]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/crypto/padlock-aes.c
ceph: fix memory leak in __ceph_setxattr()
[mirror_ubuntu-bionic-kernel.git] / drivers / crypto / padlock-aes.c
CommitLineData
1da177e4
LT
1/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
1da177e4
LT
8 */
9
28ce728a 10#include <crypto/algapi.h>
89e12654 11#include <crypto/aes.h>
21493088 12#include <crypto/padlock.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/types.h>
16#include <linux/errno.h>
1da177e4 17#include <linux/interrupt.h>
6789b2dc 18#include <linux/kernel.h>
420a4b20
HX
19#include <linux/percpu.h>
20#include <linux/smp.h>
5a0e3ad6 21#include <linux/slab.h>
3bd391f0 22#include <asm/cpu_device_id.h>
1da177e4 23#include <asm/byteorder.h>
a76c1c23 24#include <asm/processor.h>
df6b35f4 25#include <asm/fpu/api.h>
1da177e4 26
8d8409f7
CE
27/*
28 * Number of data blocks actually fetched for each xcrypt insn.
29 * Processors with prefetch errata will fetch extra blocks.
30 */
a76c1c23 31static unsigned int ecb_fetch_blocks = 2;
8d8409f7 32#define MAX_ECB_FETCH_BLOCKS (8)
a76c1c23 33#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
8d8409f7
CE
34
35static unsigned int cbc_fetch_blocks = 1;
36#define MAX_CBC_FETCH_BLOCKS (4)
a76c1c23
CE
37#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
38
ccc17c34
ML
39/* Control word. */
40struct cword {
41 unsigned int __attribute__ ((__packed__))
42 rounds:4,
43 algo:3,
44 keygen:1,
45 interm:1,
46 encdec:1,
47 ksize:2;
48} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
49
cc08632f
ML
50/* Whenever making any changes to the following
51 * structure *make sure* you keep E, d_data
7dc748e4
SS
52 * and cword aligned on 16 Bytes boundaries and
53 * the Hardware can access 16 * 16 bytes of E and d_data
54 * (only the first 15 * 16 bytes matter but the HW reads
55 * more).
56 */
1da177e4 57struct aes_ctx {
7dc748e4
SS
58 u32 E[AES_MAX_KEYLENGTH_U32]
59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 u32 d_data[AES_MAX_KEYLENGTH_U32]
61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
6789b2dc
HX
62 struct {
63 struct cword encrypt;
64 struct cword decrypt;
65 } cword;
82062c72 66 u32 *D;
1da177e4
LT
67};
68
390dfd95 69static DEFINE_PER_CPU(struct cword *, paes_last_cword);
420a4b20 70
1da177e4
LT
71/* Tells whether the ACE is capable to generate
72 the extended key for a given key_len. */
73static inline int
74aes_hw_extkey_available(uint8_t key_len)
75{
76 /* TODO: We should check the actual CPU model/stepping
77 as it's possible that the capability will be
78 added in the next CPU revisions. */
79 if (key_len == 16)
80 return 1;
81 return 0;
82}
83
28ce728a 84static inline struct aes_ctx *aes_ctx_common(void *ctx)
6789b2dc 85{
28ce728a 86 unsigned long addr = (unsigned long)ctx;
f10b7897
HX
87 unsigned long align = PADLOCK_ALIGNMENT;
88
89 if (align <= crypto_tfm_ctx_alignment())
90 align = 1;
6c2bb98b 91 return (struct aes_ctx *)ALIGN(addr, align);
6789b2dc
HX
92}
93
28ce728a
HX
94static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
95{
96 return aes_ctx_common(crypto_tfm_ctx(tfm));
97}
98
99static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
100{
101 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102}
103
6c2bb98b 104static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
560c06ae 105 unsigned int key_len)
1da177e4 106{
6c2bb98b 107 struct aes_ctx *ctx = aes_ctx(tfm);
06ace7a9 108 const __le32 *key = (const __le32 *)in_key;
560c06ae 109 u32 *flags = &tfm->crt_flags;
7dc748e4 110 struct crypto_aes_ctx gen_aes;
420a4b20 111 int cpu;
1da177e4 112
560c06ae 113 if (key_len % 8) {
1da177e4
LT
114 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115 return -EINVAL;
116 }
117
6789b2dc
HX
118 /*
119 * If the hardware is capable of generating the extended key
120 * itself we must supply the plain key for both encryption
121 * and decryption.
122 */
82062c72 123 ctx->D = ctx->E;
1da177e4 124
7dc748e4
SS
125 ctx->E[0] = le32_to_cpu(key[0]);
126 ctx->E[1] = le32_to_cpu(key[1]);
127 ctx->E[2] = le32_to_cpu(key[2]);
128 ctx->E[3] = le32_to_cpu(key[3]);
1da177e4 129
6789b2dc
HX
130 /* Prepare control words. */
131 memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133 ctx->cword.decrypt.encdec = 1;
134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
1da177e4
LT
139 /* Don't generate extended keys if the hardware can do it. */
140 if (aes_hw_extkey_available(key_len))
420a4b20 141 goto ok;
1da177e4 142
6789b2dc
HX
143 ctx->D = ctx->d_data;
144 ctx->cword.encrypt.keygen = 1;
145 ctx->cword.decrypt.keygen = 1;
146
7dc748e4
SS
147 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149 return -EINVAL;
1da177e4
LT
150 }
151
7dc748e4
SS
152 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
420a4b20
HX
154
155ok:
156 for_each_online_cpu(cpu)
390dfd95
TH
157 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159 per_cpu(paes_last_cword, cpu) = NULL;
420a4b20 160
1da177e4
LT
161 return 0;
162}
163
164/* ====== Encryption/decryption routines ====== */
165
28e8c3ad 166/* These are the real call to PadLock. */
420a4b20
HX
167static inline void padlock_reset_key(struct cword *cword)
168{
169 int cpu = raw_smp_processor_id();
170
390dfd95 171 if (cword != per_cpu(paes_last_cword, cpu))
d1c8b0a7 172#ifndef CONFIG_X86_64
420a4b20 173 asm volatile ("pushfl; popfl");
d1c8b0a7
SAS
174#else
175 asm volatile ("pushfq; popfq");
176#endif
420a4b20
HX
177}
178
179static inline void padlock_store_cword(struct cword *cword)
866cd902 180{
390dfd95 181 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
866cd902
HX
182}
183
e4914012
SS
184/*
185 * While the padlock instructions don't use FP/SSE registers, they
5a83d60c
AL
186 * generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
187 * the kernel doesn't use CR0.TS.
e4914012
SS
188 */
189
8d8409f7 190static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
a76c1c23 191 struct cword *control_word, int count)
d4a7dd8e
HX
192{
193 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
194 : "+S"(input), "+D"(output)
a76c1c23 195 : "d"(control_word), "b"(key), "c"(count));
d4a7dd8e
HX
196}
197
8d8409f7
CE
198static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199 u8 *iv, struct cword *control_word, int count)
200{
201 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
202 : "+S" (input), "+D" (output), "+a" (iv)
203 : "d" (control_word), "b" (key), "c" (count));
204 return iv;
205}
206
207static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
a76c1c23 208 struct cword *cword, int count)
d4a7dd8e 209{
a76c1c23
CE
210 /*
211 * Padlock prefetches extra data so we must provide mapped input buffers.
212 * Assume there are at least 16 bytes of stack already in use.
213 */
8d8409f7 214 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
490fe3f0 215 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
d4a7dd8e 216
a76c1c23 217 memcpy(tmp, in, count * AES_BLOCK_SIZE);
8d8409f7 218 rep_xcrypt_ecb(tmp, out, key, cword, count);
d4a7dd8e
HX
219}
220
8d8409f7
CE
221static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222 u8 *iv, struct cword *cword, int count)
223{
224 /*
225 * Padlock prefetches extra data so we must provide mapped input buffers.
226 * Assume there are at least 16 bytes of stack already in use.
227 */
228 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
230
231 memcpy(tmp, in, count * AES_BLOCK_SIZE);
232 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233}
234
235static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
a76c1c23 236 struct cword *cword, int count)
d4a7dd8e 237{
a76c1c23
CE
238 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239 * We could avoid some copying here but it's probably not worth it.
240 */
1d4bbc5a 241 if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
8d8409f7 242 ecb_crypt_copy(in, out, key, cword, count);
d4a7dd8e
HX
243 return;
244 }
245
8d8409f7
CE
246 rep_xcrypt_ecb(in, out, key, cword, count);
247}
248
249static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250 u8 *iv, struct cword *cword, int count)
251{
252 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
1d4bbc5a 253 if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
8d8409f7
CE
254 return cbc_crypt_copy(in, out, key, iv, cword, count);
255
256 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
d4a7dd8e
HX
257}
258
6789b2dc
HX
259static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260 void *control_word, u32 count)
1da177e4 261{
a76c1c23
CE
262 u32 initial = count & (ecb_fetch_blocks - 1);
263
264 if (count < ecb_fetch_blocks) {
8d8409f7 265 ecb_crypt(input, output, key, control_word, count);
d4a7dd8e
HX
266 return;
267 }
268
a76c1c23
CE
269 if (initial)
270 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
271 : "+S"(input), "+D"(output)
272 : "d"(control_word), "b"(key), "c"(initial));
273
274 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
1da177e4 275 : "+S"(input), "+D"(output)
a76c1c23 276 : "d"(control_word), "b"(key), "c"(count - initial));
1da177e4
LT
277}
278
476df259
HX
279static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
280 u8 *iv, void *control_word, u32 count)
28e8c3ad 281{
8d8409f7
CE
282 u32 initial = count & (cbc_fetch_blocks - 1);
283
284 if (count < cbc_fetch_blocks)
285 return cbc_crypt(input, output, key, iv, control_word, count);
286
287 if (initial)
288 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
289 : "+S" (input), "+D" (output), "+a" (iv)
c054a076 290 : "d" (control_word), "b" (key), "c" (initial));
8d8409f7
CE
291
292 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
28e8c3ad 293 : "+S" (input), "+D" (output), "+a" (iv)
8d8409f7 294 : "d" (control_word), "b" (key), "c" (count-initial));
476df259 295 return iv;
28e8c3ad
HX
296}
297
6c2bb98b 298static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
1da177e4 299{
6c2bb98b 300 struct aes_ctx *ctx = aes_ctx(tfm);
e4914012 301
420a4b20 302 padlock_reset_key(&ctx->cword.encrypt);
8d8409f7 303 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
420a4b20 304 padlock_store_cword(&ctx->cword.encrypt);
1da177e4
LT
305}
306
6c2bb98b 307static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
1da177e4 308{
6c2bb98b 309 struct aes_ctx *ctx = aes_ctx(tfm);
e4914012 310
420a4b20 311 padlock_reset_key(&ctx->cword.encrypt);
8d8409f7 312 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
420a4b20 313 padlock_store_cword(&ctx->cword.encrypt);
1da177e4
LT
314}
315
316static struct crypto_alg aes_alg = {
317 .cra_name = "aes",
c8a19c91 318 .cra_driver_name = "aes-padlock",
ccc17c34 319 .cra_priority = PADLOCK_CRA_PRIORITY,
1da177e4
LT
320 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
321 .cra_blocksize = AES_BLOCK_SIZE,
fbdae9f3 322 .cra_ctxsize = sizeof(struct aes_ctx),
6789b2dc 323 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
1da177e4 324 .cra_module = THIS_MODULE,
1da177e4
LT
325 .cra_u = {
326 .cipher = {
327 .cia_min_keysize = AES_MIN_KEY_SIZE,
328 .cia_max_keysize = AES_MAX_KEY_SIZE,
329 .cia_setkey = aes_set_key,
330 .cia_encrypt = aes_encrypt,
28e8c3ad 331 .cia_decrypt = aes_decrypt,
1da177e4
LT
332 }
333 }
334};
335
28ce728a
HX
336static int ecb_aes_encrypt(struct blkcipher_desc *desc,
337 struct scatterlist *dst, struct scatterlist *src,
338 unsigned int nbytes)
339{
340 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
341 struct blkcipher_walk walk;
342 int err;
343
420a4b20 344 padlock_reset_key(&ctx->cword.encrypt);
866cd902 345
28ce728a
HX
346 blkcipher_walk_init(&walk, dst, src, nbytes);
347 err = blkcipher_walk_virt(desc, &walk);
348
349 while ((nbytes = walk.nbytes)) {
350 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
351 ctx->E, &ctx->cword.encrypt,
352 nbytes / AES_BLOCK_SIZE);
353 nbytes &= AES_BLOCK_SIZE - 1;
354 err = blkcipher_walk_done(desc, &walk, nbytes);
355 }
356
420a4b20
HX
357 padlock_store_cword(&ctx->cword.encrypt);
358
28ce728a
HX
359 return err;
360}
361
362static int ecb_aes_decrypt(struct blkcipher_desc *desc,
363 struct scatterlist *dst, struct scatterlist *src,
364 unsigned int nbytes)
365{
366 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
367 struct blkcipher_walk walk;
368 int err;
369
420a4b20 370 padlock_reset_key(&ctx->cword.decrypt);
866cd902 371
28ce728a
HX
372 blkcipher_walk_init(&walk, dst, src, nbytes);
373 err = blkcipher_walk_virt(desc, &walk);
374
375 while ((nbytes = walk.nbytes)) {
376 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
377 ctx->D, &ctx->cword.decrypt,
378 nbytes / AES_BLOCK_SIZE);
379 nbytes &= AES_BLOCK_SIZE - 1;
380 err = blkcipher_walk_done(desc, &walk, nbytes);
381 }
420a4b20
HX
382
383 padlock_store_cword(&ctx->cword.encrypt);
384
28ce728a
HX
385 return err;
386}
387
388static struct crypto_alg ecb_aes_alg = {
389 .cra_name = "ecb(aes)",
390 .cra_driver_name = "ecb-aes-padlock",
391 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
392 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
393 .cra_blocksize = AES_BLOCK_SIZE,
394 .cra_ctxsize = sizeof(struct aes_ctx),
395 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
396 .cra_type = &crypto_blkcipher_type,
397 .cra_module = THIS_MODULE,
28ce728a
HX
398 .cra_u = {
399 .blkcipher = {
400 .min_keysize = AES_MIN_KEY_SIZE,
401 .max_keysize = AES_MAX_KEY_SIZE,
402 .setkey = aes_set_key,
403 .encrypt = ecb_aes_encrypt,
404 .decrypt = ecb_aes_decrypt,
405 }
406 }
407};
408
409static int cbc_aes_encrypt(struct blkcipher_desc *desc,
410 struct scatterlist *dst, struct scatterlist *src,
411 unsigned int nbytes)
412{
413 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
414 struct blkcipher_walk walk;
415 int err;
416
420a4b20 417 padlock_reset_key(&ctx->cword.encrypt);
866cd902 418
28ce728a
HX
419 blkcipher_walk_init(&walk, dst, src, nbytes);
420 err = blkcipher_walk_virt(desc, &walk);
421
422 while ((nbytes = walk.nbytes)) {
423 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
424 walk.dst.virt.addr, ctx->E,
425 walk.iv, &ctx->cword.encrypt,
426 nbytes / AES_BLOCK_SIZE);
427 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
428 nbytes &= AES_BLOCK_SIZE - 1;
429 err = blkcipher_walk_done(desc, &walk, nbytes);
430 }
431
420a4b20
HX
432 padlock_store_cword(&ctx->cword.decrypt);
433
28ce728a
HX
434 return err;
435}
436
437static int cbc_aes_decrypt(struct blkcipher_desc *desc,
438 struct scatterlist *dst, struct scatterlist *src,
439 unsigned int nbytes)
440{
441 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
442 struct blkcipher_walk walk;
443 int err;
444
420a4b20 445 padlock_reset_key(&ctx->cword.encrypt);
866cd902 446
28ce728a
HX
447 blkcipher_walk_init(&walk, dst, src, nbytes);
448 err = blkcipher_walk_virt(desc, &walk);
449
450 while ((nbytes = walk.nbytes)) {
451 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
452 ctx->D, walk.iv, &ctx->cword.decrypt,
453 nbytes / AES_BLOCK_SIZE);
454 nbytes &= AES_BLOCK_SIZE - 1;
455 err = blkcipher_walk_done(desc, &walk, nbytes);
456 }
457
420a4b20
HX
458 padlock_store_cword(&ctx->cword.encrypt);
459
28ce728a
HX
460 return err;
461}
462
463static struct crypto_alg cbc_aes_alg = {
464 .cra_name = "cbc(aes)",
465 .cra_driver_name = "cbc-aes-padlock",
466 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
467 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
468 .cra_blocksize = AES_BLOCK_SIZE,
469 .cra_ctxsize = sizeof(struct aes_ctx),
470 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
471 .cra_type = &crypto_blkcipher_type,
472 .cra_module = THIS_MODULE,
28ce728a
HX
473 .cra_u = {
474 .blkcipher = {
475 .min_keysize = AES_MIN_KEY_SIZE,
476 .max_keysize = AES_MAX_KEY_SIZE,
477 .ivsize = AES_BLOCK_SIZE,
478 .setkey = aes_set_key,
479 .encrypt = cbc_aes_encrypt,
480 .decrypt = cbc_aes_decrypt,
481 }
482 }
483};
484
3bd391f0
AK
485static struct x86_cpu_id padlock_cpu_id[] = {
486 X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
487 {}
488};
489MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
490
1191f0a4 491static int __init padlock_init(void)
1da177e4 492{
1191f0a4 493 int ret;
a76c1c23 494 struct cpuinfo_x86 *c = &cpu_data(0);
1191f0a4 495
3bd391f0 496 if (!x86_match_cpu(padlock_cpu_id))
1191f0a4 497 return -ENODEV;
1191f0a4 498
362f924b 499 if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
b43e726b 500 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
1191f0a4
ML
501 return -ENODEV;
502 }
1da177e4 503
28ce728a
HX
504 if ((ret = crypto_register_alg(&aes_alg)))
505 goto aes_err;
506
507 if ((ret = crypto_register_alg(&ecb_aes_alg)))
508 goto ecb_aes_err;
509
510 if ((ret = crypto_register_alg(&cbc_aes_alg)))
511 goto cbc_aes_err;
1191f0a4
ML
512
513 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
514
a76c1c23 515 if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
8d8409f7
CE
516 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
517 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
a76c1c23
CE
518 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
519 }
520
28ce728a 521out:
1191f0a4 522 return ret;
28ce728a
HX
523
524cbc_aes_err:
525 crypto_unregister_alg(&ecb_aes_alg);
526ecb_aes_err:
527 crypto_unregister_alg(&aes_alg);
528aes_err:
529 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
530 goto out;
1da177e4
LT
531}
532
1191f0a4 533static void __exit padlock_fini(void)
1da177e4 534{
28ce728a
HX
535 crypto_unregister_alg(&cbc_aes_alg);
536 crypto_unregister_alg(&ecb_aes_alg);
1da177e4
LT
537 crypto_unregister_alg(&aes_alg);
538}
1191f0a4
ML
539
540module_init(padlock_init);
541module_exit(padlock_fini);
542
543MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
544MODULE_LICENSE("GPL");
545MODULE_AUTHOR("Michal Ludvig");
546
5d26a105 547MODULE_ALIAS_CRYPTO("aes");