]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/crypto/s5p-sss.c
Merge tag 'mmc-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-focal-kernel.git] / drivers / crypto / s5p-sss.c
CommitLineData
5c8d850c
KK
1// SPDX-License-Identifier: GPL-2.0
2//
3// Cryptographic API.
4//
5// Support for Samsung S5PV210 and Exynos HW acceleration.
6//
7// Copyright (C) 2011 NetUP Inc. All rights reserved.
8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9//
10// Hash part based on omap-sham.c driver.
a49e490c 11
3cf9d84e
KK
12#include <linux/clk.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
a49e490c 15#include <linux/err.h>
a49e490c 16#include <linux/errno.h>
3cf9d84e
KK
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
a49e490c 20#include <linux/kernel.h>
3cf9d84e
KK
21#include <linux/module.h>
22#include <linux/of.h>
a49e490c
VZ
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
a49e490c 25
a49e490c 26#include <crypto/ctr.h>
3cf9d84e
KK
27#include <crypto/aes.h>
28#include <crypto/algapi.h>
9e4a1100 29#include <crypto/scatterwalk.h>
a49e490c 30
c2afad6c
KK
31#include <crypto/hash.h>
32#include <crypto/md5.h>
33#include <crypto/sha.h>
34#include <crypto/internal/hash.h>
35
e5e40908 36#define _SBF(s, v) ((v) << (s))
a49e490c
VZ
37
38/* Feed control registers */
e5e40908 39#define SSS_REG_FCINTSTAT 0x0000
c2afad6c
KK
40#define SSS_FCINTSTAT_HPARTINT BIT(7)
41#define SSS_FCINTSTAT_HDONEINT BIT(5)
e5e40908
KK
42#define SSS_FCINTSTAT_BRDMAINT BIT(3)
43#define SSS_FCINTSTAT_BTDMAINT BIT(2)
44#define SSS_FCINTSTAT_HRDMAINT BIT(1)
45#define SSS_FCINTSTAT_PKDMAINT BIT(0)
46
47#define SSS_REG_FCINTENSET 0x0004
c2afad6c
KK
48#define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49#define SSS_FCINTENSET_HDONEINTENSET BIT(5)
e5e40908
KK
50#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
54
55#define SSS_REG_FCINTENCLR 0x0008
c2afad6c
KK
56#define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57#define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
e5e40908
KK
58#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
62
63#define SSS_REG_FCINTPEND 0x000C
c2afad6c
KK
64#define SSS_FCINTPEND_HPARTINTP BIT(7)
65#define SSS_FCINTPEND_HDONEINTP BIT(5)
e5e40908
KK
66#define SSS_FCINTPEND_BRDMAINTP BIT(3)
67#define SSS_FCINTPEND_BTDMAINTP BIT(2)
68#define SSS_FCINTPEND_HRDMAINTP BIT(1)
69#define SSS_FCINTPEND_PKDMAINTP BIT(0)
70
71#define SSS_REG_FCFIFOSTAT 0x0010
72#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
80
81#define SSS_REG_FCFIFOCTRL 0x0014
82#define SSS_FCFIFOCTRL_DESSEL BIT(2)
83#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
c2afad6c 86#define SSS_HASHIN_MASK _SBF(0, 0x03)
e5e40908
KK
87
88#define SSS_REG_FCBRDMAS 0x0020
89#define SSS_REG_FCBRDMAL 0x0024
90#define SSS_REG_FCBRDMAC 0x0028
91#define SSS_FCBRDMAC_BYTESWAP BIT(1)
92#define SSS_FCBRDMAC_FLUSH BIT(0)
93
94#define SSS_REG_FCBTDMAS 0x0030
95#define SSS_REG_FCBTDMAL 0x0034
96#define SSS_REG_FCBTDMAC 0x0038
97#define SSS_FCBTDMAC_BYTESWAP BIT(1)
98#define SSS_FCBTDMAC_FLUSH BIT(0)
99
100#define SSS_REG_FCHRDMAS 0x0040
101#define SSS_REG_FCHRDMAL 0x0044
102#define SSS_REG_FCHRDMAC 0x0048
103#define SSS_FCHRDMAC_BYTESWAP BIT(1)
104#define SSS_FCHRDMAC_FLUSH BIT(0)
105
106#define SSS_REG_FCPKDMAS 0x0050
107#define SSS_REG_FCPKDMAL 0x0054
108#define SSS_REG_FCPKDMAC 0x0058
109#define SSS_FCPKDMAC_BYTESWAP BIT(3)
110#define SSS_FCPKDMAC_DESCEND BIT(2)
111#define SSS_FCPKDMAC_TRANSMIT BIT(1)
112#define SSS_FCPKDMAC_FLUSH BIT(0)
113
114#define SSS_REG_FCPKDMAO 0x005C
a49e490c
VZ
115
116/* AES registers */
89245107 117#define SSS_REG_AES_CONTROL 0x00
e5e40908
KK
118#define SSS_AES_BYTESWAP_DI BIT(11)
119#define SSS_AES_BYTESWAP_DO BIT(10)
120#define SSS_AES_BYTESWAP_IV BIT(9)
121#define SSS_AES_BYTESWAP_CNT BIT(8)
122#define SSS_AES_BYTESWAP_KEY BIT(7)
123#define SSS_AES_KEY_CHANGE_MODE BIT(6)
124#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127#define SSS_AES_FIFO_MODE BIT(3)
128#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131#define SSS_AES_MODE_DECRYPT BIT(0)
a49e490c 132
89245107 133#define SSS_REG_AES_STATUS 0x04
e5e40908
KK
134#define SSS_AES_BUSY BIT(2)
135#define SSS_AES_INPUT_READY BIT(1)
136#define SSS_AES_OUTPUT_READY BIT(0)
a49e490c 137
89245107
NKC
138#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
a49e490c 143
e5e40908
KK
144#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
a49e490c 147
e5e40908 148#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
89245107
NKC
149#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
151
a49e490c 152/* HW engine modes */
e5e40908
KK
153#define FLAGS_AES_DECRYPT BIT(0)
154#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155#define FLAGS_AES_CBC _SBF(1, 0x01)
156#define FLAGS_AES_CTR _SBF(1, 0x02)
a49e490c 157
e5e40908
KK
158#define AES_KEY_LEN 16
159#define CRYPTO_QUEUE_LEN 1
a49e490c 160
c2afad6c
KK
161/* HASH registers */
162#define SSS_REG_HASH_CTRL 0x00
163
164#define SSS_HASH_USER_IV_EN BIT(5)
165#define SSS_HASH_INIT_BIT BIT(4)
166#define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167#define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168#define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
169
170#define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
171
172#define SSS_REG_HASH_CTRL_PAUSE 0x04
173
174#define SSS_HASH_PAUSE BIT(0)
175
176#define SSS_REG_HASH_CTRL_FIFO 0x08
177
178#define SSS_HASH_FIFO_MODE_DMA BIT(0)
179#define SSS_HASH_FIFO_MODE_CPU 0
180
181#define SSS_REG_HASH_CTRL_SWAP 0x0C
182
183#define SSS_HASH_BYTESWAP_DI BIT(3)
184#define SSS_HASH_BYTESWAP_DO BIT(2)
185#define SSS_HASH_BYTESWAP_IV BIT(1)
186#define SSS_HASH_BYTESWAP_KEY BIT(0)
187
188#define SSS_REG_HASH_STATUS 0x10
189
190#define SSS_HASH_STATUS_MSG_DONE BIT(6)
191#define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192#define SSS_HASH_STATUS_BUFFER_READY BIT(0)
193
194#define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195#define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
196
197#define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
199
200#define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201#define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
202
203#define HASH_BLOCK_SIZE 64
204#define HASH_REG_SIZEOF 4
205#define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206#define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207#define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209/*
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214 */
215#define HASH_FLAGS_BUSY 0
216#define HASH_FLAGS_FINAL 1
217#define HASH_FLAGS_DMA_ACTIVE 2
218#define HASH_FLAGS_OUTPUT_READY 3
219#define HASH_FLAGS_DMA_READY 4
220#define HASH_FLAGS_SGS_COPIED 5
221#define HASH_FLAGS_SGS_ALLOCED 6
222
223/* HASH HW constants */
224#define BUFLEN HASH_BLOCK_SIZE
225
226#define SSS_HASH_DMA_LEN_ALIGN 8
227#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
228
229#define SSS_HASH_QUEUE_LENGTH 10
230
89245107
NKC
231/**
232 * struct samsung_aes_variant - platform specific SSS driver data
89245107 233 * @aes_offset: AES register offset from SSS module's base.
c2afad6c 234 * @hash_offset: HASH register offset from SSS module's base.
89245107
NKC
235 *
236 * Specifies platform specific configuration of SSS module.
237 * Note: A structure for driver specific platform data is used for future
238 * expansion of its usage.
239 */
240struct samsung_aes_variant {
5318c53d 241 unsigned int aes_offset;
c2afad6c 242 unsigned int hash_offset;
89245107
NKC
243};
244
a49e490c 245struct s5p_aes_reqctx {
5318c53d 246 unsigned long mode;
a49e490c
VZ
247};
248
249struct s5p_aes_ctx {
5318c53d 250 struct s5p_aes_dev *dev;
a49e490c 251
b1b4416f
CM
252 u8 aes_key[AES_MAX_KEY_SIZE];
253 u8 nonce[CTR_RFC3686_NONCE_SIZE];
5318c53d 254 int keylen;
a49e490c
VZ
255};
256
106d7334
KK
257/**
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @ioaddr: Mapped IO memory region
262 * @aes_ioaddr: Per-varian offset for AES block IO memory
263 * @irq_fc: Feed control interrupt line
264 * @req: Crypto request currently handled by the device
265 * @ctx: Configuration for currently handled crypto request
266 * @sg_src: Scatter list with source data for currently handled block
267 * in device. This is DMA-mapped into device.
268 * @sg_dst: Scatter list with destination data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_src_cpy: In case of unaligned access, copied scatter list
271 * with source data.
272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
273 * with destination data.
274 * @tasklet: New request scheduling jib
275 * @queue: Crypto queue
276 * @busy: Indicates whether the device is currently handling some request
277 * thus it uses some of the fields from this state, like:
278 * req, ctx, sg_src/dst (and copies). This essentially
279 * protects against concurrent access to these fields.
280 * @lock: Lock for protecting both access to device hardware registers
281 * and fields related to current request (including the busy field).
c2afad6c
KK
282 * @res: Resources for hash.
283 * @io_hash_base: Per-variant offset for HASH block IO memory.
284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
285 * variable.
286 * @hash_flags: Flags for current HASH op.
287 * @hash_queue: Async hash queue.
288 * @hash_tasklet: New HASH request scheduling job.
289 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
290 * @hash_req: Current request sending to SSS HASH block.
291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292 * @hash_sg_cnt: Counter for hash_sg_iter.
293 *
294 * @use_hash: true if HASH algs enabled
106d7334 295 */
a49e490c 296struct s5p_aes_dev {
5318c53d
KK
297 struct device *dev;
298 struct clk *clk;
299 void __iomem *ioaddr;
300 void __iomem *aes_ioaddr;
301 int irq_fc;
a49e490c 302
5318c53d
KK
303 struct ablkcipher_request *req;
304 struct s5p_aes_ctx *ctx;
305 struct scatterlist *sg_src;
306 struct scatterlist *sg_dst;
a49e490c 307
5318c53d
KK
308 struct scatterlist *sg_src_cpy;
309 struct scatterlist *sg_dst_cpy;
9e4a1100 310
5318c53d
KK
311 struct tasklet_struct tasklet;
312 struct crypto_queue queue;
313 bool busy;
314 spinlock_t lock;
c2afad6c
KK
315
316 struct resource *res;
317 void __iomem *io_hash_base;
318
319 spinlock_t hash_lock; /* protect hash_ vars */
320 unsigned long hash_flags;
321 struct crypto_queue hash_queue;
322 struct tasklet_struct hash_tasklet;
323
324 u8 xmit_buf[BUFLEN];
325 struct ahash_request *hash_req;
326 struct scatterlist *hash_sg_iter;
327 unsigned int hash_sg_cnt;
328
329 bool use_hash;
a49e490c
VZ
330};
331
c2afad6c
KK
332/**
333 * struct s5p_hash_reqctx - HASH request context
334 * @dd: Associated device
335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
337 * @digest: Digest message or IV for partial result
338 * @nregs: Number of HW registers for digest or IV read/write
339 * @engine: Bits for selecting type of HASH in SSS block
340 * @sg: sg for DMA transfer
341 * @sg_len: Length of sg for DMA transfer
342 * @sgl[]: sg for joining buffer and req->src scatterlist
343 * @skip: Skip offset in req->src for current op
344 * @total: Total number of bytes for current request
345 * @finup: Keep state for finup or final.
346 * @error: Keep track of error.
347 * @bufcnt: Number of bytes holded in buffer[]
348 * @buffer[]: For byte(s) from end of req->src in UPDATE op
349 */
350struct s5p_hash_reqctx {
351 struct s5p_aes_dev *dd;
352 bool op_update;
353
354 u64 digcnt;
355 u8 digest[SHA256_DIGEST_SIZE];
356
357 unsigned int nregs; /* digest_size / sizeof(reg) */
358 u32 engine;
359
360 struct scatterlist *sg;
361 unsigned int sg_len;
362 struct scatterlist sgl[2];
363 unsigned int skip;
364 unsigned int total;
365 bool finup;
366 bool error;
367
368 u32 bufcnt;
369 u8 buffer[0];
370};
371
372/**
373 * struct s5p_hash_ctx - HASH transformation context
374 * @dd: Associated device
375 * @flags: Bits for algorithm HASH.
376 * @fallback: Software transformation for zero message or size < BUFLEN.
377 */
378struct s5p_hash_ctx {
379 struct s5p_aes_dev *dd;
380 unsigned long flags;
381 struct crypto_shash *fallback;
382};
a49e490c 383
89245107 384static const struct samsung_aes_variant s5p_aes_data = {
89245107 385 .aes_offset = 0x4000,
c2afad6c 386 .hash_offset = 0x6000,
89245107
NKC
387};
388
389static const struct samsung_aes_variant exynos_aes_data = {
89245107 390 .aes_offset = 0x200,
c2afad6c 391 .hash_offset = 0x400,
89245107
NKC
392};
393
6b9f16e6 394static const struct of_device_id s5p_sss_dt_match[] = {
89245107
NKC
395 {
396 .compatible = "samsung,s5pv210-secss",
397 .data = &s5p_aes_data,
398 },
399 {
400 .compatible = "samsung,exynos4210-secss",
401 .data = &exynos_aes_data,
402 },
6b9f16e6
NKC
403 { },
404};
405MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406
6584eacb
KK
407static inline const struct samsung_aes_variant *find_s5p_sss_version
408 (const struct platform_device *pdev)
89245107
NKC
409{
410 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 const struct of_device_id *match;
313becd1 412
89245107
NKC
413 match = of_match_node(s5p_sss_dt_match,
414 pdev->dev.of_node);
6584eacb 415 return (const struct samsung_aes_variant *)match->data;
89245107 416 }
6584eacb 417 return (const struct samsung_aes_variant *)
89245107
NKC
418 platform_get_device_id(pdev)->driver_data;
419}
420
c2afad6c
KK
421static struct s5p_aes_dev *s5p_dev;
422
6584eacb
KK
423static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
424 const struct scatterlist *sg)
a49e490c
VZ
425{
426 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
427 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
428}
429
6584eacb
KK
430static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
431 const struct scatterlist *sg)
a49e490c
VZ
432{
433 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
434 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
435}
436
9e4a1100
KK
437static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
438{
439 int len;
440
441 if (!*sg)
442 return;
443
444 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
445 free_pages((unsigned long)sg_virt(*sg), get_order(len));
446
447 kfree(*sg);
448 *sg = NULL;
449}
450
451static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
452 unsigned int nbytes, int out)
453{
454 struct scatter_walk walk;
455
456 if (!nbytes)
457 return;
458
459 scatterwalk_start(&walk, sg);
460 scatterwalk_copychunks(buf, &walk, nbytes, out);
461 scatterwalk_done(&walk, out, 0);
462}
463
28b62b14 464static void s5p_sg_done(struct s5p_aes_dev *dev)
a49e490c 465{
9e4a1100
KK
466 if (dev->sg_dst_cpy) {
467 dev_dbg(dev->dev,
468 "Copying %d bytes of output data back to original place\n",
469 dev->req->nbytes);
470 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
471 dev->req->nbytes, 1);
472 }
473 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
28b62b14 475}
9e4a1100 476
28b62b14 477/* Calls the completion. Cannot be called with dev->lock hold. */
5842cd44 478static void s5p_aes_complete(struct ablkcipher_request *req, int err)
28b62b14 479{
5842cd44 480 req->base.complete(&req->base, err);
a49e490c
VZ
481}
482
483static void s5p_unset_outdata(struct s5p_aes_dev *dev)
484{
485 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
486}
487
488static void s5p_unset_indata(struct s5p_aes_dev *dev)
489{
490 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
491}
492
9e4a1100 493static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
6c12b6ba 494 struct scatterlist **dst)
9e4a1100
KK
495{
496 void *pages;
497 int len;
498
499 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
500 if (!*dst)
501 return -ENOMEM;
502
503 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
504 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
505 if (!pages) {
506 kfree(*dst);
507 *dst = NULL;
508 return -ENOMEM;
509 }
510
511 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
512
513 sg_init_table(*dst, 1);
514 sg_set_buf(*dst, pages, len);
515
516 return 0;
517}
518
a49e490c
VZ
519static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
520{
b1b4416f
CM
521 if (!sg->length)
522 return -EINVAL;
a49e490c 523
b1b4416f
CM
524 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
525 return -ENOMEM;
a49e490c
VZ
526
527 dev->sg_dst = sg;
a49e490c 528
b1b4416f 529 return 0;
a49e490c
VZ
530}
531
532static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
533{
b1b4416f
CM
534 if (!sg->length)
535 return -EINVAL;
a49e490c 536
b1b4416f
CM
537 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
538 return -ENOMEM;
a49e490c
VZ
539
540 dev->sg_src = sg;
a49e490c 541
b1b4416f 542 return 0;
a49e490c
VZ
543}
544
79152e8d 545/*
28b62b14
KK
546 * Returns -ERRNO on error (mapping of new data failed).
547 * On success returns:
548 * - 0 if there is no more data,
549 * - 1 if new transmitting (output) data is ready and its address+length
550 * have to be written to device (by calling s5p_set_dma_outdata()).
79152e8d 551 */
28b62b14 552static int s5p_aes_tx(struct s5p_aes_dev *dev)
a49e490c 553{
28b62b14 554 int ret = 0;
a49e490c
VZ
555
556 s5p_unset_outdata(dev);
557
558 if (!sg_is_last(dev->sg_dst)) {
28b62b14
KK
559 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
560 if (!ret)
561 ret = 1;
dc5e3f19 562 }
79152e8d
KK
563
564 return ret;
a49e490c
VZ
565}
566
79152e8d 567/*
28b62b14
KK
568 * Returns -ERRNO on error (mapping of new data failed).
569 * On success returns:
570 * - 0 if there is no more data,
571 * - 1 if new receiving (input) data is ready and its address+length
572 * have to be written to device (by calling s5p_set_dma_indata()).
79152e8d 573 */
28b62b14 574static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
a49e490c 575{
28b62b14 576 int ret = 0;
a49e490c
VZ
577
578 s5p_unset_indata(dev);
579
580 if (!sg_is_last(dev->sg_src)) {
28b62b14
KK
581 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
582 if (!ret)
583 ret = 1;
a49e490c 584 }
79152e8d
KK
585
586 return ret;
a49e490c
VZ
587}
588
c2afad6c
KK
589static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
590{
591 return __raw_readl(dd->io_hash_base + offset);
592}
593
594static inline void s5p_hash_write(struct s5p_aes_dev *dd,
595 u32 offset, u32 value)
596{
597 __raw_writel(value, dd->io_hash_base + offset);
598}
599
600/**
601 * s5p_set_dma_hashdata() - start DMA with sg
602 * @dev: device
603 * @sg: scatterlist ready to DMA transmit
604 */
605static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
6584eacb 606 const struct scatterlist *sg)
c2afad6c
KK
607{
608 dev->hash_sg_cnt--;
609 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
610 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
611}
612
613/**
614 * s5p_hash_rx() - get next hash_sg_iter
615 * @dev: device
616 *
617 * Return:
618 * 2 if there is no more data and it is UPDATE op
619 * 1 if new receiving (input) data is ready and can be written to device
620 * 0 if there is no more data and it is FINAL op
621 */
622static int s5p_hash_rx(struct s5p_aes_dev *dev)
623{
624 if (dev->hash_sg_cnt > 0) {
625 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
626 return 1;
627 }
628
629 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
630 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
631 return 0;
632
633 return 2;
634}
635
a49e490c
VZ
636static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
637{
638 struct platform_device *pdev = dev_id;
5318c53d 639 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
5842cd44 640 struct ablkcipher_request *req;
28b62b14
KK
641 int err_dma_tx = 0;
642 int err_dma_rx = 0;
c2afad6c 643 int err_dma_hx = 0;
28b62b14 644 bool tx_end = false;
c2afad6c 645 bool hx_end = false;
5318c53d 646 unsigned long flags;
b1b4416f 647 u32 status, st_bits;
28b62b14 648 int err;
a49e490c
VZ
649
650 spin_lock_irqsave(&dev->lock, flags);
651
28b62b14
KK
652 /*
653 * Handle rx or tx interrupt. If there is still data (scatterlist did not
654 * reach end), then map next scatterlist entry.
655 * In case of such mapping error, s5p_aes_complete() should be called.
656 *
657 * If there is no more data in tx scatter list, call s5p_aes_complete()
658 * and schedule new tasklet.
c2afad6c
KK
659 *
660 * Handle hx interrupt. If there is still data map next entry.
28b62b14 661 */
55124425
KK
662 status = SSS_READ(dev, FCINTSTAT);
663 if (status & SSS_FCINTSTAT_BRDMAINT)
28b62b14
KK
664 err_dma_rx = s5p_aes_rx(dev);
665
666 if (status & SSS_FCINTSTAT_BTDMAINT) {
667 if (sg_is_last(dev->sg_dst))
668 tx_end = true;
669 err_dma_tx = s5p_aes_tx(dev);
670 }
a49e490c 671
c2afad6c
KK
672 if (status & SSS_FCINTSTAT_HRDMAINT)
673 err_dma_hx = s5p_hash_rx(dev);
674
675 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
676 SSS_FCINTSTAT_HRDMAINT);
677 /* clear DMA bits */
678 SSS_WRITE(dev, FCINTPEND, st_bits);
679
680 /* clear HASH irq bits */
681 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
682 /* cannot have both HPART and HDONE */
683 if (status & SSS_FCINTSTAT_HPARTINT)
684 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
685
686 if (status & SSS_FCINTSTAT_HDONEINT)
687 st_bits = SSS_HASH_STATUS_MSG_DONE;
688
689 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
690 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
691 hx_end = true;
692 /* when DONE or PART, do not handle HASH DMA */
693 err_dma_hx = 0;
694 }
a49e490c 695
28b62b14
KK
696 if (err_dma_rx < 0) {
697 err = err_dma_rx;
698 goto error;
699 }
700 if (err_dma_tx < 0) {
701 err = err_dma_tx;
702 goto error;
703 }
704
705 if (tx_end) {
706 s5p_sg_done(dev);
c2afad6c
KK
707 if (err_dma_hx == 1)
708 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
28b62b14
KK
709
710 spin_unlock_irqrestore(&dev->lock, flags);
711
5842cd44 712 s5p_aes_complete(dev->req, 0);
42d5c176 713 /* Device is still busy */
28b62b14
KK
714 tasklet_schedule(&dev->tasklet);
715 } else {
716 /*
717 * Writing length of DMA block (either receiving or
718 * transmitting) will start the operation immediately, so this
719 * should be done at the end (even after clearing pending
720 * interrupts to not miss the interrupt).
721 */
722 if (err_dma_tx == 1)
723 s5p_set_dma_outdata(dev, dev->sg_dst);
724 if (err_dma_rx == 1)
725 s5p_set_dma_indata(dev, dev->sg_src);
c2afad6c
KK
726 if (err_dma_hx == 1)
727 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
79152e8d 728
28b62b14
KK
729 spin_unlock_irqrestore(&dev->lock, flags);
730 }
731
c2afad6c 732 goto hash_irq_end;
28b62b14
KK
733
734error:
735 s5p_sg_done(dev);
42d5c176 736 dev->busy = false;
5842cd44 737 req = dev->req;
c2afad6c
KK
738 if (err_dma_hx == 1)
739 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
740
a49e490c 741 spin_unlock_irqrestore(&dev->lock, flags);
5842cd44 742 s5p_aes_complete(req, err);
a49e490c 743
c2afad6c
KK
744hash_irq_end:
745 /*
746 * Note about else if:
747 * when hash_sg_iter reaches end and its UPDATE op,
748 * issue SSS_HASH_PAUSE and wait for HPART irq
749 */
750 if (hx_end)
751 tasklet_schedule(&dev->hash_tasklet);
752 else if (err_dma_hx == 2)
753 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
754 SSS_HASH_PAUSE);
755
a49e490c
VZ
756 return IRQ_HANDLED;
757}
758
c2afad6c
KK
759/**
760 * s5p_hash_read_msg() - read message or IV from HW
761 * @req: AHASH request
762 */
763static void s5p_hash_read_msg(struct ahash_request *req)
764{
765 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
766 struct s5p_aes_dev *dd = ctx->dd;
767 u32 *hash = (u32 *)ctx->digest;
768 unsigned int i;
769
770 for (i = 0; i < ctx->nregs; i++)
771 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
772}
773
774/**
775 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
776 * @dd: device
777 * @ctx: request context
778 */
779static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
6584eacb 780 const struct s5p_hash_reqctx *ctx)
c2afad6c 781{
6584eacb 782 const u32 *hash = (const u32 *)ctx->digest;
c2afad6c
KK
783 unsigned int i;
784
785 for (i = 0; i < ctx->nregs; i++)
786 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
787}
788
789/**
790 * s5p_hash_write_iv() - write IV for next partial/finup op.
791 * @req: AHASH request
792 */
793static void s5p_hash_write_iv(struct ahash_request *req)
794{
795 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
796
797 s5p_hash_write_ctx_iv(ctx->dd, ctx);
798}
799
800/**
801 * s5p_hash_copy_result() - copy digest into req->result
802 * @req: AHASH request
803 */
804static void s5p_hash_copy_result(struct ahash_request *req)
805{
6584eacb 806 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
c2afad6c
KK
807
808 if (!req->result)
809 return;
810
811 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
812}
813
814/**
815 * s5p_hash_dma_flush() - flush HASH DMA
816 * @dev: secss device
817 */
818static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
819{
820 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
821}
822
823/**
824 * s5p_hash_dma_enable() - enable DMA mode for HASH
825 * @dev: secss device
826 *
827 * enable DMA mode for HASH
828 */
829static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
830{
831 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
832}
833
834/**
835 * s5p_hash_irq_disable() - disable irq HASH signals
836 * @dev: secss device
837 * @flags: bitfield with irq's to be disabled
838 */
839static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
840{
841 SSS_WRITE(dev, FCINTENCLR, flags);
842}
843
844/**
845 * s5p_hash_irq_enable() - enable irq signals
846 * @dev: secss device
847 * @flags: bitfield with irq's to be enabled
848 */
849static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
850{
851 SSS_WRITE(dev, FCINTENSET, flags);
852}
853
854/**
855 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
856 * @dev: secss device
857 * @hashflow: HASH stream flow with/without crypto AES/DES
858 */
859static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
860{
861 unsigned long flags;
862 u32 flow;
863
864 spin_lock_irqsave(&dev->lock, flags);
865
866 flow = SSS_READ(dev, FCFIFOCTRL);
867 flow &= ~SSS_HASHIN_MASK;
868 flow |= hashflow;
869 SSS_WRITE(dev, FCFIFOCTRL, flow);
870
871 spin_unlock_irqrestore(&dev->lock, flags);
872}
873
874/**
875 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
876 * @dev: secss device
877 * @hashflow: HASH stream flow with/without AES/DES
878 *
879 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
880 * enable HASH irq's HRDMA, HDONE, HPART
881 */
882static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
883{
884 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
885 SSS_FCINTENCLR_HDONEINTENCLR |
886 SSS_FCINTENCLR_HPARTINTENCLR);
887 s5p_hash_dma_flush(dev);
888
889 s5p_hash_dma_enable(dev);
890 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
891 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
892 SSS_FCINTENSET_HDONEINTENSET |
893 SSS_FCINTENSET_HPARTINTENSET);
894}
895
896/**
897 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
898 * @dd: secss device
899 * @length: length for request
900 * @final: true if final op
901 *
902 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
903 * after previous updates, fill up IV words. For final, calculate and set
904 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
905 * length as 2^63 so it will be never reached and set to zero prelow and
906 * prehigh.
907 *
908 * This function does not start DMA transfer.
909 */
910static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
911 bool final)
912{
913 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
914 u32 prelow, prehigh, low, high;
915 u32 configflags, swapflags;
916 u64 tmplen;
917
918 configflags = ctx->engine | SSS_HASH_INIT_BIT;
919
920 if (likely(ctx->digcnt)) {
921 s5p_hash_write_ctx_iv(dd, ctx);
922 configflags |= SSS_HASH_USER_IV_EN;
923 }
924
925 if (final) {
926 /* number of bytes for last part */
927 low = length;
928 high = 0;
929 /* total number of bits prev hashed */
930 tmplen = ctx->digcnt * 8;
931 prelow = (u32)tmplen;
932 prehigh = (u32)(tmplen >> 32);
933 } else {
934 prelow = 0;
935 prehigh = 0;
936 low = 0;
937 high = BIT(31);
938 }
939
940 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
941 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
942
943 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
944 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
945 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
946 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
947
948 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
949 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
950}
951
952/**
953 * s5p_hash_xmit_dma() - start DMA hash processing
954 * @dd: secss device
955 * @length: length for request
956 * @final: true if final op
957 *
958 * Update digcnt here, as it is needed for finup/final op.
959 */
960static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
961 bool final)
962{
963 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
964 unsigned int cnt;
965
966 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
967 if (!cnt) {
968 dev_err(dd->dev, "dma_map_sg error\n");
969 ctx->error = true;
970 return -EINVAL;
971 }
972
973 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
974 dd->hash_sg_iter = ctx->sg;
975 dd->hash_sg_cnt = cnt;
976 s5p_hash_write_ctrl(dd, length, final);
977 ctx->digcnt += length;
978 ctx->total -= length;
979
980 /* catch last interrupt */
981 if (final)
982 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
983
984 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
985
986 return -EINPROGRESS;
987}
988
989/**
990 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
991 * @ctx: request context
992 * @sg: source scatterlist request
993 * @new_len: number of bytes to process from sg
994 *
995 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
996 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
997 * with allocated buffer.
998 *
999 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1000 */
1001static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1002 struct scatterlist *sg, unsigned int new_len)
1003{
1004 unsigned int pages, len;
1005 void *buf;
1006
1007 len = new_len + ctx->bufcnt;
1008 pages = get_order(len);
1009
1010 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1011 if (!buf) {
1012 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1013 ctx->error = true;
1014 return -ENOMEM;
1015 }
1016
1017 if (ctx->bufcnt)
1018 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1019
1020 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1021 new_len, 0);
1022 sg_init_table(ctx->sgl, 1);
1023 sg_set_buf(ctx->sgl, buf, len);
1024 ctx->sg = ctx->sgl;
1025 ctx->sg_len = 1;
1026 ctx->bufcnt = 0;
1027 ctx->skip = 0;
1028 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1029
1030 return 0;
1031}
1032
1033/**
1034 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1035 * @ctx: request context
1036 * @sg: source scatterlist request
1037 * @new_len: number of bytes to process from sg
1038 *
1039 * Allocate new scatterlist table, copy data for HASH into it. If there was
1040 * xmit_buf filled, prepare it first, then copy page, length and offset from
1041 * source sg into it, adjusting begin and/or end for skip offset and
1042 * hash_later value.
1043 *
1044 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1045 * it after irq ends processing.
1046 */
1047static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1048 struct scatterlist *sg, unsigned int new_len)
1049{
1050 unsigned int skip = ctx->skip, n = sg_nents(sg);
1051 struct scatterlist *tmp;
1052 unsigned int len;
1053
1054 if (ctx->bufcnt)
1055 n++;
1056
1057 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1058 if (!ctx->sg) {
1059 ctx->error = true;
1060 return -ENOMEM;
1061 }
1062
1063 sg_init_table(ctx->sg, n);
1064
1065 tmp = ctx->sg;
1066
1067 ctx->sg_len = 0;
1068
1069 if (ctx->bufcnt) {
1070 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1071 tmp = sg_next(tmp);
1072 ctx->sg_len++;
1073 }
1074
1075 while (sg && skip >= sg->length) {
1076 skip -= sg->length;
1077 sg = sg_next(sg);
1078 }
1079
1080 while (sg && new_len) {
1081 len = sg->length - skip;
1082 if (new_len < len)
1083 len = new_len;
1084
1085 new_len -= len;
1086 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1087 skip = 0;
1088 if (new_len <= 0)
1089 sg_mark_end(tmp);
1090
1091 tmp = sg_next(tmp);
1092 ctx->sg_len++;
1093 sg = sg_next(sg);
1094 }
1095
1096 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1097
1098 return 0;
1099}
1100
1101/**
1102 * s5p_hash_prepare_sgs() - prepare sg for processing
1103 * @ctx: request context
1104 * @sg: source scatterlist request
1105 * @nbytes: number of bytes to process from sg
1106 * @final: final flag
1107 *
1108 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1109 * sg table have good aligned elements (list_ok). If one of this checks fails,
1110 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1111 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1112 * table and prepare sg elements.
1113 *
1114 * For digest or finup all conditions can be good, and we may not need any
1115 * fixes.
1116 */
1117static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1118 struct scatterlist *sg,
1119 unsigned int new_len, bool final)
1120{
1121 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1122 bool aligned = true, list_ok = true;
1123 struct scatterlist *sg_tmp = sg;
1124
1125 if (!sg || !sg->length || !new_len)
1126 return 0;
1127
1128 if (skip || !final)
1129 list_ok = false;
1130
1131 while (nbytes > 0 && sg_tmp) {
1132 n++;
1133 if (skip >= sg_tmp->length) {
1134 skip -= sg_tmp->length;
1135 if (!sg_tmp->length) {
1136 aligned = false;
1137 break;
1138 }
1139 } else {
1140 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1141 aligned = false;
1142 break;
1143 }
1144
1145 if (nbytes < sg_tmp->length - skip) {
1146 list_ok = false;
1147 break;
1148 }
1149
1150 nbytes -= sg_tmp->length - skip;
1151 skip = 0;
1152 }
1153
1154 sg_tmp = sg_next(sg_tmp);
1155 }
1156
1157 if (!aligned)
1158 return s5p_hash_copy_sgs(ctx, sg, new_len);
1159 else if (!list_ok)
1160 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1161
1162 /*
1163 * Have aligned data from previous operation and/or current
1164 * Note: will enter here only if (digest or finup) and aligned
1165 */
1166 if (ctx->bufcnt) {
1167 ctx->sg_len = n;
1168 sg_init_table(ctx->sgl, 2);
1169 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1170 sg_chain(ctx->sgl, 2, sg);
1171 ctx->sg = ctx->sgl;
1172 ctx->sg_len++;
1173 } else {
1174 ctx->sg = sg;
1175 ctx->sg_len = n;
1176 }
1177
1178 return 0;
1179}
1180
1181/**
1182 * s5p_hash_prepare_request() - prepare request for processing
1183 * @req: AHASH request
1184 * @update: true if UPDATE op
1185 *
1186 * Note 1: we can have update flag _and_ final flag at the same time.
1187 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1188 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1189 * we have final op
1190 */
1191static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1192{
1193 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1194 bool final = ctx->finup;
1195 int xmit_len, hash_later, nbytes;
1196 int ret;
1197
c2afad6c
KK
1198 if (update)
1199 nbytes = req->nbytes;
1200 else
1201 nbytes = 0;
1202
1203 ctx->total = nbytes + ctx->bufcnt;
1204 if (!ctx->total)
1205 return 0;
1206
1207 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1208 /* bytes left from previous request, so fill up to BUFLEN */
1209 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1210
1211 if (len > nbytes)
1212 len = nbytes;
1213
1214 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1215 0, len, 0);
1216 ctx->bufcnt += len;
1217 nbytes -= len;
1218 ctx->skip = len;
1219 } else {
1220 ctx->skip = 0;
1221 }
1222
1223 if (ctx->bufcnt)
1224 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1225
1226 xmit_len = ctx->total;
1227 if (final) {
1228 hash_later = 0;
1229 } else {
1230 if (IS_ALIGNED(xmit_len, BUFLEN))
1231 xmit_len -= BUFLEN;
1232 else
1233 xmit_len -= xmit_len & (BUFLEN - 1);
1234
1235 hash_later = ctx->total - xmit_len;
1236 /* copy hash_later bytes from end of req->src */
1237 /* previous bytes are in xmit_buf, so no overwrite */
1238 scatterwalk_map_and_copy(ctx->buffer, req->src,
1239 req->nbytes - hash_later,
1240 hash_later, 0);
1241 }
1242
1243 if (xmit_len > BUFLEN) {
1244 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1245 final);
1246 if (ret)
1247 return ret;
1248 } else {
1249 /* have buffered data only */
1250 if (unlikely(!ctx->bufcnt)) {
1251 /* first update didn't fill up buffer */
1252 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1253 0, xmit_len, 0);
1254 }
1255
1256 sg_init_table(ctx->sgl, 1);
1257 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1258
1259 ctx->sg = ctx->sgl;
1260 ctx->sg_len = 1;
1261 }
1262
1263 ctx->bufcnt = hash_later;
1264 if (!final)
1265 ctx->total = xmit_len;
1266
1267 return 0;
1268}
1269
1270/**
1271 * s5p_hash_update_dma_stop() - unmap DMA
1272 * @dd: secss device
1273 *
1274 * Unmap scatterlist ctx->sg.
1275 */
1276static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1277{
6584eacb 1278 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
c2afad6c
KK
1279
1280 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1281 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1282}
1283
1284/**
1285 * s5p_hash_finish() - copy calculated digest to crypto layer
1286 * @req: AHASH request
1287 */
1288static void s5p_hash_finish(struct ahash_request *req)
1289{
1290 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1291 struct s5p_aes_dev *dd = ctx->dd;
1292
1293 if (ctx->digcnt)
1294 s5p_hash_copy_result(req);
1295
1296 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1297}
1298
1299/**
1300 * s5p_hash_finish_req() - finish request
1301 * @req: AHASH request
1302 * @err: error
1303 */
1304static void s5p_hash_finish_req(struct ahash_request *req, int err)
1305{
1306 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1307 struct s5p_aes_dev *dd = ctx->dd;
1308 unsigned long flags;
1309
1310 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1311 free_pages((unsigned long)sg_virt(ctx->sg),
1312 get_order(ctx->sg->length));
1313
1314 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1315 kfree(ctx->sg);
1316
1317 ctx->sg = NULL;
1318 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1319 BIT(HASH_FLAGS_SGS_COPIED));
1320
1321 if (!err && !ctx->error) {
1322 s5p_hash_read_msg(req);
1323 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1324 s5p_hash_finish(req);
1325 } else {
1326 ctx->error = true;
1327 }
1328
1329 spin_lock_irqsave(&dd->hash_lock, flags);
1330 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1331 BIT(HASH_FLAGS_DMA_READY) |
1332 BIT(HASH_FLAGS_OUTPUT_READY));
1333 spin_unlock_irqrestore(&dd->hash_lock, flags);
1334
1335 if (req->base.complete)
1336 req->base.complete(&req->base, err);
1337}
1338
1339/**
1340 * s5p_hash_handle_queue() - handle hash queue
1341 * @dd: device s5p_aes_dev
1342 * @req: AHASH request
1343 *
1344 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1345 * device then processes the first request from the dd->queue
1346 *
1347 * Returns: see s5p_hash_final below.
1348 */
1349static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1350 struct ahash_request *req)
1351{
1352 struct crypto_async_request *async_req, *backlog;
1353 struct s5p_hash_reqctx *ctx;
1354 unsigned long flags;
1355 int err = 0, ret = 0;
1356
1357retry:
1358 spin_lock_irqsave(&dd->hash_lock, flags);
1359 if (req)
1360 ret = ahash_enqueue_request(&dd->hash_queue, req);
1361
1362 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1363 spin_unlock_irqrestore(&dd->hash_lock, flags);
1364 return ret;
1365 }
1366
1367 backlog = crypto_get_backlog(&dd->hash_queue);
1368 async_req = crypto_dequeue_request(&dd->hash_queue);
1369 if (async_req)
1370 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1371
1372 spin_unlock_irqrestore(&dd->hash_lock, flags);
1373
1374 if (!async_req)
1375 return ret;
1376
1377 if (backlog)
1378 backlog->complete(backlog, -EINPROGRESS);
1379
1380 req = ahash_request_cast(async_req);
1381 dd->hash_req = req;
1382 ctx = ahash_request_ctx(req);
1383
1384 err = s5p_hash_prepare_request(req, ctx->op_update);
1385 if (err || !ctx->total)
1386 goto out;
1387
1388 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1389 ctx->op_update, req->nbytes);
1390
1391 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1392 if (ctx->digcnt)
1393 s5p_hash_write_iv(req); /* restore hash IV */
1394
1395 if (ctx->op_update) { /* HASH_OP_UPDATE */
1396 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1397 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1398 /* no final() after finup() */
1399 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1400 } else { /* HASH_OP_FINAL */
1401 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402 }
1403out:
1404 if (err != -EINPROGRESS) {
1405 /* hash_tasklet_cb will not finish it, so do it here */
1406 s5p_hash_finish_req(req, err);
1407 req = NULL;
1408
1409 /*
1410 * Execute next request immediately if there is anything
1411 * in queue.
1412 */
1413 goto retry;
1414 }
1415
1416 return ret;
1417}
1418
1419/**
1420 * s5p_hash_tasklet_cb() - hash tasklet
1421 * @data: ptr to s5p_aes_dev
1422 */
1423static void s5p_hash_tasklet_cb(unsigned long data)
1424{
1425 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1426
1427 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1428 s5p_hash_handle_queue(dd, NULL);
1429 return;
1430 }
1431
1432 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1433 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1434 &dd->hash_flags)) {
1435 s5p_hash_update_dma_stop(dd);
1436 }
1437
1438 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1439 &dd->hash_flags)) {
1440 /* hash or semi-hash ready */
1441 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
f7daa715 1442 goto finish;
c2afad6c
KK
1443 }
1444 }
1445
1446 return;
1447
1448finish:
1449 /* finish curent request */
1450 s5p_hash_finish_req(dd->hash_req, 0);
1451
1452 /* If we are not busy, process next req */
1453 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1454 s5p_hash_handle_queue(dd, NULL);
1455}
1456
1457/**
1458 * s5p_hash_enqueue() - enqueue request
1459 * @req: AHASH request
1460 * @op: operation UPDATE (true) or FINAL (false)
1461 *
1462 * Returns: see s5p_hash_final below.
1463 */
1464static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1465{
1466 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1467 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1468
1469 ctx->op_update = op;
1470
1471 return s5p_hash_handle_queue(tctx->dd, req);
1472}
1473
1474/**
1475 * s5p_hash_update() - process the hash input data
1476 * @req: AHASH request
1477 *
1478 * If request will fit in buffer, copy it and return immediately
1479 * else enqueue it with OP_UPDATE.
1480 *
1481 * Returns: see s5p_hash_final below.
1482 */
1483static int s5p_hash_update(struct ahash_request *req)
1484{
1485 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1486
1487 if (!req->nbytes)
1488 return 0;
1489
1490 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1491 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1492 0, req->nbytes, 0);
1493 ctx->bufcnt += req->nbytes;
1494 return 0;
1495 }
1496
1497 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1498}
1499
1500/**
1501 * s5p_hash_shash_digest() - calculate shash digest
1502 * @tfm: crypto transformation
1503 * @flags: tfm flags
1504 * @data: input data
1505 * @len: length of data
1506 * @out: output buffer
1507 */
1508static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1509 const u8 *data, unsigned int len, u8 *out)
1510{
1511 SHASH_DESC_ON_STACK(shash, tfm);
1512
1513 shash->tfm = tfm;
1514 shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1515
1516 return crypto_shash_digest(shash, data, len, out);
1517}
1518
1519/**
1520 * s5p_hash_final_shash() - calculate shash digest
1521 * @req: AHASH request
1522 */
1523static int s5p_hash_final_shash(struct ahash_request *req)
1524{
1525 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1526 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1527
1528 return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1529 ctx->buffer, ctx->bufcnt, req->result);
1530}
1531
1532/**
1533 * s5p_hash_final() - close up hash and calculate digest
1534 * @req: AHASH request
1535 *
1536 * Note: in final req->src do not have any data, and req->nbytes can be
1537 * non-zero.
1538 *
1539 * If there were no input data processed yet and the buffered hash data is
1540 * less than BUFLEN (64) then calculate the final hash immediately by using
1541 * SW algorithm fallback.
1542 *
1543 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1544 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1545 * previous update op, so there are always some buffered bytes in ctx->buffer,
1546 * which means that ctx->bufcnt!=0
1547 *
1548 * Returns:
1549 * 0 if the request has been processed immediately,
1550 * -EINPROGRESS if the operation has been queued for later execution or is set
1551 * to processing by HW,
1552 * -EBUSY if queue is full and request should be resubmitted later,
1553 * other negative values denotes an error.
1554 */
1555static int s5p_hash_final(struct ahash_request *req)
1556{
1557 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1558
1559 ctx->finup = true;
1560 if (ctx->error)
1561 return -EINVAL; /* uncompleted hash is not needed */
1562
1563 if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1564 return s5p_hash_final_shash(req);
1565
1566 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1567}
1568
1569/**
1570 * s5p_hash_finup() - process last req->src and calculate digest
1571 * @req: AHASH request containing the last update data
1572 *
1573 * Return values: see s5p_hash_final above.
1574 */
1575static int s5p_hash_finup(struct ahash_request *req)
1576{
1577 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1578 int err1, err2;
1579
1580 ctx->finup = true;
1581
1582 err1 = s5p_hash_update(req);
1583 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1584 return err1;
1585
1586 /*
1587 * final() has to be always called to cleanup resources even if
1588 * update() failed, except EINPROGRESS or calculate digest for small
1589 * size
1590 */
1591 err2 = s5p_hash_final(req);
1592
1593 return err1 ?: err2;
1594}
1595
1596/**
1597 * s5p_hash_init() - initialize AHASH request contex
1598 * @req: AHASH request
1599 *
1600 * Init async hash request context.
1601 */
1602static int s5p_hash_init(struct ahash_request *req)
1603{
1604 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1605 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1606 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1607
1608 ctx->dd = tctx->dd;
1609 ctx->error = false;
1610 ctx->finup = false;
1611 ctx->bufcnt = 0;
1612 ctx->digcnt = 0;
1613 ctx->total = 0;
1614 ctx->skip = 0;
1615
1616 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1617 crypto_ahash_digestsize(tfm));
1618
1619 switch (crypto_ahash_digestsize(tfm)) {
1620 case MD5_DIGEST_SIZE:
1621 ctx->engine = SSS_HASH_ENGINE_MD5;
1622 ctx->nregs = HASH_MD5_MAX_REG;
1623 break;
1624 case SHA1_DIGEST_SIZE:
1625 ctx->engine = SSS_HASH_ENGINE_SHA1;
1626 ctx->nregs = HASH_SHA1_MAX_REG;
1627 break;
1628 case SHA256_DIGEST_SIZE:
1629 ctx->engine = SSS_HASH_ENGINE_SHA256;
1630 ctx->nregs = HASH_SHA256_MAX_REG;
1631 break;
1632 default:
1633 ctx->error = true;
1634 return -EINVAL;
1635 }
1636
1637 return 0;
1638}
1639
1640/**
1641 * s5p_hash_digest - calculate digest from req->src
1642 * @req: AHASH request
1643 *
1644 * Return values: see s5p_hash_final above.
1645 */
1646static int s5p_hash_digest(struct ahash_request *req)
1647{
1648 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1649}
1650
1651/**
1652 * s5p_hash_cra_init_alg - init crypto alg transformation
1653 * @tfm: crypto transformation
1654 */
1655static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1656{
1657 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1658 const char *alg_name = crypto_tfm_alg_name(tfm);
1659
1660 tctx->dd = s5p_dev;
1661 /* Allocate a fallback and abort if it failed. */
1662 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1663 CRYPTO_ALG_NEED_FALLBACK);
1664 if (IS_ERR(tctx->fallback)) {
1665 pr_err("fallback alloc fails for '%s'\n", alg_name);
1666 return PTR_ERR(tctx->fallback);
1667 }
1668
1669 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1670 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1671
1672 return 0;
1673}
1674
1675/**
1676 * s5p_hash_cra_init - init crypto tfm
1677 * @tfm: crypto transformation
1678 */
1679static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1680{
1681 return s5p_hash_cra_init_alg(tfm);
1682}
1683
1684/**
1685 * s5p_hash_cra_exit - exit crypto tfm
1686 * @tfm: crypto transformation
1687 *
1688 * free allocated fallback
1689 */
1690static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1691{
1692 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1693
1694 crypto_free_shash(tctx->fallback);
1695 tctx->fallback = NULL;
1696}
1697
1698/**
1699 * s5p_hash_export - export hash state
1700 * @req: AHASH request
1701 * @out: buffer for exported state
1702 */
1703static int s5p_hash_export(struct ahash_request *req, void *out)
1704{
6584eacb 1705 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
c2afad6c
KK
1706
1707 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1708
1709 return 0;
1710}
1711
1712/**
1713 * s5p_hash_import - import hash state
1714 * @req: AHASH request
1715 * @in: buffer with state to be imported from
1716 */
1717static int s5p_hash_import(struct ahash_request *req, const void *in)
1718{
1719 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1720 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1721 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1722 const struct s5p_hash_reqctx *ctx_in = in;
1723
1724 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1725 if (ctx_in->bufcnt > BUFLEN) {
1726 ctx->error = true;
1727 return -EINVAL;
1728 }
1729
1730 ctx->dd = tctx->dd;
1731 ctx->error = false;
1732
1733 return 0;
1734}
1735
1736static struct ahash_alg algs_sha1_md5_sha256[] = {
1737{
1738 .init = s5p_hash_init,
1739 .update = s5p_hash_update,
1740 .final = s5p_hash_final,
1741 .finup = s5p_hash_finup,
1742 .digest = s5p_hash_digest,
1743 .export = s5p_hash_export,
1744 .import = s5p_hash_import,
1745 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1746 .halg.digestsize = SHA1_DIGEST_SIZE,
1747 .halg.base = {
1748 .cra_name = "sha1",
1749 .cra_driver_name = "exynos-sha1",
1750 .cra_priority = 100,
6a38f622 1751 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1752 CRYPTO_ALG_ASYNC |
1753 CRYPTO_ALG_NEED_FALLBACK,
1754 .cra_blocksize = HASH_BLOCK_SIZE,
1755 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1756 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1757 .cra_module = THIS_MODULE,
1758 .cra_init = s5p_hash_cra_init,
1759 .cra_exit = s5p_hash_cra_exit,
1760 }
1761},
1762{
1763 .init = s5p_hash_init,
1764 .update = s5p_hash_update,
1765 .final = s5p_hash_final,
1766 .finup = s5p_hash_finup,
1767 .digest = s5p_hash_digest,
1768 .export = s5p_hash_export,
1769 .import = s5p_hash_import,
1770 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1771 .halg.digestsize = MD5_DIGEST_SIZE,
1772 .halg.base = {
1773 .cra_name = "md5",
1774 .cra_driver_name = "exynos-md5",
1775 .cra_priority = 100,
6a38f622 1776 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1777 CRYPTO_ALG_ASYNC |
1778 CRYPTO_ALG_NEED_FALLBACK,
1779 .cra_blocksize = HASH_BLOCK_SIZE,
1780 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1781 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1782 .cra_module = THIS_MODULE,
1783 .cra_init = s5p_hash_cra_init,
1784 .cra_exit = s5p_hash_cra_exit,
1785 }
1786},
1787{
1788 .init = s5p_hash_init,
1789 .update = s5p_hash_update,
1790 .final = s5p_hash_final,
1791 .finup = s5p_hash_finup,
1792 .digest = s5p_hash_digest,
1793 .export = s5p_hash_export,
1794 .import = s5p_hash_import,
1795 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1796 .halg.digestsize = SHA256_DIGEST_SIZE,
1797 .halg.base = {
1798 .cra_name = "sha256",
1799 .cra_driver_name = "exynos-sha256",
1800 .cra_priority = 100,
6a38f622 1801 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1802 CRYPTO_ALG_ASYNC |
1803 CRYPTO_ALG_NEED_FALLBACK,
1804 .cra_blocksize = HASH_BLOCK_SIZE,
1805 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1806 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1807 .cra_module = THIS_MODULE,
1808 .cra_init = s5p_hash_cra_init,
1809 .cra_exit = s5p_hash_cra_exit,
1810 }
1811}
1812
1813};
1814
a49e490c 1815static void s5p_set_aes(struct s5p_aes_dev *dev,
cdf640a6 1816 const u8 *key, const u8 *iv, const u8 *ctr,
6584eacb 1817 unsigned int keylen)
a49e490c
VZ
1818{
1819 void __iomem *keystart;
1820
8f9702aa 1821 if (iv)
1e3012d0 1822 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
a49e490c 1823
cdf640a6
CM
1824 if (ctr)
1825 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 0x10);
1826
a49e490c 1827 if (keylen == AES_KEYSIZE_256)
89245107 1828 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
a49e490c 1829 else if (keylen == AES_KEYSIZE_192)
89245107 1830 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
a49e490c 1831 else
89245107 1832 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
a49e490c 1833
1e3012d0 1834 memcpy_toio(keystart, key, keylen);
a49e490c
VZ
1835}
1836
9e4a1100
KK
1837static bool s5p_is_sg_aligned(struct scatterlist *sg)
1838{
1839 while (sg) {
d1497977 1840 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
9e4a1100
KK
1841 return false;
1842 sg = sg_next(sg);
1843 }
1844
1845 return true;
1846}
1847
1848static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1849 struct ablkcipher_request *req)
1850{
1851 struct scatterlist *sg;
1852 int err;
1853
1854 dev->sg_src_cpy = NULL;
1855 sg = req->src;
1856 if (!s5p_is_sg_aligned(sg)) {
1857 dev_dbg(dev->dev,
1858 "At least one unaligned source scatter list, making a copy\n");
1859 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1860 if (err)
1861 return err;
1862
1863 sg = dev->sg_src_cpy;
1864 }
1865
1866 err = s5p_set_indata(dev, sg);
1867 if (err) {
1868 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1869 return err;
1870 }
1871
1872 return 0;
1873}
1874
1875static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
6c12b6ba 1876 struct ablkcipher_request *req)
9e4a1100
KK
1877{
1878 struct scatterlist *sg;
1879 int err;
1880
1881 dev->sg_dst_cpy = NULL;
1882 sg = req->dst;
1883 if (!s5p_is_sg_aligned(sg)) {
1884 dev_dbg(dev->dev,
1885 "At least one unaligned dest scatter list, making a copy\n");
1886 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1887 if (err)
1888 return err;
1889
1890 sg = dev->sg_dst_cpy;
1891 }
1892
1893 err = s5p_set_outdata(dev, sg);
1894 if (err) {
1895 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1896 return err;
1897 }
1898
1899 return 0;
1900}
1901
a49e490c
VZ
1902static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1903{
5318c53d 1904 struct ablkcipher_request *req = dev->req;
b1b4416f 1905 u32 aes_control;
5318c53d
KK
1906 unsigned long flags;
1907 int err;
cdf640a6 1908 u8 *iv, *ctr;
a49e490c 1909
cdf640a6 1910 /* This sets bit [13:12] to 00, which selects 128-bit counter */
a49e490c
VZ
1911 aes_control = SSS_AES_KEY_CHANGE_MODE;
1912 if (mode & FLAGS_AES_DECRYPT)
1913 aes_control |= SSS_AES_MODE_DECRYPT;
1914
c927b080 1915 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
a49e490c 1916 aes_control |= SSS_AES_CHAIN_MODE_CBC;
c927b080 1917 iv = req->info;
cdf640a6 1918 ctr = NULL;
c927b080 1919 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
a49e490c 1920 aes_control |= SSS_AES_CHAIN_MODE_CTR;
cdf640a6
CM
1921 iv = NULL;
1922 ctr = req->info;
c927b080
KK
1923 } else {
1924 iv = NULL; /* AES_ECB */
cdf640a6 1925 ctr = NULL;
c927b080 1926 }
a49e490c
VZ
1927
1928 if (dev->ctx->keylen == AES_KEYSIZE_192)
1929 aes_control |= SSS_AES_KEY_SIZE_192;
1930 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1931 aes_control |= SSS_AES_KEY_SIZE_256;
1932
1933 aes_control |= SSS_AES_FIFO_MODE;
1934
1935 /* as a variant it is possible to use byte swapping on DMA side */
1936 aes_control |= SSS_AES_BYTESWAP_DI
1937 | SSS_AES_BYTESWAP_DO
1938 | SSS_AES_BYTESWAP_IV
1939 | SSS_AES_BYTESWAP_KEY
1940 | SSS_AES_BYTESWAP_CNT;
1941
1942 spin_lock_irqsave(&dev->lock, flags);
1943
1944 SSS_WRITE(dev, FCINTENCLR,
1945 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1946 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1947
9e4a1100 1948 err = s5p_set_indata_start(dev, req);
a49e490c
VZ
1949 if (err)
1950 goto indata_error;
1951
9e4a1100 1952 err = s5p_set_outdata_start(dev, req);
a49e490c
VZ
1953 if (err)
1954 goto outdata_error;
1955
89245107 1956 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
cdf640a6 1957 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
a49e490c 1958
9e4a1100
KK
1959 s5p_set_dma_indata(dev, dev->sg_src);
1960 s5p_set_dma_outdata(dev, dev->sg_dst);
a49e490c
VZ
1961
1962 SSS_WRITE(dev, FCINTENSET,
1963 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1964
1965 spin_unlock_irqrestore(&dev->lock, flags);
1966
1967 return;
1968
119c3ab4 1969outdata_error:
a49e490c
VZ
1970 s5p_unset_indata(dev);
1971
119c3ab4 1972indata_error:
28b62b14 1973 s5p_sg_done(dev);
42d5c176 1974 dev->busy = false;
a49e490c 1975 spin_unlock_irqrestore(&dev->lock, flags);
5842cd44 1976 s5p_aes_complete(req, err);
a49e490c
VZ
1977}
1978
1979static void s5p_tasklet_cb(unsigned long data)
1980{
1981 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1982 struct crypto_async_request *async_req, *backlog;
1983 struct s5p_aes_reqctx *reqctx;
1984 unsigned long flags;
1985
1986 spin_lock_irqsave(&dev->lock, flags);
1987 backlog = crypto_get_backlog(&dev->queue);
1988 async_req = crypto_dequeue_request(&dev->queue);
a49e490c 1989
dc5e3f19
NKC
1990 if (!async_req) {
1991 dev->busy = false;
1992 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c 1993 return;
dc5e3f19
NKC
1994 }
1995 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c
VZ
1996
1997 if (backlog)
1998 backlog->complete(backlog, -EINPROGRESS);
1999
2000 dev->req = ablkcipher_request_cast(async_req);
2001 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2002 reqctx = ablkcipher_request_ctx(dev->req);
2003
2004 s5p_aes_crypt_start(dev, reqctx->mode);
2005}
2006
2007static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2008 struct ablkcipher_request *req)
2009{
2010 unsigned long flags;
2011 int err;
2012
2013 spin_lock_irqsave(&dev->lock, flags);
dc5e3f19 2014 err = ablkcipher_enqueue_request(&dev->queue, req);
a49e490c 2015 if (dev->busy) {
a49e490c 2016 spin_unlock_irqrestore(&dev->lock, flags);
b1b4416f 2017 return err;
a49e490c
VZ
2018 }
2019 dev->busy = true;
2020
a49e490c
VZ
2021 spin_unlock_irqrestore(&dev->lock, flags);
2022
2023 tasklet_schedule(&dev->tasklet);
2024
a49e490c
VZ
2025 return err;
2026}
2027
2028static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2029{
5318c53d
KK
2030 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2031 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2032 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2033 struct s5p_aes_dev *dev = ctx->dev;
a49e490c 2034
cdf640a6
CM
2035 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
2036 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
313becd1 2037 dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
a49e490c
VZ
2038 return -EINVAL;
2039 }
2040
2041 reqctx->mode = mode;
2042
2043 return s5p_aes_handle_req(dev, req);
2044}
2045
2046static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
b1b4416f 2047 const u8 *key, unsigned int keylen)
a49e490c 2048{
5318c53d 2049 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
a49e490c
VZ
2050 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2051
2052 if (keylen != AES_KEYSIZE_128 &&
2053 keylen != AES_KEYSIZE_192 &&
2054 keylen != AES_KEYSIZE_256)
2055 return -EINVAL;
2056
2057 memcpy(ctx->aes_key, key, keylen);
2058 ctx->keylen = keylen;
2059
2060 return 0;
2061}
2062
2063static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2064{
2065 return s5p_aes_crypt(req, 0);
2066}
2067
2068static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2069{
2070 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2071}
2072
2073static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2074{
2075 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2076}
2077
2078static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2079{
2080 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2081}
2082
cdf640a6
CM
2083static int s5p_aes_ctr_crypt(struct ablkcipher_request *req)
2084{
2085 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2086}
2087
a49e490c
VZ
2088static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2089{
313becd1 2090 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
a49e490c
VZ
2091
2092 ctx->dev = s5p_dev;
2093 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2094
2095 return 0;
2096}
2097
2098static struct crypto_alg algs[] = {
2099 {
2100 .cra_name = "ecb(aes)",
2101 .cra_driver_name = "ecb-aes-s5p",
2102 .cra_priority = 100,
2103 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
d912bb76
NM
2104 CRYPTO_ALG_ASYNC |
2105 CRYPTO_ALG_KERN_DRIVER_ONLY,
a49e490c
VZ
2106 .cra_blocksize = AES_BLOCK_SIZE,
2107 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2108 .cra_alignmask = 0x0f,
2109 .cra_type = &crypto_ablkcipher_type,
2110 .cra_module = THIS_MODULE,
2111 .cra_init = s5p_aes_cra_init,
2112 .cra_u.ablkcipher = {
2113 .min_keysize = AES_MIN_KEY_SIZE,
2114 .max_keysize = AES_MAX_KEY_SIZE,
2115 .setkey = s5p_aes_setkey,
2116 .encrypt = s5p_aes_ecb_encrypt,
2117 .decrypt = s5p_aes_ecb_decrypt,
2118 }
2119 },
2120 {
2121 .cra_name = "cbc(aes)",
2122 .cra_driver_name = "cbc-aes-s5p",
2123 .cra_priority = 100,
2124 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
d912bb76
NM
2125 CRYPTO_ALG_ASYNC |
2126 CRYPTO_ALG_KERN_DRIVER_ONLY,
a49e490c
VZ
2127 .cra_blocksize = AES_BLOCK_SIZE,
2128 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2129 .cra_alignmask = 0x0f,
2130 .cra_type = &crypto_ablkcipher_type,
2131 .cra_module = THIS_MODULE,
2132 .cra_init = s5p_aes_cra_init,
2133 .cra_u.ablkcipher = {
2134 .min_keysize = AES_MIN_KEY_SIZE,
2135 .max_keysize = AES_MAX_KEY_SIZE,
2136 .ivsize = AES_BLOCK_SIZE,
2137 .setkey = s5p_aes_setkey,
2138 .encrypt = s5p_aes_cbc_encrypt,
2139 .decrypt = s5p_aes_cbc_decrypt,
2140 }
2141 },
cdf640a6
CM
2142 {
2143 .cra_name = "ctr(aes)",
2144 .cra_driver_name = "ctr-aes-s5p",
2145 .cra_priority = 100,
2146 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2147 CRYPTO_ALG_ASYNC |
2148 CRYPTO_ALG_KERN_DRIVER_ONLY,
2149 .cra_blocksize = AES_BLOCK_SIZE,
2150 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2151 .cra_alignmask = 0x0f,
2152 .cra_type = &crypto_ablkcipher_type,
2153 .cra_module = THIS_MODULE,
2154 .cra_init = s5p_aes_cra_init,
2155 .cra_u.ablkcipher = {
2156 .min_keysize = AES_MIN_KEY_SIZE,
2157 .max_keysize = AES_MAX_KEY_SIZE,
2158 .ivsize = AES_BLOCK_SIZE,
2159 .setkey = s5p_aes_setkey,
2160 .encrypt = s5p_aes_ctr_crypt,
2161 .decrypt = s5p_aes_ctr_crypt,
2162 }
2163 },
a49e490c
VZ
2164};
2165
2166static int s5p_aes_probe(struct platform_device *pdev)
2167{
5318c53d
KK
2168 struct device *dev = &pdev->dev;
2169 int i, j, err = -ENODEV;
6584eacb 2170 const struct samsung_aes_variant *variant;
5318c53d
KK
2171 struct s5p_aes_dev *pdata;
2172 struct resource *res;
c2afad6c 2173 unsigned int hash_i;
a49e490c
VZ
2174
2175 if (s5p_dev)
2176 return -EEXIST;
2177
a49e490c
VZ
2178 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2179 if (!pdata)
2180 return -ENOMEM;
2181
c2afad6c 2182 variant = find_s5p_sss_version(pdev);
0fdefe2c 2183 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
a49e490c 2184
c2afad6c
KK
2185 /*
2186 * Note: HASH and PRNG uses the same registers in secss, avoid
2187 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2188 * is enabled in config. We need larger size for HASH registers in
2189 * secss, current describe only AES/DES
2190 */
2191 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2192 if (variant == &exynos_aes_data) {
2193 res->end += 0x300;
2194 pdata->use_hash = true;
2195 }
2196 }
2197
2198 pdata->res = res;
2199 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2200 if (IS_ERR(pdata->ioaddr)) {
2201 if (!pdata->use_hash)
2202 return PTR_ERR(pdata->ioaddr);
2203 /* try AES without HASH */
2204 res->end -= 0x300;
2205 pdata->use_hash = false;
2206 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2207 if (IS_ERR(pdata->ioaddr))
2208 return PTR_ERR(pdata->ioaddr);
2209 }
89245107 2210
5c22ba66 2211 pdata->clk = devm_clk_get(dev, "secss");
a49e490c
VZ
2212 if (IS_ERR(pdata->clk)) {
2213 dev_err(dev, "failed to find secss clock source\n");
2214 return -ENOENT;
2215 }
2216
c1eb7ef2
NKC
2217 err = clk_prepare_enable(pdata->clk);
2218 if (err < 0) {
2219 dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2220 return err;
2221 }
a49e490c
VZ
2222
2223 spin_lock_init(&pdata->lock);
c2afad6c 2224 spin_lock_init(&pdata->hash_lock);
a49e490c 2225
89245107 2226 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
c2afad6c 2227 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
89245107 2228
96fc70b6
NKC
2229 pdata->irq_fc = platform_get_irq(pdev, 0);
2230 if (pdata->irq_fc < 0) {
2231 err = pdata->irq_fc;
2232 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2233 goto err_irq;
2234 }
07de4bc8
KK
2235 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2236 s5p_aes_interrupt, IRQF_ONESHOT,
2237 pdev->name, pdev);
a49e490c 2238 if (err < 0) {
96fc70b6 2239 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2240 goto err_irq;
2241 }
2242
dc5e3f19 2243 pdata->busy = false;
a49e490c
VZ
2244 pdata->dev = dev;
2245 platform_set_drvdata(pdev, pdata);
2246 s5p_dev = pdata;
2247
2248 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2249 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2250
2251 for (i = 0; i < ARRAY_SIZE(algs); i++) {
a49e490c
VZ
2252 err = crypto_register_alg(&algs[i]);
2253 if (err)
2254 goto err_algs;
2255 }
2256
c2afad6c
KK
2257 if (pdata->use_hash) {
2258 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2259 (unsigned long)pdata);
2260 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2261
2262 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2263 hash_i++) {
2264 struct ahash_alg *alg;
2265
2266 alg = &algs_sha1_md5_sha256[hash_i];
2267 err = crypto_register_ahash(alg);
2268 if (err) {
2269 dev_err(dev, "can't register '%s': %d\n",
2270 alg->halg.base.cra_driver_name, err);
2271 goto err_hash;
2272 }
2273 }
2274 }
2275
313becd1 2276 dev_info(dev, "s5p-sss driver registered\n");
a49e490c
VZ
2277
2278 return 0;
2279
c2afad6c
KK
2280err_hash:
2281 for (j = hash_i - 1; j >= 0; j--)
2282 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2283
2284 tasklet_kill(&pdata->hash_tasklet);
2285 res->end -= 0x300;
2286
119c3ab4 2287err_algs:
c2afad6c
KK
2288 if (i < ARRAY_SIZE(algs))
2289 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2290 err);
a49e490c
VZ
2291
2292 for (j = 0; j < i; j++)
2293 crypto_unregister_alg(&algs[j]);
2294
2295 tasklet_kill(&pdata->tasklet);
2296
119c3ab4 2297err_irq:
c1eb7ef2 2298 clk_disable_unprepare(pdata->clk);
a49e490c
VZ
2299
2300 s5p_dev = NULL;
a49e490c
VZ
2301
2302 return err;
2303}
2304
2305static int s5p_aes_remove(struct platform_device *pdev)
2306{
2307 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2308 int i;
2309
2310 if (!pdata)
2311 return -ENODEV;
2312
2313 for (i = 0; i < ARRAY_SIZE(algs); i++)
2314 crypto_unregister_alg(&algs[i]);
2315
2316 tasklet_kill(&pdata->tasklet);
c2afad6c
KK
2317 if (pdata->use_hash) {
2318 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2319 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
a49e490c 2320
c2afad6c
KK
2321 pdata->res->end -= 0x300;
2322 tasklet_kill(&pdata->hash_tasklet);
2323 pdata->use_hash = false;
2324 }
a49e490c 2325
c2afad6c 2326 clk_disable_unprepare(pdata->clk);
a49e490c 2327 s5p_dev = NULL;
a49e490c
VZ
2328
2329 return 0;
2330}
2331
2332static struct platform_driver s5p_aes_crypto = {
2333 .probe = s5p_aes_probe,
2334 .remove = s5p_aes_remove,
2335 .driver = {
a49e490c 2336 .name = "s5p-secss",
6b9f16e6 2337 .of_match_table = s5p_sss_dt_match,
a49e490c
VZ
2338 },
2339};
2340
741e8c2d 2341module_platform_driver(s5p_aes_crypto);
a49e490c
VZ
2342
2343MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2344MODULE_LICENSE("GPL v2");
2345MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
c2afad6c 2346MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");