]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/dma/amba-pl08x.c
ARM: PL08x: rename 'desc_list' as 'pend_list'
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / amba-pl08x.c
CommitLineData
e8689e63
LW
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
e8b5e11d 22 * The full GNU General Public License is in this distribution in the
e8689e63
LW
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
9dc2c200
RKAL
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
e8689e63
LW
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77#include <linux/device.h>
78#include <linux/init.h>
79#include <linux/module.h>
e8689e63
LW
80#include <linux/interrupt.h>
81#include <linux/slab.h>
82#include <linux/dmapool.h>
e8689e63 83#include <linux/dmaengine.h>
730404ac 84#include <linux/amba/bus.h>
e8689e63
LW
85#include <linux/amba/pl08x.h>
86#include <linux/debugfs.h>
87#include <linux/seq_file.h>
88
89#include <asm/hardware/pl080.h>
e8689e63
LW
90
91#define DRIVER_NAME "pl08xdmac"
92
93/**
94 * struct vendor_data - vendor-specific config parameters
e8b5e11d 95 * for PL08x derivatives
e8689e63
LW
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100struct vendor_data {
e8689e63
LW
101 u8 channels;
102 bool dualmaster;
103};
104
105/*
106 * PL08X private data structures
e8b5e11d 107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
e25761d7
RKAL
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
e8689e63 110 */
7cb72ad9 111struct pl08x_lli {
e25761d7
RKAL
112 u32 src;
113 u32 dst;
bfddfb45 114 u32 lli;
e8689e63
LW
115 u32 cctl;
116};
117
118/**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
30749cb4
RKAL
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
e8689e63
LW
131 * @lock: a spinlock for this struct
132 */
133struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
f96ca9ec 138 const struct vendor_data *vd;
e8689e63
LW
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
30749cb4
RKAL
143 u8 lli_buses;
144 u8 mem_buses;
e8689e63
LW
145 spinlock_t lock;
146};
147
148/*
149 * PL08X specific defines
150 */
151
152/*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160/* Minimum period between work queue runs */
161#define PL08X_WQ_PERIODMIN 20
162
163/* Size (bytes) of each LLI buffer allocated for one transfer */
164# define PL08X_LLI_TSFR_SIZE 0x2000
165
e8b5e11d 166/* Maximum times we call dma_pool_alloc on this pool without freeing */
e8689e63 167#define PL08X_MAX_ALLOCS 0x40
7cb72ad9 168#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
e8689e63
LW
169#define PL08X_ALIGN 8
170
171static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
172{
173 return container_of(chan, struct pl08x_dma_chan, chan);
174}
175
176/*
177 * Physical channel handling
178 */
179
180/* Whether a certain channel is busy or not */
181static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
182{
183 unsigned int val;
184
185 val = readl(ch->base + PL080_CH_CONFIG);
186 return val & PL080_CONFIG_ACTIVE;
187}
188
189/*
190 * Set the initial DMA register values i.e. those for the first LLI
e8b5e11d 191 * The next LLI pointer and the configuration interrupt bit have
c885bee4
RKAL
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
e8689e63 194 */
c885bee4
RKAL
195static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
196 struct pl08x_txd *txd)
e8689e63 197{
c885bee4 198 struct pl08x_driver_data *pl08x = plchan->host;
e8689e63 199 struct pl08x_phy_chan *phychan = plchan->phychan;
19524d77 200 struct pl08x_lli *lli = &txd->llis_va[0];
09b3c323 201 u32 val;
c885bee4
RKAL
202
203 plchan->at = txd;
e8689e63 204
c885bee4
RKAL
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan))
207 cpu_relax();
e8689e63 208
c885bee4
RKAL
209 dev_vdbg(&pl08x->adev->dev,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
19524d77
RKAL
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
09b3c323 213 txd->ccfg);
19524d77
RKAL
214
215 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
216 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
217 writel(lli->lli, phychan->base + PL080_CH_LLI);
218 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
09b3c323 219 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
c885bee4
RKAL
220
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
19386b32 224 cpu_relax();
e8689e63 225
c885bee4
RKAL
226 /* Do not access config register until channel shows as inactive */
227 val = readl(phychan->base + PL080_CH_CONFIG);
e8689e63 228 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
c885bee4 229 val = readl(phychan->base + PL080_CH_CONFIG);
e8689e63 230
c885bee4 231 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
e8689e63
LW
232}
233
234/*
235 * Overall DMAC remains enabled always.
236 *
237 * Disabling individual channels could lose data.
238 *
239 * Disable the peripheral DMA after disabling the DMAC
240 * in order to allow the DMAC FIFO to drain, and
241 * hence allow the channel to show inactive
242 *
243 */
244static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
245{
246 u32 val;
247
248 /* Set the HALT bit and wait for the FIFO to drain */
249 val = readl(ch->base + PL080_CH_CONFIG);
250 val |= PL080_CONFIG_HALT;
251 writel(val, ch->base + PL080_CH_CONFIG);
252
253 /* Wait for channel inactive */
254 while (pl08x_phy_channel_busy(ch))
19386b32 255 cpu_relax();
e8689e63
LW
256}
257
258static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
259{
260 u32 val;
261
262 /* Clear the HALT bit */
263 val = readl(ch->base + PL080_CH_CONFIG);
264 val &= ~PL080_CONFIG_HALT;
265 writel(val, ch->base + PL080_CH_CONFIG);
266}
267
268
269/* Stops the channel */
270static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
271{
272 u32 val;
273
274 pl08x_pause_phy_chan(ch);
275
276 /* Disable channel */
277 val = readl(ch->base + PL080_CH_CONFIG);
278 val &= ~PL080_CONFIG_ENABLE;
279 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
280 val &= ~PL080_CONFIG_TC_IRQ_MASK;
281 writel(val, ch->base + PL080_CH_CONFIG);
282}
283
284static inline u32 get_bytes_in_cctl(u32 cctl)
285{
286 /* The source width defines the number of bytes */
287 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
288
289 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
290 case PL080_WIDTH_8BIT:
291 break;
292 case PL080_WIDTH_16BIT:
293 bytes *= 2;
294 break;
295 case PL080_WIDTH_32BIT:
296 bytes *= 4;
297 break;
298 }
299 return bytes;
300}
301
302/* The channel should be paused when calling this */
303static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
304{
305 struct pl08x_phy_chan *ch;
e8689e63
LW
306 struct pl08x_txd *txd;
307 unsigned long flags;
cace6585 308 size_t bytes = 0;
e8689e63
LW
309
310 spin_lock_irqsave(&plchan->lock, flags);
e8689e63
LW
311 ch = plchan->phychan;
312 txd = plchan->at;
313
314 /*
db9f136a
RKAL
315 * Follow the LLIs to get the number of remaining
316 * bytes in the currently active transaction.
e8689e63
LW
317 */
318 if (ch && txd) {
4c0df6a3 319 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
e8689e63 320
db9f136a 321 /* First get the remaining bytes in the active transfer */
e8689e63
LW
322 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
323
324 if (clli) {
db9f136a
RKAL
325 struct pl08x_lli *llis_va = txd->llis_va;
326 dma_addr_t llis_bus = txd->llis_bus;
327 int index;
328
329 BUG_ON(clli < llis_bus || clli >= llis_bus +
330 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
e8689e63 331
db9f136a
RKAL
332 /*
333 * Locate the next LLI - as this is an array,
334 * it's simple maths to find.
335 */
336 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
337
338 for (; index < MAX_NUM_TSFR_LLIS; index++) {
339 bytes += get_bytes_in_cctl(llis_va[index].cctl);
e8689e63 340
e8689e63 341 /*
e8b5e11d 342 * A LLI pointer of 0 terminates the LLI list
e8689e63 343 */
db9f136a
RKAL
344 if (!llis_va[index].lli)
345 break;
e8689e63
LW
346 }
347 }
348 }
349
350 /* Sum up all queued transactions */
15c17232 351 if (!list_empty(&plchan->pend_list)) {
db9f136a 352 struct pl08x_txd *txdi;
15c17232 353 list_for_each_entry(txdi, &plchan->pend_list, node) {
e8689e63
LW
354 bytes += txdi->len;
355 }
e8689e63
LW
356 }
357
358 spin_unlock_irqrestore(&plchan->lock, flags);
359
360 return bytes;
361}
362
363/*
364 * Allocate a physical channel for a virtual channel
365 */
366static struct pl08x_phy_chan *
367pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
368 struct pl08x_dma_chan *virt_chan)
369{
370 struct pl08x_phy_chan *ch = NULL;
371 unsigned long flags;
372 int i;
373
374 /*
375 * Try to locate a physical channel to be used for
376 * this transfer. If all are taken return NULL and
377 * the requester will have to cope by using some fallback
378 * PIO mode or retrying later.
379 */
380 for (i = 0; i < pl08x->vd->channels; i++) {
381 ch = &pl08x->phy_chans[i];
382
383 spin_lock_irqsave(&ch->lock, flags);
384
385 if (!ch->serving) {
386 ch->serving = virt_chan;
387 ch->signal = -1;
388 spin_unlock_irqrestore(&ch->lock, flags);
389 break;
390 }
391
392 spin_unlock_irqrestore(&ch->lock, flags);
393 }
394
395 if (i == pl08x->vd->channels) {
396 /* No physical channel available, cope with it */
397 return NULL;
398 }
399
400 return ch;
401}
402
403static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
404 struct pl08x_phy_chan *ch)
405{
406 unsigned long flags;
407
408 /* Stop the channel and clear its interrupts */
409 pl08x_stop_phy_chan(ch);
410 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
411 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
412
413 /* Mark it as free */
414 spin_lock_irqsave(&ch->lock, flags);
415 ch->serving = NULL;
416 spin_unlock_irqrestore(&ch->lock, flags);
417}
418
419/*
420 * LLI handling
421 */
422
423static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
424{
425 switch (coded) {
426 case PL080_WIDTH_8BIT:
427 return 1;
428 case PL080_WIDTH_16BIT:
429 return 2;
430 case PL080_WIDTH_32BIT:
431 return 4;
432 default:
433 break;
434 }
435 BUG();
436 return 0;
437}
438
439static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
cace6585 440 size_t tsize)
e8689e63
LW
441{
442 u32 retbits = cctl;
443
e8b5e11d 444 /* Remove all src, dst and transfer size bits */
e8689e63
LW
445 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
446 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
447 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
448
449 /* Then set the bits according to the parameters */
450 switch (srcwidth) {
451 case 1:
452 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
453 break;
454 case 2:
455 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 4:
458 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 default:
461 BUG();
462 break;
463 }
464
465 switch (dstwidth) {
466 case 1:
467 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
468 break;
469 case 2:
470 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 4:
473 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 default:
476 BUG();
477 break;
478 }
479
480 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
481 return retbits;
482}
483
542361f8
RKAL
484struct pl08x_lli_build_data {
485 struct pl08x_txd *txd;
486 struct pl08x_driver_data *pl08x;
487 struct pl08x_bus_data srcbus;
488 struct pl08x_bus_data dstbus;
489 size_t remainder;
490};
491
e8689e63
LW
492/*
493 * Autoselect a master bus to use for the transfer
494 * this prefers the destination bus if both available
495 * if fixed address on one bus the other will be chosen
496 */
542361f8
RKAL
497static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
498 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
e8689e63
LW
499{
500 if (!(cctl & PL080_CONTROL_DST_INCR)) {
542361f8
RKAL
501 *mbus = &bd->srcbus;
502 *sbus = &bd->dstbus;
e8689e63 503 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
542361f8
RKAL
504 *mbus = &bd->dstbus;
505 *sbus = &bd->srcbus;
e8689e63 506 } else {
542361f8
RKAL
507 if (bd->dstbus.buswidth == 4) {
508 *mbus = &bd->dstbus;
509 *sbus = &bd->srcbus;
510 } else if (bd->srcbus.buswidth == 4) {
511 *mbus = &bd->srcbus;
512 *sbus = &bd->dstbus;
513 } else if (bd->dstbus.buswidth == 2) {
514 *mbus = &bd->dstbus;
515 *sbus = &bd->srcbus;
516 } else if (bd->srcbus.buswidth == 2) {
517 *mbus = &bd->srcbus;
518 *sbus = &bd->dstbus;
e8689e63 519 } else {
542361f8
RKAL
520 /* bd->srcbus.buswidth == 1 */
521 *mbus = &bd->dstbus;
522 *sbus = &bd->srcbus;
e8689e63
LW
523 }
524 }
525}
526
527/*
528 * Fills in one LLI for a certain transfer descriptor
529 * and advance the counter
530 */
542361f8
RKAL
531static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
532 int num_llis, int len, u32 cctl)
e8689e63 533{
542361f8
RKAL
534 struct pl08x_lli *llis_va = bd->txd->llis_va;
535 dma_addr_t llis_bus = bd->txd->llis_bus;
e8689e63
LW
536
537 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
538
30749cb4 539 llis_va[num_llis].cctl = cctl;
542361f8
RKAL
540 llis_va[num_llis].src = bd->srcbus.addr;
541 llis_va[num_llis].dst = bd->dstbus.addr;
bfddfb45 542 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
542361f8 543 if (bd->pl08x->lli_buses & PL08X_AHB2)
30749cb4 544 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
e8689e63
LW
545
546 if (cctl & PL080_CONTROL_SRC_INCR)
542361f8 547 bd->srcbus.addr += len;
e8689e63 548 if (cctl & PL080_CONTROL_DST_INCR)
542361f8 549 bd->dstbus.addr += len;
e8689e63 550
542361f8 551 BUG_ON(bd->remainder < len);
cace6585 552
542361f8 553 bd->remainder -= len;
e8689e63
LW
554}
555
556/*
b61be8d7
RKAL
557 * Return number of bytes to fill to boundary, or len.
558 * This calculation works for any value of addr.
e8689e63 559 */
cace6585 560static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
e8689e63 561{
b61be8d7
RKAL
562 size_t boundary_len = PL08X_BOUNDARY_SIZE -
563 (addr & (PL08X_BOUNDARY_SIZE - 1));
e8689e63 564
b61be8d7 565 return min(boundary_len, len);
e8689e63
LW
566}
567
568/*
569 * This fills in the table of LLIs for the transfer descriptor
570 * Note that we assume we never have to change the burst sizes
571 * Return 0 for error
572 */
573static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
574 struct pl08x_txd *txd)
575{
e8689e63 576 struct pl08x_bus_data *mbus, *sbus;
542361f8 577 struct pl08x_lli_build_data bd;
e8689e63
LW
578 int num_llis = 0;
579 u32 cctl;
cace6585
RKAL
580 size_t max_bytes_per_lli;
581 size_t total_bytes = 0;
7cb72ad9 582 struct pl08x_lli *llis_va;
e8689e63 583
e8689e63
LW
584 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
585 &txd->llis_bus);
586 if (!txd->llis_va) {
587 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
588 return 0;
589 }
590
591 pl08x->pool_ctr++;
592
70b5ed6b
RKAL
593 /* Get the default CCTL */
594 cctl = txd->cctl;
e8689e63 595
542361f8
RKAL
596 bd.txd = txd;
597 bd.pl08x = pl08x;
d7244e9a
RKAL
598 bd.srcbus.addr = txd->src_addr;
599 bd.dstbus.addr = txd->dst_addr;
542361f8 600
e8689e63 601 /* Find maximum width of the source bus */
542361f8 602 bd.srcbus.maxwidth =
e8689e63
LW
603 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
604 PL080_CONTROL_SWIDTH_SHIFT);
605
606 /* Find maximum width of the destination bus */
542361f8 607 bd.dstbus.maxwidth =
e8689e63
LW
608 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
609 PL080_CONTROL_DWIDTH_SHIFT);
610
611 /* Set up the bus widths to the maximum */
542361f8
RKAL
612 bd.srcbus.buswidth = bd.srcbus.maxwidth;
613 bd.dstbus.buswidth = bd.dstbus.maxwidth;
e8689e63
LW
614 dev_vdbg(&pl08x->adev->dev,
615 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
542361f8 616 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
e8689e63
LW
617
618
619 /*
620 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
621 */
542361f8 622 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
e8689e63
LW
623 PL080_CONTROL_TRANSFER_SIZE_MASK;
624 dev_vdbg(&pl08x->adev->dev,
cace6585 625 "%s max bytes per lli = %zu\n",
e8689e63
LW
626 __func__, max_bytes_per_lli);
627
628 /* We need to count this down to zero */
542361f8 629 bd.remainder = txd->len;
e8689e63 630 dev_vdbg(&pl08x->adev->dev,
cace6585 631 "%s remainder = %zu\n",
542361f8 632 __func__, bd.remainder);
e8689e63
LW
633
634 /*
635 * Choose bus to align to
636 * - prefers destination bus if both available
637 * - if fixed address on one bus chooses other
e8b5e11d 638 * - modifies cctl to choose an appropriate master
e8689e63 639 */
542361f8 640 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
e8689e63 641
e8689e63
LW
642 if (txd->len < mbus->buswidth) {
643 /*
644 * Less than a bus width available
645 * - send as single bytes
646 */
542361f8 647 while (bd.remainder) {
e8689e63
LW
648 dev_vdbg(&pl08x->adev->dev,
649 "%s single byte LLIs for a transfer of "
9c132992 650 "less than a bus width (remain 0x%08x)\n",
542361f8 651 __func__, bd.remainder);
e8689e63 652 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
542361f8 653 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
e8689e63
LW
654 total_bytes++;
655 }
656 } else {
657 /*
658 * Make one byte LLIs until master bus is aligned
659 * - slave will then be aligned also
660 */
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
9c132992 664 "(remain 0x%08x)\n",
542361f8 665 __func__, bd.remainder);
e8689e63 666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
542361f8 667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
e8689e63
LW
668 total_bytes++;
669 }
670
671 /*
672 * Master now aligned
673 * - if slave is not then we must set its width down
674 */
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
679
680 sbus->buswidth = 1;
681 }
682
683 /*
684 * Make largest possible LLIs until less than one bus
685 * width left
686 */
542361f8 687 while (bd.remainder > (mbus->buswidth - 1)) {
cace6585 688 size_t lli_len, target_len, tsize, odd_bytes;
e8689e63
LW
689
690 /*
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
693 */
542361f8 694 target_len = min(bd.remainder, max_bytes_per_lli);
e8689e63
LW
695
696 /*
5f638b4f
RKAL
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
e8689e63
LW
700 */
701 if (cctl & PL080_CONTROL_SRC_INCR)
542361f8
RKAL
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
5f638b4f 704 target_len);
e8689e63 705 else
542361f8 706 bd.srcbus.fill_bytes = target_len;
e8689e63
LW
707
708 if (cctl & PL080_CONTROL_DST_INCR)
542361f8
RKAL
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
5f638b4f 711 target_len);
e8689e63 712 else
542361f8 713 bd.dstbus.fill_bytes = target_len;
e8689e63 714
5f638b4f 715 /* Find the nearest */
542361f8
RKAL
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
e8689e63 718
542361f8 719 BUG_ON(lli_len > bd.remainder);
e8689e63
LW
720
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
cace6585 723 "%s lli_len is %zu, <= 0\n",
e8689e63
LW
724 __func__, lli_len);
725 return 0;
726 }
727
728 if (lli_len == target_len) {
729 /*
730 * Can send what we wanted
731 */
732 /*
733 * Maintain alignment
734 */
735 lli_len = (lli_len/mbus->buswidth) *
736 mbus->buswidth;
737 odd_bytes = 0;
738 } else {
739 /*
740 * So now we know how many bytes to transfer
741 * to get to the nearest boundary
e8b5e11d 742 * The next LLI will past the boundary
e8689e63
LW
743 * - however we may be working to a boundary
744 * on the slave bus
745 * We need to ensure the master stays aligned
746 */
747 odd_bytes = lli_len % mbus->buswidth;
748 /*
749 * - and that we are working in multiples
750 * of the bus widths
751 */
752 lli_len -= odd_bytes;
753
754 }
755
756 if (lli_len) {
757 /*
758 * Check against minimum bus alignment:
759 * Calculate actual transfer size in relation
760 * to bus width an get a maximum remainder of
761 * the smallest bus width - 1
762 */
763 /* FIXME: use round_down()? */
764 tsize = lli_len / min(mbus->buswidth,
765 sbus->buswidth);
766 lli_len = tsize * min(mbus->buswidth,
767 sbus->buswidth);
768
769 if (target_len != lli_len) {
770 dev_vdbg(&pl08x->adev->dev,
cace6585 771 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
e8689e63
LW
772 __func__, target_len, lli_len, txd->len);
773 }
774
775 cctl = pl08x_cctl_bits(cctl,
542361f8
RKAL
776 bd.srcbus.buswidth,
777 bd.dstbus.buswidth,
e8689e63
LW
778 tsize);
779
780 dev_vdbg(&pl08x->adev->dev,
cace6585 781 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
542361f8
RKAL
782 __func__, lli_len, bd.remainder);
783 pl08x_fill_lli_for_desc(&bd, num_llis++,
784 lli_len, cctl);
e8689e63
LW
785 total_bytes += lli_len;
786 }
787
788
789 if (odd_bytes) {
790 /*
791 * Creep past the boundary,
792 * maintaining master alignment
793 */
794 int j;
795 for (j = 0; (j < mbus->buswidth)
542361f8 796 && (bd.remainder); j++) {
e8689e63
LW
797 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
798 dev_vdbg(&pl08x->adev->dev,
cace6585 799 "%s align with boundary, single byte (remain 0x%08zx)\n",
542361f8
RKAL
800 __func__, bd.remainder);
801 pl08x_fill_lli_for_desc(&bd,
802 num_llis++, 1, cctl);
e8689e63
LW
803 total_bytes++;
804 }
805 }
806 }
807
808 /*
809 * Send any odd bytes
810 */
542361f8 811 while (bd.remainder) {
e8689e63
LW
812 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
813 dev_vdbg(&pl08x->adev->dev,
cace6585 814 "%s align with boundary, single odd byte (remain %zu)\n",
542361f8
RKAL
815 __func__, bd.remainder);
816 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
e8689e63
LW
817 total_bytes++;
818 }
819 }
820 if (total_bytes != txd->len) {
821 dev_err(&pl08x->adev->dev,
cace6585 822 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
e8689e63
LW
823 __func__, total_bytes, txd->len);
824 return 0;
825 }
826
827 if (num_llis >= MAX_NUM_TSFR_LLIS) {
828 dev_err(&pl08x->adev->dev,
829 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
830 __func__, (u32) MAX_NUM_TSFR_LLIS);
831 return 0;
832 }
b58b6b5b
RKAL
833
834 llis_va = txd->llis_va;
e8689e63 835 /*
b58b6b5b 836 * The final LLI terminates the LLI.
e8689e63 837 */
bfddfb45 838 llis_va[num_llis - 1].lli = 0;
b58b6b5b
RKAL
839 /*
840 * The final LLI element shall also fire an interrupt
841 */
842 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
e8689e63 843
e8689e63
LW
844#ifdef VERBOSE_DEBUG
845 {
846 int i;
847
848 for (i = 0; i < num_llis; i++) {
849 dev_vdbg(&pl08x->adev->dev,
9c132992 850 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
e8689e63
LW
851 i,
852 &llis_va[i],
853 llis_va[i].src,
854 llis_va[i].dst,
855 llis_va[i].cctl,
bfddfb45 856 llis_va[i].lli
e8689e63
LW
857 );
858 }
859 }
860#endif
861
862 return num_llis;
863}
864
865/* You should call this with the struct pl08x lock held */
866static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
867 struct pl08x_txd *txd)
868{
e8689e63 869 /* Free the LLI */
56b61882 870 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
e8689e63
LW
871
872 pl08x->pool_ctr--;
873
874 kfree(txd);
875}
876
877static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
878 struct pl08x_dma_chan *plchan)
879{
880 struct pl08x_txd *txdi = NULL;
881 struct pl08x_txd *next;
882
15c17232 883 if (!list_empty(&plchan->pend_list)) {
e8689e63 884 list_for_each_entry_safe(txdi,
15c17232 885 next, &plchan->pend_list, node) {
e8689e63
LW
886 list_del(&txdi->node);
887 pl08x_free_txd(pl08x, txdi);
888 }
889
890 }
891}
892
893/*
894 * The DMA ENGINE API
895 */
896static int pl08x_alloc_chan_resources(struct dma_chan *chan)
897{
898 return 0;
899}
900
901static void pl08x_free_chan_resources(struct dma_chan *chan)
902{
903}
904
905/*
906 * This should be called with the channel plchan->lock held
907 */
908static int prep_phy_channel(struct pl08x_dma_chan *plchan,
909 struct pl08x_txd *txd)
910{
911 struct pl08x_driver_data *pl08x = plchan->host;
912 struct pl08x_phy_chan *ch;
913 int ret;
914
915 /* Check if we already have a channel */
916 if (plchan->phychan)
917 return 0;
918
919 ch = pl08x_get_phy_channel(pl08x, plchan);
920 if (!ch) {
921 /* No physical channel available, cope with it */
922 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
923 return -EBUSY;
924 }
925
926 /*
927 * OK we have a physical channel: for memcpy() this is all we
928 * need, but for slaves the physical signals may be muxed!
929 * Can the platform allow us to use this channel?
930 */
931 if (plchan->slave &&
932 ch->signal < 0 &&
933 pl08x->pd->get_signal) {
934 ret = pl08x->pd->get_signal(plchan);
935 if (ret < 0) {
936 dev_dbg(&pl08x->adev->dev,
937 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
938 ch->id, plchan->name);
939 /* Release physical channel & return */
940 pl08x_put_phy_channel(pl08x, ch);
941 return -EBUSY;
942 }
943 ch->signal = ret;
09b3c323
RKAL
944
945 /* Assign the flow control signal to this channel */
946 if (txd->direction == DMA_TO_DEVICE)
947 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
948 else if (txd->direction == DMA_FROM_DEVICE)
949 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
e8689e63
LW
950 }
951
952 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
953 ch->id,
954 ch->signal,
955 plchan->name);
956
957 plchan->phychan = ch;
958
959 return 0;
960}
961
8c8cc2b1
RKAL
962static void release_phy_channel(struct pl08x_dma_chan *plchan)
963{
964 struct pl08x_driver_data *pl08x = plchan->host;
965
966 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
967 pl08x->pd->put_signal(plchan);
968 plchan->phychan->signal = -1;
969 }
970 pl08x_put_phy_channel(pl08x, plchan->phychan);
971 plchan->phychan = NULL;
972}
973
e8689e63
LW
974static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
975{
976 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
977
91aa5fad
RKAL
978 plchan->chan.cookie += 1;
979 if (plchan->chan.cookie < 0)
980 plchan->chan.cookie = 1;
981 tx->cookie = plchan->chan.cookie;
e8689e63
LW
982 /* This unlock follows the lock in the prep() function */
983 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
984
985 return tx->cookie;
986}
987
988static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
989 struct dma_chan *chan, unsigned long flags)
990{
991 struct dma_async_tx_descriptor *retval = NULL;
992
993 return retval;
994}
995
996/*
997 * Code accessing dma_async_is_complete() in a tight loop
998 * may give problems - could schedule where indicated.
999 * If slaves are relying on interrupts to signal completion this
1000 * function must not be called with interrupts disabled
1001 */
1002static enum dma_status
1003pl08x_dma_tx_status(struct dma_chan *chan,
1004 dma_cookie_t cookie,
1005 struct dma_tx_state *txstate)
1006{
1007 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1008 dma_cookie_t last_used;
1009 dma_cookie_t last_complete;
1010 enum dma_status ret;
1011 u32 bytesleft = 0;
1012
91aa5fad 1013 last_used = plchan->chan.cookie;
e8689e63
LW
1014 last_complete = plchan->lc;
1015
1016 ret = dma_async_is_complete(cookie, last_complete, last_used);
1017 if (ret == DMA_SUCCESS) {
1018 dma_set_tx_state(txstate, last_complete, last_used, 0);
1019 return ret;
1020 }
1021
1022 /*
1023 * schedule(); could be inserted here
1024 */
1025
1026 /*
1027 * This cookie not complete yet
1028 */
91aa5fad 1029 last_used = plchan->chan.cookie;
e8689e63
LW
1030 last_complete = plchan->lc;
1031
1032 /* Get number of bytes left in the active transactions and queue */
1033 bytesleft = pl08x_getbytes_chan(plchan);
1034
1035 dma_set_tx_state(txstate, last_complete, last_used,
1036 bytesleft);
1037
1038 if (plchan->state == PL08X_CHAN_PAUSED)
1039 return DMA_PAUSED;
1040
1041 /* Whether waiting or running, we're in progress */
1042 return DMA_IN_PROGRESS;
1043}
1044
1045/* PrimeCell DMA extension */
1046struct burst_table {
1047 int burstwords;
1048 u32 reg;
1049};
1050
1051static const struct burst_table burst_sizes[] = {
1052 {
1053 .burstwords = 256,
1054 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1055 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1056 },
1057 {
1058 .burstwords = 128,
1059 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1060 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1061 },
1062 {
1063 .burstwords = 64,
1064 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1065 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1066 },
1067 {
1068 .burstwords = 32,
1069 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1070 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1071 },
1072 {
1073 .burstwords = 16,
1074 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1075 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1076 },
1077 {
1078 .burstwords = 8,
1079 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1080 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1081 },
1082 {
1083 .burstwords = 4,
1084 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1085 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1086 },
1087 {
1088 .burstwords = 1,
1089 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1090 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1091 },
1092};
1093
1094static void dma_set_runtime_config(struct dma_chan *chan,
1095 struct dma_slave_config *config)
1096{
1097 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1098 struct pl08x_driver_data *pl08x = plchan->host;
1099 struct pl08x_channel_data *cd = plchan->cd;
1100 enum dma_slave_buswidth addr_width;
1101 u32 maxburst;
1102 u32 cctl = 0;
4440aacf 1103 int i;
e8689e63
LW
1104
1105 /* Transfer direction */
1106 plchan->runtime_direction = config->direction;
1107 if (config->direction == DMA_TO_DEVICE) {
1108 plchan->runtime_addr = config->dst_addr;
e8689e63
LW
1109 addr_width = config->dst_addr_width;
1110 maxburst = config->dst_maxburst;
1111 } else if (config->direction == DMA_FROM_DEVICE) {
1112 plchan->runtime_addr = config->src_addr;
e8689e63
LW
1113 addr_width = config->src_addr_width;
1114 maxburst = config->src_maxburst;
1115 } else {
1116 dev_err(&pl08x->adev->dev,
1117 "bad runtime_config: alien transfer direction\n");
1118 return;
1119 }
1120
1121 switch (addr_width) {
1122 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1123 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1124 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1125 break;
1126 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1127 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1128 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1129 break;
1130 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1131 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1132 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1133 break;
1134 default:
1135 dev_err(&pl08x->adev->dev,
1136 "bad runtime_config: alien address width\n");
1137 return;
1138 }
1139
1140 /*
1141 * Now decide on a maxburst:
4440aacf
RKAL
1142 * If this channel will only request single transfers, set this
1143 * down to ONE element. Also select one element if no maxburst
1144 * is specified.
e8689e63 1145 */
4440aacf 1146 if (plchan->cd->single || maxburst == 0) {
e8689e63
LW
1147 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1148 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1149 } else {
4440aacf 1150 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
e8689e63
LW
1151 if (burst_sizes[i].burstwords <= maxburst)
1152 break;
e8689e63
LW
1153 cctl |= burst_sizes[i].reg;
1154 }
1155
e8689e63
LW
1156 /* Modify the default channel data to fit PrimeCell request */
1157 cd->cctl = cctl;
e8689e63
LW
1158
1159 dev_dbg(&pl08x->adev->dev,
1160 "configured channel %s (%s) for %s, data width %d, "
4983a04f 1161 "maxburst %d words, LE, CCTL=0x%08x\n",
e8689e63
LW
1162 dma_chan_name(chan), plchan->name,
1163 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1164 addr_width,
1165 maxburst,
4983a04f 1166 cctl);
e8689e63
LW
1167}
1168
1169/*
1170 * Slave transactions callback to the slave device to allow
1171 * synchronization of slave DMA signals with the DMAC enable
1172 */
1173static void pl08x_issue_pending(struct dma_chan *chan)
1174{
1175 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
e8689e63
LW
1176 unsigned long flags;
1177
1178 spin_lock_irqsave(&plchan->lock, flags);
9c0bb43b
RKAL
1179 /* Something is already active, or we're waiting for a channel... */
1180 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1181 spin_unlock_irqrestore(&plchan->lock, flags);
e8689e63 1182 return;
9c0bb43b 1183 }
e8689e63
LW
1184
1185 /* Take the first element in the queue and execute it */
15c17232 1186 if (!list_empty(&plchan->pend_list)) {
e8689e63
LW
1187 struct pl08x_txd *next;
1188
15c17232 1189 next = list_first_entry(&plchan->pend_list,
e8689e63
LW
1190 struct pl08x_txd,
1191 node);
1192 list_del(&next->node);
e8689e63
LW
1193 plchan->state = PL08X_CHAN_RUNNING;
1194
c885bee4 1195 pl08x_start_txd(plchan, next);
e8689e63
LW
1196 }
1197
1198 spin_unlock_irqrestore(&plchan->lock, flags);
1199}
1200
1201static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1202 struct pl08x_txd *txd)
1203{
1204 int num_llis;
1205 struct pl08x_driver_data *pl08x = plchan->host;
1206 int ret;
1207
1208 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
dafa7317
RKAL
1209 if (!num_llis) {
1210 kfree(txd);
e8689e63 1211 return -EINVAL;
dafa7317 1212 }
e8689e63
LW
1213
1214 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1215
15c17232 1216 list_add_tail(&txd->node, &plchan->pend_list);
e8689e63
LW
1217
1218 /*
1219 * See if we already have a physical channel allocated,
1220 * else this is the time to try to get one.
1221 */
1222 ret = prep_phy_channel(plchan, txd);
1223 if (ret) {
1224 /*
1225 * No physical channel available, we will
1226 * stack up the memcpy channels until there is a channel
1227 * available to handle it whereas slave transfers may
1228 * have been denied due to platform channel muxing restrictions
1229 * and since there is no guarantee that this will ever be
e8b5e11d
RKAL
1230 * resolved, and since the signal must be acquired AFTER
1231 * acquiring the physical channel, we will let them be NACK:ed
e8689e63
LW
1232 * with -EBUSY here. The drivers can alway retry the prep()
1233 * call if they are eager on doing this using DMA.
1234 */
1235 if (plchan->slave) {
1236 pl08x_free_txd_list(pl08x, plchan);
1237 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1238 return -EBUSY;
1239 }
1240 /* Do this memcpy whenever there is a channel ready */
1241 plchan->state = PL08X_CHAN_WAITING;
1242 plchan->waiting = txd;
1243 } else
1244 /*
1245 * Else we're all set, paused and ready to roll,
1246 * status will switch to PL08X_CHAN_RUNNING when
1247 * we call issue_pending(). If there is something
1248 * running on the channel already we don't change
1249 * its state.
1250 */
1251 if (plchan->state == PL08X_CHAN_IDLE)
1252 plchan->state = PL08X_CHAN_PAUSED;
1253
1254 /*
1255 * Notice that we leave plchan->lock locked on purpose:
1256 * it will be unlocked in the subsequent tx_submit()
1257 * call. This is a consequence of the current API.
1258 */
1259
1260 return 0;
1261}
1262
30749cb4
RKAL
1263/*
1264 * Given the source and destination available bus masks, select which
1265 * will be routed to each port. We try to have source and destination
1266 * on separate ports, but always respect the allowable settings.
1267 */
1268static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1269{
1270 u32 cctl = 0;
1271
1272 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1273 cctl |= PL080_CONTROL_DST_AHB2;
1274 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1275 cctl |= PL080_CONTROL_SRC_AHB2;
1276
1277 return cctl;
1278}
1279
c0428794
RKAL
1280static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1281 unsigned long flags)
ac3cd20d
RKAL
1282{
1283 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1284
1285 if (txd) {
1286 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
c0428794 1287 txd->tx.flags = flags;
ac3cd20d
RKAL
1288 txd->tx.tx_submit = pl08x_tx_submit;
1289 INIT_LIST_HEAD(&txd->node);
4983a04f
RKAL
1290
1291 /* Always enable error and terminal interrupts */
1292 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1293 PL080_CONFIG_TC_IRQ_MASK;
ac3cd20d
RKAL
1294 }
1295 return txd;
1296}
1297
e8689e63
LW
1298/*
1299 * Initialize a descriptor to be used by memcpy submit
1300 */
1301static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1302 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1303 size_t len, unsigned long flags)
1304{
1305 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1306 struct pl08x_driver_data *pl08x = plchan->host;
1307 struct pl08x_txd *txd;
1308 int ret;
1309
c0428794 1310 txd = pl08x_get_txd(plchan, flags);
e8689e63
LW
1311 if (!txd) {
1312 dev_err(&pl08x->adev->dev,
1313 "%s no memory for descriptor\n", __func__);
1314 return NULL;
1315 }
1316
e8689e63 1317 txd->direction = DMA_NONE;
d7244e9a
RKAL
1318 txd->src_addr = src;
1319 txd->dst_addr = dest;
c7da9a56 1320 txd->len = len;
e8689e63
LW
1321
1322 /* Set platform data for m2m */
4983a04f 1323 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
c7da9a56
RKAL
1324 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1325 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
4983a04f 1326
e8689e63 1327 /* Both to be incremented or the code will break */
70b5ed6b 1328 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
c7da9a56 1329
c7da9a56 1330 if (pl08x->vd->dualmaster)
30749cb4
RKAL
1331 txd->cctl |= pl08x_select_bus(pl08x,
1332 pl08x->mem_buses, pl08x->mem_buses);
e8689e63 1333
e8689e63
LW
1334 ret = pl08x_prep_channel_resources(plchan, txd);
1335 if (ret)
1336 return NULL;
1337 /*
1338 * NB: the channel lock is held at this point so tx_submit()
1339 * must be called in direct succession.
1340 */
1341
1342 return &txd->tx;
1343}
1344
3e2a037c 1345static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
e8689e63
LW
1346 struct dma_chan *chan, struct scatterlist *sgl,
1347 unsigned int sg_len, enum dma_data_direction direction,
1348 unsigned long flags)
1349{
1350 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1351 struct pl08x_driver_data *pl08x = plchan->host;
1352 struct pl08x_txd *txd;
30749cb4 1353 u8 src_buses, dst_buses;
e8689e63
LW
1354 int ret;
1355
1356 /*
1357 * Current implementation ASSUMES only one sg
1358 */
1359 if (sg_len != 1) {
1360 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1361 __func__);
1362 BUG();
1363 }
1364
1365 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1366 __func__, sgl->length, plchan->name);
1367
c0428794 1368 txd = pl08x_get_txd(plchan, flags);
e8689e63
LW
1369 if (!txd) {
1370 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1371 return NULL;
1372 }
1373
e8689e63
LW
1374 if (direction != plchan->runtime_direction)
1375 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1376 "the direction configured for the PrimeCell\n",
1377 __func__);
1378
1379 /*
1380 * Set up addresses, the PrimeCell configured address
1381 * will take precedence since this may configure the
1382 * channel target address dynamically at runtime.
1383 */
1384 txd->direction = direction;
c7da9a56
RKAL
1385 txd->len = sgl->length;
1386
1cae78f1 1387 txd->cctl = plchan->cd->cctl &
c7da9a56
RKAL
1388 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1389 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1cae78f1
RKAL
1390 PL080_CONTROL_PROT_MASK);
1391
1392 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1393 txd->cctl |= PL080_CONTROL_PROT_SYS;
70b5ed6b 1394
e8689e63 1395 if (direction == DMA_TO_DEVICE) {
4983a04f 1396 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1cae78f1 1397 txd->cctl |= PL080_CONTROL_SRC_INCR;
d7244e9a 1398 txd->src_addr = sgl->dma_address;
e8689e63 1399 if (plchan->runtime_addr)
d7244e9a 1400 txd->dst_addr = plchan->runtime_addr;
e8689e63 1401 else
d7244e9a 1402 txd->dst_addr = plchan->cd->addr;
30749cb4
RKAL
1403 src_buses = pl08x->mem_buses;
1404 dst_buses = plchan->cd->periph_buses;
e8689e63 1405 } else if (direction == DMA_FROM_DEVICE) {
4983a04f 1406 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1cae78f1 1407 txd->cctl |= PL080_CONTROL_DST_INCR;
e8689e63 1408 if (plchan->runtime_addr)
d7244e9a 1409 txd->src_addr = plchan->runtime_addr;
e8689e63 1410 else
d7244e9a
RKAL
1411 txd->src_addr = plchan->cd->addr;
1412 txd->dst_addr = sgl->dma_address;
30749cb4
RKAL
1413 src_buses = plchan->cd->periph_buses;
1414 dst_buses = pl08x->mem_buses;
e8689e63
LW
1415 } else {
1416 dev_err(&pl08x->adev->dev,
1417 "%s direction unsupported\n", __func__);
1418 return NULL;
1419 }
e8689e63 1420
30749cb4
RKAL
1421 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1422
e8689e63
LW
1423 ret = pl08x_prep_channel_resources(plchan, txd);
1424 if (ret)
1425 return NULL;
1426 /*
1427 * NB: the channel lock is held at this point so tx_submit()
1428 * must be called in direct succession.
1429 */
1430
1431 return &txd->tx;
1432}
1433
1434static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1435 unsigned long arg)
1436{
1437 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1438 struct pl08x_driver_data *pl08x = plchan->host;
1439 unsigned long flags;
1440 int ret = 0;
1441
1442 /* Controls applicable to inactive channels */
1443 if (cmd == DMA_SLAVE_CONFIG) {
1444 dma_set_runtime_config(chan,
1445 (struct dma_slave_config *)
1446 arg);
1447 return 0;
1448 }
1449
1450 /*
1451 * Anything succeeds on channels with no physical allocation and
1452 * no queued transfers.
1453 */
1454 spin_lock_irqsave(&plchan->lock, flags);
1455 if (!plchan->phychan && !plchan->at) {
1456 spin_unlock_irqrestore(&plchan->lock, flags);
1457 return 0;
1458 }
1459
1460 switch (cmd) {
1461 case DMA_TERMINATE_ALL:
1462 plchan->state = PL08X_CHAN_IDLE;
1463
1464 if (plchan->phychan) {
1465 pl08x_stop_phy_chan(plchan->phychan);
1466
1467 /*
1468 * Mark physical channel as free and free any slave
1469 * signal
1470 */
8c8cc2b1 1471 release_phy_channel(plchan);
e8689e63 1472 }
e8689e63
LW
1473 /* Dequeue jobs and free LLIs */
1474 if (plchan->at) {
1475 pl08x_free_txd(pl08x, plchan->at);
1476 plchan->at = NULL;
1477 }
1478 /* Dequeue jobs not yet fired as well */
1479 pl08x_free_txd_list(pl08x, plchan);
1480 break;
1481 case DMA_PAUSE:
1482 pl08x_pause_phy_chan(plchan->phychan);
1483 plchan->state = PL08X_CHAN_PAUSED;
1484 break;
1485 case DMA_RESUME:
1486 pl08x_resume_phy_chan(plchan->phychan);
1487 plchan->state = PL08X_CHAN_RUNNING;
1488 break;
1489 default:
1490 /* Unknown command */
1491 ret = -ENXIO;
1492 break;
1493 }
1494
1495 spin_unlock_irqrestore(&plchan->lock, flags);
1496
1497 return ret;
1498}
1499
1500bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1501{
1502 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1503 char *name = chan_id;
1504
1505 /* Check that the channel is not taken! */
1506 if (!strcmp(plchan->name, name))
1507 return true;
1508
1509 return false;
1510}
1511
1512/*
1513 * Just check that the device is there and active
1514 * TODO: turn this bit on/off depending on the number of
1515 * physical channels actually used, if it is zero... well
1516 * shut it off. That will save some power. Cut the clock
1517 * at the same time.
1518 */
1519static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1520{
1521 u32 val;
1522
1523 val = readl(pl08x->base + PL080_CONFIG);
1524 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
e8b5e11d 1525 /* We implicitly clear bit 1 and that means little-endian mode */
e8689e63
LW
1526 val |= PL080_CONFIG_ENABLE;
1527 writel(val, pl08x->base + PL080_CONFIG);
1528}
1529
3d992e1a
RKAL
1530static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1531{
1532 struct device *dev = txd->tx.chan->device->dev;
1533
1534 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1535 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1536 dma_unmap_single(dev, txd->src_addr, txd->len,
1537 DMA_TO_DEVICE);
1538 else
1539 dma_unmap_page(dev, txd->src_addr, txd->len,
1540 DMA_TO_DEVICE);
1541 }
1542 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1543 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1544 dma_unmap_single(dev, txd->dst_addr, txd->len,
1545 DMA_FROM_DEVICE);
1546 else
1547 dma_unmap_page(dev, txd->dst_addr, txd->len,
1548 DMA_FROM_DEVICE);
1549 }
1550}
1551
e8689e63
LW
1552static void pl08x_tasklet(unsigned long data)
1553{
1554 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
e8689e63 1555 struct pl08x_driver_data *pl08x = plchan->host;
858c21c0 1556 struct pl08x_txd *txd;
bf072af4 1557 unsigned long flags;
e8689e63 1558
bf072af4 1559 spin_lock_irqsave(&plchan->lock, flags);
e8689e63 1560
858c21c0
RKAL
1561 txd = plchan->at;
1562 plchan->at = NULL;
e8689e63 1563
858c21c0 1564 if (txd) {
e8689e63 1565 /*
858c21c0 1566 * Update last completed
e8689e63 1567 */
858c21c0 1568 plchan->lc = txd->tx.cookie;
e8689e63
LW
1569 }
1570 /*
1571 * If a new descriptor is queued, set it up
1572 * plchan->at is NULL here
1573 */
15c17232 1574 if (!list_empty(&plchan->pend_list)) {
e8689e63
LW
1575 struct pl08x_txd *next;
1576
15c17232 1577 next = list_first_entry(&plchan->pend_list,
e8689e63
LW
1578 struct pl08x_txd,
1579 node);
1580 list_del(&next->node);
c885bee4
RKAL
1581
1582 pl08x_start_txd(plchan, next);
e8689e63
LW
1583 } else {
1584 struct pl08x_dma_chan *waiting = NULL;
1585
1586 /*
1587 * No more jobs, so free up the physical channel
1588 * Free any allocated signal on slave transfers too
1589 */
8c8cc2b1 1590 release_phy_channel(plchan);
e8689e63
LW
1591 plchan->state = PL08X_CHAN_IDLE;
1592
1593 /*
1594 * And NOW before anyone else can grab that free:d
1595 * up physical channel, see if there is some memcpy
1596 * pending that seriously needs to start because of
1597 * being stacked up while we were choking the
1598 * physical channels with data.
1599 */
1600 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1601 chan.device_node) {
1602 if (waiting->state == PL08X_CHAN_WAITING &&
1603 waiting->waiting != NULL) {
1604 int ret;
1605
1606 /* This should REALLY not fail now */
1607 ret = prep_phy_channel(waiting,
1608 waiting->waiting);
1609 BUG_ON(ret);
1610 waiting->state = PL08X_CHAN_RUNNING;
1611 waiting->waiting = NULL;
1612 pl08x_issue_pending(&waiting->chan);
1613 break;
1614 }
1615 }
1616 }
1617
bf072af4 1618 spin_unlock_irqrestore(&plchan->lock, flags);
858c21c0 1619
3d992e1a
RKAL
1620 if (txd) {
1621 dma_async_tx_callback callback = txd->tx.callback;
1622 void *callback_param = txd->tx.callback_param;
1623
1624 /* Don't try to unmap buffers on slave channels */
1625 if (!plchan->slave)
1626 pl08x_unmap_buffers(txd);
1627
1628 /* Free the descriptor */
1629 spin_lock_irqsave(&plchan->lock, flags);
1630 pl08x_free_txd(pl08x, txd);
1631 spin_unlock_irqrestore(&plchan->lock, flags);
1632
1633 /* Callback to signal completion */
1634 if (callback)
1635 callback(callback_param);
1636 }
e8689e63
LW
1637}
1638
1639static irqreturn_t pl08x_irq(int irq, void *dev)
1640{
1641 struct pl08x_driver_data *pl08x = dev;
1642 u32 mask = 0;
1643 u32 val;
1644 int i;
1645
1646 val = readl(pl08x->base + PL080_ERR_STATUS);
1647 if (val) {
1648 /*
1649 * An error interrupt (on one or more channels)
1650 */
1651 dev_err(&pl08x->adev->dev,
1652 "%s error interrupt, register value 0x%08x\n",
1653 __func__, val);
1654 /*
1655 * Simply clear ALL PL08X error interrupts,
1656 * regardless of channel and cause
1657 * FIXME: should be 0x00000003 on PL081 really.
1658 */
1659 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1660 }
1661 val = readl(pl08x->base + PL080_INT_STATUS);
1662 for (i = 0; i < pl08x->vd->channels; i++) {
1663 if ((1 << i) & val) {
1664 /* Locate physical channel */
1665 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1666 struct pl08x_dma_chan *plchan = phychan->serving;
1667
1668 /* Schedule tasklet on this channel */
1669 tasklet_schedule(&plchan->tasklet);
1670
1671 mask |= (1 << i);
1672 }
1673 }
1674 /*
1675 * Clear only the terminal interrupts on channels we processed
1676 */
1677 writel(mask, pl08x->base + PL080_TC_CLEAR);
1678
1679 return mask ? IRQ_HANDLED : IRQ_NONE;
1680}
1681
1682/*
1683 * Initialise the DMAC memcpy/slave channels.
1684 * Make a local wrapper to hold required data
1685 */
1686static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1687 struct dma_device *dmadev,
1688 unsigned int channels,
1689 bool slave)
1690{
1691 struct pl08x_dma_chan *chan;
1692 int i;
1693
1694 INIT_LIST_HEAD(&dmadev->channels);
1695 /*
1696 * Register as many many memcpy as we have physical channels,
1697 * we won't always be able to use all but the code will have
1698 * to cope with that situation.
1699 */
1700 for (i = 0; i < channels; i++) {
1701 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1702 if (!chan) {
1703 dev_err(&pl08x->adev->dev,
1704 "%s no memory for channel\n", __func__);
1705 return -ENOMEM;
1706 }
1707
1708 chan->host = pl08x;
1709 chan->state = PL08X_CHAN_IDLE;
1710
1711 if (slave) {
1712 chan->slave = true;
1713 chan->name = pl08x->pd->slave_channels[i].bus_id;
1714 chan->cd = &pl08x->pd->slave_channels[i];
1715 } else {
1716 chan->cd = &pl08x->pd->memcpy_channel;
1717 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1718 if (!chan->name) {
1719 kfree(chan);
1720 return -ENOMEM;
1721 }
1722 }
b58b6b5b
RKAL
1723 if (chan->cd->circular_buffer) {
1724 dev_err(&pl08x->adev->dev,
1725 "channel %s: circular buffers not supported\n",
1726 chan->name);
1727 kfree(chan);
1728 continue;
1729 }
e8689e63
LW
1730 dev_info(&pl08x->adev->dev,
1731 "initialize virtual channel \"%s\"\n",
1732 chan->name);
1733
1734 chan->chan.device = dmadev;
91aa5fad
RKAL
1735 chan->chan.cookie = 0;
1736 chan->lc = 0;
e8689e63
LW
1737
1738 spin_lock_init(&chan->lock);
15c17232 1739 INIT_LIST_HEAD(&chan->pend_list);
e8689e63
LW
1740 tasklet_init(&chan->tasklet, pl08x_tasklet,
1741 (unsigned long) chan);
1742
1743 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1744 }
1745 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1746 i, slave ? "slave" : "memcpy");
1747 return i;
1748}
1749
1750static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1751{
1752 struct pl08x_dma_chan *chan = NULL;
1753 struct pl08x_dma_chan *next;
1754
1755 list_for_each_entry_safe(chan,
1756 next, &dmadev->channels, chan.device_node) {
1757 list_del(&chan->chan.device_node);
1758 kfree(chan);
1759 }
1760}
1761
1762#ifdef CONFIG_DEBUG_FS
1763static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1764{
1765 switch (state) {
1766 case PL08X_CHAN_IDLE:
1767 return "idle";
1768 case PL08X_CHAN_RUNNING:
1769 return "running";
1770 case PL08X_CHAN_PAUSED:
1771 return "paused";
1772 case PL08X_CHAN_WAITING:
1773 return "waiting";
1774 default:
1775 break;
1776 }
1777 return "UNKNOWN STATE";
1778}
1779
1780static int pl08x_debugfs_show(struct seq_file *s, void *data)
1781{
1782 struct pl08x_driver_data *pl08x = s->private;
1783 struct pl08x_dma_chan *chan;
1784 struct pl08x_phy_chan *ch;
1785 unsigned long flags;
1786 int i;
1787
1788 seq_printf(s, "PL08x physical channels:\n");
1789 seq_printf(s, "CHANNEL:\tUSER:\n");
1790 seq_printf(s, "--------\t-----\n");
1791 for (i = 0; i < pl08x->vd->channels; i++) {
1792 struct pl08x_dma_chan *virt_chan;
1793
1794 ch = &pl08x->phy_chans[i];
1795
1796 spin_lock_irqsave(&ch->lock, flags);
1797 virt_chan = ch->serving;
1798
1799 seq_printf(s, "%d\t\t%s\n",
1800 ch->id, virt_chan ? virt_chan->name : "(none)");
1801
1802 spin_unlock_irqrestore(&ch->lock, flags);
1803 }
1804
1805 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1806 seq_printf(s, "CHANNEL:\tSTATE:\n");
1807 seq_printf(s, "--------\t------\n");
1808 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
3e2a037c 1809 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1810 pl08x_state_str(chan->state));
1811 }
1812
1813 seq_printf(s, "\nPL08x virtual slave channels:\n");
1814 seq_printf(s, "CHANNEL:\tSTATE:\n");
1815 seq_printf(s, "--------\t------\n");
1816 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
3e2a037c 1817 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1818 pl08x_state_str(chan->state));
1819 }
1820
1821 return 0;
1822}
1823
1824static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1825{
1826 return single_open(file, pl08x_debugfs_show, inode->i_private);
1827}
1828
1829static const struct file_operations pl08x_debugfs_operations = {
1830 .open = pl08x_debugfs_open,
1831 .read = seq_read,
1832 .llseek = seq_lseek,
1833 .release = single_release,
1834};
1835
1836static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1837{
1838 /* Expose a simple debugfs interface to view all clocks */
1839 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1840 NULL, pl08x,
1841 &pl08x_debugfs_operations);
1842}
1843
1844#else
1845static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1846{
1847}
1848#endif
1849
1850static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1851{
1852 struct pl08x_driver_data *pl08x;
f96ca9ec 1853 const struct vendor_data *vd = id->data;
e8689e63
LW
1854 int ret = 0;
1855 int i;
1856
1857 ret = amba_request_regions(adev, NULL);
1858 if (ret)
1859 return ret;
1860
1861 /* Create the driver state holder */
1862 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1863 if (!pl08x) {
1864 ret = -ENOMEM;
1865 goto out_no_pl08x;
1866 }
1867
1868 /* Initialize memcpy engine */
1869 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1870 pl08x->memcpy.dev = &adev->dev;
1871 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1873 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1874 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1875 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1876 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1877 pl08x->memcpy.device_control = pl08x_control;
1878
1879 /* Initialize slave engine */
1880 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1881 pl08x->slave.dev = &adev->dev;
1882 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1883 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1884 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1885 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1886 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1887 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1888 pl08x->slave.device_control = pl08x_control;
1889
1890 /* Get the platform data */
1891 pl08x->pd = dev_get_platdata(&adev->dev);
1892 if (!pl08x->pd) {
1893 dev_err(&adev->dev, "no platform data supplied\n");
1894 goto out_no_platdata;
1895 }
1896
1897 /* Assign useful pointers to the driver state */
1898 pl08x->adev = adev;
1899 pl08x->vd = vd;
1900
30749cb4
RKAL
1901 /* By default, AHB1 only. If dualmaster, from platform */
1902 pl08x->lli_buses = PL08X_AHB1;
1903 pl08x->mem_buses = PL08X_AHB1;
1904 if (pl08x->vd->dualmaster) {
1905 pl08x->lli_buses = pl08x->pd->lli_buses;
1906 pl08x->mem_buses = pl08x->pd->mem_buses;
1907 }
1908
e8689e63
LW
1909 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1910 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1911 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1912 if (!pl08x->pool) {
1913 ret = -ENOMEM;
1914 goto out_no_lli_pool;
1915 }
1916
1917 spin_lock_init(&pl08x->lock);
1918
1919 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1920 if (!pl08x->base) {
1921 ret = -ENOMEM;
1922 goto out_no_ioremap;
1923 }
1924
1925 /* Turn on the PL08x */
1926 pl08x_ensure_on(pl08x);
1927
1928 /*
1929 * Attach the interrupt handler
1930 */
1931 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1932 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1933
1934 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
b05cd8f4 1935 DRIVER_NAME, pl08x);
e8689e63
LW
1936 if (ret) {
1937 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1938 __func__, adev->irq[0]);
1939 goto out_no_irq;
1940 }
1941
1942 /* Initialize physical channels */
1943 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1944 GFP_KERNEL);
1945 if (!pl08x->phy_chans) {
1946 dev_err(&adev->dev, "%s failed to allocate "
1947 "physical channel holders\n",
1948 __func__);
1949 goto out_no_phychans;
1950 }
1951
1952 for (i = 0; i < vd->channels; i++) {
1953 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1954
1955 ch->id = i;
1956 ch->base = pl08x->base + PL080_Cx_BASE(i);
1957 spin_lock_init(&ch->lock);
1958 ch->serving = NULL;
1959 ch->signal = -1;
1960 dev_info(&adev->dev,
1961 "physical channel %d is %s\n", i,
1962 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1963 }
1964
1965 /* Register as many memcpy channels as there are physical channels */
1966 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1967 pl08x->vd->channels, false);
1968 if (ret <= 0) {
1969 dev_warn(&pl08x->adev->dev,
1970 "%s failed to enumerate memcpy channels - %d\n",
1971 __func__, ret);
1972 goto out_no_memcpy;
1973 }
1974 pl08x->memcpy.chancnt = ret;
1975
1976 /* Register slave channels */
1977 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1978 pl08x->pd->num_slave_channels,
1979 true);
1980 if (ret <= 0) {
1981 dev_warn(&pl08x->adev->dev,
1982 "%s failed to enumerate slave channels - %d\n",
1983 __func__, ret);
1984 goto out_no_slave;
1985 }
1986 pl08x->slave.chancnt = ret;
1987
1988 ret = dma_async_device_register(&pl08x->memcpy);
1989 if (ret) {
1990 dev_warn(&pl08x->adev->dev,
1991 "%s failed to register memcpy as an async device - %d\n",
1992 __func__, ret);
1993 goto out_no_memcpy_reg;
1994 }
1995
1996 ret = dma_async_device_register(&pl08x->slave);
1997 if (ret) {
1998 dev_warn(&pl08x->adev->dev,
1999 "%s failed to register slave as an async device - %d\n",
2000 __func__, ret);
2001 goto out_no_slave_reg;
2002 }
2003
2004 amba_set_drvdata(adev, pl08x);
2005 init_pl08x_debugfs(pl08x);
b05cd8f4
RKAL
2006 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2007 amba_part(adev), amba_rev(adev),
2008 (unsigned long long)adev->res.start, adev->irq[0]);
e8689e63
LW
2009 return 0;
2010
2011out_no_slave_reg:
2012 dma_async_device_unregister(&pl08x->memcpy);
2013out_no_memcpy_reg:
2014 pl08x_free_virtual_channels(&pl08x->slave);
2015out_no_slave:
2016 pl08x_free_virtual_channels(&pl08x->memcpy);
2017out_no_memcpy:
2018 kfree(pl08x->phy_chans);
2019out_no_phychans:
2020 free_irq(adev->irq[0], pl08x);
2021out_no_irq:
2022 iounmap(pl08x->base);
2023out_no_ioremap:
2024 dma_pool_destroy(pl08x->pool);
2025out_no_lli_pool:
2026out_no_platdata:
2027 kfree(pl08x);
2028out_no_pl08x:
2029 amba_release_regions(adev);
2030 return ret;
2031}
2032
2033/* PL080 has 8 channels and the PL080 have just 2 */
2034static struct vendor_data vendor_pl080 = {
e8689e63
LW
2035 .channels = 8,
2036 .dualmaster = true,
2037};
2038
2039static struct vendor_data vendor_pl081 = {
e8689e63
LW
2040 .channels = 2,
2041 .dualmaster = false,
2042};
2043
2044static struct amba_id pl08x_ids[] = {
2045 /* PL080 */
2046 {
2047 .id = 0x00041080,
2048 .mask = 0x000fffff,
2049 .data = &vendor_pl080,
2050 },
2051 /* PL081 */
2052 {
2053 .id = 0x00041081,
2054 .mask = 0x000fffff,
2055 .data = &vendor_pl081,
2056 },
2057 /* Nomadik 8815 PL080 variant */
2058 {
2059 .id = 0x00280880,
2060 .mask = 0x00ffffff,
2061 .data = &vendor_pl080,
2062 },
2063 { 0, 0 },
2064};
2065
2066static struct amba_driver pl08x_amba_driver = {
2067 .drv.name = DRIVER_NAME,
2068 .id_table = pl08x_ids,
2069 .probe = pl08x_probe,
2070};
2071
2072static int __init pl08x_init(void)
2073{
2074 int retval;
2075 retval = amba_driver_register(&pl08x_amba_driver);
2076 if (retval)
2077 printk(KERN_WARNING DRIVER_NAME
e8b5e11d 2078 "failed to register as an AMBA device (%d)\n",
e8689e63
LW
2079 retval);
2080 return retval;
2081}
2082subsys_initcall(pl08x_init);