]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/dma/amba-pl08x.c
dmaengine: PL08x: Rework LLI handling to be less fragile
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / amba-pl08x.c
CommitLineData
e8689e63
LW
1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
94ae8522
RKAL
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
e8689e63
LW
24 *
25 * Documentation: ARM DDI 0196G == PL080
94ae8522 26 * Documentation: ARM DDI 0218E == PL081
e8689e63 27 *
94ae8522
RKAL
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
e8689e63
LW
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
9dc2c200
RKAL
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
e8689e63
LW
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
730404ac 72#include <linux/amba/bus.h>
e8689e63
LW
73#include <linux/amba/pl08x.h>
74#include <linux/debugfs.h>
0c38d701
VK
75#include <linux/delay.h>
76#include <linux/device.h>
77#include <linux/dmaengine.h>
78#include <linux/dmapool.h>
8516f52f 79#include <linux/dma-mapping.h>
0c38d701
VK
80#include <linux/init.h>
81#include <linux/interrupt.h>
82#include <linux/module.h>
b7b6018b 83#include <linux/pm_runtime.h>
e8689e63 84#include <linux/seq_file.h>
0c38d701 85#include <linux/slab.h>
3a95b9fb 86#include <linux/amba/pl080.h>
e8689e63 87
d2ebfb33 88#include "dmaengine.h"
01d8dc64 89#include "virt-dma.h"
d2ebfb33 90
e8689e63
LW
91#define DRIVER_NAME "pl08xdmac"
92
7703eac9 93static struct amba_driver pl08x_amba_driver;
b23f204c 94struct pl08x_driver_data;
7703eac9 95
e8689e63 96/**
94ae8522 97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
e8689e63 98 * @channels: the number of channels available in this variant
94ae8522 99 * @dualmaster: whether this version supports dual AHB masters or not.
affa115e
LW
100 * @nomadik: whether the channels have Nomadik security extension bits
101 * that need to be checked for permission before use and some registers are
102 * missing
e8689e63
LW
103 */
104struct vendor_data {
d86ccea7 105 u8 config_offset;
e8689e63
LW
106 u8 channels;
107 bool dualmaster;
affa115e 108 bool nomadik;
e8689e63
LW
109};
110
b23f204c
RK
111/**
112 * struct pl08x_bus_data - information of source or destination
113 * busses for a transfer
114 * @addr: current address
115 * @maxwidth: the maximum width of a transfer on this bus
116 * @buswidth: the width of this bus in bytes: 1, 2 or 4
117 */
118struct pl08x_bus_data {
119 dma_addr_t addr;
120 u8 maxwidth;
121 u8 buswidth;
122};
123
124/**
125 * struct pl08x_phy_chan - holder for the physical channels
126 * @id: physical index to this channel
127 * @lock: a lock to use when altering an instance of this struct
b23f204c
RK
128 * @serving: the virtual channel currently being served by this physical
129 * channel
ad0de2ac
RK
130 * @locked: channel unavailable for the system, e.g. dedicated to secure
131 * world
b23f204c
RK
132 */
133struct pl08x_phy_chan {
134 unsigned int id;
135 void __iomem *base;
d86ccea7 136 void __iomem *reg_config;
b23f204c 137 spinlock_t lock;
b23f204c 138 struct pl08x_dma_chan *serving;
ad0de2ac 139 bool locked;
b23f204c
RK
140};
141
142/**
143 * struct pl08x_sg - structure containing data per sg
144 * @src_addr: src address of sg
145 * @dst_addr: dst address of sg
146 * @len: transfer len in bytes
147 * @node: node for txd's dsg_list
148 */
149struct pl08x_sg {
150 dma_addr_t src_addr;
151 dma_addr_t dst_addr;
152 size_t len;
153 struct list_head node;
154};
155
156/**
157 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
01d8dc64 158 * @vd: virtual DMA descriptor
b23f204c 159 * @dsg_list: list of children sg's
b23f204c
RK
160 * @llis_bus: DMA memory address (physical) start for the LLIs
161 * @llis_va: virtual memory address start for the LLIs
162 * @cctl: control reg values for current txd
163 * @ccfg: config reg values for current txd
18536134
RK
164 * @done: this marks completed descriptors, which should not have their
165 * mux released.
b23f204c
RK
166 */
167struct pl08x_txd {
01d8dc64 168 struct virt_dma_desc vd;
b23f204c 169 struct list_head dsg_list;
b23f204c 170 dma_addr_t llis_bus;
ba6785ff 171 u32 *llis_va;
b23f204c
RK
172 /* Default cctl value for LLIs */
173 u32 cctl;
174 /*
175 * Settings to be put into the physical channel when we
176 * trigger this txd. Other registers are in llis_va[0].
177 */
178 u32 ccfg;
18536134 179 bool done;
b23f204c
RK
180};
181
182/**
183 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
184 * states
185 * @PL08X_CHAN_IDLE: the channel is idle
186 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
187 * channel and is running a transfer on it
188 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
189 * channel, but the transfer is currently paused
190 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
191 * channel to become available (only pertains to memcpy channels)
192 */
193enum pl08x_dma_chan_state {
194 PL08X_CHAN_IDLE,
195 PL08X_CHAN_RUNNING,
196 PL08X_CHAN_PAUSED,
197 PL08X_CHAN_WAITING,
198};
199
200/**
201 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
01d8dc64 202 * @vc: wrappped virtual channel
b23f204c 203 * @phychan: the physical channel utilized by this channel, if there is one
b23f204c
RK
204 * @name: name of channel
205 * @cd: channel platform data
206 * @runtime_addr: address for RX/TX according to the runtime config
b23f204c
RK
207 * @at: active transaction on this channel
208 * @lock: a lock for this channel data
209 * @host: a pointer to the host (internal use)
210 * @state: whether the channel is idle, paused, running etc
211 * @slave: whether this channel is a device (slave) or for memcpy
ad0de2ac 212 * @signal: the physical DMA request signal which this channel is using
5e2479bd 213 * @mux_use: count of descriptors using this DMA request signal setting
b23f204c
RK
214 */
215struct pl08x_dma_chan {
01d8dc64 216 struct virt_dma_chan vc;
b23f204c 217 struct pl08x_phy_chan *phychan;
550ec36f 218 const char *name;
b23f204c 219 const struct pl08x_channel_data *cd;
ed91c13d 220 struct dma_slave_config cfg;
b23f204c 221 struct pl08x_txd *at;
b23f204c
RK
222 struct pl08x_driver_data *host;
223 enum pl08x_dma_chan_state state;
224 bool slave;
ad0de2ac 225 int signal;
5e2479bd 226 unsigned mux_use;
b23f204c
RK
227};
228
e8689e63
LW
229/**
230 * struct pl08x_driver_data - the local state holder for the PL08x
231 * @slave: slave engine for this instance
232 * @memcpy: memcpy engine for this instance
233 * @base: virtual memory base (remapped) for the PL08x
234 * @adev: the corresponding AMBA (PrimeCell) bus entry
235 * @vd: vendor data for this PL08x variant
236 * @pd: platform data passed in from the platform/machine
237 * @phy_chans: array of data for the physical channels
238 * @pool: a pool for the LLI descriptors
3e27ee84
VK
239 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
240 * fetches
30749cb4 241 * @mem_buses: set to indicate memory transfers on AHB2.
e8689e63
LW
242 * @lock: a spinlock for this struct
243 */
244struct pl08x_driver_data {
245 struct dma_device slave;
246 struct dma_device memcpy;
247 void __iomem *base;
248 struct amba_device *adev;
f96ca9ec 249 const struct vendor_data *vd;
e8689e63
LW
250 struct pl08x_platform_data *pd;
251 struct pl08x_phy_chan *phy_chans;
252 struct dma_pool *pool;
30749cb4
RKAL
253 u8 lli_buses;
254 u8 mem_buses;
ba6785ff 255 u8 lli_words;
e8689e63
LW
256};
257
258/*
259 * PL08X specific defines
260 */
261
ba6785ff
TF
262/* The order of words in an LLI. */
263#define PL080_LLI_SRC 0
264#define PL080_LLI_DST 1
265#define PL080_LLI_LLI 2
266#define PL080_LLI_CCTL 3
267
268/* Total words in an LLI. */
269#define PL080_LLI_WORDS 4
e8689e63 270
ba6785ff
TF
271/*
272 * Number of LLIs in each LLI buffer allocated for one transfer
273 * (maximum times we call dma_pool_alloc on this pool without freeing)
274 */
275#define MAX_NUM_TSFR_LLIS 512
e8689e63
LW
276#define PL08X_ALIGN 8
277
278static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
279{
01d8dc64 280 return container_of(chan, struct pl08x_dma_chan, vc.chan);
e8689e63
LW
281}
282
501e67e8
RKAL
283static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
284{
01d8dc64 285 return container_of(tx, struct pl08x_txd, vd.tx);
501e67e8
RKAL
286}
287
6b16c8b1
RK
288/*
289 * Mux handling.
290 *
291 * This gives us the DMA request input to the PL08x primecell which the
292 * peripheral described by the channel data will be routed to, possibly
293 * via a board/SoC specific external MUX. One important point to note
294 * here is that this does not depend on the physical channel.
295 */
ad0de2ac 296static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
6b16c8b1
RK
297{
298 const struct pl08x_platform_data *pd = plchan->host->pd;
299 int ret;
300
d7cabeed
MB
301 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
302 ret = pd->get_xfer_signal(plchan->cd);
5e2479bd
RK
303 if (ret < 0) {
304 plchan->mux_use = 0;
6b16c8b1 305 return ret;
5e2479bd 306 }
6b16c8b1 307
ad0de2ac 308 plchan->signal = ret;
6b16c8b1
RK
309 }
310 return 0;
311}
312
313static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
314{
315 const struct pl08x_platform_data *pd = plchan->host->pd;
316
5e2479bd
RK
317 if (plchan->signal >= 0) {
318 WARN_ON(plchan->mux_use == 0);
319
d7cabeed
MB
320 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
321 pd->put_xfer_signal(plchan->cd, plchan->signal);
5e2479bd
RK
322 plchan->signal = -1;
323 }
6b16c8b1
RK
324 }
325}
326
e8689e63
LW
327/*
328 * Physical channel handling
329 */
330
331/* Whether a certain channel is busy or not */
332static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
333{
334 unsigned int val;
335
d86ccea7 336 val = readl(ch->reg_config);
e8689e63
LW
337 return val & PL080_CONFIG_ACTIVE;
338}
339
ba6785ff
TF
340static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
341 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
342{
343 dev_vdbg(&pl08x->adev->dev,
344 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
345 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
346 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
347 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
348
349 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
350 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
351 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
352 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
353
354 writel(ccfg, phychan->reg_config);
355}
356
e8689e63
LW
357/*
358 * Set the initial DMA register values i.e. those for the first LLI
e8b5e11d 359 * The next LLI pointer and the configuration interrupt bit have
c885bee4
RKAL
360 * been set when the LLIs were constructed. Poke them into the hardware
361 * and start the transfer.
e8689e63 362 */
eab82533 363static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
e8689e63 364{
c885bee4 365 struct pl08x_driver_data *pl08x = plchan->host;
e8689e63 366 struct pl08x_phy_chan *phychan = plchan->phychan;
879f127b
RK
367 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
368 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
09b3c323 369 u32 val;
c885bee4 370
879f127b 371 list_del(&txd->vd.node);
eab82533 372
c885bee4 373 plchan->at = txd;
e8689e63 374
c885bee4
RKAL
375 /* Wait for channel inactive */
376 while (pl08x_phy_channel_busy(phychan))
377 cpu_relax();
e8689e63 378
ba6785ff 379 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
c885bee4
RKAL
380
381 /* Enable the DMA channel */
382 /* Do not access config register until channel shows as disabled */
383 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
19386b32 384 cpu_relax();
e8689e63 385
c885bee4 386 /* Do not access config register until channel shows as inactive */
d86ccea7 387 val = readl(phychan->reg_config);
e8689e63 388 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
d86ccea7 389 val = readl(phychan->reg_config);
e8689e63 390
d86ccea7 391 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
e8689e63
LW
392}
393
394/*
81796616 395 * Pause the channel by setting the HALT bit.
e8689e63 396 *
81796616
RKAL
397 * For M->P transfers, pause the DMAC first and then stop the peripheral -
398 * the FIFO can only drain if the peripheral is still requesting data.
399 * (note: this can still timeout if the DMAC FIFO never drains of data.)
e8689e63 400 *
81796616
RKAL
401 * For P->M transfers, disable the peripheral first to stop it filling
402 * the DMAC FIFO, and then pause the DMAC.
e8689e63
LW
403 */
404static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
405{
406 u32 val;
81796616 407 int timeout;
e8689e63
LW
408
409 /* Set the HALT bit and wait for the FIFO to drain */
d86ccea7 410 val = readl(ch->reg_config);
e8689e63 411 val |= PL080_CONFIG_HALT;
d86ccea7 412 writel(val, ch->reg_config);
e8689e63
LW
413
414 /* Wait for channel inactive */
81796616
RKAL
415 for (timeout = 1000; timeout; timeout--) {
416 if (!pl08x_phy_channel_busy(ch))
417 break;
418 udelay(1);
419 }
420 if (pl08x_phy_channel_busy(ch))
421 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
e8689e63
LW
422}
423
424static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
425{
426 u32 val;
427
428 /* Clear the HALT bit */
d86ccea7 429 val = readl(ch->reg_config);
e8689e63 430 val &= ~PL080_CONFIG_HALT;
d86ccea7 431 writel(val, ch->reg_config);
e8689e63
LW
432}
433
fb526210
RKAL
434/*
435 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
436 * clears any pending interrupt status. This should not be used for
437 * an on-going transfer, but as a method of shutting down a channel
438 * (eg, when it's no longer used) or terminating a transfer.
439 */
440static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
441 struct pl08x_phy_chan *ch)
e8689e63 442{
d86ccea7 443 u32 val = readl(ch->reg_config);
e8689e63 444
fb526210
RKAL
445 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
446 PL080_CONFIG_TC_IRQ_MASK);
e8689e63 447
d86ccea7 448 writel(val, ch->reg_config);
fb526210
RKAL
449
450 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
451 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
e8689e63
LW
452}
453
454static inline u32 get_bytes_in_cctl(u32 cctl)
455{
456 /* The source width defines the number of bytes */
457 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
458
459 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
460 case PL080_WIDTH_8BIT:
461 break;
462 case PL080_WIDTH_16BIT:
463 bytes *= 2;
464 break;
465 case PL080_WIDTH_32BIT:
466 bytes *= 4;
467 break;
468 }
469 return bytes;
470}
471
472/* The channel should be paused when calling this */
473static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
474{
ba6785ff
TF
475 struct pl08x_driver_data *pl08x = plchan->host;
476 const u32 *llis_va, *llis_va_limit;
e8689e63 477 struct pl08x_phy_chan *ch;
68a7faa2 478 dma_addr_t llis_bus;
e8689e63 479 struct pl08x_txd *txd;
ba6785ff 480 u32 llis_max_words;
68a7faa2 481 size_t bytes;
68a7faa2 482 u32 clli;
e8689e63 483
e8689e63
LW
484 ch = plchan->phychan;
485 txd = plchan->at;
486
68a7faa2
TF
487 if (!ch || !txd)
488 return 0;
489
e8689e63 490 /*
db9f136a
RKAL
491 * Follow the LLIs to get the number of remaining
492 * bytes in the currently active transaction.
e8689e63 493 */
68a7faa2 494 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
e8689e63 495
68a7faa2
TF
496 /* First get the remaining bytes in the active transfer */
497 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
e8689e63 498
68a7faa2
TF
499 if (!clli)
500 return bytes;
db9f136a 501
68a7faa2
TF
502 llis_va = txd->llis_va;
503 llis_bus = txd->llis_bus;
504
ba6785ff 505 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
68a7faa2 506 BUG_ON(clli < llis_bus || clli >= llis_bus +
ba6785ff 507 sizeof(u32) * llis_max_words);
e8689e63 508
68a7faa2
TF
509 /*
510 * Locate the next LLI - as this is an array,
511 * it's simple maths to find.
512 */
ba6785ff 513 llis_va += (clli - llis_bus) / sizeof(u32);
68a7faa2 514
ba6785ff
TF
515 llis_va_limit = llis_va + llis_max_words;
516
517 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
518 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
68a7faa2
TF
519
520 /*
521 * A LLI pointer of 0 terminates the LLI list
522 */
ba6785ff 523 if (!llis_va[PL080_LLI_LLI])
68a7faa2 524 break;
e8689e63
LW
525 }
526
e8689e63
LW
527 return bytes;
528}
529
530/*
531 * Allocate a physical channel for a virtual channel
94ae8522
RKAL
532 *
533 * Try to locate a physical channel to be used for this transfer. If all
534 * are taken return NULL and the requester will have to cope by using
535 * some fallback PIO mode or retrying later.
e8689e63
LW
536 */
537static struct pl08x_phy_chan *
538pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
539 struct pl08x_dma_chan *virt_chan)
540{
541 struct pl08x_phy_chan *ch = NULL;
542 unsigned long flags;
543 int i;
544
e8689e63
LW
545 for (i = 0; i < pl08x->vd->channels; i++) {
546 ch = &pl08x->phy_chans[i];
547
548 spin_lock_irqsave(&ch->lock, flags);
549
affa115e 550 if (!ch->locked && !ch->serving) {
e8689e63 551 ch->serving = virt_chan;
e8689e63
LW
552 spin_unlock_irqrestore(&ch->lock, flags);
553 break;
554 }
555
556 spin_unlock_irqrestore(&ch->lock, flags);
557 }
558
559 if (i == pl08x->vd->channels) {
560 /* No physical channel available, cope with it */
561 return NULL;
562 }
563
564 return ch;
565}
566
a5a488db 567/* Mark the physical channel as free. Note, this write is atomic. */
e8689e63
LW
568static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
569 struct pl08x_phy_chan *ch)
570{
a5a488db
RK
571 ch->serving = NULL;
572}
e8689e63 573
a5a488db
RK
574/*
575 * Try to allocate a physical channel. When successful, assign it to
576 * this virtual channel, and initiate the next descriptor. The
577 * virtual channel lock must be held at this point.
578 */
579static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
580{
581 struct pl08x_driver_data *pl08x = plchan->host;
582 struct pl08x_phy_chan *ch;
fb526210 583
a5a488db
RK
584 ch = pl08x_get_phy_channel(pl08x, plchan);
585 if (!ch) {
586 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
587 plchan->state = PL08X_CHAN_WAITING;
588 return;
589 }
e8689e63 590
a5a488db
RK
591 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
592 ch->id, plchan->name);
593
594 plchan->phychan = ch;
595 plchan->state = PL08X_CHAN_RUNNING;
596 pl08x_start_next_txd(plchan);
597}
598
599static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
600 struct pl08x_dma_chan *plchan)
601{
602 struct pl08x_driver_data *pl08x = plchan->host;
603
604 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
605 ch->id, plchan->name);
606
607 /*
608 * We do this without taking the lock; we're really only concerned
609 * about whether this pointer is NULL or not, and we're guaranteed
610 * that this will only be called when it _already_ is non-NULL.
611 */
612 ch->serving = plchan;
613 plchan->phychan = ch;
614 plchan->state = PL08X_CHAN_RUNNING;
615 pl08x_start_next_txd(plchan);
616}
617
618/*
619 * Free a physical DMA channel, potentially reallocating it to another
620 * virtual channel if we have any pending.
621 */
622static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
623{
624 struct pl08x_driver_data *pl08x = plchan->host;
625 struct pl08x_dma_chan *p, *next;
626
627 retry:
628 next = NULL;
629
630 /* Find a waiting virtual channel for the next transfer. */
01d8dc64 631 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
a5a488db
RK
632 if (p->state == PL08X_CHAN_WAITING) {
633 next = p;
634 break;
635 }
636
637 if (!next) {
01d8dc64 638 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
a5a488db
RK
639 if (p->state == PL08X_CHAN_WAITING) {
640 next = p;
641 break;
642 }
643 }
644
645 /* Ensure that the physical channel is stopped */
646 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
647
648 if (next) {
649 bool success;
650
651 /*
652 * Eww. We know this isn't going to deadlock
653 * but lockdep probably doesn't.
654 */
083be28a 655 spin_lock(&next->vc.lock);
a5a488db
RK
656 /* Re-check the state now that we have the lock */
657 success = next->state == PL08X_CHAN_WAITING;
658 if (success)
659 pl08x_phy_reassign_start(plchan->phychan, next);
083be28a 660 spin_unlock(&next->vc.lock);
a5a488db
RK
661
662 /* If the state changed, try to find another channel */
663 if (!success)
664 goto retry;
665 } else {
666 /* No more jobs, so free up the physical channel */
667 pl08x_put_phy_channel(pl08x, plchan->phychan);
668 }
669
670 plchan->phychan = NULL;
671 plchan->state = PL08X_CHAN_IDLE;
e8689e63
LW
672}
673
674/*
675 * LLI handling
676 */
677
678static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
679{
680 switch (coded) {
681 case PL080_WIDTH_8BIT:
682 return 1;
683 case PL080_WIDTH_16BIT:
684 return 2;
685 case PL080_WIDTH_32BIT:
686 return 4;
687 default:
688 break;
689 }
690 BUG();
691 return 0;
692}
693
694static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
cace6585 695 size_t tsize)
e8689e63
LW
696{
697 u32 retbits = cctl;
698
e8b5e11d 699 /* Remove all src, dst and transfer size bits */
e8689e63
LW
700 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
701 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
702 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
703
704 /* Then set the bits according to the parameters */
705 switch (srcwidth) {
706 case 1:
707 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
708 break;
709 case 2:
710 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
711 break;
712 case 4:
713 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
714 break;
715 default:
716 BUG();
717 break;
718 }
719
720 switch (dstwidth) {
721 case 1:
722 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
723 break;
724 case 2:
725 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
726 break;
727 case 4:
728 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
729 break;
730 default:
731 BUG();
732 break;
733 }
734
735 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
736 return retbits;
737}
738
542361f8
RKAL
739struct pl08x_lli_build_data {
740 struct pl08x_txd *txd;
542361f8
RKAL
741 struct pl08x_bus_data srcbus;
742 struct pl08x_bus_data dstbus;
743 size_t remainder;
25c94f7f 744 u32 lli_bus;
542361f8
RKAL
745};
746
e8689e63 747/*
0532e6fc
VK
748 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
749 * victim in case src & dest are not similarly aligned. i.e. If after aligning
750 * masters address with width requirements of transfer (by sending few byte by
751 * byte data), slave is still not aligned, then its width will be reduced to
752 * BYTE.
753 * - prefers the destination bus if both available
036f05fd 754 * - prefers bus with fixed address (i.e. peripheral)
e8689e63 755 */
542361f8
RKAL
756static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
757 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
e8689e63
LW
758{
759 if (!(cctl & PL080_CONTROL_DST_INCR)) {
542361f8
RKAL
760 *mbus = &bd->dstbus;
761 *sbus = &bd->srcbus;
036f05fd
VK
762 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
763 *mbus = &bd->srcbus;
764 *sbus = &bd->dstbus;
e8689e63 765 } else {
036f05fd 766 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
542361f8
RKAL
767 *mbus = &bd->dstbus;
768 *sbus = &bd->srcbus;
036f05fd 769 } else {
542361f8
RKAL
770 *mbus = &bd->srcbus;
771 *sbus = &bd->dstbus;
e8689e63
LW
772 }
773 }
774}
775
776/*
94ae8522 777 * Fills in one LLI for a certain transfer descriptor and advance the counter
e8689e63 778 */
ba6785ff
TF
779static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
780 struct pl08x_lli_build_data *bd,
781 int num_llis, int len, u32 cctl)
e8689e63 782{
ba6785ff
TF
783 u32 offset = num_llis * pl08x->lli_words;
784 u32 *llis_va = bd->txd->llis_va + offset;
542361f8 785 dma_addr_t llis_bus = bd->txd->llis_bus;
e8689e63
LW
786
787 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
788
ba6785ff
TF
789 /* Advance the offset to next LLI. */
790 offset += pl08x->lli_words;
791
792 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
793 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
794 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
795 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
796 llis_va[PL080_LLI_CCTL] = cctl;
e8689e63
LW
797
798 if (cctl & PL080_CONTROL_SRC_INCR)
542361f8 799 bd->srcbus.addr += len;
e8689e63 800 if (cctl & PL080_CONTROL_DST_INCR)
542361f8 801 bd->dstbus.addr += len;
e8689e63 802
542361f8 803 BUG_ON(bd->remainder < len);
cace6585 804
542361f8 805 bd->remainder -= len;
e8689e63
LW
806}
807
ba6785ff
TF
808static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
809 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
810 int num_llis, size_t *total_bytes)
e8689e63 811{
03af500f 812 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
ba6785ff 813 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl);
03af500f 814 (*total_bytes) += len;
e8689e63
LW
815}
816
817/*
818 * This fills in the table of LLIs for the transfer descriptor
819 * Note that we assume we never have to change the burst sizes
820 * Return 0 for error
821 */
822static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
823 struct pl08x_txd *txd)
824{
e8689e63 825 struct pl08x_bus_data *mbus, *sbus;
542361f8 826 struct pl08x_lli_build_data bd;
e8689e63 827 int num_llis = 0;
03af500f 828 u32 cctl, early_bytes = 0;
b7f69d9d 829 size_t max_bytes_per_lli, total_bytes;
ba6785ff 830 u32 *llis_va, *last_lli;
b7f69d9d 831 struct pl08x_sg *dsg;
e8689e63 832
3e27ee84 833 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
e8689e63
LW
834 if (!txd->llis_va) {
835 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
836 return 0;
837 }
838
542361f8 839 bd.txd = txd;
25c94f7f 840 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
b7f69d9d 841 cctl = txd->cctl;
542361f8 842
e8689e63 843 /* Find maximum width of the source bus */
542361f8 844 bd.srcbus.maxwidth =
e8689e63
LW
845 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
846 PL080_CONTROL_SWIDTH_SHIFT);
847
848 /* Find maximum width of the destination bus */
542361f8 849 bd.dstbus.maxwidth =
e8689e63
LW
850 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
851 PL080_CONTROL_DWIDTH_SHIFT);
852
b7f69d9d
VK
853 list_for_each_entry(dsg, &txd->dsg_list, node) {
854 total_bytes = 0;
855 cctl = txd->cctl;
e8689e63 856
b7f69d9d
VK
857 bd.srcbus.addr = dsg->src_addr;
858 bd.dstbus.addr = dsg->dst_addr;
859 bd.remainder = dsg->len;
860 bd.srcbus.buswidth = bd.srcbus.maxwidth;
861 bd.dstbus.buswidth = bd.dstbus.maxwidth;
e8689e63 862
b7f69d9d 863 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
e8689e63 864
b7f69d9d
VK
865 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
866 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
867 bd.srcbus.buswidth,
868 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
869 bd.dstbus.buswidth,
870 bd.remainder);
871 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
872 mbus == &bd.srcbus ? "src" : "dst",
873 sbus == &bd.srcbus ? "src" : "dst");
fc74eb79 874
b7f69d9d
VK
875 /*
876 * Zero length is only allowed if all these requirements are
877 * met:
878 * - flow controller is peripheral.
879 * - src.addr is aligned to src.width
880 * - dst.addr is aligned to dst.width
881 *
882 * sg_len == 1 should be true, as there can be two cases here:
883 *
884 * - Memory addresses are contiguous and are not scattered.
885 * Here, Only one sg will be passed by user driver, with
886 * memory address and zero length. We pass this to controller
887 * and after the transfer it will receive the last burst
888 * request from peripheral and so transfer finishes.
889 *
890 * - Memory addresses are scattered and are not contiguous.
891 * Here, Obviously as DMA controller doesn't know when a lli's
892 * transfer gets over, it can't load next lli. So in this
893 * case, there has to be an assumption that only one lli is
894 * supported. Thus, we can't have scattered addresses.
895 */
896 if (!bd.remainder) {
897 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
898 PL080_CONFIG_FLOW_CONTROL_SHIFT;
899 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
0a235657 900 (fc <= PL080_FLOW_SRC2DST_SRC))) {
b7f69d9d
VK
901 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
902 __func__);
903 return 0;
904 }
0a235657 905
b7f69d9d 906 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
880db3ff 907 (bd.dstbus.addr % bd.dstbus.buswidth)) {
b7f69d9d
VK
908 dev_err(&pl08x->adev->dev,
909 "%s src & dst address must be aligned to src"
910 " & dst width if peripheral is flow controller",
911 __func__);
912 return 0;
913 }
03af500f 914
b7f69d9d
VK
915 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
916 bd.dstbus.buswidth, 0);
ba6785ff
TF
917 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
918 0, cctl);
b7f69d9d
VK
919 break;
920 }
e8689e63
LW
921
922 /*
b7f69d9d
VK
923 * Send byte by byte for following cases
924 * - Less than a bus width available
925 * - until master bus is aligned
e8689e63 926 */
b7f69d9d
VK
927 if (bd.remainder < mbus->buswidth)
928 early_bytes = bd.remainder;
929 else if ((mbus->addr) % (mbus->buswidth)) {
930 early_bytes = mbus->buswidth - (mbus->addr) %
931 (mbus->buswidth);
932 if ((bd.remainder - early_bytes) < mbus->buswidth)
933 early_bytes = bd.remainder;
934 }
e8689e63 935
b7f69d9d
VK
936 if (early_bytes) {
937 dev_vdbg(&pl08x->adev->dev,
938 "%s byte width LLIs (remain 0x%08x)\n",
939 __func__, bd.remainder);
ba6785ff
TF
940 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
941 num_llis++, &total_bytes);
e8689e63
LW
942 }
943
b7f69d9d
VK
944 if (bd.remainder) {
945 /*
946 * Master now aligned
947 * - if slave is not then we must set its width down
948 */
949 if (sbus->addr % sbus->buswidth) {
950 dev_dbg(&pl08x->adev->dev,
951 "%s set down bus width to one byte\n",
952 __func__);
fa6a940b 953
b7f69d9d
VK
954 sbus->buswidth = 1;
955 }
e8689e63
LW
956
957 /*
b7f69d9d
VK
958 * Bytes transferred = tsize * src width, not
959 * MIN(buswidths)
e8689e63 960 */
b7f69d9d
VK
961 max_bytes_per_lli = bd.srcbus.buswidth *
962 PL080_CONTROL_TRANSFER_SIZE_MASK;
963 dev_vdbg(&pl08x->adev->dev,
964 "%s max bytes per lli = %zu\n",
965 __func__, max_bytes_per_lli);
e8689e63
LW
966
967 /*
b7f69d9d
VK
968 * Make largest possible LLIs until less than one bus
969 * width left
e8689e63 970 */
b7f69d9d
VK
971 while (bd.remainder > (mbus->buswidth - 1)) {
972 size_t lli_len, tsize, width;
e8689e63 973
b7f69d9d
VK
974 /*
975 * If enough left try to send max possible,
976 * otherwise try to send the remainder
977 */
978 lli_len = min(bd.remainder, max_bytes_per_lli);
16a2e7d3 979
b7f69d9d
VK
980 /*
981 * Check against maximum bus alignment:
982 * Calculate actual transfer size in relation to
983 * bus width an get a maximum remainder of the
984 * highest bus width - 1
985 */
986 width = max(mbus->buswidth, sbus->buswidth);
987 lli_len = (lli_len / width) * width;
988 tsize = lli_len / bd.srcbus.buswidth;
989
990 dev_vdbg(&pl08x->adev->dev,
991 "%s fill lli with single lli chunk of "
992 "size 0x%08zx (remainder 0x%08zx)\n",
993 __func__, lli_len, bd.remainder);
994
995 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
16a2e7d3 996 bd.dstbus.buswidth, tsize);
ba6785ff 997 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
b7f69d9d
VK
998 lli_len, cctl);
999 total_bytes += lli_len;
1000 }
e8689e63 1001
b7f69d9d
VK
1002 /*
1003 * Send any odd bytes
1004 */
1005 if (bd.remainder) {
1006 dev_vdbg(&pl08x->adev->dev,
1007 "%s align with boundary, send odd bytes (remain %zu)\n",
1008 __func__, bd.remainder);
ba6785ff
TF
1009 prep_byte_width_lli(pl08x, &bd, &cctl,
1010 bd.remainder, num_llis++, &total_bytes);
b7f69d9d 1011 }
e8689e63 1012 }
16a2e7d3 1013
b7f69d9d
VK
1014 if (total_bytes != dsg->len) {
1015 dev_err(&pl08x->adev->dev,
1016 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1017 __func__, total_bytes, dsg->len);
1018 return 0;
1019 }
e8689e63 1020
b7f69d9d
VK
1021 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1022 dev_err(&pl08x->adev->dev,
1023 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
ba6785ff 1024 __func__, MAX_NUM_TSFR_LLIS);
b7f69d9d
VK
1025 return 0;
1026 }
e8689e63 1027 }
b58b6b5b
RKAL
1028
1029 llis_va = txd->llis_va;
ba6785ff 1030 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
94ae8522 1031 /* The final LLI terminates the LLI. */
ba6785ff 1032 last_lli[PL080_LLI_LLI] = 0;
94ae8522 1033 /* The final LLI element shall also fire an interrupt. */
ba6785ff 1034 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
e8689e63 1035
e8689e63
LW
1036#ifdef VERBOSE_DEBUG
1037 {
1038 int i;
1039
fc74eb79
RKAL
1040 dev_vdbg(&pl08x->adev->dev,
1041 "%-3s %-9s %-10s %-10s %-10s %s\n",
1042 "lli", "", "csrc", "cdst", "clli", "cctl");
e8689e63
LW
1043 for (i = 0; i < num_llis; i++) {
1044 dev_vdbg(&pl08x->adev->dev,
fc74eb79 1045 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
ba6785ff
TF
1046 i, llis_va, llis_va[PL080_LLI_SRC],
1047 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1048 llis_va[PL080_LLI_CCTL]);
1049 llis_va += pl08x->lli_words;
e8689e63
LW
1050 }
1051 }
1052#endif
1053
1054 return num_llis;
1055}
1056
e8689e63
LW
1057static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1058 struct pl08x_txd *txd)
1059{
b7f69d9d
VK
1060 struct pl08x_sg *dsg, *_dsg;
1061
c1205646
VK
1062 if (txd->llis_va)
1063 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
e8689e63 1064
b7f69d9d
VK
1065 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1066 list_del(&dsg->node);
1067 kfree(dsg);
1068 }
1069
e8689e63
LW
1070 kfree(txd);
1071}
1072
18536134
RK
1073static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1074{
1075 struct device *dev = txd->vd.tx.chan->device->dev;
1076 struct pl08x_sg *dsg;
1077
1078 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1079 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1080 list_for_each_entry(dsg, &txd->dsg_list, node)
1081 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1082 DMA_TO_DEVICE);
1083 else {
1084 list_for_each_entry(dsg, &txd->dsg_list, node)
1085 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1086 DMA_TO_DEVICE);
1087 }
1088 }
1089 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1090 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1091 list_for_each_entry(dsg, &txd->dsg_list, node)
1092 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1093 DMA_FROM_DEVICE);
1094 else
1095 list_for_each_entry(dsg, &txd->dsg_list, node)
1096 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1097 DMA_FROM_DEVICE);
1098 }
1099}
1100
1101static void pl08x_desc_free(struct virt_dma_desc *vd)
1102{
1103 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1104 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
18536134
RK
1105
1106 if (!plchan->slave)
1107 pl08x_unmap_buffers(txd);
1108
1109 if (!txd->done)
1110 pl08x_release_mux(plchan);
1111
18536134 1112 pl08x_free_txd(plchan->host, txd);
18536134
RK
1113}
1114
e8689e63
LW
1115static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1116 struct pl08x_dma_chan *plchan)
1117{
ea160561 1118 LIST_HEAD(head);
e8689e63 1119
879f127b 1120 vchan_get_all_descriptors(&plchan->vc, &head);
91998261 1121 vchan_dma_desc_free_list(&plchan->vc, &head);
e8689e63
LW
1122}
1123
1124/*
1125 * The DMA ENGINE API
1126 */
1127static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1128{
1129 return 0;
1130}
1131
1132static void pl08x_free_chan_resources(struct dma_chan *chan)
1133{
a068682c
RK
1134 /* Ensure all queued descriptors are freed */
1135 vchan_free_chan_resources(to_virt_chan(chan));
e8689e63
LW
1136}
1137
e8689e63
LW
1138static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1139 struct dma_chan *chan, unsigned long flags)
1140{
1141 struct dma_async_tx_descriptor *retval = NULL;
1142
1143 return retval;
1144}
1145
1146/*
94ae8522
RKAL
1147 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1148 * If slaves are relying on interrupts to signal completion this function
1149 * must not be called with interrupts disabled.
e8689e63 1150 */
3e27ee84
VK
1151static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1152 dma_cookie_t cookie, struct dma_tx_state *txstate)
e8689e63
LW
1153{
1154 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
06e885b7
RK
1155 struct virt_dma_desc *vd;
1156 unsigned long flags;
e8689e63 1157 enum dma_status ret;
06e885b7 1158 size_t bytes = 0;
e8689e63 1159
96a2af41
RKAL
1160 ret = dma_cookie_status(chan, cookie, txstate);
1161 if (ret == DMA_SUCCESS)
e8689e63 1162 return ret;
e8689e63 1163
06e885b7
RK
1164 /*
1165 * There's no point calculating the residue if there's
1166 * no txstate to store the value.
1167 */
1168 if (!txstate) {
1169 if (plchan->state == PL08X_CHAN_PAUSED)
1170 ret = DMA_PAUSED;
1171 return ret;
1172 }
1173
1174 spin_lock_irqsave(&plchan->vc.lock, flags);
1175 ret = dma_cookie_status(chan, cookie, txstate);
1176 if (ret != DMA_SUCCESS) {
1177 vd = vchan_find_desc(&plchan->vc, cookie);
1178 if (vd) {
1179 /* On the issued list, so hasn't been processed yet */
1180 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1181 struct pl08x_sg *dsg;
1182
1183 list_for_each_entry(dsg, &txd->dsg_list, node)
1184 bytes += dsg->len;
1185 } else {
1186 bytes = pl08x_getbytes_chan(plchan);
1187 }
1188 }
1189 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1190
e8689e63
LW
1191 /*
1192 * This cookie not complete yet
96a2af41 1193 * Get number of bytes left in the active transactions and queue
e8689e63 1194 */
06e885b7 1195 dma_set_residue(txstate, bytes);
e8689e63 1196
06e885b7
RK
1197 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1198 ret = DMA_PAUSED;
e8689e63
LW
1199
1200 /* Whether waiting or running, we're in progress */
06e885b7 1201 return ret;
e8689e63
LW
1202}
1203
1204/* PrimeCell DMA extension */
1205struct burst_table {
760596c6 1206 u32 burstwords;
e8689e63
LW
1207 u32 reg;
1208};
1209
1210static const struct burst_table burst_sizes[] = {
1211 {
1212 .burstwords = 256,
760596c6 1213 .reg = PL080_BSIZE_256,
e8689e63
LW
1214 },
1215 {
1216 .burstwords = 128,
760596c6 1217 .reg = PL080_BSIZE_128,
e8689e63
LW
1218 },
1219 {
1220 .burstwords = 64,
760596c6 1221 .reg = PL080_BSIZE_64,
e8689e63
LW
1222 },
1223 {
1224 .burstwords = 32,
760596c6 1225 .reg = PL080_BSIZE_32,
e8689e63
LW
1226 },
1227 {
1228 .burstwords = 16,
760596c6 1229 .reg = PL080_BSIZE_16,
e8689e63
LW
1230 },
1231 {
1232 .burstwords = 8,
760596c6 1233 .reg = PL080_BSIZE_8,
e8689e63
LW
1234 },
1235 {
1236 .burstwords = 4,
760596c6 1237 .reg = PL080_BSIZE_4,
e8689e63
LW
1238 },
1239 {
760596c6
RKAL
1240 .burstwords = 0,
1241 .reg = PL080_BSIZE_1,
e8689e63
LW
1242 },
1243};
1244
121c8476
RKAL
1245/*
1246 * Given the source and destination available bus masks, select which
1247 * will be routed to each port. We try to have source and destination
1248 * on separate ports, but always respect the allowable settings.
1249 */
1250static u32 pl08x_select_bus(u8 src, u8 dst)
1251{
1252 u32 cctl = 0;
1253
1254 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1255 cctl |= PL080_CONTROL_DST_AHB2;
1256 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1257 cctl |= PL080_CONTROL_SRC_AHB2;
1258
1259 return cctl;
1260}
1261
f14c426c
RKAL
1262static u32 pl08x_cctl(u32 cctl)
1263{
1264 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1265 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1266 PL080_CONTROL_PROT_MASK);
1267
1268 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1269 return cctl | PL080_CONTROL_PROT_SYS;
1270}
1271
aa88cdaa
RKAL
1272static u32 pl08x_width(enum dma_slave_buswidth width)
1273{
1274 switch (width) {
1275 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1276 return PL080_WIDTH_8BIT;
1277 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1278 return PL080_WIDTH_16BIT;
1279 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1280 return PL080_WIDTH_32BIT;
f32807f1
VK
1281 default:
1282 return ~0;
aa88cdaa 1283 }
aa88cdaa
RKAL
1284}
1285
760596c6
RKAL
1286static u32 pl08x_burst(u32 maxburst)
1287{
1288 int i;
1289
1290 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1291 if (burst_sizes[i].burstwords <= maxburst)
1292 break;
1293
1294 return burst_sizes[i].reg;
1295}
1296
9862ba17
RK
1297static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1298 enum dma_slave_buswidth addr_width, u32 maxburst)
1299{
1300 u32 width, burst, cctl = 0;
1301
1302 width = pl08x_width(addr_width);
1303 if (width == ~0)
1304 return ~0;
1305
1306 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1307 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1308
1309 /*
1310 * If this channel will only request single transfers, set this
1311 * down to ONE element. Also select one element if no maxburst
1312 * is specified.
1313 */
1314 if (plchan->cd->single)
1315 maxburst = 1;
1316
1317 burst = pl08x_burst(maxburst);
1318 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1319 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1320
1321 return pl08x_cctl(cctl);
1322}
1323
f0fd9446
RKAL
1324static int dma_set_runtime_config(struct dma_chan *chan,
1325 struct dma_slave_config *config)
e8689e63
LW
1326{
1327 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
b7f75865
RKAL
1328
1329 if (!plchan->slave)
1330 return -EINVAL;
e8689e63 1331
dc8d5f8d
RK
1332 /* Reject definitely invalid configurations */
1333 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1334 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
f0fd9446 1335 return -EINVAL;
e8689e63 1336
ed91c13d
RK
1337 plchan->cfg = *config;
1338
f0fd9446 1339 return 0;
e8689e63
LW
1340}
1341
1342/*
1343 * Slave transactions callback to the slave device to allow
1344 * synchronization of slave DMA signals with the DMAC enable
1345 */
1346static void pl08x_issue_pending(struct dma_chan *chan)
1347{
1348 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
e8689e63
LW
1349 unsigned long flags;
1350
083be28a 1351 spin_lock_irqsave(&plchan->vc.lock, flags);
879f127b 1352 if (vchan_issue_pending(&plchan->vc)) {
a5a488db
RK
1353 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1354 pl08x_phy_alloc_and_start(plchan);
e8689e63 1355 }
083be28a 1356 spin_unlock_irqrestore(&plchan->vc.lock, flags);
e8689e63
LW
1357}
1358
879f127b 1359static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
ac3cd20d 1360{
b201c111 1361 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
ac3cd20d
RKAL
1362
1363 if (txd) {
b7f69d9d 1364 INIT_LIST_HEAD(&txd->dsg_list);
4983a04f
RKAL
1365
1366 /* Always enable error and terminal interrupts */
1367 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1368 PL080_CONFIG_TC_IRQ_MASK;
ac3cd20d
RKAL
1369 }
1370 return txd;
1371}
1372
e8689e63
LW
1373/*
1374 * Initialize a descriptor to be used by memcpy submit
1375 */
1376static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1377 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1378 size_t len, unsigned long flags)
1379{
1380 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1381 struct pl08x_driver_data *pl08x = plchan->host;
1382 struct pl08x_txd *txd;
b7f69d9d 1383 struct pl08x_sg *dsg;
e8689e63
LW
1384 int ret;
1385
879f127b 1386 txd = pl08x_get_txd(plchan);
e8689e63
LW
1387 if (!txd) {
1388 dev_err(&pl08x->adev->dev,
1389 "%s no memory for descriptor\n", __func__);
1390 return NULL;
1391 }
1392
b7f69d9d
VK
1393 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1394 if (!dsg) {
1395 pl08x_free_txd(pl08x, txd);
1396 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1397 __func__);
1398 return NULL;
1399 }
1400 list_add_tail(&dsg->node, &txd->dsg_list);
1401
b7f69d9d
VK
1402 dsg->src_addr = src;
1403 dsg->dst_addr = dest;
1404 dsg->len = len;
e8689e63
LW
1405
1406 /* Set platform data for m2m */
4983a04f 1407 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
dc8d5f8d 1408 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
c7da9a56 1409 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
4983a04f 1410
e8689e63 1411 /* Both to be incremented or the code will break */
70b5ed6b 1412 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
c7da9a56 1413
c7da9a56 1414 if (pl08x->vd->dualmaster)
121c8476
RKAL
1415 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1416 pl08x->mem_buses);
e8689e63 1417
aa4afb75
RK
1418 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1419 if (!ret) {
1420 pl08x_free_txd(pl08x, txd);
e8689e63 1421 return NULL;
aa4afb75 1422 }
e8689e63 1423
879f127b 1424 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
e8689e63
LW
1425}
1426
3e2a037c 1427static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
e8689e63 1428 struct dma_chan *chan, struct scatterlist *sgl,
db8196df 1429 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 1430 unsigned long flags, void *context)
e8689e63
LW
1431{
1432 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1433 struct pl08x_driver_data *pl08x = plchan->host;
1434 struct pl08x_txd *txd;
b7f69d9d
VK
1435 struct pl08x_sg *dsg;
1436 struct scatterlist *sg;
dc8d5f8d 1437 enum dma_slave_buswidth addr_width;
b7f69d9d 1438 dma_addr_t slave_addr;
0a235657 1439 int ret, tmp;
409ec8db 1440 u8 src_buses, dst_buses;
dc8d5f8d 1441 u32 maxburst, cctl;
e8689e63 1442
e8689e63 1443 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
fdaf9c4b 1444 __func__, sg_dma_len(sgl), plchan->name);
e8689e63 1445
879f127b 1446 txd = pl08x_get_txd(plchan);
e8689e63
LW
1447 if (!txd) {
1448 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1449 return NULL;
1450 }
1451
e8689e63
LW
1452 /*
1453 * Set up addresses, the PrimeCell configured address
1454 * will take precedence since this may configure the
1455 * channel target address dynamically at runtime.
1456 */
db8196df 1457 if (direction == DMA_MEM_TO_DEV) {
dc8d5f8d 1458 cctl = PL080_CONTROL_SRC_INCR;
ed91c13d 1459 slave_addr = plchan->cfg.dst_addr;
dc8d5f8d
RK
1460 addr_width = plchan->cfg.dst_addr_width;
1461 maxburst = plchan->cfg.dst_maxburst;
409ec8db
RK
1462 src_buses = pl08x->mem_buses;
1463 dst_buses = plchan->cd->periph_buses;
db8196df 1464 } else if (direction == DMA_DEV_TO_MEM) {
dc8d5f8d 1465 cctl = PL080_CONTROL_DST_INCR;
ed91c13d 1466 slave_addr = plchan->cfg.src_addr;
dc8d5f8d
RK
1467 addr_width = plchan->cfg.src_addr_width;
1468 maxburst = plchan->cfg.src_maxburst;
409ec8db
RK
1469 src_buses = plchan->cd->periph_buses;
1470 dst_buses = pl08x->mem_buses;
e8689e63 1471 } else {
b7f69d9d 1472 pl08x_free_txd(pl08x, txd);
e8689e63
LW
1473 dev_err(&pl08x->adev->dev,
1474 "%s direction unsupported\n", __func__);
1475 return NULL;
1476 }
e8689e63 1477
dc8d5f8d 1478 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
800d683e
RK
1479 if (cctl == ~0) {
1480 pl08x_free_txd(pl08x, txd);
1481 dev_err(&pl08x->adev->dev,
1482 "DMA slave configuration botched?\n");
1483 return NULL;
1484 }
1485
409ec8db
RK
1486 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1487
95442b22 1488 if (plchan->cfg.device_fc)
db8196df 1489 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
0a235657
VK
1490 PL080_FLOW_PER2MEM_PER;
1491 else
db8196df 1492 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
0a235657
VK
1493 PL080_FLOW_PER2MEM;
1494
1495 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1496
c48d4963
RK
1497 ret = pl08x_request_mux(plchan);
1498 if (ret < 0) {
1499 pl08x_free_txd(pl08x, txd);
1500 dev_dbg(&pl08x->adev->dev,
1501 "unable to mux for transfer on %s due to platform restrictions\n",
1502 plchan->name);
1503 return NULL;
1504 }
1505
1506 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1507 plchan->signal, plchan->name);
1508
1509 /* Assign the flow control signal to this channel */
1510 if (direction == DMA_MEM_TO_DEV)
1511 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1512 else
1513 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1514
b7f69d9d
VK
1515 for_each_sg(sgl, sg, sg_len, tmp) {
1516 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1517 if (!dsg) {
c48d4963 1518 pl08x_release_mux(plchan);
b7f69d9d
VK
1519 pl08x_free_txd(pl08x, txd);
1520 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1521 __func__);
1522 return NULL;
1523 }
1524 list_add_tail(&dsg->node, &txd->dsg_list);
1525
1526 dsg->len = sg_dma_len(sg);
db8196df 1527 if (direction == DMA_MEM_TO_DEV) {
cbb796cc 1528 dsg->src_addr = sg_dma_address(sg);
b7f69d9d
VK
1529 dsg->dst_addr = slave_addr;
1530 } else {
1531 dsg->src_addr = slave_addr;
cbb796cc 1532 dsg->dst_addr = sg_dma_address(sg);
b7f69d9d
VK
1533 }
1534 }
1535
aa4afb75
RK
1536 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1537 if (!ret) {
1538 pl08x_release_mux(plchan);
1539 pl08x_free_txd(pl08x, txd);
e8689e63 1540 return NULL;
aa4afb75 1541 }
e8689e63 1542
879f127b 1543 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
e8689e63
LW
1544}
1545
1546static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1547 unsigned long arg)
1548{
1549 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1550 struct pl08x_driver_data *pl08x = plchan->host;
1551 unsigned long flags;
1552 int ret = 0;
1553
1554 /* Controls applicable to inactive channels */
1555 if (cmd == DMA_SLAVE_CONFIG) {
f0fd9446
RKAL
1556 return dma_set_runtime_config(chan,
1557 (struct dma_slave_config *)arg);
e8689e63
LW
1558 }
1559
1560 /*
1561 * Anything succeeds on channels with no physical allocation and
1562 * no queued transfers.
1563 */
083be28a 1564 spin_lock_irqsave(&plchan->vc.lock, flags);
e8689e63 1565 if (!plchan->phychan && !plchan->at) {
083be28a 1566 spin_unlock_irqrestore(&plchan->vc.lock, flags);
e8689e63
LW
1567 return 0;
1568 }
1569
1570 switch (cmd) {
1571 case DMA_TERMINATE_ALL:
1572 plchan->state = PL08X_CHAN_IDLE;
1573
1574 if (plchan->phychan) {
e8689e63
LW
1575 /*
1576 * Mark physical channel as free and free any slave
1577 * signal
1578 */
a5a488db 1579 pl08x_phy_free(plchan);
e8689e63 1580 }
e8689e63
LW
1581 /* Dequeue jobs and free LLIs */
1582 if (plchan->at) {
18536134 1583 pl08x_desc_free(&plchan->at->vd);
e8689e63
LW
1584 plchan->at = NULL;
1585 }
1586 /* Dequeue jobs not yet fired as well */
1587 pl08x_free_txd_list(pl08x, plchan);
1588 break;
1589 case DMA_PAUSE:
1590 pl08x_pause_phy_chan(plchan->phychan);
1591 plchan->state = PL08X_CHAN_PAUSED;
1592 break;
1593 case DMA_RESUME:
1594 pl08x_resume_phy_chan(plchan->phychan);
1595 plchan->state = PL08X_CHAN_RUNNING;
1596 break;
1597 default:
1598 /* Unknown command */
1599 ret = -ENXIO;
1600 break;
1601 }
1602
083be28a 1603 spin_unlock_irqrestore(&plchan->vc.lock, flags);
e8689e63
LW
1604
1605 return ret;
1606}
1607
1608bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1609{
7703eac9 1610 struct pl08x_dma_chan *plchan;
e8689e63
LW
1611 char *name = chan_id;
1612
7703eac9
RKAL
1613 /* Reject channels for devices not bound to this driver */
1614 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1615 return false;
1616
1617 plchan = to_pl08x_chan(chan);
1618
e8689e63
LW
1619 /* Check that the channel is not taken! */
1620 if (!strcmp(plchan->name, name))
1621 return true;
1622
1623 return false;
1624}
1625
1626/*
1627 * Just check that the device is there and active
94ae8522
RKAL
1628 * TODO: turn this bit on/off depending on the number of physical channels
1629 * actually used, if it is zero... well shut it off. That will save some
1630 * power. Cut the clock at the same time.
e8689e63
LW
1631 */
1632static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1633{
affa115e
LW
1634 /* The Nomadik variant does not have the config register */
1635 if (pl08x->vd->nomadik)
1636 return;
48a59ef3 1637 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
e8689e63
LW
1638}
1639
e8689e63
LW
1640static irqreturn_t pl08x_irq(int irq, void *dev)
1641{
1642 struct pl08x_driver_data *pl08x = dev;
28da2836
VK
1643 u32 mask = 0, err, tc, i;
1644
1645 /* check & clear - ERR & TC interrupts */
1646 err = readl(pl08x->base + PL080_ERR_STATUS);
1647 if (err) {
1648 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1649 __func__, err);
1650 writel(err, pl08x->base + PL080_ERR_CLEAR);
e8689e63 1651 }
d29bf019 1652 tc = readl(pl08x->base + PL080_TC_STATUS);
28da2836
VK
1653 if (tc)
1654 writel(tc, pl08x->base + PL080_TC_CLEAR);
1655
1656 if (!err && !tc)
1657 return IRQ_NONE;
1658
e8689e63 1659 for (i = 0; i < pl08x->vd->channels; i++) {
28da2836 1660 if (((1 << i) & err) || ((1 << i) & tc)) {
e8689e63
LW
1661 /* Locate physical channel */
1662 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1663 struct pl08x_dma_chan *plchan = phychan->serving;
a936e793 1664 struct pl08x_txd *tx;
e8689e63 1665
28da2836
VK
1666 if (!plchan) {
1667 dev_err(&pl08x->adev->dev,
1668 "%s Error TC interrupt on unused channel: 0x%08x\n",
1669 __func__, i);
1670 continue;
1671 }
1672
083be28a 1673 spin_lock(&plchan->vc.lock);
a936e793
RK
1674 tx = plchan->at;
1675 if (tx) {
1676 plchan->at = NULL;
c48d4963
RK
1677 /*
1678 * This descriptor is done, release its mux
1679 * reservation.
1680 */
1681 pl08x_release_mux(plchan);
18536134
RK
1682 tx->done = true;
1683 vchan_cookie_complete(&tx->vd);
c33b644c 1684
a5a488db
RK
1685 /*
1686 * And start the next descriptor (if any),
1687 * otherwise free this channel.
1688 */
879f127b 1689 if (vchan_next_desc(&plchan->vc))
c33b644c 1690 pl08x_start_next_txd(plchan);
a5a488db
RK
1691 else
1692 pl08x_phy_free(plchan);
a936e793 1693 }
083be28a 1694 spin_unlock(&plchan->vc.lock);
a936e793 1695
e8689e63
LW
1696 mask |= (1 << i);
1697 }
1698 }
e8689e63
LW
1699
1700 return mask ? IRQ_HANDLED : IRQ_NONE;
1701}
1702
121c8476
RKAL
1703static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1704{
121c8476
RKAL
1705 chan->slave = true;
1706 chan->name = chan->cd->bus_id;
ed91c13d
RK
1707 chan->cfg.src_addr = chan->cd->addr;
1708 chan->cfg.dst_addr = chan->cd->addr;
121c8476
RKAL
1709}
1710
e8689e63
LW
1711/*
1712 * Initialise the DMAC memcpy/slave channels.
1713 * Make a local wrapper to hold required data
1714 */
1715static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
3e27ee84 1716 struct dma_device *dmadev, unsigned int channels, bool slave)
e8689e63
LW
1717{
1718 struct pl08x_dma_chan *chan;
1719 int i;
1720
1721 INIT_LIST_HEAD(&dmadev->channels);
94ae8522 1722
e8689e63
LW
1723 /*
1724 * Register as many many memcpy as we have physical channels,
1725 * we won't always be able to use all but the code will have
1726 * to cope with that situation.
1727 */
1728 for (i = 0; i < channels; i++) {
b201c111 1729 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
e8689e63
LW
1730 if (!chan) {
1731 dev_err(&pl08x->adev->dev,
1732 "%s no memory for channel\n", __func__);
1733 return -ENOMEM;
1734 }
1735
1736 chan->host = pl08x;
1737 chan->state = PL08X_CHAN_IDLE;
ad0de2ac 1738 chan->signal = -1;
e8689e63
LW
1739
1740 if (slave) {
e8689e63 1741 chan->cd = &pl08x->pd->slave_channels[i];
121c8476 1742 pl08x_dma_slave_init(chan);
e8689e63
LW
1743 } else {
1744 chan->cd = &pl08x->pd->memcpy_channel;
1745 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1746 if (!chan->name) {
1747 kfree(chan);
1748 return -ENOMEM;
1749 }
1750 }
175a5e61 1751 dev_dbg(&pl08x->adev->dev,
e8689e63
LW
1752 "initialize virtual channel \"%s\"\n",
1753 chan->name);
1754
18536134 1755 chan->vc.desc_free = pl08x_desc_free;
083be28a 1756 vchan_init(&chan->vc, dmadev);
e8689e63
LW
1757 }
1758 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1759 i, slave ? "slave" : "memcpy");
1760 return i;
1761}
1762
1763static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1764{
1765 struct pl08x_dma_chan *chan = NULL;
1766 struct pl08x_dma_chan *next;
1767
1768 list_for_each_entry_safe(chan,
01d8dc64
RK
1769 next, &dmadev->channels, vc.chan.device_node) {
1770 list_del(&chan->vc.chan.device_node);
e8689e63
LW
1771 kfree(chan);
1772 }
1773}
1774
1775#ifdef CONFIG_DEBUG_FS
1776static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1777{
1778 switch (state) {
1779 case PL08X_CHAN_IDLE:
1780 return "idle";
1781 case PL08X_CHAN_RUNNING:
1782 return "running";
1783 case PL08X_CHAN_PAUSED:
1784 return "paused";
1785 case PL08X_CHAN_WAITING:
1786 return "waiting";
1787 default:
1788 break;
1789 }
1790 return "UNKNOWN STATE";
1791}
1792
1793static int pl08x_debugfs_show(struct seq_file *s, void *data)
1794{
1795 struct pl08x_driver_data *pl08x = s->private;
1796 struct pl08x_dma_chan *chan;
1797 struct pl08x_phy_chan *ch;
1798 unsigned long flags;
1799 int i;
1800
1801 seq_printf(s, "PL08x physical channels:\n");
1802 seq_printf(s, "CHANNEL:\tUSER:\n");
1803 seq_printf(s, "--------\t-----\n");
1804 for (i = 0; i < pl08x->vd->channels; i++) {
1805 struct pl08x_dma_chan *virt_chan;
1806
1807 ch = &pl08x->phy_chans[i];
1808
1809 spin_lock_irqsave(&ch->lock, flags);
1810 virt_chan = ch->serving;
1811
affa115e
LW
1812 seq_printf(s, "%d\t\t%s%s\n",
1813 ch->id,
1814 virt_chan ? virt_chan->name : "(none)",
1815 ch->locked ? " LOCKED" : "");
e8689e63
LW
1816
1817 spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819
1820 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1821 seq_printf(s, "CHANNEL:\tSTATE:\n");
1822 seq_printf(s, "--------\t------\n");
01d8dc64 1823 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
3e2a037c 1824 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1825 pl08x_state_str(chan->state));
1826 }
1827
1828 seq_printf(s, "\nPL08x virtual slave channels:\n");
1829 seq_printf(s, "CHANNEL:\tSTATE:\n");
1830 seq_printf(s, "--------\t------\n");
01d8dc64 1831 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
3e2a037c 1832 seq_printf(s, "%s\t\t%s\n", chan->name,
e8689e63
LW
1833 pl08x_state_str(chan->state));
1834 }
1835
1836 return 0;
1837}
1838
1839static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1840{
1841 return single_open(file, pl08x_debugfs_show, inode->i_private);
1842}
1843
1844static const struct file_operations pl08x_debugfs_operations = {
1845 .open = pl08x_debugfs_open,
1846 .read = seq_read,
1847 .llseek = seq_lseek,
1848 .release = single_release,
1849};
1850
1851static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1852{
1853 /* Expose a simple debugfs interface to view all clocks */
3e27ee84
VK
1854 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1855 S_IFREG | S_IRUGO, NULL, pl08x,
1856 &pl08x_debugfs_operations);
e8689e63
LW
1857}
1858
1859#else
1860static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1861{
1862}
1863#endif
1864
aa25afad 1865static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
e8689e63
LW
1866{
1867 struct pl08x_driver_data *pl08x;
f96ca9ec 1868 const struct vendor_data *vd = id->data;
ba6785ff 1869 u32 tsfr_size;
e8689e63
LW
1870 int ret = 0;
1871 int i;
1872
1873 ret = amba_request_regions(adev, NULL);
1874 if (ret)
1875 return ret;
1876
1877 /* Create the driver state holder */
b201c111 1878 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
e8689e63
LW
1879 if (!pl08x) {
1880 ret = -ENOMEM;
1881 goto out_no_pl08x;
1882 }
1883
1884 /* Initialize memcpy engine */
1885 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1886 pl08x->memcpy.dev = &adev->dev;
1887 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1888 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1889 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1890 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1891 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1892 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1893 pl08x->memcpy.device_control = pl08x_control;
1894
1895 /* Initialize slave engine */
1896 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1897 pl08x->slave.dev = &adev->dev;
1898 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1899 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1900 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1901 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1902 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1903 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1904 pl08x->slave.device_control = pl08x_control;
1905
1906 /* Get the platform data */
1907 pl08x->pd = dev_get_platdata(&adev->dev);
1908 if (!pl08x->pd) {
1909 dev_err(&adev->dev, "no platform data supplied\n");
983d7beb 1910 ret = -EINVAL;
e8689e63
LW
1911 goto out_no_platdata;
1912 }
1913
1914 /* Assign useful pointers to the driver state */
1915 pl08x->adev = adev;
1916 pl08x->vd = vd;
1917
30749cb4
RKAL
1918 /* By default, AHB1 only. If dualmaster, from platform */
1919 pl08x->lli_buses = PL08X_AHB1;
1920 pl08x->mem_buses = PL08X_AHB1;
1921 if (pl08x->vd->dualmaster) {
1922 pl08x->lli_buses = pl08x->pd->lli_buses;
1923 pl08x->mem_buses = pl08x->pd->mem_buses;
1924 }
1925
ba6785ff
TF
1926 pl08x->lli_words = PL080_LLI_WORDS;
1927 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
1928
e8689e63
LW
1929 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1930 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
ba6785ff 1931 tsfr_size, PL08X_ALIGN, 0);
e8689e63
LW
1932 if (!pl08x->pool) {
1933 ret = -ENOMEM;
1934 goto out_no_lli_pool;
1935 }
1936
e8689e63
LW
1937 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1938 if (!pl08x->base) {
1939 ret = -ENOMEM;
1940 goto out_no_ioremap;
1941 }
1942
1943 /* Turn on the PL08x */
1944 pl08x_ensure_on(pl08x);
1945
94ae8522 1946 /* Attach the interrupt handler */
e8689e63
LW
1947 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1948 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1949
1950 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
b05cd8f4 1951 DRIVER_NAME, pl08x);
e8689e63
LW
1952 if (ret) {
1953 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1954 __func__, adev->irq[0]);
1955 goto out_no_irq;
1956 }
1957
1958 /* Initialize physical channels */
affa115e 1959 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
e8689e63
LW
1960 GFP_KERNEL);
1961 if (!pl08x->phy_chans) {
1962 dev_err(&adev->dev, "%s failed to allocate "
1963 "physical channel holders\n",
1964 __func__);
983d7beb 1965 ret = -ENOMEM;
e8689e63
LW
1966 goto out_no_phychans;
1967 }
1968
1969 for (i = 0; i < vd->channels; i++) {
1970 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1971
1972 ch->id = i;
1973 ch->base = pl08x->base + PL080_Cx_BASE(i);
d86ccea7 1974 ch->reg_config = ch->base + vd->config_offset;
e8689e63 1975 spin_lock_init(&ch->lock);
affa115e
LW
1976
1977 /*
1978 * Nomadik variants can have channels that are locked
1979 * down for the secure world only. Lock up these channels
1980 * by perpetually serving a dummy virtual channel.
1981 */
1982 if (vd->nomadik) {
1983 u32 val;
1984
d86ccea7 1985 val = readl(ch->reg_config);
affa115e
LW
1986 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1987 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1988 ch->locked = true;
1989 }
1990 }
1991
175a5e61
VK
1992 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1993 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
e8689e63
LW
1994 }
1995
1996 /* Register as many memcpy channels as there are physical channels */
1997 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1998 pl08x->vd->channels, false);
1999 if (ret <= 0) {
2000 dev_warn(&pl08x->adev->dev,
2001 "%s failed to enumerate memcpy channels - %d\n",
2002 __func__, ret);
2003 goto out_no_memcpy;
2004 }
2005 pl08x->memcpy.chancnt = ret;
2006
2007 /* Register slave channels */
2008 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
3e27ee84 2009 pl08x->pd->num_slave_channels, true);
e8689e63
LW
2010 if (ret <= 0) {
2011 dev_warn(&pl08x->adev->dev,
2012 "%s failed to enumerate slave channels - %d\n",
2013 __func__, ret);
2014 goto out_no_slave;
2015 }
2016 pl08x->slave.chancnt = ret;
2017
2018 ret = dma_async_device_register(&pl08x->memcpy);
2019 if (ret) {
2020 dev_warn(&pl08x->adev->dev,
2021 "%s failed to register memcpy as an async device - %d\n",
2022 __func__, ret);
2023 goto out_no_memcpy_reg;
2024 }
2025
2026 ret = dma_async_device_register(&pl08x->slave);
2027 if (ret) {
2028 dev_warn(&pl08x->adev->dev,
2029 "%s failed to register slave as an async device - %d\n",
2030 __func__, ret);
2031 goto out_no_slave_reg;
2032 }
2033
2034 amba_set_drvdata(adev, pl08x);
2035 init_pl08x_debugfs(pl08x);
b05cd8f4
RKAL
2036 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2037 amba_part(adev), amba_rev(adev),
2038 (unsigned long long)adev->res.start, adev->irq[0]);
b7b6018b 2039
e8689e63
LW
2040 return 0;
2041
2042out_no_slave_reg:
2043 dma_async_device_unregister(&pl08x->memcpy);
2044out_no_memcpy_reg:
2045 pl08x_free_virtual_channels(&pl08x->slave);
2046out_no_slave:
2047 pl08x_free_virtual_channels(&pl08x->memcpy);
2048out_no_memcpy:
2049 kfree(pl08x->phy_chans);
2050out_no_phychans:
2051 free_irq(adev->irq[0], pl08x);
2052out_no_irq:
2053 iounmap(pl08x->base);
2054out_no_ioremap:
2055 dma_pool_destroy(pl08x->pool);
2056out_no_lli_pool:
2057out_no_platdata:
2058 kfree(pl08x);
2059out_no_pl08x:
2060 amba_release_regions(adev);
2061 return ret;
2062}
2063
2064/* PL080 has 8 channels and the PL080 have just 2 */
2065static struct vendor_data vendor_pl080 = {
d86ccea7 2066 .config_offset = PL080_CH_CONFIG,
e8689e63
LW
2067 .channels = 8,
2068 .dualmaster = true,
2069};
2070
affa115e 2071static struct vendor_data vendor_nomadik = {
d86ccea7 2072 .config_offset = PL080_CH_CONFIG,
affa115e
LW
2073 .channels = 8,
2074 .dualmaster = true,
2075 .nomadik = true,
2076};
2077
e8689e63 2078static struct vendor_data vendor_pl081 = {
d86ccea7 2079 .config_offset = PL080_CH_CONFIG,
e8689e63
LW
2080 .channels = 2,
2081 .dualmaster = false,
2082};
2083
2084static struct amba_id pl08x_ids[] = {
2085 /* PL080 */
2086 {
2087 .id = 0x00041080,
2088 .mask = 0x000fffff,
2089 .data = &vendor_pl080,
2090 },
2091 /* PL081 */
2092 {
2093 .id = 0x00041081,
2094 .mask = 0x000fffff,
2095 .data = &vendor_pl081,
2096 },
2097 /* Nomadik 8815 PL080 variant */
2098 {
affa115e 2099 .id = 0x00280080,
e8689e63 2100 .mask = 0x00ffffff,
affa115e 2101 .data = &vendor_nomadik,
e8689e63
LW
2102 },
2103 { 0, 0 },
2104};
2105
037566df
DM
2106MODULE_DEVICE_TABLE(amba, pl08x_ids);
2107
e8689e63
LW
2108static struct amba_driver pl08x_amba_driver = {
2109 .drv.name = DRIVER_NAME,
2110 .id_table = pl08x_ids,
2111 .probe = pl08x_probe,
2112};
2113
2114static int __init pl08x_init(void)
2115{
2116 int retval;
2117 retval = amba_driver_register(&pl08x_amba_driver);
2118 if (retval)
2119 printk(KERN_WARNING DRIVER_NAME
e8b5e11d 2120 "failed to register as an AMBA device (%d)\n",
e8689e63
LW
2121 retval);
2122 return retval;
2123}
2124subsys_initcall(pl08x_init);