]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/crypto/hifn_795x.c
crypto: hifn_795x - Don't copy src sg list
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / hifn_795x.c
CommitLineData
f7d0561e
EP
1/*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
37a8023c 22#include <linux/moduleparam.h>
f7d0561e
EP
23#include <linux/mod_devicetable.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/mm.h>
102d49d3
AM
29#include <linux/dma-mapping.h>
30#include <linux/scatterlist.h>
f7d0561e
EP
31#include <linux/highmem.h>
32#include <linux/crypto.h>
fcd06755
PM
33#include <linux/hw_random.h>
34#include <linux/ktime.h>
f7d0561e
EP
35
36#include <crypto/algapi.h>
c3041f9c 37#include <crypto/des.h>
f7d0561e
EP
38
39#include <asm/kmap_types.h>
40
41#undef dprintk
42
43#define HIFN_TEST
44//#define HIFN_DEBUG
45
46#ifdef HIFN_DEBUG
47#define dprintk(f, a...) printk(f, ##a)
48#else
49#define dprintk(f, a...) do {} while (0)
50#endif
51
37a8023c
PM
52static char hifn_pll_ref[sizeof("extNNN")] = "ext";
53module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
54MODULE_PARM_DESC(hifn_pll_ref,
55 "PLL reference clock (pci[freq] or ext[freq], default ext)");
56
f7d0561e
EP
57static atomic_t hifn_dev_number;
58
59#define ACRYPTO_OP_DECRYPT 0
60#define ACRYPTO_OP_ENCRYPT 1
61#define ACRYPTO_OP_HMAC 2
62#define ACRYPTO_OP_RNG 3
63
64#define ACRYPTO_MODE_ECB 0
65#define ACRYPTO_MODE_CBC 1
66#define ACRYPTO_MODE_CFB 2
67#define ACRYPTO_MODE_OFB 3
68
69#define ACRYPTO_TYPE_AES_128 0
70#define ACRYPTO_TYPE_AES_192 1
71#define ACRYPTO_TYPE_AES_256 2
72#define ACRYPTO_TYPE_3DES 3
73#define ACRYPTO_TYPE_DES 4
74
75#define PCI_VENDOR_ID_HIFN 0x13A3
76#define PCI_DEVICE_ID_HIFN_7955 0x0020
77#define PCI_DEVICE_ID_HIFN_7956 0x001d
78
79/* I/O region sizes */
80
81#define HIFN_BAR0_SIZE 0x1000
82#define HIFN_BAR1_SIZE 0x2000
83#define HIFN_BAR2_SIZE 0x8000
84
85/* DMA registres */
86
87#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
88#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
89#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
90#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
91#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
92#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
93#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
94#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
95#define HIFN_CHIP_ID 0x98 /* Chip ID */
96
97/*
98 * Processing Unit Registers (offset from BASEREG0)
99 */
100#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
101#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
102#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
103#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
104#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
105#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
106#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
107#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
108#define HIFN_0_SPACESIZE 0x20 /* Register space size */
109
110/* Processing Unit Control Register (HIFN_0_PUCTRL) */
111#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
112#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
113#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
114#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
115#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
116
117/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
118#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
119#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
120#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
121#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
122#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
123#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
124#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
125#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
126#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
127#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
128
129/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
130#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
131#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
132#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
133#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
134#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
135#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
136#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
137#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
138#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
139#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
140#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
141#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
142#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
143#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
144#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
145#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
146#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
147#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
148#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
149#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
150#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
151#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
152#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
153
154/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
155#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
156#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
157#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
158#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
159#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
160#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
161#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
162#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
163#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
164#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
165
166/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
167#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
168#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
169#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
170#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
171#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
172#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
173#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
174#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
175#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
176#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
177#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
178#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
179#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
180#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
181#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
182#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
183#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
184
185/* FIFO Status Register (HIFN_0_FIFOSTAT) */
186#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
187#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
188
189/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
190#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
191
192/*
193 * DMA Interface Registers (offset from BASEREG1)
194 */
195#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
196#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
197#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
198#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
199#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
200#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
201#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
202#define HIFN_1_PLL 0x4c /* 795x: PLL config */
203#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
204#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
205#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
206#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
207#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
208#define HIFN_1_REVID 0x98 /* Revision ID */
209#define HIFN_1_UNLOCK_SECRET1 0xf4
210#define HIFN_1_UNLOCK_SECRET2 0xfc
211#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
212#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
213#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
214#define HIFN_1_PUB_OP 0x308 /* Public Operand */
215#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
216#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
217#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
218#define HIFN_1_RNG_DATA 0x318 /* RNG data */
219#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
220#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
221
222/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
223#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
224#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
225#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
226#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
227#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
228#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
229#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
230#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
231#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
232#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
233#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
234#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
235#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
236#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
237#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
238#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
239#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
240#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
241#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
242#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
243#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
244#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
245#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
246#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
247#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
248#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
249#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
250#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
251#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
252#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
253#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
254#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
255#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
256#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
257#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
258#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
259#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
260#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
261
262/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
263#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
264#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
265#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
266#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
267#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
268#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
269#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
270#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
271#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
272#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
273#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
274#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
275#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
276#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
277#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
278#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
279#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
280#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
281#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
282#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
283#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
284#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
285
286/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
287#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
288#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
289#define HIFN_DMACNFG_UNLOCK 0x00000800
290#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
291#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
292#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
293#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
294#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
295
37a8023c
PM
296/* PLL configuration register */
297#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
298#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
299#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
300#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
301#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
302#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
303#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
304#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
305#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
306#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
307#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
308#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
309#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
310#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
311#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
312#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
313#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
314
315#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
f7d0561e
EP
316
317/* Public key reset register (HIFN_1_PUB_RESET) */
318#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
319
320/* Public base address register (HIFN_1_PUB_BASE) */
321#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
322
323/* Public operand length register (HIFN_1_PUB_OPLEN) */
324#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
325#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
326#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
327#define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
328#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
329#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
330
331/* Public operation register (HIFN_1_PUB_OP) */
332#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
333#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
334#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
335#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
336#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
337#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
338#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
339#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
340#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
341#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
342#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
343#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
344#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
345#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
346#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
347#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
348#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
349#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
350#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
351#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
352
353/* Public status register (HIFN_1_PUB_STATUS) */
354#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
355#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
356
357/* Public interrupt enable register (HIFN_1_PUB_IEN) */
358#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
359
360/* Random number generator config register (HIFN_1_RNG_CONFIG) */
361#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
362
363#define HIFN_NAMESIZE 32
364#define HIFN_MAX_RESULT_ORDER 5
365
366#define HIFN_D_CMD_RSIZE 24*4
367#define HIFN_D_SRC_RSIZE 80*4
368#define HIFN_D_DST_RSIZE 80*4
369#define HIFN_D_RES_RSIZE 24*4
370
d069033b
PM
371#define HIFN_D_DST_DALIGN 4
372
6cd3d674 373#define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-1
f7d0561e
EP
374
375#define AES_MIN_KEY_SIZE 16
376#define AES_MAX_KEY_SIZE 32
377
378#define HIFN_DES_KEY_LENGTH 8
379#define HIFN_3DES_KEY_LENGTH 24
380#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
381#define HIFN_IV_LENGTH 8
382#define HIFN_AES_IV_LENGTH 16
383#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
384
385#define HIFN_MAC_KEY_LENGTH 64
386#define HIFN_MD5_LENGTH 16
387#define HIFN_SHA1_LENGTH 20
388#define HIFN_MAC_TRUNC_LENGTH 12
389
390#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
391#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
392#define HIFN_USED_RESULT 12
393
394struct hifn_desc
395{
e68970cd
AV
396 volatile __le32 l;
397 volatile __le32 p;
f7d0561e
EP
398};
399
400struct hifn_dma {
401 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
402 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
403 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
404 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
405
406 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
407 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
408
409 u64 test_src, test_dst;
410
411 /*
412 * Our current positions for insertion and removal from the descriptor
413 * rings.
414 */
415 volatile int cmdi, srci, dsti, resi;
416 volatile int cmdu, srcu, dstu, resu;
417 int cmdk, srck, dstk, resk;
418};
419
420#define HIFN_FLAG_CMD_BUSY (1<<0)
421#define HIFN_FLAG_SRC_BUSY (1<<1)
422#define HIFN_FLAG_DST_BUSY (1<<2)
423#define HIFN_FLAG_RES_BUSY (1<<3)
424#define HIFN_FLAG_OLD_KEY (1<<4)
425
426#define HIFN_DEFAULT_ACTIVE_NUM 5
427
428struct hifn_device
429{
430 char name[HIFN_NAMESIZE];
431
432 int irq;
433
434 struct pci_dev *pdev;
435 void __iomem *bar[3];
436
437 unsigned long result_mem;
438 dma_addr_t dst;
439
440 void *desc_virt;
441 dma_addr_t desc_dma;
442
443 u32 dmareg;
444
445 void *sa[HIFN_D_RES_RSIZE];
446
447 spinlock_t lock;
448
449 void *priv;
450
451 u32 flags;
452 int active, started;
453 struct delayed_work work;
454 unsigned long reset;
455 unsigned long success;
456 unsigned long prev_success;
457
458 u8 snum;
459
a1e6ef2f
EP
460 struct tasklet_struct tasklet;
461
f7d0561e
EP
462 struct crypto_queue queue;
463 struct list_head alg_list;
fcd06755
PM
464
465 unsigned int pk_clk_freq;
466
f881d829 467#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
fcd06755
PM
468 unsigned int rng_wait_time;
469 ktime_t rngtime;
470 struct hwrng rng;
471#endif
f7d0561e
EP
472};
473
474#define HIFN_D_LENGTH 0x0000ffff
475#define HIFN_D_NOINVALID 0x01000000
476#define HIFN_D_MASKDONEIRQ 0x02000000
477#define HIFN_D_DESTOVER 0x04000000
478#define HIFN_D_OVER 0x08000000
479#define HIFN_D_LAST 0x20000000
480#define HIFN_D_JUMP 0x40000000
481#define HIFN_D_VALID 0x80000000
482
483struct hifn_base_command
484{
e68970cd
AV
485 volatile __le16 masks;
486 volatile __le16 session_num;
487 volatile __le16 total_source_count;
488 volatile __le16 total_dest_count;
f7d0561e
EP
489};
490
491#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
492#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
493#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
494#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
495#define HIFN_BASE_CMD_DECODE 0x2000
496#define HIFN_BASE_CMD_SRCLEN_M 0xc000
497#define HIFN_BASE_CMD_SRCLEN_S 14
498#define HIFN_BASE_CMD_DSTLEN_M 0x3000
499#define HIFN_BASE_CMD_DSTLEN_S 12
500#define HIFN_BASE_CMD_LENMASK_HI 0x30000
501#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
502
503/*
504 * Structure to help build up the command data structure.
505 */
506struct hifn_crypt_command
507{
e68970cd
AV
508 volatile __le16 masks;
509 volatile __le16 header_skip;
510 volatile __le16 source_count;
511 volatile __le16 reserved;
f7d0561e
EP
512};
513
514#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
515#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
516#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
517#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
518#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
519#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
520#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
521#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
522#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
523#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
524#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
525#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
526#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
527#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
528#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
529#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
530#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
531#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
532#define HIFN_CRYPT_CMD_SRCLEN_S 14
533
534/*
535 * Structure to help build up the command data structure.
536 */
537struct hifn_mac_command
538{
3c42cbc2
PM
539 volatile __le16 masks;
540 volatile __le16 header_skip;
541 volatile __le16 source_count;
542 volatile __le16 reserved;
f7d0561e
EP
543};
544
545#define HIFN_MAC_CMD_ALG_MASK 0x0001
546#define HIFN_MAC_CMD_ALG_SHA1 0x0000
547#define HIFN_MAC_CMD_ALG_MD5 0x0001
548#define HIFN_MAC_CMD_MODE_MASK 0x000c
549#define HIFN_MAC_CMD_MODE_HMAC 0x0000
550#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
551#define HIFN_MAC_CMD_MODE_HASH 0x0008
552#define HIFN_MAC_CMD_MODE_FULL 0x0004
553#define HIFN_MAC_CMD_TRUNC 0x0010
554#define HIFN_MAC_CMD_RESULT 0x0020
555#define HIFN_MAC_CMD_APPEND 0x0040
556#define HIFN_MAC_CMD_SRCLEN_M 0xc000
557#define HIFN_MAC_CMD_SRCLEN_S 14
558
559/*
560 * MAC POS IPsec initiates authentication after encryption on encodes
561 * and before decryption on decodes.
562 */
563#define HIFN_MAC_CMD_POS_IPSEC 0x0200
564#define HIFN_MAC_CMD_NEW_KEY 0x0800
565
566struct hifn_comp_command
567{
3c42cbc2
PM
568 volatile __le16 masks;
569 volatile __le16 header_skip;
570 volatile __le16 source_count;
571 volatile __le16 reserved;
f7d0561e
EP
572};
573
574#define HIFN_COMP_CMD_SRCLEN_M 0xc000
575#define HIFN_COMP_CMD_SRCLEN_S 14
576#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
577#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
578#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
579#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
580#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
581#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
582#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
583#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
584
585struct hifn_base_result
586{
3c42cbc2
PM
587 volatile __le16 flags;
588 volatile __le16 session;
589 volatile __le16 src_cnt; /* 15:0 of source count */
590 volatile __le16 dst_cnt; /* 15:0 of dest count */
f7d0561e
EP
591};
592
593#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
594#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
595#define HIFN_BASE_RES_SRCLEN_S 14
596#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
597#define HIFN_BASE_RES_DSTLEN_S 12
598
599struct hifn_comp_result
600{
3c42cbc2
PM
601 volatile __le16 flags;
602 volatile __le16 crc;
f7d0561e
EP
603};
604
605#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
606#define HIFN_COMP_RES_LCB_S 8
607#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
608#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
609#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
610
611struct hifn_mac_result
612{
3c42cbc2
PM
613 volatile __le16 flags;
614 volatile __le16 reserved;
f7d0561e
EP
615 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
616};
617
618#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
619#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
620
621struct hifn_crypt_result
622{
3c42cbc2
PM
623 volatile __le16 flags;
624 volatile __le16 reserved;
f7d0561e
EP
625};
626
627#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
628
629#ifndef HIFN_POLL_FREQUENCY
630#define HIFN_POLL_FREQUENCY 0x1
631#endif
632
633#ifndef HIFN_POLL_SCALAR
634#define HIFN_POLL_SCALAR 0x0
635#endif
636
637#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
638#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
639
640struct hifn_crypto_alg
641{
642 struct list_head entry;
643 struct crypto_alg alg;
644 struct hifn_device *dev;
645};
646
647#define ASYNC_SCATTERLIST_CACHE 16
648
649#define ASYNC_FLAGS_MISALIGNED (1<<0)
650
651struct ablkcipher_walk
652{
653 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
654 u32 flags;
655 int num;
656};
657
658struct hifn_context
659{
660 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
661 struct hifn_device *dev;
662 unsigned int keysize, ivsize;
663 u8 op, type, mode, unused;
664 struct ablkcipher_walk walk;
f7d0561e
EP
665};
666
b966b546 667#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
f7d0561e
EP
668
669static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
670{
671 u32 ret;
672
e68970cd 673 ret = readl(dev->bar[0] + reg);
f7d0561e
EP
674
675 return ret;
676}
677
678static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
679{
680 u32 ret;
681
e68970cd 682 ret = readl(dev->bar[1] + reg);
f7d0561e
EP
683
684 return ret;
685}
686
687static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
688{
3c42cbc2 689 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
f7d0561e
EP
690}
691
692static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
693{
3c42cbc2 694 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
f7d0561e
EP
695}
696
697static void hifn_wait_puc(struct hifn_device *dev)
698{
699 int i;
700 u32 ret;
701
702 for (i=10000; i > 0; --i) {
703 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
704 if (!(ret & HIFN_PUCTRL_RESET))
705 break;
706
707 udelay(1);
708 }
709
710 if (!i)
711 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
712}
713
714static void hifn_reset_puc(struct hifn_device *dev)
715{
716 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
717 hifn_wait_puc(dev);
718}
719
720static void hifn_stop_device(struct hifn_device *dev)
721{
722 hifn_write_1(dev, HIFN_1_DMA_CSR,
723 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
724 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
725 hifn_write_0(dev, HIFN_0_PUIER, 0);
726 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
727}
728
729static void hifn_reset_dma(struct hifn_device *dev, int full)
730{
731 hifn_stop_device(dev);
732
733 /*
734 * Setting poll frequency and others to 0.
735 */
736 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
737 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
738 mdelay(1);
739
740 /*
741 * Reset DMA.
742 */
743 if (full) {
744 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
745 mdelay(1);
746 } else {
747 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
748 HIFN_DMACNFG_MSTRESET);
749 hifn_reset_puc(dev);
750 }
751
752 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
753 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
754
755 hifn_reset_puc(dev);
756}
757
758static u32 hifn_next_signature(u_int32_t a, u_int cnt)
759{
760 int i;
761 u32 v;
762
763 for (i = 0; i < cnt; i++) {
764
765 /* get the parity */
766 v = a & 0x80080125;
767 v ^= v >> 16;
768 v ^= v >> 8;
769 v ^= v >> 4;
770 v ^= v >> 2;
771 v ^= v >> 1;
772
773 a = (v & 1) ^ (a << 1);
774 }
775
776 return a;
777}
778
779static struct pci2id {
780 u_short pci_vendor;
781 u_short pci_prod;
782 char card_id[13];
783} pci2id[] = {
784 {
785 PCI_VENDOR_ID_HIFN,
786 PCI_DEVICE_ID_HIFN_7955,
787 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788 0x00, 0x00, 0x00, 0x00, 0x00 }
789 },
790 {
791 PCI_VENDOR_ID_HIFN,
792 PCI_DEVICE_ID_HIFN_7956,
793 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794 0x00, 0x00, 0x00, 0x00, 0x00 }
795 }
796};
797
f881d829 798#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
fcd06755
PM
799static int hifn_rng_data_present(struct hwrng *rng, int wait)
800{
801 struct hifn_device *dev = (struct hifn_device *)rng->priv;
802 s64 nsec;
803
804 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
805 nsec -= dev->rng_wait_time;
806 if (nsec <= 0)
807 return 1;
808 if (!wait)
809 return 0;
810 ndelay(nsec);
811 return 1;
812}
813
814static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
815{
816 struct hifn_device *dev = (struct hifn_device *)rng->priv;
817
818 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
819 dev->rngtime = ktime_get();
820 return 4;
821}
822
823static int hifn_register_rng(struct hifn_device *dev)
824{
825 /*
826 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
827 */
828 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
829 256;
830
831 dev->rng.name = dev->name;
832 dev->rng.data_present = hifn_rng_data_present,
833 dev->rng.data_read = hifn_rng_data_read,
834 dev->rng.priv = (unsigned long)dev;
835
836 return hwrng_register(&dev->rng);
837}
838
839static void hifn_unregister_rng(struct hifn_device *dev)
840{
841 hwrng_unregister(&dev->rng);
842}
843#else
844#define hifn_register_rng(dev) 0
845#define hifn_unregister_rng(dev)
846#endif
847
f7d0561e
EP
848static int hifn_init_pubrng(struct hifn_device *dev)
849{
850 int i;
851
852 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
853 HIFN_PUBRST_RESET);
854
855 for (i=100; i > 0; --i) {
856 mdelay(1);
857
858 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
859 break;
860 }
861
862 if (!i)
863 dprintk("Chip %s: Failed to initialise public key engine.\n",
864 dev->name);
865 else {
866 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
867 dev->dmareg |= HIFN_DMAIER_PUBDONE;
868 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
869
870 dprintk("Chip %s: Public key engine has been sucessfully "
871 "initialised.\n", dev->name);
872 }
873
874 /*
875 * Enable RNG engine.
876 */
877
878 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
879 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
880 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
881 dev->name);
882
f881d829 883#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
fcd06755
PM
884 /* First value must be discarded */
885 hifn_read_1(dev, HIFN_1_RNG_DATA);
886 dev->rngtime = ktime_get();
887#endif
f7d0561e
EP
888 return 0;
889}
890
891static int hifn_enable_crypto(struct hifn_device *dev)
892{
893 u32 dmacfg, addr;
894 char *offtbl = NULL;
895 int i;
896
0936a944 897 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
f7d0561e
EP
898 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
899 pci2id[i].pci_prod == dev->pdev->device) {
900 offtbl = pci2id[i].card_id;
901 break;
902 }
903 }
904
905 if (offtbl == NULL) {
906 dprintk("Chip %s: Unknown card!\n", dev->name);
907 return -ENODEV;
908 }
909
910 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
911
912 hifn_write_1(dev, HIFN_1_DMA_CNFG,
913 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
914 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
915 mdelay(1);
916 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
917 mdelay(1);
918 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
919 mdelay(1);
920
921 for (i=0; i<12; ++i) {
922 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
923 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
924
925 mdelay(1);
926 }
927 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
928
929 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
930
931 return 0;
932}
933
934static void hifn_init_dma(struct hifn_device *dev)
935{
936 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
937 u32 dptr = dev->desc_dma;
938 int i;
939
940 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
941 dma->cmdr[i].p = __cpu_to_le32(dptr +
942 offsetof(struct hifn_dma, command_bufs[i][0]));
943 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
944 dma->resr[i].p = __cpu_to_le32(dptr +
945 offsetof(struct hifn_dma, result_bufs[i][0]));
946
947 /*
948 * Setup LAST descriptors.
949 */
950 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
951 offsetof(struct hifn_dma, cmdr[0]));
952 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
953 offsetof(struct hifn_dma, srcr[0]));
954 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
955 offsetof(struct hifn_dma, dstr[0]));
956 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
957 offsetof(struct hifn_dma, resr[0]));
958
959 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
960 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
961 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
962}
963
37a8023c
PM
964/*
965 * Initialize the PLL. We need to know the frequency of the reference clock
966 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
967 * allows us to operate without the risk of overclocking the chip. If it
968 * actually uses 33MHz, the chip will operate at half the speed, this can be
969 * overriden by specifying the frequency as module parameter (pci33).
970 *
971 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
972 * stable clock and the PCI clock frequency may vary, so the default is the
973 * external clock. There is no way to find out its frequency, we default to
974 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
975 * has an external crystal populated at 66MHz.
976 */
977static void hifn_init_pll(struct hifn_device *dev)
978{
979 unsigned int freq, m;
980 u32 pllcfg;
981
982 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
983
984 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
985 pllcfg |= HIFN_PLL_REF_CLK_PLL;
986 else
987 pllcfg |= HIFN_PLL_REF_CLK_HBI;
988
989 if (hifn_pll_ref[3] != '\0')
990 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
991 else {
992 freq = 66;
993 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
994 "override with hifn_pll_ref=%.3s<frequency>\n",
995 freq, hifn_pll_ref);
996 }
997
998 m = HIFN_PLL_FCK_MAX / freq;
999
1000 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1001 if (m <= 8)
1002 pllcfg |= HIFN_PLL_IS_1_8;
1003 else
1004 pllcfg |= HIFN_PLL_IS_9_12;
1005
1006 /* Select clock source and enable clock bypass */
1007 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1008 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1009
1010 /* Let the chip lock to the input clock */
1011 mdelay(10);
1012
1013 /* Disable clock bypass */
1014 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1016
1017 /* Switch the engines to the PLL */
1018 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1019 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
fcd06755
PM
1020
1021 /*
1022 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1023 * calculate the minimum time between two reads of the rng. Since 33MHz
1024 * is actually 33.333... we overestimate the frequency here, resulting
1025 * in slightly larger intervals.
1026 */
1027 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
37a8023c
PM
1028}
1029
f7d0561e
EP
1030static void hifn_init_registers(struct hifn_device *dev)
1031{
1032 u32 dptr = dev->desc_dma;
1033
1034 /* Initialization magic... */
1035 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1036 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1037 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1038
1039 /* write all 4 ring address registers */
3c42cbc2
PM
1040 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1041 offsetof(struct hifn_dma, cmdr[0]));
1042 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1043 offsetof(struct hifn_dma, srcr[0]));
1044 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1045 offsetof(struct hifn_dma, dstr[0]));
1046 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1047 offsetof(struct hifn_dma, resr[0]));
f7d0561e
EP
1048
1049 mdelay(2);
1050#if 0
1051 hifn_write_1(dev, HIFN_1_DMA_CSR,
1052 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1053 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1054 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1055 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1056 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1057 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1058 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1059 HIFN_DMACSR_S_WAIT |
1060 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1061 HIFN_DMACSR_C_WAIT |
1062 HIFN_DMACSR_ENGINE |
1063 HIFN_DMACSR_PUBDONE);
1064#else
1065 hifn_write_1(dev, HIFN_1_DMA_CSR,
1066 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1067 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1068 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1069 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1070 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1071 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1072 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1073 HIFN_DMACSR_S_WAIT |
1074 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1075 HIFN_DMACSR_C_WAIT |
1076 HIFN_DMACSR_ENGINE |
1077 HIFN_DMACSR_PUBDONE);
1078#endif
1079 hifn_read_1(dev, HIFN_1_DMA_CSR);
1080
1081 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1082 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1083 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1084 HIFN_DMAIER_ENGINE;
1085 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1086
1087 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1088 hifn_read_1(dev, HIFN_1_DMA_IER);
1089#if 0
1090 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1091 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1092 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1093 HIFN_PUCNFG_DRAM);
1094#else
1095 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1096#endif
37a8023c 1097 hifn_init_pll(dev);
f7d0561e
EP
1098
1099 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1100 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1101 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1102 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1103 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1104}
1105
1106static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1107 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1108{
1109 struct hifn_base_command *base_cmd;
1110 u8 *buf_pos = buf;
1111
1112 base_cmd = (struct hifn_base_command *)buf_pos;
1113 base_cmd->masks = __cpu_to_le16(mask);
1114 base_cmd->total_source_count =
1115 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1116 base_cmd->total_dest_count =
1117 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1118
1119 dlen >>= 16;
1120 slen >>= 16;
1121 base_cmd->session_num = __cpu_to_le16(snum |
1122 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1123 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1124
1125 return sizeof(struct hifn_base_command);
1126}
1127
1128static int hifn_setup_crypto_command(struct hifn_device *dev,
1129 u8 *buf, unsigned dlen, unsigned slen,
1130 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1131{
1132 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133 struct hifn_crypt_command *cry_cmd;
1134 u8 *buf_pos = buf;
1135 u16 cmd_len;
1136
1137 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1138
1139 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1140 dlen >>= 16;
1141 cry_cmd->masks = __cpu_to_le16(mode |
1142 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1143 HIFN_CRYPT_CMD_SRCLEN_M));
1144 cry_cmd->header_skip = 0;
1145 cry_cmd->reserved = 0;
1146
1147 buf_pos += sizeof(struct hifn_crypt_command);
1148
1149 dma->cmdu++;
1150 if (dma->cmdu > 1) {
1151 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1152 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1153 }
1154
1155 if (keylen) {
1156 memcpy(buf_pos, key, keylen);
1157 buf_pos += keylen;
1158 }
1159 if (ivsize) {
1160 memcpy(buf_pos, iv, ivsize);
1161 buf_pos += ivsize;
1162 }
1163
1164 cmd_len = buf_pos - buf;
1165
1166 return cmd_len;
1167}
1168
85e7e60b
PM
1169static int hifn_setup_cmd_desc(struct hifn_device *dev,
1170 struct hifn_context *ctx, void *priv, unsigned int nbytes)
f7d0561e
EP
1171{
1172 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1173 int cmd_len, sa_idx;
1174 u8 *buf, *buf_pos;
1175 u16 mask;
1176
85e7e60b 1177 sa_idx = dma->cmdi;
f7d0561e
EP
1178 buf_pos = buf = dma->command_bufs[dma->cmdi];
1179
1180 mask = 0;
1181 switch (ctx->op) {
1182 case ACRYPTO_OP_DECRYPT:
1183 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1184 break;
1185 case ACRYPTO_OP_ENCRYPT:
1186 mask = HIFN_BASE_CMD_CRYPT;
1187 break;
1188 case ACRYPTO_OP_HMAC:
1189 mask = HIFN_BASE_CMD_MAC;
1190 break;
1191 default:
1192 goto err_out;
1193 }
1194
1195 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1196 nbytes, mask, dev->snum);
1197
1198 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1199 u16 md = 0;
1200
1201 if (ctx->keysize)
1202 md |= HIFN_CRYPT_CMD_NEW_KEY;
1203 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1204 md |= HIFN_CRYPT_CMD_NEW_IV;
1205
1206 switch (ctx->mode) {
1207 case ACRYPTO_MODE_ECB:
1208 md |= HIFN_CRYPT_CMD_MODE_ECB;
1209 break;
1210 case ACRYPTO_MODE_CBC:
1211 md |= HIFN_CRYPT_CMD_MODE_CBC;
1212 break;
1213 case ACRYPTO_MODE_CFB:
1214 md |= HIFN_CRYPT_CMD_MODE_CFB;
1215 break;
1216 case ACRYPTO_MODE_OFB:
1217 md |= HIFN_CRYPT_CMD_MODE_OFB;
1218 break;
1219 default:
1220 goto err_out;
1221 }
1222
1223 switch (ctx->type) {
1224 case ACRYPTO_TYPE_AES_128:
1225 if (ctx->keysize != 16)
1226 goto err_out;
1227 md |= HIFN_CRYPT_CMD_KSZ_128 |
1228 HIFN_CRYPT_CMD_ALG_AES;
1229 break;
1230 case ACRYPTO_TYPE_AES_192:
1231 if (ctx->keysize != 24)
1232 goto err_out;
1233 md |= HIFN_CRYPT_CMD_KSZ_192 |
1234 HIFN_CRYPT_CMD_ALG_AES;
1235 break;
1236 case ACRYPTO_TYPE_AES_256:
1237 if (ctx->keysize != 32)
1238 goto err_out;
1239 md |= HIFN_CRYPT_CMD_KSZ_256 |
1240 HIFN_CRYPT_CMD_ALG_AES;
1241 break;
1242 case ACRYPTO_TYPE_3DES:
1243 if (ctx->keysize != 24)
1244 goto err_out;
1245 md |= HIFN_CRYPT_CMD_ALG_3DES;
1246 break;
1247 case ACRYPTO_TYPE_DES:
1248 if (ctx->keysize != 8)
1249 goto err_out;
1250 md |= HIFN_CRYPT_CMD_ALG_DES;
1251 break;
1252 default:
1253 goto err_out;
1254 }
1255
1256 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1257 nbytes, nbytes, ctx->key, ctx->keysize,
1258 ctx->iv, ctx->ivsize, md);
1259 }
1260
1261 dev->sa[sa_idx] = priv;
1262
1263 cmd_len = buf_pos - buf;
1264 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1265 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1266
1267 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1268 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1269 HIFN_D_VALID | HIFN_D_LAST |
1270 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1271 dma->cmdi = 0;
1272 } else
1273 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1274
1275 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1276 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1277 dev->flags |= HIFN_FLAG_CMD_BUSY;
1278 }
f7d0561e
EP
1279 return 0;
1280
1281err_out:
1282 return -EINVAL;
1283}
1284
85e7e60b 1285static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
75741a03 1286 unsigned int offset, unsigned int size, int last)
85e7e60b
PM
1287{
1288 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1289 int idx;
1290 dma_addr_t addr;
1291
1292 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1293
1294 idx = dma->srci;
1295
1296 dma->srcr[idx].p = __cpu_to_le32(addr);
1297 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
75741a03 1298 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
85e7e60b
PM
1299
1300 if (++idx == HIFN_D_SRC_RSIZE) {
1301 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
75741a03
PM
1302 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1303 (last ? HIFN_D_LAST : 0));
85e7e60b
PM
1304 idx = 0;
1305 }
1306
1307 dma->srci = idx;
1308 dma->srcu++;
1309
1310 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1311 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1312 dev->flags |= HIFN_FLAG_SRC_BUSY;
1313 }
1314
1315 return size;
1316}
1317
1318static void hifn_setup_res_desc(struct hifn_device *dev)
1319{
1320 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1321
1322 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1323 HIFN_D_VALID | HIFN_D_LAST);
1324 /*
1325 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
692af5da 1326 * HIFN_D_LAST);
85e7e60b
PM
1327 */
1328
1329 if (++dma->resi == HIFN_D_RES_RSIZE) {
1330 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1331 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1332 dma->resi = 0;
1333 }
1334
1335 dma->resu++;
1336
1337 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1338 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1339 dev->flags |= HIFN_FLAG_RES_BUSY;
1340 }
1341}
1342
1343static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
75741a03 1344 unsigned offset, unsigned size, int last)
85e7e60b
PM
1345{
1346 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1347 int idx;
1348 dma_addr_t addr;
1349
1350 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1351
1352 idx = dma->dsti;
1353 dma->dstr[idx].p = __cpu_to_le32(addr);
1354 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
75741a03 1355 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
85e7e60b
PM
1356
1357 if (++idx == HIFN_D_DST_RSIZE) {
1358 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1359 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
75741a03 1360 (last ? HIFN_D_LAST : 0));
85e7e60b
PM
1361 idx = 0;
1362 }
1363 dma->dsti = idx;
1364 dma->dstu++;
1365
1366 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1367 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1368 dev->flags |= HIFN_FLAG_DST_BUSY;
1369 }
1370}
1371
75741a03
PM
1372static int hifn_setup_dma(struct hifn_device *dev, struct hifn_context *ctx,
1373 struct scatterlist *src, struct scatterlist *dst,
1374 unsigned int nbytes, void *priv)
85e7e60b 1375{
75741a03
PM
1376 struct scatterlist *t;
1377 struct page *spage, *dpage;
1378 unsigned int soff, doff;
1379 unsigned int n, len;
1380
34161586
PM
1381 n = nbytes;
1382 while (n) {
1383 spage = sg_page(src);
1384 soff = src->offset;
1385 len = min(src->length, n);
1386
1387 dprintk("%s: spage: %p, soffset: %u, nbytes: %u, "
1388 "priv: %p, ctx: %p.\n",
1389 dev->name, spage, soff, nbytes, priv, ctx);
1390 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1391
1392 src++;
1393 n -= len;
1394 }
1395
75741a03
PM
1396 t = &ctx->walk.cache[0];
1397 n = nbytes;
1398 while (n) {
1399 if (t->length) {
34161586
PM
1400 dpage = sg_page(t);
1401 doff = 0;
75741a03
PM
1402 len = t->length;
1403 } else {
75741a03
PM
1404 dpage = sg_page(dst);
1405 doff = dst->offset;
75741a03
PM
1406 len = dst->length;
1407 }
1408 len = min(len, n);
1409
34161586
PM
1410 dprintk("%s: dpage: %p, doffset: %u, nbytes: %u, "
1411 "priv: %p, ctx: %p.\n",
1412 dev->name, dpage, doff, nbytes, priv, ctx);
75741a03
PM
1413 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1414
75741a03
PM
1415 dst++;
1416 t++;
1417 n -= len;
1418 }
1419
85e7e60b 1420 hifn_setup_cmd_desc(dev, ctx, priv, nbytes);
85e7e60b
PM
1421 hifn_setup_res_desc(dev);
1422 return 0;
1423}
1424
f7d0561e
EP
1425static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1426 int num, gfp_t gfp_flags)
1427{
1428 int i;
1429
1430 num = min(ASYNC_SCATTERLIST_CACHE, num);
1431 sg_init_table(w->cache, num);
1432
1433 w->num = 0;
1434 for (i=0; i<num; ++i) {
1435 struct page *page = alloc_page(gfp_flags);
1436 struct scatterlist *s;
1437
1438 if (!page)
1439 break;
1440
1441 s = &w->cache[i];
1442
1443 sg_set_page(s, page, PAGE_SIZE, 0);
1444 w->num++;
1445 }
1446
1447 return i;
1448}
1449
1450static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1451{
1452 int i;
1453
1454 for (i=0; i<w->num; ++i) {
1455 struct scatterlist *s = &w->cache[i];
1456
1457 __free_page(sg_page(s));
1458
1459 s->length = 0;
1460 }
1461
1462 w->num = 0;
1463}
1464
34161586 1465static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
f7d0561e
EP
1466 unsigned int size, unsigned int *nbytesp)
1467{
1468 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1469 int idx = 0;
f7d0561e
EP
1470
1471 if (drest < size || size > nbytes)
1472 return -EINVAL;
1473
1474 while (size) {
34161586 1475 copy = min(drest, min(size, dst->length));
f7d0561e
EP
1476
1477 size -= copy;
1478 drest -= copy;
1479 nbytes -= copy;
f7d0561e
EP
1480
1481 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1482 __func__, copy, size, drest, nbytes);
1483
34161586 1484 dst++;
f7d0561e
EP
1485 idx++;
1486 }
1487
1488 *nbytesp = nbytes;
1489 *drestp = drest;
1490
1491 return idx;
1492}
1493
1494static int ablkcipher_walk(struct ablkcipher_request *req,
1495 struct ablkcipher_walk *w)
1496{
34161586 1497 struct scatterlist *dst, *t;
f7d0561e
EP
1498 unsigned int nbytes = req->nbytes, offset, copy, diff;
1499 int idx, tidx, err;
1500
1501 tidx = idx = 0;
1502 offset = 0;
1503 while (nbytes) {
1504 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1505 return -EINVAL;
1506
f7d0561e
EP
1507 dst = &req->dst[idx];
1508
34161586
PM
1509 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1510 __func__, dst->length, dst->offset, offset, nbytes);
f7d0561e 1511
d069033b
PM
1512 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1513 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1514 offset) {
34161586 1515 unsigned slen = min(dst->length - offset, nbytes);
f7d0561e
EP
1516 unsigned dlen = PAGE_SIZE;
1517
1518 t = &w->cache[idx];
1519
34161586 1520 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
f7d0561e 1521 if (err < 0)
34161586 1522 return err;
f7d0561e
EP
1523
1524 idx += err;
1525
d069033b
PM
1526 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1527 diff = slen & (HIFN_D_DST_DALIGN - 1);
f7d0561e
EP
1528
1529 if (dlen < nbytes) {
1530 /*
1531 * Destination page does not have enough space
1532 * to put there additional blocksized chunk,
1533 * so we mark that page as containing only
1534 * blocksize aligned chunks:
d069033b 1535 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
f7d0561e
EP
1536 * and increase number of bytes to be processed
1537 * in next chunk:
1538 * nbytes += diff;
1539 */
1540 nbytes += diff;
1541
1542 /*
1543 * Temporary of course...
1544 * Kick author if you will catch this one.
1545 */
1546 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1547 "slen: %u, offset: %u.\n",
1548 __func__, dlen, nbytes, slen, offset);
1549 printk(KERN_ERR "%s: please contact author to fix this "
1550 "issue, generally you should not catch "
1551 "this path under any condition but who "
1552 "knows how did you use crypto code.\n"
1553 "Thank you.\n", __func__);
1554 BUG();
1555 } else {
1556 copy += diff + nbytes;
1557
34161586 1558 dst = &req->dst[idx];
f7d0561e 1559
34161586 1560 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
f7d0561e 1561 if (err < 0)
34161586 1562 return err;
f7d0561e
EP
1563
1564 idx += err;
1565 }
1566
1567 t->length = copy;
1568 t->offset = offset;
f7d0561e 1569 } else {
34161586 1570 nbytes -= min(dst->length, nbytes);
f7d0561e
EP
1571 idx++;
1572 }
1573
1574 tidx++;
1575 }
1576
1577 return tidx;
f7d0561e
EP
1578}
1579
1580static int hifn_setup_session(struct ablkcipher_request *req)
1581{
1582 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1583 struct hifn_device *dev = ctx->dev;
75741a03
PM
1584 unsigned long dlen, flags;
1585 unsigned int nbytes = req->nbytes, idx = 0;
f7d0561e 1586 int err = -EINVAL, sg_num;
75741a03 1587 struct scatterlist *dst;
f7d0561e
EP
1588
1589 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1590 goto err_out_exit;
1591
1592 ctx->walk.flags = 0;
1593
1594 while (nbytes) {
f7d0561e 1595 dst = &req->dst[idx];
136f702f 1596 dlen = min(dst->length, nbytes);
f7d0561e 1597
d069033b 1598 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
136f702f 1599 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
f7d0561e 1600 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
f7d0561e 1601
136f702f 1602 nbytes -= dlen;
f7d0561e
EP
1603 idx++;
1604 }
1605
1606 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1607 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1608 if (err < 0)
1609 return err;
1610 }
1611
f7d0561e 1612 sg_num = ablkcipher_walk(req, &ctx->walk);
94eaa1bd
PM
1613 if (sg_num < 0) {
1614 err = sg_num;
1615 goto err_out_exit;
1616 }
f7d0561e
EP
1617
1618 spin_lock_irqsave(&dev->lock, flags);
1619 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1620 err = -EAGAIN;
1621 goto err_out;
1622 }
1623
1624 dev->snum++;
75741a03 1625 dev->started++;
f7d0561e 1626
75741a03
PM
1627 err = hifn_setup_dma(dev, ctx, req->src, req->dst, req->nbytes, req);
1628 if (err)
1629 goto err_out;
f7d0561e
EP
1630
1631 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1632 spin_unlock_irqrestore(&dev->lock, flags);
1633
1634 return 0;
1635
1636err_out:
1637 spin_unlock_irqrestore(&dev->lock, flags);
1638err_out_exit:
7808f073 1639 if (err)
f7d0561e
EP
1640 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1641 "type: %u, err: %d.\n",
1642 dev->name, ctx->iv, ctx->ivsize,
1643 ctx->key, ctx->keysize,
1644 ctx->mode, ctx->op, ctx->type, err);
1645
1646 return err;
1647}
1648
1649static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1650{
1651 int n, err;
1652 u8 src[16];
1653 struct hifn_context ctx;
1654 u8 fips_aes_ecb_from_zero[16] = {
1655 0x66, 0xE9, 0x4B, 0xD4,
1656 0xEF, 0x8A, 0x2C, 0x3B,
1657 0x88, 0x4C, 0xFA, 0x59,
1658 0xCA, 0x34, 0x2B, 0x2E};
75741a03 1659 struct scatterlist sg;
f7d0561e
EP
1660
1661 memset(src, 0, sizeof(src));
1662 memset(ctx.key, 0, sizeof(ctx.key));
1663
1664 ctx.dev = dev;
1665 ctx.keysize = 16;
1666 ctx.ivsize = 0;
1667 ctx.iv = NULL;
1668 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1669 ctx.mode = ACRYPTO_MODE_ECB;
1670 ctx.type = ACRYPTO_TYPE_AES_128;
75741a03
PM
1671 ctx.walk.cache[0].length = 0;
1672
1673 sg_init_one(&sg, &src, sizeof(src));
f7d0561e 1674
75741a03 1675 err = hifn_setup_dma(dev, &ctx, &sg, &sg, sizeof(src), NULL);
f7d0561e
EP
1676 if (err)
1677 goto err_out;
1678
1679 msleep(200);
1680
1681 dprintk("%s: decoded: ", dev->name);
1682 for (n=0; n<sizeof(src); ++n)
1683 dprintk("%02x ", src[n]);
1684 dprintk("\n");
1685 dprintk("%s: FIPS : ", dev->name);
1686 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1687 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1688 dprintk("\n");
1689
1690 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1691 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1692 "passed.\n", dev->name);
1693 return 0;
1694 }
1695
1696err_out:
1697 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1698 return -1;
1699}
1700
1701static int hifn_start_device(struct hifn_device *dev)
1702{
1703 int err;
1704
1705 hifn_reset_dma(dev, 1);
1706
1707 err = hifn_enable_crypto(dev);
1708 if (err)
1709 return err;
1710
1711 hifn_reset_puc(dev);
1712
1713 hifn_init_dma(dev);
1714
1715 hifn_init_registers(dev);
1716
1717 hifn_init_pubrng(dev);
1718
1719 return 0;
1720}
1721
1722static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1723 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1724{
1725 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1726 void *daddr;
1727 int idx = 0;
1728
1729 if (srest < size || size > nbytes)
1730 return -EINVAL;
1731
1732 while (size) {
136f702f 1733 copy = min(srest, min(dst->length, size));
f7d0561e
EP
1734
1735 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1736 memcpy(daddr + dst->offset + offset, saddr, copy);
1737 kunmap_atomic(daddr, KM_IRQ0);
1738
1739 nbytes -= copy;
1740 size -= copy;
1741 srest -= copy;
1742 saddr += copy;
1743 offset = 0;
1744
1745 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1746 __func__, copy, size, srest, nbytes);
1747
1748 dst++;
1749 idx++;
1750 }
1751
1752 *nbytesp = nbytes;
1753 *srestp = srest;
1754
1755 return idx;
1756}
1757
1758static void hifn_process_ready(struct ablkcipher_request *req, int error)
1759{
1760 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1761 struct hifn_device *dev;
1762
1763 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1764
1765 dev = ctx->dev;
75741a03 1766 dprintk("%s: req: %p, started: %d.\n", __func__, req, dev->started);
f7d0561e
EP
1767
1768 if (--dev->started < 0)
1769 BUG();
1770
75741a03 1771 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
f7d0561e
EP
1772 unsigned int nbytes = req->nbytes;
1773 int idx = 0, err;
1774 struct scatterlist *dst, *t;
1775 void *saddr;
1776
75741a03
PM
1777 while (nbytes) {
1778 t = &ctx->walk.cache[idx];
1779 dst = &req->dst[idx];
f7d0561e 1780
75741a03
PM
1781 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1782 "sg_page(dst): %p, dst->length: %u, "
1783 "nbytes: %u.\n",
1784 __func__, sg_page(t), t->length,
1785 sg_page(dst), dst->length, nbytes);
f7d0561e 1786
75741a03
PM
1787 if (!t->length) {
1788 nbytes -= min(dst->length, nbytes);
1789 idx++;
1790 continue;
1791 }
f7d0561e 1792
75741a03 1793 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
f7d0561e 1794
75741a03
PM
1795 err = ablkcipher_get(saddr, &t->length, t->offset,
1796 dst, nbytes, &nbytes);
1797 if (err < 0) {
f7d0561e 1798 kunmap_atomic(saddr, KM_IRQ1);
75741a03 1799 break;
f7d0561e
EP
1800 }
1801
75741a03
PM
1802 idx += err;
1803 kunmap_atomic(saddr, KM_IRQ1);
f7d0561e
EP
1804 }
1805
75741a03 1806 ablkcipher_walk_exit(&ctx->walk);
f7d0561e 1807 }
75741a03
PM
1808
1809 req->base.complete(&req->base, error);
f7d0561e
EP
1810}
1811
1812static void hifn_check_for_completion(struct hifn_device *dev, int error)
1813{
1814 int i;
1815 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816
1817 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1818 struct hifn_desc *d = &dma->resr[i];
1819
1820 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1821 dev->success++;
1822 dev->reset = 0;
1823 hifn_process_ready(dev->sa[i], error);
1824 dev->sa[i] = NULL;
1825 }
1826
1827 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1828 if (printk_ratelimit())
1829 printk("%s: overflow detected [d: %u, o: %u] "
1830 "at %d resr: l: %08x, p: %08x.\n",
1831 dev->name,
1832 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1833 !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1834 i, d->l, d->p);
1835 }
1836}
1837
1838static void hifn_clear_rings(struct hifn_device *dev)
1839{
1840 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1841 int i, u;
1842
1843 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1844 "k: %d.%d.%d.%d.\n",
1845 dev->name,
1846 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1847 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1848 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1849
1850 i = dma->resk; u = dma->resu;
1851 while (u != 0) {
1852 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1853 break;
1854
1855 if (i != HIFN_D_RES_RSIZE)
1856 u--;
1857
1858 if (++i == (HIFN_D_RES_RSIZE + 1))
1859 i = 0;
1860 }
1861 dma->resk = i; dma->resu = u;
1862
1863 i = dma->srck; u = dma->srcu;
1864 while (u != 0) {
1865 if (i == HIFN_D_SRC_RSIZE)
1866 i = 0;
1867 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868 break;
1869 i++, u--;
1870 }
1871 dma->srck = i; dma->srcu = u;
1872
1873 i = dma->cmdk; u = dma->cmdu;
1874 while (u != 0) {
1875 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1876 break;
1877 if (i != HIFN_D_CMD_RSIZE)
1878 u--;
1879 if (++i == (HIFN_D_CMD_RSIZE + 1))
1880 i = 0;
1881 }
1882 dma->cmdk = i; dma->cmdu = u;
1883
1884 i = dma->dstk; u = dma->dstu;
1885 while (u != 0) {
1886 if (i == HIFN_D_DST_RSIZE)
1887 i = 0;
1888 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1889 break;
1890 i++, u--;
1891 }
1892 dma->dstk = i; dma->dstu = u;
1893
1894 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1895 "k: %d.%d.%d.%d.\n",
1896 dev->name,
1897 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1898 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1899 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1900}
1901
1902static void hifn_work(struct work_struct *work)
1903{
1904 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1905 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1906 unsigned long flags;
1907 int reset = 0;
1908 u32 r = 0;
1909
1910 spin_lock_irqsave(&dev->lock, flags);
1911 if (dev->active == 0) {
1912 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1913
1914 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1915 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1916 r |= HIFN_DMACSR_C_CTRL_DIS;
1917 }
1918 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1919 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1920 r |= HIFN_DMACSR_S_CTRL_DIS;
1921 }
1922 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1923 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1924 r |= HIFN_DMACSR_D_CTRL_DIS;
1925 }
1926 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1927 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1928 r |= HIFN_DMACSR_R_CTRL_DIS;
1929 }
1930 if (r)
1931 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1932 } else
1933 dev->active--;
1934
1935 if (dev->prev_success == dev->success && dev->started)
1936 reset = 1;
1937 dev->prev_success = dev->success;
1938 spin_unlock_irqrestore(&dev->lock, flags);
1939
1940 if (reset) {
1941 dprintk("%s: r: %08x, active: %d, started: %d, "
1942 "success: %lu: reset: %d.\n",
1943 dev->name, r, dev->active, dev->started,
1944 dev->success, reset);
1945
1946 if (++dev->reset >= 5) {
1947 dprintk("%s: really hard reset.\n", dev->name);
1948 hifn_reset_dma(dev, 1);
1949 hifn_stop_device(dev);
1950 hifn_start_device(dev);
1951 dev->reset = 0;
1952 }
1953
1954 spin_lock_irqsave(&dev->lock, flags);
1955 hifn_check_for_completion(dev, -EBUSY);
1956 hifn_clear_rings(dev);
1957 dev->started = 0;
1958 spin_unlock_irqrestore(&dev->lock, flags);
1959 }
1960
1961 schedule_delayed_work(&dev->work, HZ);
1962}
1963
1964static irqreturn_t hifn_interrupt(int irq, void *data)
1965{
1966 struct hifn_device *dev = (struct hifn_device *)data;
1967 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1968 u32 dmacsr, restart;
1969
1970 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1971
1972 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1973 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1974 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1975 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1976 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1977
1978 if ((dmacsr & dev->dmareg) == 0)
1979 return IRQ_NONE;
1980
1981 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1982
1983 if (dmacsr & HIFN_DMACSR_ENGINE)
1984 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1985 if (dmacsr & HIFN_DMACSR_PUBDONE)
1986 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1987 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1988
1989 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1990 if (restart) {
1991 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1992
1993 if (printk_ratelimit())
1994 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1995 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1996 !!(dmacsr & HIFN_DMACSR_D_OVER),
1997 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1998 if (!!(puisr & HIFN_PUISR_DSTOVER))
1999 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2000 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2001 HIFN_DMACSR_D_OVER));
2002 }
2003
2004 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2005 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2006 if (restart) {
2007 if (printk_ratelimit())
2008 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2009 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2010 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2011 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2012 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2013 hifn_reset_dma(dev, 1);
2014 hifn_init_dma(dev);
2015 hifn_init_registers(dev);
2016 }
2017
2018 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2019 dprintk("%s: wait on command.\n", dev->name);
2020 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2021 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2022 }
2023
a1e6ef2f 2024 tasklet_schedule(&dev->tasklet);
f7d0561e
EP
2025 hifn_clear_rings(dev);
2026
2027 return IRQ_HANDLED;
2028}
2029
2030static void hifn_flush(struct hifn_device *dev)
2031{
2032 unsigned long flags;
2033 struct crypto_async_request *async_req;
2034 struct hifn_context *ctx;
2035 struct ablkcipher_request *req;
2036 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2037 int i;
2038
2039 spin_lock_irqsave(&dev->lock, flags);
2040 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2041 struct hifn_desc *d = &dma->resr[i];
2042
2043 if (dev->sa[i]) {
2044 hifn_process_ready(dev->sa[i],
2045 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2046 }
2047 }
2048
2049 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2050 ctx = crypto_tfm_ctx(async_req->tfm);
2051 req = container_of(async_req, struct ablkcipher_request, base);
2052
2053 hifn_process_ready(req, -ENODEV);
2054 }
2055 spin_unlock_irqrestore(&dev->lock, flags);
2056}
2057
2058static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2059 unsigned int len)
2060{
2061 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2062 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2063 struct hifn_device *dev = ctx->dev;
2064
2065 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2066 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2067 return -1;
2068 }
2069
c3041f9c
EP
2070 if (len == HIFN_DES_KEY_LENGTH) {
2071 u32 tmp[DES_EXPKEY_WORDS];
2072 int ret = des_ekey(tmp, key);
2073
2074 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2075 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2076 return -EINVAL;
2077 }
2078 }
2079
f7d0561e
EP
2080 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2081
2082 memcpy(ctx->key, key, len);
2083 ctx->keysize = len;
2084
2085 return 0;
2086}
2087
2088static int hifn_handle_req(struct ablkcipher_request *req)
2089{
2090 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2091 struct hifn_device *dev = ctx->dev;
2092 int err = -EAGAIN;
2093
2094 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2095 err = hifn_setup_session(req);
2096
2097 if (err == -EAGAIN) {
2098 unsigned long flags;
2099
2100 spin_lock_irqsave(&dev->lock, flags);
2101 err = ablkcipher_enqueue_request(&dev->queue, req);
2102 spin_unlock_irqrestore(&dev->lock, flags);
2103 }
2104
2105 return err;
2106}
2107
2108static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2109 u8 type, u8 mode)
2110{
2111 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2112 unsigned ivsize;
2113
2114 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2115
2116 if (req->info && mode != ACRYPTO_MODE_ECB) {
2117 if (type == ACRYPTO_TYPE_AES_128)
2118 ivsize = HIFN_AES_IV_LENGTH;
2119 else if (type == ACRYPTO_TYPE_DES)
2120 ivsize = HIFN_DES_KEY_LENGTH;
2121 else if (type == ACRYPTO_TYPE_3DES)
2122 ivsize = HIFN_3DES_KEY_LENGTH;
2123 }
2124
2125 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2126 if (ctx->keysize == 24)
2127 type = ACRYPTO_TYPE_AES_192;
2128 else if (ctx->keysize == 32)
2129 type = ACRYPTO_TYPE_AES_256;
2130 }
2131
2132 ctx->op = op;
2133 ctx->mode = mode;
2134 ctx->type = type;
2135 ctx->iv = req->info;
2136 ctx->ivsize = ivsize;
2137
2138 /*
2139 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2140 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2141 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2142 */
2143
2144 return hifn_handle_req(req);
2145}
2146
2147static int hifn_process_queue(struct hifn_device *dev)
2148{
2149 struct crypto_async_request *async_req;
2150 struct hifn_context *ctx;
2151 struct ablkcipher_request *req;
2152 unsigned long flags;
2153 int err = 0;
2154
2155 while (dev->started < HIFN_QUEUE_LENGTH) {
2156 spin_lock_irqsave(&dev->lock, flags);
2157 async_req = crypto_dequeue_request(&dev->queue);
2158 spin_unlock_irqrestore(&dev->lock, flags);
2159
2160 if (!async_req)
2161 break;
2162
2163 ctx = crypto_tfm_ctx(async_req->tfm);
2164 req = container_of(async_req, struct ablkcipher_request, base);
2165
2166 err = hifn_handle_req(req);
2167 if (err)
2168 break;
2169 }
2170
2171 return err;
2172}
2173
2174static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2175 u8 type, u8 mode)
2176{
2177 int err;
2178 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2179 struct hifn_device *dev = ctx->dev;
2180
2181 err = hifn_setup_crypto_req(req, op, type, mode);
2182 if (err)
2183 return err;
2184
2185 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
9e70a408 2186 hifn_process_queue(dev);
f7d0561e 2187
9e70a408 2188 return -EINPROGRESS;
f7d0561e
EP
2189}
2190
2191/*
2192 * AES ecryption functions.
2193 */
2194static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2195{
2196 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2197 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2198}
2199static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2200{
2201 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2202 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2203}
2204static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2205{
2206 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2207 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2208}
2209static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2210{
2211 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2212 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2213}
2214
2215/*
2216 * AES decryption functions.
2217 */
2218static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2219{
2220 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2222}
2223static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2224{
2225 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2227}
2228static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2229{
2230 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2231 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2232}
2233static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2234{
2235 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2236 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2237}
2238
2239/*
2240 * DES ecryption functions.
2241 */
2242static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2243{
2244 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2245 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2246}
2247static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2248{
2249 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2250 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2251}
2252static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2253{
2254 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2255 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2256}
2257static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2258{
2259 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2260 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2261}
2262
2263/*
2264 * DES decryption functions.
2265 */
2266static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2267{
2268 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2269 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2270}
2271static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2272{
2273 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2274 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2275}
2276static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2277{
2278 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2279 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2280}
2281static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2282{
2283 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2284 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2285}
2286
2287/*
2288 * 3DES ecryption functions.
2289 */
2290static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2291{
2292 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2293 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2294}
2295static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2296{
2297 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2298 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2299}
2300static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2301{
2302 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2303 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2304}
2305static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2306{
2307 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2308 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2309}
2310
2311/*
2312 * 3DES decryption functions.
2313 */
2314static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2315{
2316 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2317 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2318}
2319static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2320{
2321 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2322 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2323}
2324static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2325{
2326 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2327 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2328}
2329static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2330{
2331 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2332 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2333}
2334
2335struct hifn_alg_template
2336{
2337 char name[CRYPTO_MAX_ALG_NAME];
2338 char drv_name[CRYPTO_MAX_ALG_NAME];
2339 unsigned int bsize;
2340 struct ablkcipher_alg ablkcipher;
2341};
2342
2343static struct hifn_alg_template hifn_alg_templates[] = {
2344 /*
2345 * 3DES ECB, CBC, CFB and OFB modes.
2346 */
2347 {
281d6bd4 2348 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
f7d0561e
EP
2349 .ablkcipher = {
2350 .min_keysize = HIFN_3DES_KEY_LENGTH,
2351 .max_keysize = HIFN_3DES_KEY_LENGTH,
2352 .setkey = hifn_setkey,
2353 .encrypt = hifn_encrypt_3des_cfb,
2354 .decrypt = hifn_decrypt_3des_cfb,
2355 },
2356 },
2357 {
281d6bd4 2358 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
f7d0561e
EP
2359 .ablkcipher = {
2360 .min_keysize = HIFN_3DES_KEY_LENGTH,
2361 .max_keysize = HIFN_3DES_KEY_LENGTH,
2362 .setkey = hifn_setkey,
2363 .encrypt = hifn_encrypt_3des_ofb,
2364 .decrypt = hifn_decrypt_3des_ofb,
2365 },
2366 },
2367 {
281d6bd4 2368 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
f7d0561e 2369 .ablkcipher = {
4b804b53 2370 .ivsize = HIFN_IV_LENGTH,
f7d0561e
EP
2371 .min_keysize = HIFN_3DES_KEY_LENGTH,
2372 .max_keysize = HIFN_3DES_KEY_LENGTH,
2373 .setkey = hifn_setkey,
2374 .encrypt = hifn_encrypt_3des_cbc,
2375 .decrypt = hifn_decrypt_3des_cbc,
2376 },
2377 },
2378 {
281d6bd4 2379 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
f7d0561e
EP
2380 .ablkcipher = {
2381 .min_keysize = HIFN_3DES_KEY_LENGTH,
2382 .max_keysize = HIFN_3DES_KEY_LENGTH,
2383 .setkey = hifn_setkey,
2384 .encrypt = hifn_encrypt_3des_ecb,
2385 .decrypt = hifn_decrypt_3des_ecb,
2386 },
2387 },
2388
2389 /*
2390 * DES ECB, CBC, CFB and OFB modes.
2391 */
2392 {
281d6bd4 2393 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
f7d0561e
EP
2394 .ablkcipher = {
2395 .min_keysize = HIFN_DES_KEY_LENGTH,
2396 .max_keysize = HIFN_DES_KEY_LENGTH,
2397 .setkey = hifn_setkey,
2398 .encrypt = hifn_encrypt_des_cfb,
2399 .decrypt = hifn_decrypt_des_cfb,
2400 },
2401 },
2402 {
281d6bd4 2403 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
f7d0561e
EP
2404 .ablkcipher = {
2405 .min_keysize = HIFN_DES_KEY_LENGTH,
2406 .max_keysize = HIFN_DES_KEY_LENGTH,
2407 .setkey = hifn_setkey,
2408 .encrypt = hifn_encrypt_des_ofb,
2409 .decrypt = hifn_decrypt_des_ofb,
2410 },
2411 },
2412 {
281d6bd4 2413 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
f7d0561e 2414 .ablkcipher = {
4b804b53 2415 .ivsize = HIFN_IV_LENGTH,
f7d0561e
EP
2416 .min_keysize = HIFN_DES_KEY_LENGTH,
2417 .max_keysize = HIFN_DES_KEY_LENGTH,
2418 .setkey = hifn_setkey,
2419 .encrypt = hifn_encrypt_des_cbc,
2420 .decrypt = hifn_decrypt_des_cbc,
2421 },
2422 },
2423 {
281d6bd4 2424 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
f7d0561e
EP
2425 .ablkcipher = {
2426 .min_keysize = HIFN_DES_KEY_LENGTH,
2427 .max_keysize = HIFN_DES_KEY_LENGTH,
2428 .setkey = hifn_setkey,
2429 .encrypt = hifn_encrypt_des_ecb,
2430 .decrypt = hifn_decrypt_des_ecb,
2431 },
2432 },
2433
2434 /*
2435 * AES ECB, CBC, CFB and OFB modes.
2436 */
2437 {
281d6bd4 2438 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
f7d0561e
EP
2439 .ablkcipher = {
2440 .min_keysize = AES_MIN_KEY_SIZE,
2441 .max_keysize = AES_MAX_KEY_SIZE,
2442 .setkey = hifn_setkey,
2443 .encrypt = hifn_encrypt_aes_ecb,
2444 .decrypt = hifn_decrypt_aes_ecb,
2445 },
2446 },
2447 {
281d6bd4 2448 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
f7d0561e 2449 .ablkcipher = {
4b804b53 2450 .ivsize = HIFN_AES_IV_LENGTH,
f7d0561e
EP
2451 .min_keysize = AES_MIN_KEY_SIZE,
2452 .max_keysize = AES_MAX_KEY_SIZE,
2453 .setkey = hifn_setkey,
2454 .encrypt = hifn_encrypt_aes_cbc,
2455 .decrypt = hifn_decrypt_aes_cbc,
2456 },
2457 },
2458 {
281d6bd4 2459 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
f7d0561e
EP
2460 .ablkcipher = {
2461 .min_keysize = AES_MIN_KEY_SIZE,
2462 .max_keysize = AES_MAX_KEY_SIZE,
2463 .setkey = hifn_setkey,
2464 .encrypt = hifn_encrypt_aes_cfb,
2465 .decrypt = hifn_decrypt_aes_cfb,
2466 },
2467 },
2468 {
281d6bd4 2469 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
f7d0561e
EP
2470 .ablkcipher = {
2471 .min_keysize = AES_MIN_KEY_SIZE,
2472 .max_keysize = AES_MAX_KEY_SIZE,
2473 .setkey = hifn_setkey,
2474 .encrypt = hifn_encrypt_aes_ofb,
2475 .decrypt = hifn_decrypt_aes_ofb,
2476 },
2477 },
2478};
2479
2480static int hifn_cra_init(struct crypto_tfm *tfm)
2481{
2482 struct crypto_alg *alg = tfm->__crt_alg;
2483 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2484 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2485
2486 ctx->dev = ha->dev;
2487
2488 return 0;
2489}
2490
2491static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2492{
2493 struct hifn_crypto_alg *alg;
2494 int err;
2495
2496 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2497 if (!alg)
2498 return -ENOMEM;
2499
2500 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
281d6bd4
PM
2501 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2502 t->drv_name, dev->name);
f7d0561e
EP
2503
2504 alg->alg.cra_priority = 300;
332f8840 2505 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
f7d0561e
EP
2506 alg->alg.cra_blocksize = t->bsize;
2507 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
d069033b 2508 alg->alg.cra_alignmask = 0;
f7d0561e
EP
2509 alg->alg.cra_type = &crypto_ablkcipher_type;
2510 alg->alg.cra_module = THIS_MODULE;
2511 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2512 alg->alg.cra_init = hifn_cra_init;
2513
2514 alg->dev = dev;
2515
2516 list_add_tail(&alg->entry, &dev->alg_list);
2517
2518 err = crypto_register_alg(&alg->alg);
2519 if (err) {
2520 list_del(&alg->entry);
2521 kfree(alg);
2522 }
2523
2524 return err;
2525}
2526
2527static void hifn_unregister_alg(struct hifn_device *dev)
2528{
2529 struct hifn_crypto_alg *a, *n;
2530
2531 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2532 list_del(&a->entry);
2533 crypto_unregister_alg(&a->alg);
2534 kfree(a);
2535 }
2536}
2537
2538static int hifn_register_alg(struct hifn_device *dev)
2539{
2540 int i, err;
2541
2542 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2543 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2544 if (err)
2545 goto err_out_exit;
2546 }
2547
2548 return 0;
2549
2550err_out_exit:
2551 hifn_unregister_alg(dev);
2552 return err;
2553}
2554
a1e6ef2f
EP
2555static void hifn_tasklet_callback(unsigned long data)
2556{
2557 struct hifn_device *dev = (struct hifn_device *)data;
2558
2559 /*
2560 * This is ok to call this without lock being held,
2561 * althogh it modifies some parameters used in parallel,
2562 * (like dev->success), but they are used in process
2563 * context or update is atomic (like setting dev->sa[i] to NULL).
2564 */
2565 hifn_check_for_completion(dev, 0);
2566}
2567
f7d0561e
EP
2568static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2569{
2570 int err, i;
2571 struct hifn_device *dev;
2572 char name[8];
2573
2574 err = pci_enable_device(pdev);
2575 if (err)
2576 return err;
2577 pci_set_master(pdev);
2578
2579 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2580 if (err)
2581 goto err_out_disable_pci_device;
2582
2583 snprintf(name, sizeof(name), "hifn%d",
2584 atomic_inc_return(&hifn_dev_number)-1);
2585
2586 err = pci_request_regions(pdev, name);
2587 if (err)
2588 goto err_out_disable_pci_device;
2589
2590 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2591 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2592 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2593 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2594 pci_name(pdev));
2595 err = -ENODEV;
2596 goto err_out_free_regions;
2597 }
2598
2599 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2600 GFP_KERNEL);
2601 if (!dev) {
2602 err = -ENOMEM;
2603 goto err_out_free_regions;
2604 }
2605
2606 INIT_LIST_HEAD(&dev->alg_list);
2607
2608 snprintf(dev->name, sizeof(dev->name), "%s", name);
2609 spin_lock_init(&dev->lock);
2610
2611 for (i=0; i<3; ++i) {
2612 unsigned long addr, size;
2613
2614 addr = pci_resource_start(pdev, i);
2615 size = pci_resource_len(pdev, i);
2616
2617 dev->bar[i] = ioremap_nocache(addr, size);
2618 if (!dev->bar[i])
2619 goto err_out_unmap_bars;
2620 }
2621
2622 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2623 if (!dev->result_mem) {
2624 dprintk("Failed to allocate %d pages for result_mem.\n",
2625 HIFN_MAX_RESULT_ORDER);
2626 goto err_out_unmap_bars;
2627 }
2628 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2629
2630 dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2631 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2632
2633 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2634 &dev->desc_dma);
2635 if (!dev->desc_virt) {
2636 dprintk("Failed to allocate descriptor rings.\n");
2637 goto err_out_free_result_pages;
2638 }
2639 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2640
2641 dev->pdev = pdev;
2642 dev->irq = pdev->irq;
2643
2644 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2645 dev->sa[i] = NULL;
2646
2647 pci_set_drvdata(pdev, dev);
2648
a1e6ef2f
EP
2649 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2650
f7d0561e
EP
2651 crypto_init_queue(&dev->queue, 1);
2652
2653 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2654 if (err) {
2655 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2656 dev->irq = 0;
2657 goto err_out_free_desc;
2658 }
2659
2660 err = hifn_start_device(dev);
2661 if (err)
2662 goto err_out_free_irq;
2663
2664 err = hifn_test(dev, 1, 0);
2665 if (err)
2666 goto err_out_stop_device;
2667
fcd06755 2668 err = hifn_register_rng(dev);
f7d0561e
EP
2669 if (err)
2670 goto err_out_stop_device;
2671
fcd06755
PM
2672 err = hifn_register_alg(dev);
2673 if (err)
2674 goto err_out_unregister_rng;
2675
f7d0561e
EP
2676 INIT_DELAYED_WORK(&dev->work, hifn_work);
2677 schedule_delayed_work(&dev->work, HZ);
2678
2679 dprintk("HIFN crypto accelerator card at %s has been "
2680 "successfully registered as %s.\n",
2681 pci_name(pdev), dev->name);
2682
2683 return 0;
2684
fcd06755
PM
2685err_out_unregister_rng:
2686 hifn_unregister_rng(dev);
f7d0561e
EP
2687err_out_stop_device:
2688 hifn_reset_dma(dev, 1);
2689 hifn_stop_device(dev);
2690err_out_free_irq:
2691 free_irq(dev->irq, dev->name);
a1e6ef2f 2692 tasklet_kill(&dev->tasklet);
f7d0561e
EP
2693err_out_free_desc:
2694 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2695 dev->desc_virt, dev->desc_dma);
2696
2697err_out_free_result_pages:
2698 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2699 PCI_DMA_FROMDEVICE);
2700 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2701
2702err_out_unmap_bars:
2703 for (i=0; i<3; ++i)
2704 if (dev->bar[i])
2705 iounmap(dev->bar[i]);
2706
2707err_out_free_regions:
2708 pci_release_regions(pdev);
2709
2710err_out_disable_pci_device:
2711 pci_disable_device(pdev);
2712
2713 return err;
2714}
2715
2716static void hifn_remove(struct pci_dev *pdev)
2717{
2718 int i;
2719 struct hifn_device *dev;
2720
2721 dev = pci_get_drvdata(pdev);
2722
2723 if (dev) {
2724 cancel_delayed_work(&dev->work);
2725 flush_scheduled_work();
2726
fcd06755 2727 hifn_unregister_rng(dev);
f7d0561e
EP
2728 hifn_unregister_alg(dev);
2729 hifn_reset_dma(dev, 1);
2730 hifn_stop_device(dev);
2731
2732 free_irq(dev->irq, dev->name);
a1e6ef2f 2733 tasklet_kill(&dev->tasklet);
f7d0561e
EP
2734
2735 hifn_flush(dev);
2736
2737 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2738 dev->desc_virt, dev->desc_dma);
2739 pci_unmap_single(pdev, dev->dst,
2740 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2741 PCI_DMA_FROMDEVICE);
2742 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2743 for (i=0; i<3; ++i)
2744 if (dev->bar[i])
2745 iounmap(dev->bar[i]);
2746
2747 kfree(dev);
2748 }
2749
2750 pci_release_regions(pdev);
2751 pci_disable_device(pdev);
2752}
2753
2754static struct pci_device_id hifn_pci_tbl[] = {
2755 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2756 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2757 { 0 }
2758};
2759MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2760
2761static struct pci_driver hifn_pci_driver = {
2762 .name = "hifn795x",
2763 .id_table = hifn_pci_tbl,
2764 .probe = hifn_probe,
2765 .remove = __devexit_p(hifn_remove),
2766};
2767
2768static int __devinit hifn_init(void)
2769{
37a8023c 2770 unsigned int freq;
f7d0561e
EP
2771 int err;
2772
a44b56cc
EP
2773 if (sizeof(dma_addr_t) > 4) {
2774 printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2775 return -EINVAL;
2776 }
2777
37a8023c
PM
2778 if (strncmp(hifn_pll_ref, "ext", 3) &&
2779 strncmp(hifn_pll_ref, "pci", 3)) {
2780 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2781 "must be pci or ext");
2782 return -EINVAL;
2783 }
2784
2785 /*
2786 * For the 7955/7956 the reference clock frequency must be in the
2787 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2788 * but this chip is currently not supported.
2789 */
2790 if (hifn_pll_ref[3] != '\0') {
2791 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2792 if (freq < 20 || freq > 100) {
2793 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2794 "frequency, must be in the range "
2795 "of 20-100");
2796 return -EINVAL;
2797 }
2798 }
2799
f7d0561e
EP
2800 err = pci_register_driver(&hifn_pci_driver);
2801 if (err < 0) {
2802 dprintk("Failed to register PCI driver for %s device.\n",
2803 hifn_pci_driver.name);
2804 return -ENODEV;
2805 }
2806
2807 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2808 "has been successfully registered.\n");
2809
2810 return 0;
2811}
2812
2813static void __devexit hifn_fini(void)
2814{
2815 pci_unregister_driver(&hifn_pci_driver);
2816
2817 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2818 "has been successfully unregistered.\n");
2819}
2820
2821module_init(hifn_init);
2822module_exit(hifn_fini);
2823
2824MODULE_LICENSE("GPL");
2825MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2826MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");