcvd = 0;
89 }
90
91 return ret;
92}
93
94static int ccp_perform_aes(struct ccp_op *op)
95{
96 u32 cr[6];
97
98 /* Fill out the register contents for REQ1 through REQ6 */
99 cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
100 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
101 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
102 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
103 | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
104 cr[1] = op->src.u.dma.length - 1;
105 cr[2] = ccp_addr_lo(&op->src.u.dma);
106 cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
107 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
108 | ccp_addr_hi(&op->src.u.dma);
109 cr[4] = ccp_addr_lo(&op->dst.u.dma);
110 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
111 | ccp_addr_hi(&op->dst.u.dma);
112
113 if (op->u.aes.mode == CCP_AES_MODE_CFB)
114 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
115
116 if (op->eom)
117 cr[0] |= REQ1_EOM;
118
119 if (op->init)
120 cr[0] |= REQ1_INIT;
121
122 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
123}
124
125static int ccp_perform_xts_aes(struct ccp_op *op)
126{
127 u32 cr[6];
128
129 /* Fill out the register contents for REQ1 through REQ6 */
130 cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
131 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
132 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
133 | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
134 cr[1] = op->src.u.dma.length - 1;
135 cr[2] = ccp_addr_lo(&op->src.u.dma);
136 cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
137 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
138 | ccp_addr_hi(&op->src.u.dma);
139 cr[4] = ccp_addr_lo(&op->dst.u.dma);
140 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
141 | ccp_addr_hi(&op->dst.u.dma);
142
143 if (op->eom)
144 cr[0] |= REQ1_EOM;
145
146 if (op->init)
147 cr[0] |= REQ1_INIT;
148
149 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
150}
151
152static int ccp_perform_sha(struct ccp_op *op)
153{
154 u32 cr[6];
155
156 /* Fill out the register contents for REQ1 through REQ6 */
157 cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
158 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
159 | REQ1_INIT;
160 cr[1] = op->src.u.dma.length - 1;
161 cr[2] = ccp_addr_lo(&op->src.u.dma);
162 cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
163 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
164 | ccp_addr_hi(&op->src.u.dma);
165
166 if (op->eom) {
167 cr[0] |= REQ1_EOM;
168 cr[4] = lower_32_bits(op->u.sha.msg_bits);
169 cr[5] = upper_32_bits(op->u.sha.msg_bits);
170 } else {
171 cr[4] = 0;
172 cr[5] = 0;
173 }
174
175 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
176}
177
178static int ccp_perform_rsa(struct ccp_op *op)
179{
180 u32 cr[6];
181
182 /* Fill out the register contents for REQ1 through REQ6 */
183 cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
184 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
185 | (op->ksb_key << REQ1_KEY_KSB_SHIFT)
186 | REQ1_EOM;
187 cr[1] = op->u.rsa.input_len - 1;
188 cr[2] = ccp_addr_lo(&op->src.u.dma);
189 cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
190 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
191 | ccp_addr_hi(&op->src.u.dma);
192 cr[4] = ccp_addr_lo(&op->dst.u.dma);
193 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
194 | ccp_addr_hi(&op->dst.u.dma);
195
196 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
197}
198
199static int ccp_perform_passthru(struct ccp_op *op)
200{
201 u32 cr[6];
202
203 /* Fill out the register contents for REQ1 through REQ6 */
204 cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
205 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
206 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
207
208 if (op->src.type == CCP_MEMTYPE_SYSTEM)
209 cr[1] = op->src.u.dma.length - 1;
210 else
211 cr[1] = op->dst.u.dma.length - 1;
212
213 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
214 cr[2] = ccp_addr_lo(&op->src.u.dma);
215 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
216 | ccp_addr_hi(&op->src.u.dma);
217
218 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
219 cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
220 } else {
221 cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
222 cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
223 }
224
225 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
226 cr[4] = ccp_addr_lo(&op->dst.u.dma);
227 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
228 | ccp_addr_hi(&op->dst.u.dma);
229 } else {
230 cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
231 cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
232 }
233
234 if (op->eom)
235 cr[0] |= REQ1_EOM;
236
237 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
238}
239
240static int ccp_perform_ecc(struct ccp_op *op)
241{
242 u32 cr[6];
243
244 /* Fill out the register contents for REQ1 through REQ6 */
245 cr[0] = REQ1_ECC_AFFINE_CONVERT
246 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
247 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
248 | REQ1_EOM;
249 cr[1] = op->src.u.dma.length - 1;
250 cr[2] = ccp_addr_lo(&op->src.u.dma);
251 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
252 | ccp_addr_hi(&op->src.u.dma);
253 cr[4] = ccp_addr_lo(&op->dst.u.dma);
254 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
255 | ccp_addr_hi(&op->dst.u.dma);
256
257 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
258}
259
260static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
261{
262 struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
263 u32 trng_value;
264 int len = min_t(int, sizeof(trng_value), max);
265
266 /*
267 * Locking is provided by the caller so we can update device
268 * hwrng-related fields safely
269 */
270 trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
271 if (!trng_value) {
272 /* Zero is returned if not data is available or if a
273 * bad-entropy error is present. Assume an error if
274 * we exceed TRNG_RETRIES reads of zero.
275 */
276 if (ccp->hwrng_retries++ > TRNG_RETRIES)
277 return -EIO;
278
279 return 0;
280 }
281
282 /* Reset the counter and save the rng value */
283 ccp->hwrng_retries = 0;
284 memcpy(data, &trng_value, len);
285
286 return len;
287}
288
289static int ccp_init(struct ccp_device *ccp)
290{
291 struct device *dev = ccp->dev;
292 struct ccp_cmd_queue *cmd_q;
293 struct dma_pool *dma_pool;
294 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
295 unsigned int qmr, qim, i;
296 int ret;
297
298 /* Find available queues */
299 qim = 0;
300 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
301 for (i = 0; i < MAX_HW_QUEUES; i++) {
302 if (!(qmr & (1 << i)))
303 continue;
304
305 /* Allocate a dma pool for this queue */
306 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
307 ccp->name, i);
308 dma_pool = dma_pool_create(dma_pool_name, dev,
309 CCP_DMAPOOL_MAX_SIZE,
310 CCP_DMAPOOL_ALIGN, 0);
311 if (!dma_pool) {
312 dev_err(dev, "unable to allocate dma pool\n");
313 ret = -ENOMEM;
314 goto e_pool;
315 }
316
317 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
318 ccp->cmd_q_count++;
319
320 cmd_q->ccp = ccp;
321 cmd_q->id = i;
322 cmd_q->dma_pool = dma_pool;
323
324 /* Reserve 2 KSB regions for the queue */
325 cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
326 cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
327 ccp->ksb_count -= 2;
328
329 /* Preset some register values and masks that are queue
330 * number dependent
331 */
332 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
333 (CMD_Q_STATUS_INCR * i);
334 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
335 (CMD_Q_STATUS_INCR * i);
336 cmd_q->int_ok = 1 << (i * 2);
337 cmd_q->int_err = 1 << ((i * 2) + 1);
338
339 cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
340
341 init_waitqueue_head(&cmd_q->int_queue);
342
343 /* Build queue interrupt mask (two interrupts per queue) */
344 qim |= cmd_q->int_ok | cmd_q->int_err;
345
346#ifdef CONFIG_ARM64
347 /* For arm64 set the recommended queue cache settings */
348 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
349 (CMD_Q_CACHE_INC * i));
350#endif
351
352 dev_dbg(dev, "queue #%u available\n", i);
353 }
354 if (ccp->cmd_q_count == 0) {
355 dev_notice(dev, "no command queues available\n");
356 ret = -EIO;
357 goto e_pool;
358 }
359 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
360
361 /* Disable and clear interrupts until ready */
362 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
363 for (i = 0; i < ccp->cmd_q_count; i++) {
364 cmd_q = &ccp->cmd_q[i];
365
366 ioread32(cmd_q->reg_int_status);
367 ioread32(cmd_q->reg_status);
368 }
369 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
370
371 /* Request an irq */
372 ret = ccp->get_irq(ccp);
373 if (ret) {
374 dev_err(dev, "unable to allocate an IRQ\n");
375 goto e_pool;
376 }
377
378 /* Initialize the queues used to wait for KSB space and suspend */
379 init_waitqueue_head(&ccp->ksb_queue);
380 init_waitqueue_head(&ccp->suspend_queue);
381
382 /* Create a kthread for each queue */
383 for (i = 0; i < ccp->cmd_q_count; i++) {
384 struct task_struct *kthread;
385
386 cmd_q = &ccp->cmd_q[i];
387
388 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
389 "%s-q%u", ccp->name, cmd_q->id);
390 if (IS_ERR(kthread)) {
391 dev_err(dev, "error creating queue thread (%ld)\n",
392 PTR_ERR(kthread));
393 ret = PTR_ERR(kthread);
394 goto e_kthread;
395 }
396
397 cmd_q->kthread = kthread;
398 wake_up_process(kthread);
399 }
400
401 /* Register the RNG */
402 ccp->hwrng.name = ccp->rngname;
403 ccp->hwrng.read = ccp_trng_read;
404 ret = hwrng_register(&ccp->hwrng);
405 if (ret) {
406 dev_err(dev, "error registering hwrng (%d)\n", ret);
407 goto e_kthread;
408 }
409
58ea8abf
GH
410 /* Register the DMA engine support */
411 ret = ccp_dmaengine_register(ccp);
412 if (ret)
413 goto e_hwrng;
414
ea0375af
GH
415 ccp_add_device(ccp);
416
417 /* Enable interrupts */
418 iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
419
420 return 0;
421
58ea8abf
GH
422e_hwrng:
423 hwrng_unregister(&ccp->hwrng);
424
ea0375af
GH
425e_kthread:
426 for (i = 0; i < ccp->cmd_q_count; i++)
427 if (ccp->cmd_q[i].kthread)
428 kthread_stop(ccp->cmd_q[i].kthread);
429
430 ccp->free_irq(ccp);
431
432e_pool:
433 for (i = 0; i < ccp->cmd_q_count; i++)
434 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
435
436 return ret;
437}
438
439static void ccp_destroy(struct ccp_device *ccp)
440{
441 struct ccp_cmd_queue *cmd_q;
442 struct ccp_cmd *cmd;
443 unsigned int qim, i;
444
445 /* Remove this device from the list of available units first */
446 ccp_del_device(ccp);
447
58ea8abf
GH
448 /* Unregister the DMA engine */
449 ccp_dmaengine_unregister(ccp);
450
ea0375af
GH
451 /* Unregister the RNG */
452 hwrng_unregister(&ccp->hwrng);
453
454 /* Stop the queue kthreads */
455 for (i = 0; i < ccp->cmd_q_count; i++)
456 if (ccp->cmd_q[i].kthread)
457 kthread_stop(ccp->cmd_q[i].kthread);
458
459 /* Build queue interrupt mask (two interrupt masks per queue) */
460 qim = 0;
461 for (i = 0; i < ccp->cmd_q_count; i++) {
462 cmd_q = &ccp->cmd_q[i];
463 qim |= cmd_q->int_ok | cmd_q->int_err;
464 }
465
466 /* Disable and clear interrupts */
467 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
468 for (i = 0; i < ccp->cmd_q_count; i++) {
469 cmd_q = &ccp->cmd_q[i];
470
471 ioread32(cmd_q->reg_int_status);
472 ioread32(cmd_q->reg_status);
473 }
474 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
475
476 ccp->free_irq(ccp);
477
478 for (i = 0; i < ccp->cmd_q_count; i++)
479 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
480
481 /* Flush the cmd and backlog queue */
482 while (!list_empty(&ccp->cmd)) {
483 /* Invoke the callback directly with an error code */
484 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
485 list_del(&cmd->entry);
486 cmd->callback(cmd->data, -ENODEV);
487 }
488 while (!list_empty(&ccp->backlog)) {
489 /* Invoke the callback directly with an error code */
490 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
491 list_del(&cmd->entry);
492 cmd->callback(cmd->data, -ENODEV);
493 }
494}
495
496static irqreturn_t ccp_irq_handler(int irq, void *data)
497{
498 struct device *dev = data;
499 struct ccp_device *ccp = dev_get_drvdata(dev);
500 struct ccp_cmd_queue *cmd_q;
501 u32 q_int, status;
502 unsigned int i;
503
504 status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
505
506 for (i = 0; i < ccp->cmd_q_count; i++) {
507 cmd_q = &ccp->cmd_q[i];
508
509 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
510 if (q_int) {
511 cmd_q->int_status = status;
512 cmd_q->q_status = ioread32(cmd_q->reg_status);
513 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
514
515 /* On error, only save the first error value */
516 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
517 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
518
519 cmd_q->int_rcvd = 1;
520
521 /* Acknowledge the interrupt and wake the kthread */
522 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
523 wake_up_interruptible(&cmd_q->int_queue);
524 }
525 }
526
527 return IRQ_HANDLED;
528}
529
bc197b2a 530static const struct ccp_actions ccp3_actions = {
ea0375af
GH
531 .perform_aes = ccp_perform_aes,
532 .perform_xts_aes = ccp_perform_xts_aes,
533 .perform_sha = ccp_perform_sha,
534 .perform_rsa = ccp_perform_rsa,
535 .perform_passthru = ccp_perform_passthru,
536 .perform_ecc = ccp_perform_ecc,
537 .init = ccp_init,
538 .destroy = ccp_destroy,
539 .irqhandler = ccp_irq_handler,
540};
541
542struct ccp_vdata ccpv3 = {
543 .version = CCP_VERSION(3, 0),
544 .perform = &ccp3_actions,
fba8855c
GH
545 .bar = 2,
546 .offset = 0x20000,
ea0375af 547};