]>
Commit | Line | Data |
---|---|---|
c2dde5f8 MP |
1 | /* |
2 | * TI EDMA DMA engine driver | |
3 | * | |
4 | * Copyright 2012 Texas Instruments | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License as | |
8 | * published by the Free Software Foundation version 2. | |
9 | * | |
10 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any | |
11 | * kind, whether express or implied; without even the implied warranty | |
12 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | * GNU General Public License for more details. | |
14 | */ | |
15 | ||
16 | #include <linux/dmaengine.h> | |
17 | #include <linux/dma-mapping.h> | |
b7a4fd53 | 18 | #include <linux/edma.h> |
c2dde5f8 MP |
19 | #include <linux/err.h> |
20 | #include <linux/init.h> | |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/list.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/platform_device.h> | |
25 | #include <linux/slab.h> | |
26 | #include <linux/spinlock.h> | |
ed64610f | 27 | #include <linux/of.h> |
dc9b6055 | 28 | #include <linux/of_dma.h> |
2b6b3b74 PU |
29 | #include <linux/of_irq.h> |
30 | #include <linux/of_address.h> | |
31 | #include <linux/of_device.h> | |
32 | #include <linux/pm_runtime.h> | |
c2dde5f8 | 33 | |
3ad7a42d | 34 | #include <linux/platform_data/edma.h> |
c2dde5f8 MP |
35 | |
36 | #include "dmaengine.h" | |
37 | #include "virt-dma.h" | |
38 | ||
2b6b3b74 PU |
39 | /* Offsets matching "struct edmacc_param" */ |
40 | #define PARM_OPT 0x00 | |
41 | #define PARM_SRC 0x04 | |
42 | #define PARM_A_B_CNT 0x08 | |
43 | #define PARM_DST 0x0c | |
44 | #define PARM_SRC_DST_BIDX 0x10 | |
45 | #define PARM_LINK_BCNTRLD 0x14 | |
46 | #define PARM_SRC_DST_CIDX 0x18 | |
47 | #define PARM_CCNT 0x1c | |
48 | ||
49 | #define PARM_SIZE 0x20 | |
50 | ||
51 | /* Offsets for EDMA CC global channel registers and their shadows */ | |
52 | #define SH_ER 0x00 /* 64 bits */ | |
53 | #define SH_ECR 0x08 /* 64 bits */ | |
54 | #define SH_ESR 0x10 /* 64 bits */ | |
55 | #define SH_CER 0x18 /* 64 bits */ | |
56 | #define SH_EER 0x20 /* 64 bits */ | |
57 | #define SH_EECR 0x28 /* 64 bits */ | |
58 | #define SH_EESR 0x30 /* 64 bits */ | |
59 | #define SH_SER 0x38 /* 64 bits */ | |
60 | #define SH_SECR 0x40 /* 64 bits */ | |
61 | #define SH_IER 0x50 /* 64 bits */ | |
62 | #define SH_IECR 0x58 /* 64 bits */ | |
63 | #define SH_IESR 0x60 /* 64 bits */ | |
64 | #define SH_IPR 0x68 /* 64 bits */ | |
65 | #define SH_ICR 0x70 /* 64 bits */ | |
66 | #define SH_IEVAL 0x78 | |
67 | #define SH_QER 0x80 | |
68 | #define SH_QEER 0x84 | |
69 | #define SH_QEECR 0x88 | |
70 | #define SH_QEESR 0x8c | |
71 | #define SH_QSER 0x90 | |
72 | #define SH_QSECR 0x94 | |
73 | #define SH_SIZE 0x200 | |
74 | ||
75 | /* Offsets for EDMA CC global registers */ | |
76 | #define EDMA_REV 0x0000 | |
77 | #define EDMA_CCCFG 0x0004 | |
78 | #define EDMA_QCHMAP 0x0200 /* 8 registers */ | |
79 | #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ | |
80 | #define EDMA_QDMAQNUM 0x0260 | |
81 | #define EDMA_QUETCMAP 0x0280 | |
82 | #define EDMA_QUEPRI 0x0284 | |
83 | #define EDMA_EMR 0x0300 /* 64 bits */ | |
84 | #define EDMA_EMCR 0x0308 /* 64 bits */ | |
85 | #define EDMA_QEMR 0x0310 | |
86 | #define EDMA_QEMCR 0x0314 | |
87 | #define EDMA_CCERR 0x0318 | |
88 | #define EDMA_CCERRCLR 0x031c | |
89 | #define EDMA_EEVAL 0x0320 | |
90 | #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ | |
91 | #define EDMA_QRAE 0x0380 /* 4 registers */ | |
92 | #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ | |
93 | #define EDMA_QSTAT 0x0600 /* 2 registers */ | |
94 | #define EDMA_QWMTHRA 0x0620 | |
95 | #define EDMA_QWMTHRB 0x0624 | |
96 | #define EDMA_CCSTAT 0x0640 | |
97 | ||
98 | #define EDMA_M 0x1000 /* global channel registers */ | |
99 | #define EDMA_ECR 0x1008 | |
100 | #define EDMA_ECRH 0x100C | |
101 | #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ | |
102 | #define EDMA_PARM 0x4000 /* PaRAM entries */ | |
103 | ||
104 | #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) | |
105 | ||
106 | #define EDMA_DCHMAP 0x0100 /* 64 registers */ | |
107 | ||
108 | /* CCCFG register */ | |
109 | #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ | |
f5ea7ad2 | 110 | #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ |
2b6b3b74 PU |
111 | #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ |
112 | #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ | |
113 | #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ | |
114 | #define CHMAP_EXIST BIT(24) | |
115 | ||
4ac31d18 JO |
116 | /* CCSTAT register */ |
117 | #define EDMA_CCSTAT_ACTV BIT(4) | |
118 | ||
2abd5f1b JF |
119 | /* |
120 | * Max of 20 segments per channel to conserve PaRAM slots | |
121 | * Also note that MAX_NR_SG should be atleast the no.of periods | |
122 | * that are required for ASoC, otherwise DMA prep calls will | |
123 | * fail. Today davinci-pcm is the only user of this driver and | |
124 | * requires atleast 17 slots, so we setup the default to 20. | |
125 | */ | |
126 | #define MAX_NR_SG 20 | |
c2dde5f8 MP |
127 | #define EDMA_MAX_SLOTS MAX_NR_SG |
128 | #define EDMA_DESCRIPTORS 16 | |
129 | ||
2b6b3b74 PU |
130 | #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ |
131 | #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ | |
132 | #define EDMA_CONT_PARAMS_ANY 1001 | |
133 | #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 | |
134 | #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 | |
135 | ||
2b6b3b74 PU |
136 | /* PaRAM slots are laid out like this */ |
137 | struct edmacc_param { | |
138 | u32 opt; | |
139 | u32 src; | |
140 | u32 a_b_cnt; | |
141 | u32 dst; | |
142 | u32 src_dst_bidx; | |
143 | u32 link_bcntrld; | |
144 | u32 src_dst_cidx; | |
145 | u32 ccnt; | |
146 | } __packed; | |
147 | ||
148 | /* fields in edmacc_param.opt */ | |
149 | #define SAM BIT(0) | |
150 | #define DAM BIT(1) | |
151 | #define SYNCDIM BIT(2) | |
152 | #define STATIC BIT(3) | |
153 | #define EDMA_FWID (0x07 << 8) | |
154 | #define TCCMODE BIT(11) | |
155 | #define EDMA_TCC(t) ((t) << 12) | |
156 | #define TCINTEN BIT(20) | |
157 | #define ITCINTEN BIT(21) | |
158 | #define TCCHEN BIT(22) | |
159 | #define ITCCHEN BIT(23) | |
160 | ||
b5088ad9 | 161 | struct edma_pset { |
c2da2340 TG |
162 | u32 len; |
163 | dma_addr_t addr; | |
b5088ad9 TG |
164 | struct edmacc_param param; |
165 | }; | |
166 | ||
c2dde5f8 MP |
167 | struct edma_desc { |
168 | struct virt_dma_desc vdesc; | |
169 | struct list_head node; | |
c2da2340 | 170 | enum dma_transfer_direction direction; |
50a9c707 | 171 | int cyclic; |
c2dde5f8 MP |
172 | int absync; |
173 | int pset_nr; | |
04361d88 | 174 | struct edma_chan *echan; |
53407062 | 175 | int processed; |
04361d88 JF |
176 | |
177 | /* | |
178 | * The following 4 elements are used for residue accounting. | |
179 | * | |
180 | * - processed_stat: the number of SG elements we have traversed | |
181 | * so far to cover accounting. This is updated directly to processed | |
182 | * during edma_callback and is always <= processed, because processed | |
183 | * refers to the number of pending transfer (programmed to EDMA | |
184 | * controller), where as processed_stat tracks number of transfers | |
185 | * accounted for so far. | |
186 | * | |
187 | * - residue: The amount of bytes we have left to transfer for this desc | |
188 | * | |
189 | * - residue_stat: The residue in bytes of data we have covered | |
190 | * so far for accounting. This is updated directly to residue | |
191 | * during callbacks to keep it current. | |
192 | * | |
193 | * - sg_len: Tracks the length of the current intermediate transfer, | |
194 | * this is required to update the residue during intermediate transfer | |
195 | * completion callback. | |
196 | */ | |
740b41f7 | 197 | int processed_stat; |
740b41f7 | 198 | u32 sg_len; |
04361d88 | 199 | u32 residue; |
740b41f7 | 200 | u32 residue_stat; |
04361d88 | 201 | |
b5088ad9 | 202 | struct edma_pset pset[0]; |
c2dde5f8 MP |
203 | }; |
204 | ||
205 | struct edma_cc; | |
206 | ||
1be5336b PU |
207 | struct edma_tc { |
208 | struct device_node *node; | |
209 | u16 id; | |
210 | }; | |
211 | ||
c2dde5f8 MP |
212 | struct edma_chan { |
213 | struct virt_dma_chan vchan; | |
214 | struct list_head node; | |
215 | struct edma_desc *edesc; | |
216 | struct edma_cc *ecc; | |
1be5336b | 217 | struct edma_tc *tc; |
c2dde5f8 MP |
218 | int ch_num; |
219 | bool alloced; | |
1be5336b | 220 | bool hw_triggered; |
c2dde5f8 | 221 | int slot[EDMA_MAX_SLOTS]; |
c5f47990 | 222 | int missed; |
661f7cb5 | 223 | struct dma_slave_config cfg; |
c2dde5f8 MP |
224 | }; |
225 | ||
226 | struct edma_cc { | |
2b6b3b74 PU |
227 | struct device *dev; |
228 | struct edma_soc_info *info; | |
229 | void __iomem *base; | |
230 | int id; | |
1be5336b | 231 | bool legacy_mode; |
2b6b3b74 PU |
232 | |
233 | /* eDMA3 resource information */ | |
234 | unsigned num_channels; | |
633e42b8 | 235 | unsigned num_qchannels; |
2b6b3b74 PU |
236 | unsigned num_region; |
237 | unsigned num_slots; | |
238 | unsigned num_tc; | |
4ab54f69 | 239 | bool chmap_exist; |
2b6b3b74 PU |
240 | enum dma_event_q default_queue; |
241 | ||
638001e0 VK |
242 | unsigned int ccint; |
243 | unsigned int ccerrint; | |
244 | ||
1be5336b PU |
245 | /* |
246 | * The slot_inuse bit for each PaRAM slot is clear unless the slot is | |
247 | * in use by Linux or if it is allocated to be used by DSP. | |
2b6b3b74 | 248 | */ |
7a73b135 | 249 | unsigned long *slot_inuse; |
2b6b3b74 | 250 | |
c2dde5f8 | 251 | struct dma_device dma_slave; |
1be5336b | 252 | struct dma_device *dma_memcpy; |
cb782059 | 253 | struct edma_chan *slave_chans; |
1be5336b | 254 | struct edma_tc *tc_list; |
c2dde5f8 MP |
255 | int dummy_slot; |
256 | }; | |
257 | ||
2b6b3b74 PU |
258 | /* dummy param set used to (re)initialize parameter RAM slots */ |
259 | static const struct edmacc_param dummy_paramset = { | |
260 | .link_bcntrld = 0xffff, | |
261 | .ccnt = 1, | |
262 | }; | |
263 | ||
1be5336b PU |
264 | #define EDMA_BINDING_LEGACY 0 |
265 | #define EDMA_BINDING_TPCC 1 | |
b7862742 PU |
266 | static const u32 edma_binding_type[] = { |
267 | [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, | |
268 | [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, | |
269 | }; | |
270 | ||
2b6b3b74 | 271 | static const struct of_device_id edma_of_ids[] = { |
1be5336b PU |
272 | { |
273 | .compatible = "ti,edma3", | |
b7862742 | 274 | .data = &edma_binding_type[EDMA_BINDING_LEGACY], |
1be5336b PU |
275 | }, |
276 | { | |
277 | .compatible = "ti,edma3-tpcc", | |
b7862742 | 278 | .data = &edma_binding_type[EDMA_BINDING_TPCC], |
1be5336b | 279 | }, |
2b6b3b74 PU |
280 | {} |
281 | }; | |
86737510 | 282 | MODULE_DEVICE_TABLE(of, edma_of_ids); |
2b6b3b74 | 283 | |
34635b1a PU |
284 | static const struct of_device_id edma_tptc_of_ids[] = { |
285 | { .compatible = "ti,edma3-tptc", }, | |
286 | {} | |
287 | }; | |
86737510 | 288 | MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); |
34635b1a | 289 | |
2b6b3b74 PU |
290 | static inline unsigned int edma_read(struct edma_cc *ecc, int offset) |
291 | { | |
292 | return (unsigned int)__raw_readl(ecc->base + offset); | |
293 | } | |
294 | ||
295 | static inline void edma_write(struct edma_cc *ecc, int offset, int val) | |
296 | { | |
297 | __raw_writel(val, ecc->base + offset); | |
298 | } | |
299 | ||
300 | static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, | |
301 | unsigned or) | |
302 | { | |
303 | unsigned val = edma_read(ecc, offset); | |
304 | ||
305 | val &= and; | |
306 | val |= or; | |
307 | edma_write(ecc, offset, val); | |
308 | } | |
309 | ||
310 | static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) | |
311 | { | |
312 | unsigned val = edma_read(ecc, offset); | |
313 | ||
314 | val &= and; | |
315 | edma_write(ecc, offset, val); | |
316 | } | |
317 | ||
318 | static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) | |
319 | { | |
320 | unsigned val = edma_read(ecc, offset); | |
321 | ||
322 | val |= or; | |
323 | edma_write(ecc, offset, val); | |
324 | } | |
325 | ||
326 | static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, | |
327 | int i) | |
328 | { | |
329 | return edma_read(ecc, offset + (i << 2)); | |
330 | } | |
331 | ||
332 | static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, | |
333 | unsigned val) | |
334 | { | |
335 | edma_write(ecc, offset + (i << 2), val); | |
336 | } | |
337 | ||
338 | static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, | |
339 | unsigned and, unsigned or) | |
340 | { | |
341 | edma_modify(ecc, offset + (i << 2), and, or); | |
342 | } | |
343 | ||
344 | static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, | |
345 | unsigned or) | |
346 | { | |
347 | edma_or(ecc, offset + (i << 2), or); | |
348 | } | |
349 | ||
350 | static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, | |
351 | unsigned or) | |
352 | { | |
353 | edma_or(ecc, offset + ((i * 2 + j) << 2), or); | |
354 | } | |
355 | ||
356 | static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, | |
357 | int j, unsigned val) | |
358 | { | |
359 | edma_write(ecc, offset + ((i * 2 + j) << 2), val); | |
360 | } | |
361 | ||
362 | static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) | |
363 | { | |
364 | return edma_read(ecc, EDMA_SHADOW0 + offset); | |
365 | } | |
366 | ||
367 | static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, | |
368 | int offset, int i) | |
369 | { | |
370 | return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); | |
371 | } | |
372 | ||
373 | static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, | |
374 | unsigned val) | |
375 | { | |
376 | edma_write(ecc, EDMA_SHADOW0 + offset, val); | |
377 | } | |
378 | ||
379 | static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, | |
380 | int i, unsigned val) | |
381 | { | |
382 | edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); | |
383 | } | |
384 | ||
d9c345d1 PU |
385 | static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, |
386 | int param_no) | |
2b6b3b74 PU |
387 | { |
388 | return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); | |
389 | } | |
390 | ||
d9c345d1 PU |
391 | static inline void edma_param_write(struct edma_cc *ecc, int offset, |
392 | int param_no, unsigned val) | |
2b6b3b74 PU |
393 | { |
394 | edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); | |
395 | } | |
396 | ||
d9c345d1 PU |
397 | static inline void edma_param_modify(struct edma_cc *ecc, int offset, |
398 | int param_no, unsigned and, unsigned or) | |
2b6b3b74 PU |
399 | { |
400 | edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); | |
401 | } | |
402 | ||
d9c345d1 PU |
403 | static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, |
404 | unsigned and) | |
2b6b3b74 PU |
405 | { |
406 | edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); | |
407 | } | |
408 | ||
d9c345d1 PU |
409 | static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, |
410 | unsigned or) | |
2b6b3b74 PU |
411 | { |
412 | edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); | |
413 | } | |
414 | ||
1634d308 | 415 | static inline void edma_set_bits(int offset, int len, unsigned long *p) |
2b6b3b74 PU |
416 | { |
417 | for (; len > 0; len--) | |
418 | set_bit(offset + (len - 1), p); | |
419 | } | |
420 | ||
2b6b3b74 PU |
421 | static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, |
422 | int priority) | |
423 | { | |
424 | int bit = queue_no * 4; | |
425 | ||
426 | edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); | |
427 | } | |
428 | ||
34cf3011 | 429 | static void edma_set_chmap(struct edma_chan *echan, int slot) |
2b6b3b74 | 430 | { |
34cf3011 PU |
431 | struct edma_cc *ecc = echan->ecc; |
432 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
433 | ||
e4e886c6 | 434 | if (ecc->chmap_exist) { |
e4e886c6 PU |
435 | slot = EDMA_CHAN_SLOT(slot); |
436 | edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); | |
437 | } | |
2b6b3b74 PU |
438 | } |
439 | ||
34cf3011 | 440 | static void edma_setup_interrupt(struct edma_chan *echan, bool enable) |
2b6b3b74 | 441 | { |
34cf3011 PU |
442 | struct edma_cc *ecc = echan->ecc; |
443 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
2b6b3b74 | 444 | |
79ad2e38 | 445 | if (enable) { |
34cf3011 PU |
446 | edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, |
447 | BIT(channel & 0x1f)); | |
448 | edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, | |
449 | BIT(channel & 0x1f)); | |
79ad2e38 | 450 | } else { |
34cf3011 PU |
451 | edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, |
452 | BIT(channel & 0x1f)); | |
2b6b3b74 PU |
453 | } |
454 | } | |
455 | ||
456 | /* | |
11c15733 | 457 | * paRAM slot management functions |
2b6b3b74 PU |
458 | */ |
459 | static void edma_write_slot(struct edma_cc *ecc, unsigned slot, | |
460 | const struct edmacc_param *param) | |
461 | { | |
462 | slot = EDMA_CHAN_SLOT(slot); | |
463 | if (slot >= ecc->num_slots) | |
464 | return; | |
465 | memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); | |
466 | } | |
467 | ||
2cc40ee7 | 468 | static int edma_read_slot(struct edma_cc *ecc, unsigned slot, |
2b6b3b74 PU |
469 | struct edmacc_param *param) |
470 | { | |
471 | slot = EDMA_CHAN_SLOT(slot); | |
472 | if (slot >= ecc->num_slots) | |
2cc40ee7 | 473 | return -EINVAL; |
2b6b3b74 | 474 | memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); |
2cc40ee7 AB |
475 | |
476 | return 0; | |
2b6b3b74 PU |
477 | } |
478 | ||
479 | /** | |
480 | * edma_alloc_slot - allocate DMA parameter RAM | |
481 | * @ecc: pointer to edma_cc struct | |
482 | * @slot: specific slot to allocate; negative for "any unused slot" | |
483 | * | |
484 | * This allocates a parameter RAM slot, initializing it to hold a | |
485 | * dummy transfer. Slots allocated using this routine have not been | |
486 | * mapped to a hardware DMA channel, and will normally be used by | |
487 | * linking to them from a slot associated with a DMA channel. | |
488 | * | |
489 | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific | |
490 | * slots may be allocated on behalf of DSP firmware. | |
491 | * | |
492 | * Returns the number of the slot, else negative errno. | |
493 | */ | |
494 | static int edma_alloc_slot(struct edma_cc *ecc, int slot) | |
495 | { | |
d20313b2 | 496 | if (slot >= 0) { |
2b6b3b74 | 497 | slot = EDMA_CHAN_SLOT(slot); |
e4e886c6 PU |
498 | /* Requesting entry paRAM slot for a HW triggered channel. */ |
499 | if (ecc->chmap_exist && slot < ecc->num_channels) | |
500 | slot = EDMA_SLOT_ANY; | |
501 | } | |
502 | ||
2b6b3b74 | 503 | if (slot < 0) { |
e4e886c6 PU |
504 | if (ecc->chmap_exist) |
505 | slot = 0; | |
506 | else | |
507 | slot = ecc->num_channels; | |
2b6b3b74 | 508 | for (;;) { |
7a73b135 | 509 | slot = find_next_zero_bit(ecc->slot_inuse, |
2b6b3b74 PU |
510 | ecc->num_slots, |
511 | slot); | |
512 | if (slot == ecc->num_slots) | |
513 | return -ENOMEM; | |
7a73b135 | 514 | if (!test_and_set_bit(slot, ecc->slot_inuse)) |
2b6b3b74 PU |
515 | break; |
516 | } | |
e4e886c6 | 517 | } else if (slot >= ecc->num_slots) { |
2b6b3b74 | 518 | return -EINVAL; |
7a73b135 | 519 | } else if (test_and_set_bit(slot, ecc->slot_inuse)) { |
2b6b3b74 PU |
520 | return -EBUSY; |
521 | } | |
522 | ||
523 | edma_write_slot(ecc, slot, &dummy_paramset); | |
524 | ||
525 | return EDMA_CTLR_CHAN(ecc->id, slot); | |
526 | } | |
527 | ||
2b6b3b74 PU |
528 | static void edma_free_slot(struct edma_cc *ecc, unsigned slot) |
529 | { | |
530 | slot = EDMA_CHAN_SLOT(slot); | |
e4e886c6 | 531 | if (slot >= ecc->num_slots) |
2b6b3b74 PU |
532 | return; |
533 | ||
534 | edma_write_slot(ecc, slot, &dummy_paramset); | |
7a73b135 | 535 | clear_bit(slot, ecc->slot_inuse); |
2b6b3b74 PU |
536 | } |
537 | ||
538 | /** | |
539 | * edma_link - link one parameter RAM slot to another | |
540 | * @ecc: pointer to edma_cc struct | |
541 | * @from: parameter RAM slot originating the link | |
542 | * @to: parameter RAM slot which is the link target | |
543 | * | |
544 | * The originating slot should not be part of any active DMA transfer. | |
545 | */ | |
546 | static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) | |
547 | { | |
fc014095 PU |
548 | if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) |
549 | dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); | |
550 | ||
2b6b3b74 PU |
551 | from = EDMA_CHAN_SLOT(from); |
552 | to = EDMA_CHAN_SLOT(to); | |
553 | if (from >= ecc->num_slots || to >= ecc->num_slots) | |
554 | return; | |
555 | ||
d9c345d1 PU |
556 | edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, |
557 | PARM_OFFSET(to)); | |
2b6b3b74 PU |
558 | } |
559 | ||
560 | /** | |
561 | * edma_get_position - returns the current transfer point | |
562 | * @ecc: pointer to edma_cc struct | |
563 | * @slot: parameter RAM slot being examined | |
564 | * @dst: true selects the dest position, false the source | |
565 | * | |
566 | * Returns the position of the current active slot | |
567 | */ | |
568 | static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, | |
569 | bool dst) | |
570 | { | |
571 | u32 offs; | |
572 | ||
573 | slot = EDMA_CHAN_SLOT(slot); | |
574 | offs = PARM_OFFSET(slot); | |
575 | offs += dst ? PARM_DST : PARM_SRC; | |
576 | ||
577 | return edma_read(ecc, offs); | |
578 | } | |
579 | ||
34cf3011 | 580 | /* |
2b6b3b74 PU |
581 | * Channels with event associations will be triggered by their hardware |
582 | * events, and channels without such associations will be triggered by | |
583 | * software. (At this writing there is no interface for using software | |
584 | * triggers except with channels that don't support hardware triggers.) | |
2b6b3b74 | 585 | */ |
34cf3011 | 586 | static void edma_start(struct edma_chan *echan) |
2b6b3b74 | 587 | { |
34cf3011 PU |
588 | struct edma_cc *ecc = echan->ecc; |
589 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
590 | int j = (channel >> 5); | |
591 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 | 592 | |
1be5336b | 593 | if (!echan->hw_triggered) { |
2b6b3b74 | 594 | /* EDMA channels without event association */ |
34cf3011 PU |
595 | dev_dbg(ecc->dev, "ESR%d %08x\n", j, |
596 | edma_shadow0_read_array(ecc, SH_ESR, j)); | |
597 | edma_shadow0_write_array(ecc, SH_ESR, j, mask); | |
598 | } else { | |
2b6b3b74 | 599 | /* EDMA channel with event association */ |
3287fb4d PU |
600 | dev_dbg(ecc->dev, "ER%d %08x\n", j, |
601 | edma_shadow0_read_array(ecc, SH_ER, j)); | |
2b6b3b74 PU |
602 | /* Clear any pending event or error */ |
603 | edma_write_array(ecc, EDMA_ECR, j, mask); | |
604 | edma_write_array(ecc, EDMA_EMCR, j, mask); | |
605 | /* Clear any SER */ | |
606 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | |
607 | edma_shadow0_write_array(ecc, SH_EESR, j, mask); | |
3287fb4d PU |
608 | dev_dbg(ecc->dev, "EER%d %08x\n", j, |
609 | edma_shadow0_read_array(ecc, SH_EER, j)); | |
2b6b3b74 | 610 | } |
2b6b3b74 PU |
611 | } |
612 | ||
34cf3011 | 613 | static void edma_stop(struct edma_chan *echan) |
2b6b3b74 | 614 | { |
34cf3011 PU |
615 | struct edma_cc *ecc = echan->ecc; |
616 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
617 | int j = (channel >> 5); | |
618 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 | 619 | |
34cf3011 PU |
620 | edma_shadow0_write_array(ecc, SH_EECR, j, mask); |
621 | edma_shadow0_write_array(ecc, SH_ECR, j, mask); | |
622 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | |
623 | edma_write_array(ecc, EDMA_EMCR, j, mask); | |
2b6b3b74 | 624 | |
34cf3011 PU |
625 | /* clear possibly pending completion interrupt */ |
626 | edma_shadow0_write_array(ecc, SH_ICR, j, mask); | |
2b6b3b74 | 627 | |
34cf3011 PU |
628 | dev_dbg(ecc->dev, "EER%d %08x\n", j, |
629 | edma_shadow0_read_array(ecc, SH_EER, j)); | |
2b6b3b74 | 630 | |
34cf3011 PU |
631 | /* REVISIT: consider guarding against inappropriate event |
632 | * chaining by overwriting with dummy_paramset. | |
633 | */ | |
2b6b3b74 PU |
634 | } |
635 | ||
11c15733 PU |
636 | /* |
637 | * Temporarily disable EDMA hardware events on the specified channel, | |
638 | * preventing them from triggering new transfers | |
2b6b3b74 | 639 | */ |
34cf3011 | 640 | static void edma_pause(struct edma_chan *echan) |
2b6b3b74 | 641 | { |
34cf3011 PU |
642 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
643 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 | 644 | |
34cf3011 | 645 | edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); |
2b6b3b74 PU |
646 | } |
647 | ||
11c15733 | 648 | /* Re-enable EDMA hardware events on the specified channel. */ |
34cf3011 | 649 | static void edma_resume(struct edma_chan *echan) |
2b6b3b74 | 650 | { |
34cf3011 PU |
651 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
652 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 | 653 | |
34cf3011 | 654 | edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); |
2b6b3b74 PU |
655 | } |
656 | ||
34cf3011 | 657 | static void edma_trigger_channel(struct edma_chan *echan) |
2b6b3b74 | 658 | { |
34cf3011 PU |
659 | struct edma_cc *ecc = echan->ecc; |
660 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
661 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 PU |
662 | |
663 | edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); | |
664 | ||
3287fb4d PU |
665 | dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), |
666 | edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); | |
2b6b3b74 PU |
667 | } |
668 | ||
34cf3011 | 669 | static void edma_clean_channel(struct edma_chan *echan) |
2b6b3b74 | 670 | { |
34cf3011 PU |
671 | struct edma_cc *ecc = echan->ecc; |
672 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
673 | int j = (channel >> 5); | |
674 | unsigned int mask = BIT(channel & 0x1f); | |
2b6b3b74 | 675 | |
34cf3011 PU |
676 | dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); |
677 | edma_shadow0_write_array(ecc, SH_ECR, j, mask); | |
678 | /* Clear the corresponding EMR bits */ | |
679 | edma_write_array(ecc, EDMA_EMCR, j, mask); | |
680 | /* Clear any SER */ | |
681 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | |
682 | edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); | |
2b6b3b74 PU |
683 | } |
684 | ||
f9425deb PU |
685 | /* Move channel to a specific event queue */ |
686 | static void edma_assign_channel_eventq(struct edma_chan *echan, | |
687 | enum dma_event_q eventq_no) | |
688 | { | |
689 | struct edma_cc *ecc = echan->ecc; | |
690 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
691 | int bit = (channel & 0x7) * 4; | |
692 | ||
693 | /* default to low priority queue */ | |
694 | if (eventq_no == EVENTQ_DEFAULT) | |
695 | eventq_no = ecc->default_queue; | |
696 | if (eventq_no >= ecc->num_tc) | |
697 | return; | |
698 | ||
699 | eventq_no &= 7; | |
700 | edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), | |
701 | eventq_no << bit); | |
702 | } | |
703 | ||
34cf3011 | 704 | static int edma_alloc_channel(struct edma_chan *echan, |
79ad2e38 | 705 | enum dma_event_q eventq_no) |
2b6b3b74 | 706 | { |
34cf3011 PU |
707 | struct edma_cc *ecc = echan->ecc; |
708 | int channel = EDMA_CHAN_SLOT(echan->ch_num); | |
2b6b3b74 | 709 | |
2b6b3b74 PU |
710 | /* ensure access through shadow region 0 */ |
711 | edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); | |
712 | ||
713 | /* ensure no events are pending */ | |
34cf3011 | 714 | edma_stop(echan); |
2b6b3b74 | 715 | |
34cf3011 | 716 | edma_setup_interrupt(echan, true); |
2b6b3b74 | 717 | |
f9425deb | 718 | edma_assign_channel_eventq(echan, eventq_no); |
2b6b3b74 | 719 | |
34cf3011 | 720 | return 0; |
2b6b3b74 PU |
721 | } |
722 | ||
34cf3011 | 723 | static void edma_free_channel(struct edma_chan *echan) |
2b6b3b74 | 724 | { |
34cf3011 PU |
725 | /* ensure no events are pending */ |
726 | edma_stop(echan); | |
2b6b3b74 | 727 | /* REVISIT should probably take out of shadow region 0 */ |
34cf3011 | 728 | edma_setup_interrupt(echan, false); |
2b6b3b74 PU |
729 | } |
730 | ||
c2dde5f8 MP |
731 | static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
732 | { | |
733 | return container_of(d, struct edma_cc, dma_slave); | |
734 | } | |
735 | ||
736 | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) | |
737 | { | |
738 | return container_of(c, struct edma_chan, vchan.chan); | |
739 | } | |
740 | ||
2b6b3b74 | 741 | static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) |
c2dde5f8 MP |
742 | { |
743 | return container_of(tx, struct edma_desc, vdesc.tx); | |
744 | } | |
745 | ||
746 | static void edma_desc_free(struct virt_dma_desc *vdesc) | |
747 | { | |
748 | kfree(container_of(vdesc, struct edma_desc, vdesc)); | |
749 | } | |
750 | ||
751 | /* Dispatch a queued descriptor to the controller (caller holds lock) */ | |
752 | static void edma_execute(struct edma_chan *echan) | |
753 | { | |
2b6b3b74 | 754 | struct edma_cc *ecc = echan->ecc; |
53407062 | 755 | struct virt_dma_desc *vdesc; |
c2dde5f8 | 756 | struct edma_desc *edesc; |
53407062 JF |
757 | struct device *dev = echan->vchan.chan.device->dev; |
758 | int i, j, left, nslots; | |
759 | ||
8fa7ff4f PU |
760 | if (!echan->edesc) { |
761 | /* Setup is needed for the first transfer */ | |
53407062 | 762 | vdesc = vchan_next_desc(&echan->vchan); |
8fa7ff4f | 763 | if (!vdesc) |
53407062 | 764 | return; |
53407062 JF |
765 | list_del(&vdesc->node); |
766 | echan->edesc = to_edma_desc(&vdesc->tx); | |
c2dde5f8 MP |
767 | } |
768 | ||
53407062 | 769 | edesc = echan->edesc; |
c2dde5f8 | 770 | |
53407062 JF |
771 | /* Find out how many left */ |
772 | left = edesc->pset_nr - edesc->processed; | |
773 | nslots = min(MAX_NR_SG, left); | |
740b41f7 | 774 | edesc->sg_len = 0; |
c2dde5f8 MP |
775 | |
776 | /* Write descriptor PaRAM set(s) */ | |
53407062 JF |
777 | for (i = 0; i < nslots; i++) { |
778 | j = i + edesc->processed; | |
2b6b3b74 | 779 | edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); |
740b41f7 | 780 | edesc->sg_len += edesc->pset[j].len; |
907f74a0 PU |
781 | dev_vdbg(dev, |
782 | "\n pset[%d]:\n" | |
783 | " chnum\t%d\n" | |
784 | " slot\t%d\n" | |
785 | " opt\t%08x\n" | |
786 | " src\t%08x\n" | |
787 | " dst\t%08x\n" | |
788 | " abcnt\t%08x\n" | |
789 | " ccnt\t%08x\n" | |
790 | " bidx\t%08x\n" | |
791 | " cidx\t%08x\n" | |
792 | " lkrld\t%08x\n", | |
793 | j, echan->ch_num, echan->slot[i], | |
794 | edesc->pset[j].param.opt, | |
795 | edesc->pset[j].param.src, | |
796 | edesc->pset[j].param.dst, | |
797 | edesc->pset[j].param.a_b_cnt, | |
798 | edesc->pset[j].param.ccnt, | |
799 | edesc->pset[j].param.src_dst_bidx, | |
800 | edesc->pset[j].param.src_dst_cidx, | |
801 | edesc->pset[j].param.link_bcntrld); | |
c2dde5f8 | 802 | /* Link to the previous slot if not the last set */ |
53407062 | 803 | if (i != (nslots - 1)) |
2b6b3b74 | 804 | edma_link(ecc, echan->slot[i], echan->slot[i + 1]); |
c2dde5f8 MP |
805 | } |
806 | ||
53407062 JF |
807 | edesc->processed += nslots; |
808 | ||
b267b3bc JF |
809 | /* |
810 | * If this is either the last set in a set of SG-list transactions | |
811 | * then setup a link to the dummy slot, this results in all future | |
812 | * events being absorbed and that's OK because we're done | |
813 | */ | |
50a9c707 JF |
814 | if (edesc->processed == edesc->pset_nr) { |
815 | if (edesc->cyclic) | |
2b6b3b74 | 816 | edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); |
50a9c707 | 817 | else |
2b6b3b74 | 818 | edma_link(ecc, echan->slot[nslots - 1], |
50a9c707 JF |
819 | echan->ecc->dummy_slot); |
820 | } | |
b267b3bc | 821 | |
c5f47990 | 822 | if (echan->missed) { |
8fa7ff4f PU |
823 | /* |
824 | * This happens due to setup times between intermediate | |
825 | * transfers in long SG lists which have to be broken up into | |
826 | * transfers of MAX_NR_SG | |
827 | */ | |
9aac9096 | 828 | dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); |
34cf3011 PU |
829 | edma_clean_channel(echan); |
830 | edma_stop(echan); | |
831 | edma_start(echan); | |
832 | edma_trigger_channel(echan); | |
c5f47990 | 833 | echan->missed = 0; |
8fa7ff4f PU |
834 | } else if (edesc->processed <= MAX_NR_SG) { |
835 | dev_dbg(dev, "first transfer starting on channel %d\n", | |
836 | echan->ch_num); | |
34cf3011 | 837 | edma_start(echan); |
8fa7ff4f PU |
838 | } else { |
839 | dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", | |
840 | echan->ch_num, edesc->processed); | |
34cf3011 | 841 | edma_resume(echan); |
c5f47990 | 842 | } |
c2dde5f8 MP |
843 | } |
844 | ||
aa7c09b6 | 845 | static int edma_terminate_all(struct dma_chan *chan) |
c2dde5f8 | 846 | { |
aa7c09b6 | 847 | struct edma_chan *echan = to_edma_chan(chan); |
c2dde5f8 MP |
848 | unsigned long flags; |
849 | LIST_HEAD(head); | |
850 | ||
851 | spin_lock_irqsave(&echan->vchan.lock, flags); | |
852 | ||
853 | /* | |
854 | * Stop DMA activity: we assume the callback will not be called | |
855 | * after edma_dma() returns (even if it does, it will see | |
856 | * echan->edesc is NULL and exit.) | |
857 | */ | |
858 | if (echan->edesc) { | |
34cf3011 | 859 | edma_stop(echan); |
8fa7ff4f | 860 | /* Move the cyclic channel back to default queue */ |
1be5336b | 861 | if (!echan->tc && echan->edesc->cyclic) |
34cf3011 | 862 | edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); |
5ca9e7ce PK |
863 | /* |
864 | * free the running request descriptor | |
865 | * since it is not in any of the vdesc lists | |
866 | */ | |
867 | edma_desc_free(&echan->edesc->vdesc); | |
c2dde5f8 | 868 | echan->edesc = NULL; |
c2dde5f8 MP |
869 | } |
870 | ||
871 | vchan_get_all_descriptors(&echan->vchan, &head); | |
872 | spin_unlock_irqrestore(&echan->vchan.lock, flags); | |
873 | vchan_dma_desc_free_list(&echan->vchan, &head); | |
874 | ||
875 | return 0; | |
876 | } | |
877 | ||
b84730ff PU |
878 | static void edma_synchronize(struct dma_chan *chan) |
879 | { | |
880 | struct edma_chan *echan = to_edma_chan(chan); | |
881 | ||
882 | vchan_synchronize(&echan->vchan); | |
883 | } | |
884 | ||
aa7c09b6 | 885 | static int edma_slave_config(struct dma_chan *chan, |
661f7cb5 | 886 | struct dma_slave_config *cfg) |
c2dde5f8 | 887 | { |
aa7c09b6 MR |
888 | struct edma_chan *echan = to_edma_chan(chan); |
889 | ||
661f7cb5 MP |
890 | if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
891 | cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) | |
c2dde5f8 MP |
892 | return -EINVAL; |
893 | ||
ea09ea51 PU |
894 | if (cfg->src_maxburst > chan->device->max_burst || |
895 | cfg->dst_maxburst > chan->device->max_burst) | |
896 | return -EINVAL; | |
897 | ||
661f7cb5 | 898 | memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); |
c2dde5f8 MP |
899 | |
900 | return 0; | |
901 | } | |
902 | ||
aa7c09b6 | 903 | static int edma_dma_pause(struct dma_chan *chan) |
72c7b67a | 904 | { |
aa7c09b6 MR |
905 | struct edma_chan *echan = to_edma_chan(chan); |
906 | ||
02ec6041 | 907 | if (!echan->edesc) |
72c7b67a PU |
908 | return -EINVAL; |
909 | ||
34cf3011 | 910 | edma_pause(echan); |
72c7b67a PU |
911 | return 0; |
912 | } | |
913 | ||
aa7c09b6 | 914 | static int edma_dma_resume(struct dma_chan *chan) |
72c7b67a | 915 | { |
aa7c09b6 MR |
916 | struct edma_chan *echan = to_edma_chan(chan); |
917 | ||
34cf3011 | 918 | edma_resume(echan); |
72c7b67a PU |
919 | return 0; |
920 | } | |
921 | ||
fd009035 JF |
922 | /* |
923 | * A PaRAM set configuration abstraction used by other modes | |
924 | * @chan: Channel who's PaRAM set we're configuring | |
925 | * @pset: PaRAM set to initialize and setup. | |
926 | * @src_addr: Source address of the DMA | |
927 | * @dst_addr: Destination address of the DMA | |
928 | * @burst: In units of dev_width, how much to send | |
929 | * @dev_width: How much is the dev_width | |
930 | * @dma_length: Total length of the DMA transfer | |
931 | * @direction: Direction of the transfer | |
932 | */ | |
b5088ad9 | 933 | static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, |
2b6b3b74 | 934 | dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, |
df6694f8 | 935 | unsigned int acnt, unsigned int dma_length, |
2b6b3b74 | 936 | enum dma_transfer_direction direction) |
fd009035 JF |
937 | { |
938 | struct edma_chan *echan = to_edma_chan(chan); | |
939 | struct device *dev = chan->device->dev; | |
b5088ad9 | 940 | struct edmacc_param *param = &epset->param; |
df6694f8 | 941 | int bcnt, ccnt, cidx; |
fd009035 JF |
942 | int src_bidx, dst_bidx, src_cidx, dst_cidx; |
943 | int absync; | |
944 | ||
b2b617de PU |
945 | /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ |
946 | if (!burst) | |
947 | burst = 1; | |
fd009035 JF |
948 | /* |
949 | * If the maxburst is equal to the fifo width, use | |
950 | * A-synced transfers. This allows for large contiguous | |
951 | * buffer transfers using only one PaRAM set. | |
952 | */ | |
953 | if (burst == 1) { | |
954 | /* | |
955 | * For the A-sync case, bcnt and ccnt are the remainder | |
956 | * and quotient respectively of the division of: | |
957 | * (dma_length / acnt) by (SZ_64K -1). This is so | |
958 | * that in case bcnt over flows, we have ccnt to use. | |
959 | * Note: In A-sync tranfer only, bcntrld is used, but it | |
960 | * only applies for sg_dma_len(sg) >= SZ_64K. | |
961 | * In this case, the best way adopted is- bccnt for the | |
962 | * first frame will be the remainder below. Then for | |
963 | * every successive frame, bcnt will be SZ_64K-1. This | |
964 | * is assured as bcntrld = 0xffff in end of function. | |
965 | */ | |
966 | absync = false; | |
967 | ccnt = dma_length / acnt / (SZ_64K - 1); | |
968 | bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); | |
969 | /* | |
970 | * If bcnt is non-zero, we have a remainder and hence an | |
971 | * extra frame to transfer, so increment ccnt. | |
972 | */ | |
973 | if (bcnt) | |
974 | ccnt++; | |
975 | else | |
976 | bcnt = SZ_64K - 1; | |
977 | cidx = acnt; | |
978 | } else { | |
979 | /* | |
980 | * If maxburst is greater than the fifo address_width, | |
981 | * use AB-synced transfers where A count is the fifo | |
982 | * address_width and B count is the maxburst. In this | |
983 | * case, we are limited to transfers of C count frames | |
984 | * of (address_width * maxburst) where C count is limited | |
985 | * to SZ_64K-1. This places an upper bound on the length | |
986 | * of an SG segment that can be handled. | |
987 | */ | |
988 | absync = true; | |
989 | bcnt = burst; | |
990 | ccnt = dma_length / (acnt * bcnt); | |
991 | if (ccnt > (SZ_64K - 1)) { | |
992 | dev_err(dev, "Exceeded max SG segment size\n"); | |
993 | return -EINVAL; | |
994 | } | |
995 | cidx = acnt * bcnt; | |
996 | } | |
997 | ||
c2da2340 TG |
998 | epset->len = dma_length; |
999 | ||
fd009035 JF |
1000 | if (direction == DMA_MEM_TO_DEV) { |
1001 | src_bidx = acnt; | |
1002 | src_cidx = cidx; | |
1003 | dst_bidx = 0; | |
1004 | dst_cidx = 0; | |
c2da2340 | 1005 | epset->addr = src_addr; |
fd009035 JF |
1006 | } else if (direction == DMA_DEV_TO_MEM) { |
1007 | src_bidx = 0; | |
1008 | src_cidx = 0; | |
1009 | dst_bidx = acnt; | |
1010 | dst_cidx = cidx; | |
c2da2340 | 1011 | epset->addr = dst_addr; |
8cc3e30b JF |
1012 | } else if (direction == DMA_MEM_TO_MEM) { |
1013 | src_bidx = acnt; | |
1014 | src_cidx = cidx; | |
1015 | dst_bidx = acnt; | |
1016 | dst_cidx = cidx; | |
fd009035 JF |
1017 | } else { |
1018 | dev_err(dev, "%s: direction not implemented yet\n", __func__); | |
1019 | return -EINVAL; | |
1020 | } | |
1021 | ||
b5088ad9 | 1022 | param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
fd009035 JF |
1023 | /* Configure A or AB synchronized transfers */ |
1024 | if (absync) | |
b5088ad9 | 1025 | param->opt |= SYNCDIM; |
fd009035 | 1026 | |
b5088ad9 TG |
1027 | param->src = src_addr; |
1028 | param->dst = dst_addr; | |
fd009035 | 1029 | |
b5088ad9 TG |
1030 | param->src_dst_bidx = (dst_bidx << 16) | src_bidx; |
1031 | param->src_dst_cidx = (dst_cidx << 16) | src_cidx; | |
fd009035 | 1032 | |
b5088ad9 TG |
1033 | param->a_b_cnt = bcnt << 16 | acnt; |
1034 | param->ccnt = ccnt; | |
fd009035 JF |
1035 | /* |
1036 | * Only time when (bcntrld) auto reload is required is for | |
1037 | * A-sync case, and in this case, a requirement of reload value | |
1038 | * of SZ_64K-1 only is assured. 'link' is initially set to NULL | |
1039 | * and then later will be populated by edma_execute. | |
1040 | */ | |
b5088ad9 | 1041 | param->link_bcntrld = 0xffffffff; |
fd009035 JF |
1042 | return absync; |
1043 | } | |
1044 | ||
c2dde5f8 MP |
1045 | static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
1046 | struct dma_chan *chan, struct scatterlist *sgl, | |
1047 | unsigned int sg_len, enum dma_transfer_direction direction, | |
1048 | unsigned long tx_flags, void *context) | |
1049 | { | |
1050 | struct edma_chan *echan = to_edma_chan(chan); | |
1051 | struct device *dev = chan->device->dev; | |
1052 | struct edma_desc *edesc; | |
fd009035 | 1053 | dma_addr_t src_addr = 0, dst_addr = 0; |
661f7cb5 MP |
1054 | enum dma_slave_buswidth dev_width; |
1055 | u32 burst; | |
c2dde5f8 | 1056 | struct scatterlist *sg; |
fd009035 | 1057 | int i, nslots, ret; |
c2dde5f8 MP |
1058 | |
1059 | if (unlikely(!echan || !sgl || !sg_len)) | |
1060 | return NULL; | |
1061 | ||
661f7cb5 | 1062 | if (direction == DMA_DEV_TO_MEM) { |
fd009035 | 1063 | src_addr = echan->cfg.src_addr; |
661f7cb5 MP |
1064 | dev_width = echan->cfg.src_addr_width; |
1065 | burst = echan->cfg.src_maxburst; | |
1066 | } else if (direction == DMA_MEM_TO_DEV) { | |
fd009035 | 1067 | dst_addr = echan->cfg.dst_addr; |
661f7cb5 MP |
1068 | dev_width = echan->cfg.dst_addr_width; |
1069 | burst = echan->cfg.dst_maxburst; | |
1070 | } else { | |
e6fad592 | 1071 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
661f7cb5 MP |
1072 | return NULL; |
1073 | } | |
1074 | ||
1075 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | |
c594c891 | 1076 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
c2dde5f8 MP |
1077 | return NULL; |
1078 | } | |
1079 | ||
2b6b3b74 PU |
1080 | edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), |
1081 | GFP_ATOMIC); | |
aef94fea | 1082 | if (!edesc) |
c2dde5f8 | 1083 | return NULL; |
c2dde5f8 MP |
1084 | |
1085 | edesc->pset_nr = sg_len; | |
b6205c39 | 1086 | edesc->residue = 0; |
c2da2340 | 1087 | edesc->direction = direction; |
740b41f7 | 1088 | edesc->echan = echan; |
c2dde5f8 | 1089 | |
6fbe24da JF |
1090 | /* Allocate a PaRAM slot, if needed */ |
1091 | nslots = min_t(unsigned, MAX_NR_SG, sg_len); | |
1092 | ||
1093 | for (i = 0; i < nslots; i++) { | |
c2dde5f8 MP |
1094 | if (echan->slot[i] < 0) { |
1095 | echan->slot[i] = | |
2b6b3b74 | 1096 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
c2dde5f8 | 1097 | if (echan->slot[i] < 0) { |
4b6271a6 | 1098 | kfree(edesc); |
c594c891 PU |
1099 | dev_err(dev, "%s: Failed to allocate slot\n", |
1100 | __func__); | |
c2dde5f8 MP |
1101 | return NULL; |
1102 | } | |
1103 | } | |
6fbe24da JF |
1104 | } |
1105 | ||
1106 | /* Configure PaRAM sets for each SG */ | |
1107 | for_each_sg(sgl, sg, sg_len, i) { | |
fd009035 JF |
1108 | /* Get address for each SG */ |
1109 | if (direction == DMA_DEV_TO_MEM) | |
1110 | dst_addr = sg_dma_address(sg); | |
1111 | else | |
1112 | src_addr = sg_dma_address(sg); | |
c2dde5f8 | 1113 | |
fd009035 JF |
1114 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
1115 | dst_addr, burst, dev_width, | |
1116 | sg_dma_len(sg), direction); | |
b967aecf VK |
1117 | if (ret < 0) { |
1118 | kfree(edesc); | |
fd009035 | 1119 | return NULL; |
c2dde5f8 MP |
1120 | } |
1121 | ||
fd009035 | 1122 | edesc->absync = ret; |
b6205c39 | 1123 | edesc->residue += sg_dma_len(sg); |
6fbe24da | 1124 | |
c2dde5f8 | 1125 | if (i == sg_len - 1) |
2e4ed087 | 1126 | /* Enable completion interrupt */ |
b5088ad9 | 1127 | edesc->pset[i].param.opt |= TCINTEN; |
2e4ed087 PU |
1128 | else if (!((i+1) % MAX_NR_SG)) |
1129 | /* | |
1130 | * Enable early completion interrupt for the | |
1131 | * intermediateset. In this case the driver will be | |
1132 | * notified when the paRAM set is submitted to TC. This | |
1133 | * will allow more time to set up the next set of slots. | |
1134 | */ | |
1135 | edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); | |
c2dde5f8 | 1136 | } |
740b41f7 | 1137 | edesc->residue_stat = edesc->residue; |
c2dde5f8 | 1138 | |
c2dde5f8 MP |
1139 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
1140 | } | |
c2dde5f8 | 1141 | |
b7a4fd53 | 1142 | static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( |
8cc3e30b JF |
1143 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
1144 | size_t len, unsigned long tx_flags) | |
1145 | { | |
df6694f8 | 1146 | int ret, nslots; |
8cc3e30b JF |
1147 | struct edma_desc *edesc; |
1148 | struct device *dev = chan->device->dev; | |
1149 | struct edma_chan *echan = to_edma_chan(chan); | |
87a2f622 | 1150 | unsigned int width, pset_len, array_size; |
8cc3e30b JF |
1151 | |
1152 | if (unlikely(!echan || !len)) | |
1153 | return NULL; | |
1154 | ||
87a2f622 PU |
1155 | /* Align the array size (acnt block) with the transfer properties */ |
1156 | switch (__ffs((src | dest | len))) { | |
1157 | case 0: | |
1158 | array_size = SZ_32K - 1; | |
1159 | break; | |
1160 | case 1: | |
1161 | array_size = SZ_32K - 2; | |
1162 | break; | |
1163 | default: | |
1164 | array_size = SZ_32K - 4; | |
1165 | break; | |
1166 | } | |
1167 | ||
df6694f8 PU |
1168 | if (len < SZ_64K) { |
1169 | /* | |
1170 | * Transfer size less than 64K can be handled with one paRAM | |
1171 | * slot and with one burst. | |
1172 | * ACNT = length | |
1173 | */ | |
1174 | width = len; | |
1175 | pset_len = len; | |
1176 | nslots = 1; | |
1177 | } else { | |
1178 | /* | |
1179 | * Transfer size bigger than 64K will be handled with maximum of | |
1180 | * two paRAM slots. | |
1181 | * slot1: (full_length / 32767) times 32767 bytes bursts. | |
1182 | * ACNT = 32767, length1: (full_length / 32767) * 32767 | |
1183 | * slot2: the remaining amount of data after slot1. | |
1184 | * ACNT = full_length - length1, length2 = ACNT | |
1185 | * | |
1186 | * When the full_length is multibple of 32767 one slot can be | |
1187 | * used to complete the transfer. | |
1188 | */ | |
87a2f622 | 1189 | width = array_size; |
df6694f8 PU |
1190 | pset_len = rounddown(len, width); |
1191 | /* One slot is enough for lengths multiple of (SZ_32K -1) */ | |
1192 | if (unlikely(pset_len == len)) | |
1193 | nslots = 1; | |
1194 | else | |
1195 | nslots = 2; | |
1196 | } | |
1197 | ||
1198 | edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), | |
1199 | GFP_ATOMIC); | |
aef94fea | 1200 | if (!edesc) |
8cc3e30b | 1201 | return NULL; |
8cc3e30b | 1202 | |
df6694f8 PU |
1203 | edesc->pset_nr = nslots; |
1204 | edesc->residue = edesc->residue_stat = len; | |
1205 | edesc->direction = DMA_MEM_TO_MEM; | |
1206 | edesc->echan = echan; | |
21a31846 | 1207 | |
8cc3e30b | 1208 | ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, |
df6694f8 PU |
1209 | width, pset_len, DMA_MEM_TO_MEM); |
1210 | if (ret < 0) { | |
1211 | kfree(edesc); | |
8cc3e30b | 1212 | return NULL; |
df6694f8 | 1213 | } |
8cc3e30b JF |
1214 | |
1215 | edesc->absync = ret; | |
1216 | ||
b0cce4ca | 1217 | edesc->pset[0].param.opt |= ITCCHEN; |
df6694f8 PU |
1218 | if (nslots == 1) { |
1219 | /* Enable transfer complete interrupt */ | |
1220 | edesc->pset[0].param.opt |= TCINTEN; | |
1221 | } else { | |
1222 | /* Enable transfer complete chaining for the first slot */ | |
1223 | edesc->pset[0].param.opt |= TCCHEN; | |
1224 | ||
1225 | if (echan->slot[1] < 0) { | |
1226 | echan->slot[1] = edma_alloc_slot(echan->ecc, | |
1227 | EDMA_SLOT_ANY); | |
1228 | if (echan->slot[1] < 0) { | |
1229 | kfree(edesc); | |
1230 | dev_err(dev, "%s: Failed to allocate slot\n", | |
1231 | __func__); | |
1232 | return NULL; | |
1233 | } | |
1234 | } | |
1235 | dest += pset_len; | |
1236 | src += pset_len; | |
87a2f622 | 1237 | pset_len = width = len % array_size; |
df6694f8 PU |
1238 | |
1239 | ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, | |
1240 | width, pset_len, DMA_MEM_TO_MEM); | |
1241 | if (ret < 0) { | |
1242 | kfree(edesc); | |
1243 | return NULL; | |
1244 | } | |
1245 | ||
1246 | edesc->pset[1].param.opt |= ITCCHEN; | |
1247 | edesc->pset[1].param.opt |= TCINTEN; | |
1248 | } | |
8cc3e30b JF |
1249 | |
1250 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | |
1251 | } | |
1252 | ||
50a9c707 JF |
1253 | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( |
1254 | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, | |
1255 | size_t period_len, enum dma_transfer_direction direction, | |
31c1e5a1 | 1256 | unsigned long tx_flags) |
50a9c707 JF |
1257 | { |
1258 | struct edma_chan *echan = to_edma_chan(chan); | |
1259 | struct device *dev = chan->device->dev; | |
1260 | struct edma_desc *edesc; | |
1261 | dma_addr_t src_addr, dst_addr; | |
1262 | enum dma_slave_buswidth dev_width; | |
a482f4e0 | 1263 | bool use_intermediate = false; |
50a9c707 JF |
1264 | u32 burst; |
1265 | int i, ret, nslots; | |
1266 | ||
1267 | if (unlikely(!echan || !buf_len || !period_len)) | |
1268 | return NULL; | |
1269 | ||
1270 | if (direction == DMA_DEV_TO_MEM) { | |
1271 | src_addr = echan->cfg.src_addr; | |
1272 | dst_addr = buf_addr; | |
1273 | dev_width = echan->cfg.src_addr_width; | |
1274 | burst = echan->cfg.src_maxburst; | |
1275 | } else if (direction == DMA_MEM_TO_DEV) { | |
1276 | src_addr = buf_addr; | |
1277 | dst_addr = echan->cfg.dst_addr; | |
1278 | dev_width = echan->cfg.dst_addr_width; | |
1279 | burst = echan->cfg.dst_maxburst; | |
1280 | } else { | |
e6fad592 | 1281 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
50a9c707 JF |
1282 | return NULL; |
1283 | } | |
1284 | ||
1285 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | |
c594c891 | 1286 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
50a9c707 JF |
1287 | return NULL; |
1288 | } | |
1289 | ||
1290 | if (unlikely(buf_len % period_len)) { | |
1291 | dev_err(dev, "Period should be multiple of Buffer length\n"); | |
1292 | return NULL; | |
1293 | } | |
1294 | ||
1295 | nslots = (buf_len / period_len) + 1; | |
1296 | ||
1297 | /* | |
1298 | * Cyclic DMA users such as audio cannot tolerate delays introduced | |
1299 | * by cases where the number of periods is more than the maximum | |
1300 | * number of SGs the EDMA driver can handle at a time. For DMA types | |
1301 | * such as Slave SGs, such delays are tolerable and synchronized, | |
1302 | * but the synchronization is difficult to achieve with Cyclic and | |
1303 | * cannot be guaranteed, so we error out early. | |
1304 | */ | |
a482f4e0 JO |
1305 | if (nslots > MAX_NR_SG) { |
1306 | /* | |
1307 | * If the burst and period sizes are the same, we can put | |
1308 | * the full buffer into a single period and activate | |
1309 | * intermediate interrupts. This will produce interrupts | |
1310 | * after each burst, which is also after each desired period. | |
1311 | */ | |
1312 | if (burst == period_len) { | |
1313 | period_len = buf_len; | |
1314 | nslots = 2; | |
1315 | use_intermediate = true; | |
1316 | } else { | |
1317 | return NULL; | |
1318 | } | |
1319 | } | |
50a9c707 | 1320 | |
2b6b3b74 PU |
1321 | edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), |
1322 | GFP_ATOMIC); | |
aef94fea | 1323 | if (!edesc) |
50a9c707 | 1324 | return NULL; |
50a9c707 JF |
1325 | |
1326 | edesc->cyclic = 1; | |
1327 | edesc->pset_nr = nslots; | |
740b41f7 | 1328 | edesc->residue = edesc->residue_stat = buf_len; |
c2da2340 | 1329 | edesc->direction = direction; |
740b41f7 | 1330 | edesc->echan = echan; |
50a9c707 | 1331 | |
83bb3126 PU |
1332 | dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", |
1333 | __func__, echan->ch_num, nslots, period_len, buf_len); | |
50a9c707 JF |
1334 | |
1335 | for (i = 0; i < nslots; i++) { | |
1336 | /* Allocate a PaRAM slot, if needed */ | |
1337 | if (echan->slot[i] < 0) { | |
1338 | echan->slot[i] = | |
2b6b3b74 | 1339 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
50a9c707 | 1340 | if (echan->slot[i] < 0) { |
e3ddc979 | 1341 | kfree(edesc); |
c594c891 PU |
1342 | dev_err(dev, "%s: Failed to allocate slot\n", |
1343 | __func__); | |
50a9c707 JF |
1344 | return NULL; |
1345 | } | |
1346 | } | |
1347 | ||
1348 | if (i == nslots - 1) { | |
1349 | memcpy(&edesc->pset[i], &edesc->pset[0], | |
1350 | sizeof(edesc->pset[0])); | |
1351 | break; | |
1352 | } | |
1353 | ||
1354 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | |
1355 | dst_addr, burst, dev_width, period_len, | |
1356 | direction); | |
e3ddc979 CE |
1357 | if (ret < 0) { |
1358 | kfree(edesc); | |
50a9c707 | 1359 | return NULL; |
e3ddc979 | 1360 | } |
c2dde5f8 | 1361 | |
50a9c707 JF |
1362 | if (direction == DMA_DEV_TO_MEM) |
1363 | dst_addr += period_len; | |
1364 | else | |
1365 | src_addr += period_len; | |
c2dde5f8 | 1366 | |
83bb3126 PU |
1367 | dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); |
1368 | dev_vdbg(dev, | |
50a9c707 JF |
1369 | "\n pset[%d]:\n" |
1370 | " chnum\t%d\n" | |
1371 | " slot\t%d\n" | |
1372 | " opt\t%08x\n" | |
1373 | " src\t%08x\n" | |
1374 | " dst\t%08x\n" | |
1375 | " abcnt\t%08x\n" | |
1376 | " ccnt\t%08x\n" | |
1377 | " bidx\t%08x\n" | |
1378 | " cidx\t%08x\n" | |
1379 | " lkrld\t%08x\n", | |
1380 | i, echan->ch_num, echan->slot[i], | |
b5088ad9 TG |
1381 | edesc->pset[i].param.opt, |
1382 | edesc->pset[i].param.src, | |
1383 | edesc->pset[i].param.dst, | |
1384 | edesc->pset[i].param.a_b_cnt, | |
1385 | edesc->pset[i].param.ccnt, | |
1386 | edesc->pset[i].param.src_dst_bidx, | |
1387 | edesc->pset[i].param.src_dst_cidx, | |
1388 | edesc->pset[i].param.link_bcntrld); | |
50a9c707 JF |
1389 | |
1390 | edesc->absync = ret; | |
1391 | ||
1392 | /* | |
a1f146f3 | 1393 | * Enable period interrupt only if it is requested |
50a9c707 | 1394 | */ |
a482f4e0 | 1395 | if (tx_flags & DMA_PREP_INTERRUPT) { |
a1f146f3 | 1396 | edesc->pset[i].param.opt |= TCINTEN; |
a482f4e0 JO |
1397 | |
1398 | /* Also enable intermediate interrupts if necessary */ | |
1399 | if (use_intermediate) | |
1400 | edesc->pset[i].param.opt |= ITCINTEN; | |
1401 | } | |
c2dde5f8 MP |
1402 | } |
1403 | ||
8e8805d5 | 1404 | /* Place the cyclic channel to highest priority queue */ |
1be5336b PU |
1405 | if (!echan->tc) |
1406 | edma_assign_channel_eventq(echan, EVENTQ_0); | |
8e8805d5 | 1407 | |
c2dde5f8 MP |
1408 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
1409 | } | |
1410 | ||
79ad2e38 | 1411 | static void edma_completion_handler(struct edma_chan *echan) |
c2dde5f8 | 1412 | { |
c2dde5f8 | 1413 | struct device *dev = echan->vchan.chan.device->dev; |
e4d8817c | 1414 | struct edma_desc *edesc; |
50a9c707 | 1415 | |
8fa7ff4f | 1416 | spin_lock(&echan->vchan.lock); |
e4d8817c PU |
1417 | edesc = echan->edesc; |
1418 | if (edesc) { | |
1419 | if (edesc->cyclic) { | |
1420 | vchan_cyclic_callback(&edesc->vdesc); | |
1421 | spin_unlock(&echan->vchan.lock); | |
1422 | return; | |
1423 | } else if (edesc->processed == edesc->pset_nr) { | |
1424 | edesc->residue = 0; | |
1425 | edma_stop(echan); | |
1426 | vchan_cookie_complete(&edesc->vdesc); | |
1427 | echan->edesc = NULL; | |
1428 | ||
1429 | dev_dbg(dev, "Transfer completed on channel %d\n", | |
1430 | echan->ch_num); | |
1431 | } else { | |
1432 | dev_dbg(dev, "Sub transfer completed on channel %d\n", | |
1433 | echan->ch_num); | |
1434 | ||
1435 | edma_pause(echan); | |
1436 | ||
1437 | /* Update statistics for tx_status */ | |
1438 | edesc->residue -= edesc->sg_len; | |
1439 | edesc->residue_stat = edesc->residue; | |
1440 | edesc->processed_stat = edesc->processed; | |
1441 | } | |
1442 | edma_execute(echan); | |
79ad2e38 | 1443 | } |
79ad2e38 PU |
1444 | |
1445 | spin_unlock(&echan->vchan.lock); | |
1446 | } | |
1447 | ||
1448 | /* eDMA interrupt handler */ | |
1449 | static irqreturn_t dma_irq_handler(int irq, void *data) | |
1450 | { | |
1451 | struct edma_cc *ecc = data; | |
1452 | int ctlr; | |
1453 | u32 sh_ier; | |
1454 | u32 sh_ipr; | |
1455 | u32 bank; | |
1456 | ||
1457 | ctlr = ecc->id; | |
1458 | if (ctlr < 0) | |
1459 | return IRQ_NONE; | |
1460 | ||
1461 | dev_vdbg(ecc->dev, "dma_irq_handler\n"); | |
1462 | ||
1463 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); | |
1464 | if (!sh_ipr) { | |
1465 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); | |
1466 | if (!sh_ipr) | |
1467 | return IRQ_NONE; | |
1468 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); | |
1469 | bank = 1; | |
1470 | } else { | |
1471 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); | |
1472 | bank = 0; | |
1473 | } | |
1474 | ||
1475 | do { | |
1476 | u32 slot; | |
1477 | u32 channel; | |
1478 | ||
1479 | slot = __ffs(sh_ipr); | |
1480 | sh_ipr &= ~(BIT(slot)); | |
1481 | ||
1482 | if (sh_ier & BIT(slot)) { | |
1483 | channel = (bank << 5) | slot; | |
1484 | /* Clear the corresponding IPR bits */ | |
1485 | edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); | |
1486 | edma_completion_handler(&ecc->slave_chans[channel]); | |
c2dde5f8 | 1487 | } |
79ad2e38 PU |
1488 | } while (sh_ipr); |
1489 | ||
1490 | edma_shadow0_write(ecc, SH_IEVAL, 1); | |
1491 | return IRQ_HANDLED; | |
1492 | } | |
1493 | ||
1494 | static void edma_error_handler(struct edma_chan *echan) | |
1495 | { | |
1496 | struct edma_cc *ecc = echan->ecc; | |
1497 | struct device *dev = echan->vchan.chan.device->dev; | |
1498 | struct edmacc_param p; | |
2cc40ee7 | 1499 | int err; |
79ad2e38 PU |
1500 | |
1501 | if (!echan->edesc) | |
1502 | return; | |
1503 | ||
1504 | spin_lock(&echan->vchan.lock); | |
c5f47990 | 1505 | |
2cc40ee7 AB |
1506 | err = edma_read_slot(ecc, echan->slot[0], &p); |
1507 | ||
79ad2e38 PU |
1508 | /* |
1509 | * Issue later based on missed flag which will be sure | |
1510 | * to happen as: | |
1511 | * (1) we finished transmitting an intermediate slot and | |
1512 | * edma_execute is coming up. | |
1513 | * (2) or we finished current transfer and issue will | |
1514 | * call edma_execute. | |
1515 | * | |
1516 | * Important note: issuing can be dangerous here and | |
1517 | * lead to some nasty recursion when we are in a NULL | |
1518 | * slot. So we avoid doing so and set the missed flag. | |
1519 | */ | |
2cc40ee7 | 1520 | if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { |
79ad2e38 PU |
1521 | dev_dbg(dev, "Error on null slot, setting miss\n"); |
1522 | echan->missed = 1; | |
1523 | } else { | |
c5f47990 | 1524 | /* |
79ad2e38 PU |
1525 | * The slot is already programmed but the event got |
1526 | * missed, so its safe to issue it here. | |
c5f47990 | 1527 | */ |
79ad2e38 | 1528 | dev_dbg(dev, "Missed event, TRIGGERING\n"); |
34cf3011 PU |
1529 | edma_clean_channel(echan); |
1530 | edma_stop(echan); | |
1531 | edma_start(echan); | |
1532 | edma_trigger_channel(echan); | |
79ad2e38 PU |
1533 | } |
1534 | spin_unlock(&echan->vchan.lock); | |
1535 | } | |
1536 | ||
7c3b8b3d PU |
1537 | static inline bool edma_error_pending(struct edma_cc *ecc) |
1538 | { | |
1539 | if (edma_read_array(ecc, EDMA_EMR, 0) || | |
1540 | edma_read_array(ecc, EDMA_EMR, 1) || | |
1541 | edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) | |
1542 | return true; | |
1543 | ||
1544 | return false; | |
1545 | } | |
1546 | ||
79ad2e38 PU |
1547 | /* eDMA error interrupt handler */ |
1548 | static irqreturn_t dma_ccerr_handler(int irq, void *data) | |
1549 | { | |
1550 | struct edma_cc *ecc = data; | |
e4402a12 | 1551 | int i, j; |
79ad2e38 PU |
1552 | int ctlr; |
1553 | unsigned int cnt = 0; | |
e4402a12 | 1554 | unsigned int val; |
79ad2e38 PU |
1555 | |
1556 | ctlr = ecc->id; | |
1557 | if (ctlr < 0) | |
1558 | return IRQ_NONE; | |
1559 | ||
1560 | dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); | |
1561 | ||
3b2bc8a7 PU |
1562 | if (!edma_error_pending(ecc)) { |
1563 | /* | |
1564 | * The registers indicate no pending error event but the irq | |
1565 | * handler has been called. | |
1566 | * Ask eDMA to re-evaluate the error registers. | |
1567 | */ | |
1568 | dev_err(ecc->dev, "%s: Error interrupt without error event!\n", | |
1569 | __func__); | |
1570 | edma_write(ecc, EDMA_EEVAL, 1); | |
79ad2e38 | 1571 | return IRQ_NONE; |
3b2bc8a7 | 1572 | } |
79ad2e38 PU |
1573 | |
1574 | while (1) { | |
e4402a12 PU |
1575 | /* Event missed register(s) */ |
1576 | for (j = 0; j < 2; j++) { | |
1577 | unsigned long emr; | |
1578 | ||
1579 | val = edma_read_array(ecc, EDMA_EMR, j); | |
1580 | if (!val) | |
1581 | continue; | |
1582 | ||
1583 | dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); | |
1584 | emr = val; | |
1585 | for (i = find_next_bit(&emr, 32, 0); i < 32; | |
1586 | i = find_next_bit(&emr, 32, i + 1)) { | |
79ad2e38 PU |
1587 | int k = (j << 5) + i; |
1588 | ||
e4402a12 PU |
1589 | /* Clear the corresponding EMR bits */ |
1590 | edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); | |
1591 | /* Clear any SER */ | |
1592 | edma_shadow0_write_array(ecc, SH_SECR, j, | |
79ad2e38 | 1593 | BIT(i)); |
e4402a12 | 1594 | edma_error_handler(&ecc->slave_chans[k]); |
79ad2e38 | 1595 | } |
c5f47990 | 1596 | } |
e4402a12 PU |
1597 | |
1598 | val = edma_read(ecc, EDMA_QEMR); | |
1599 | if (val) { | |
1600 | dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); | |
1601 | /* Not reported, just clear the interrupt reason. */ | |
1602 | edma_write(ecc, EDMA_QEMCR, val); | |
1603 | edma_shadow0_write(ecc, SH_QSECR, val); | |
1604 | } | |
1605 | ||
1606 | val = edma_read(ecc, EDMA_CCERR); | |
1607 | if (val) { | |
1608 | dev_warn(ecc->dev, "CCERR 0x%08x\n", val); | |
1609 | /* Not reported, just clear the interrupt reason. */ | |
1610 | edma_write(ecc, EDMA_CCERRCLR, val); | |
1611 | } | |
1612 | ||
7c3b8b3d | 1613 | if (!edma_error_pending(ecc)) |
79ad2e38 PU |
1614 | break; |
1615 | cnt++; | |
1616 | if (cnt > 10) | |
1617 | break; | |
c2dde5f8 | 1618 | } |
79ad2e38 PU |
1619 | edma_write(ecc, EDMA_EEVAL, 1); |
1620 | return IRQ_HANDLED; | |
c2dde5f8 MP |
1621 | } |
1622 | ||
1623 | /* Alloc channel resources */ | |
1624 | static int edma_alloc_chan_resources(struct dma_chan *chan) | |
1625 | { | |
1626 | struct edma_chan *echan = to_edma_chan(chan); | |
1be5336b PU |
1627 | struct edma_cc *ecc = echan->ecc; |
1628 | struct device *dev = ecc->dev; | |
1629 | enum dma_event_q eventq_no = EVENTQ_DEFAULT; | |
c2dde5f8 | 1630 | int ret; |
c2dde5f8 | 1631 | |
1be5336b PU |
1632 | if (echan->tc) { |
1633 | eventq_no = echan->tc->id; | |
1634 | } else if (ecc->tc_list) { | |
1635 | /* memcpy channel */ | |
1636 | echan->tc = &ecc->tc_list[ecc->info->default_queue]; | |
1637 | eventq_no = echan->tc->id; | |
1638 | } | |
1639 | ||
1640 | ret = edma_alloc_channel(echan, eventq_no); | |
34cf3011 PU |
1641 | if (ret) |
1642 | return ret; | |
c2dde5f8 | 1643 | |
1be5336b | 1644 | echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); |
e4e886c6 PU |
1645 | if (echan->slot[0] < 0) { |
1646 | dev_err(dev, "Entry slot allocation failed for channel %u\n", | |
1647 | EDMA_CHAN_SLOT(echan->ch_num)); | |
f95df7d6 | 1648 | ret = echan->slot[0]; |
34cf3011 | 1649 | goto err_slot; |
e4e886c6 PU |
1650 | } |
1651 | ||
1652 | /* Set up channel -> slot mapping for the entry slot */ | |
34cf3011 PU |
1653 | edma_set_chmap(echan, echan->slot[0]); |
1654 | echan->alloced = true; | |
c2dde5f8 | 1655 | |
1be5336b PU |
1656 | dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", |
1657 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, | |
1658 | echan->hw_triggered ? "HW" : "SW"); | |
1659 | ||
c2dde5f8 MP |
1660 | return 0; |
1661 | ||
34cf3011 PU |
1662 | err_slot: |
1663 | edma_free_channel(echan); | |
c2dde5f8 MP |
1664 | return ret; |
1665 | } | |
1666 | ||
1667 | /* Free channel resources */ | |
1668 | static void edma_free_chan_resources(struct dma_chan *chan) | |
1669 | { | |
1670 | struct edma_chan *echan = to_edma_chan(chan); | |
1be5336b | 1671 | struct device *dev = echan->ecc->dev; |
c2dde5f8 MP |
1672 | int i; |
1673 | ||
1674 | /* Terminate transfers */ | |
34cf3011 | 1675 | edma_stop(echan); |
c2dde5f8 MP |
1676 | |
1677 | vchan_free_chan_resources(&echan->vchan); | |
1678 | ||
1679 | /* Free EDMA PaRAM slots */ | |
e4e886c6 | 1680 | for (i = 0; i < EDMA_MAX_SLOTS; i++) { |
c2dde5f8 | 1681 | if (echan->slot[i] >= 0) { |
2b6b3b74 | 1682 | edma_free_slot(echan->ecc, echan->slot[i]); |
c2dde5f8 MP |
1683 | echan->slot[i] = -1; |
1684 | } | |
1685 | } | |
1686 | ||
e4e886c6 | 1687 | /* Set entry slot to the dummy slot */ |
34cf3011 | 1688 | edma_set_chmap(echan, echan->ecc->dummy_slot); |
e4e886c6 | 1689 | |
c2dde5f8 MP |
1690 | /* Free EDMA channel */ |
1691 | if (echan->alloced) { | |
34cf3011 | 1692 | edma_free_channel(echan); |
c2dde5f8 MP |
1693 | echan->alloced = false; |
1694 | } | |
1695 | ||
1be5336b PU |
1696 | echan->tc = NULL; |
1697 | echan->hw_triggered = false; | |
1698 | ||
1699 | dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", | |
1700 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); | |
c2dde5f8 MP |
1701 | } |
1702 | ||
1703 | /* Send pending descriptor to hardware */ | |
1704 | static void edma_issue_pending(struct dma_chan *chan) | |
1705 | { | |
1706 | struct edma_chan *echan = to_edma_chan(chan); | |
1707 | unsigned long flags; | |
1708 | ||
1709 | spin_lock_irqsave(&echan->vchan.lock, flags); | |
1710 | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) | |
1711 | edma_execute(echan); | |
1712 | spin_unlock_irqrestore(&echan->vchan.lock, flags); | |
1713 | } | |
1714 | ||
4ac31d18 JO |
1715 | /* |
1716 | * This limit exists to avoid a possible infinite loop when waiting for proof | |
1717 | * that a particular transfer is completed. This limit can be hit if there | |
1718 | * are large bursts to/from slow devices or the CPU is never able to catch | |
1719 | * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART | |
1720 | * RX-FIFO, as many as 55 loops have been seen. | |
1721 | */ | |
1722 | #define EDMA_MAX_TR_WAIT_LOOPS 1000 | |
1723 | ||
740b41f7 TG |
1724 | static u32 edma_residue(struct edma_desc *edesc) |
1725 | { | |
1726 | bool dst = edesc->direction == DMA_DEV_TO_MEM; | |
4ac31d18 JO |
1727 | int loop_count = EDMA_MAX_TR_WAIT_LOOPS; |
1728 | struct edma_chan *echan = edesc->echan; | |
740b41f7 TG |
1729 | struct edma_pset *pset = edesc->pset; |
1730 | dma_addr_t done, pos; | |
1731 | int i; | |
1732 | ||
1733 | /* | |
1734 | * We always read the dst/src position from the first RamPar | |
1735 | * pset. That's the one which is active now. | |
1736 | */ | |
4ac31d18 JO |
1737 | pos = edma_get_position(echan->ecc, echan->slot[0], dst); |
1738 | ||
1739 | /* | |
1740 | * "pos" may represent a transfer request that is still being | |
1741 | * processed by the EDMACC or EDMATC. We will busy wait until | |
1742 | * any one of the situations occurs: | |
1743 | * 1. the DMA hardware is idle | |
1744 | * 2. a new transfer request is setup | |
1745 | * 3. we hit the loop limit | |
1746 | */ | |
1747 | while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { | |
1748 | /* check if a new transfer request is setup */ | |
1749 | if (edma_get_position(echan->ecc, | |
1750 | echan->slot[0], dst) != pos) { | |
1751 | break; | |
1752 | } | |
1753 | ||
1754 | if (!--loop_count) { | |
1755 | dev_dbg_ratelimited(echan->vchan.chan.device->dev, | |
1756 | "%s: timeout waiting for PaRAM update\n", | |
1757 | __func__); | |
1758 | break; | |
1759 | } | |
1760 | ||
1761 | cpu_relax(); | |
1762 | } | |
740b41f7 TG |
1763 | |
1764 | /* | |
1765 | * Cyclic is simple. Just subtract pset[0].addr from pos. | |
1766 | * | |
1767 | * We never update edesc->residue in the cyclic case, so we | |
1768 | * can tell the remaining room to the end of the circular | |
1769 | * buffer. | |
1770 | */ | |
1771 | if (edesc->cyclic) { | |
1772 | done = pos - pset->addr; | |
1773 | edesc->residue_stat = edesc->residue - done; | |
1774 | return edesc->residue_stat; | |
1775 | } | |
1776 | ||
1777 | /* | |
1778 | * For SG operation we catch up with the last processed | |
1779 | * status. | |
1780 | */ | |
1781 | pset += edesc->processed_stat; | |
1782 | ||
1783 | for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { | |
1784 | /* | |
1785 | * If we are inside this pset address range, we know | |
1786 | * this is the active one. Get the current delta and | |
1787 | * stop walking the psets. | |
1788 | */ | |
1789 | if (pos >= pset->addr && pos < pset->addr + pset->len) | |
1790 | return edesc->residue_stat - (pos - pset->addr); | |
1791 | ||
1792 | /* Otherwise mark it done and update residue_stat. */ | |
1793 | edesc->processed_stat++; | |
1794 | edesc->residue_stat -= pset->len; | |
1795 | } | |
1796 | return edesc->residue_stat; | |
1797 | } | |
1798 | ||
c2dde5f8 MP |
1799 | /* Check request completion status */ |
1800 | static enum dma_status edma_tx_status(struct dma_chan *chan, | |
1801 | dma_cookie_t cookie, | |
1802 | struct dma_tx_state *txstate) | |
1803 | { | |
1804 | struct edma_chan *echan = to_edma_chan(chan); | |
1805 | struct virt_dma_desc *vdesc; | |
1806 | enum dma_status ret; | |
1807 | unsigned long flags; | |
1808 | ||
1809 | ret = dma_cookie_status(chan, cookie, txstate); | |
9d386ec5 | 1810 | if (ret == DMA_COMPLETE || !txstate) |
c2dde5f8 MP |
1811 | return ret; |
1812 | ||
1813 | spin_lock_irqsave(&echan->vchan.lock, flags); | |
de135939 | 1814 | if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) |
740b41f7 | 1815 | txstate->residue = edma_residue(echan->edesc); |
de135939 TG |
1816 | else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) |
1817 | txstate->residue = to_edma_desc(&vdesc->tx)->residue; | |
c2dde5f8 MP |
1818 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
1819 | ||
1820 | return ret; | |
1821 | } | |
1822 | ||
ecb7dece | 1823 | static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) |
1be5336b | 1824 | { |
1be5336b PU |
1825 | if (!memcpy_channels) |
1826 | return false; | |
ecb7dece PU |
1827 | while (*memcpy_channels != -1) { |
1828 | if (*memcpy_channels == ch_num) | |
1be5336b | 1829 | return true; |
ecb7dece | 1830 | memcpy_channels++; |
1be5336b PU |
1831 | } |
1832 | return false; | |
1833 | } | |
1834 | ||
02f77ef1 PU |
1835 | #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
1836 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | |
1837 | BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ | |
1838 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) | |
1839 | ||
1be5336b | 1840 | static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) |
c2dde5f8 | 1841 | { |
1be5336b PU |
1842 | struct dma_device *s_ddev = &ecc->dma_slave; |
1843 | struct dma_device *m_ddev = NULL; | |
ecb7dece | 1844 | s32 *memcpy_channels = ecc->info->memcpy_channels; |
c2dde5f8 MP |
1845 | int i, j; |
1846 | ||
1be5336b PU |
1847 | dma_cap_zero(s_ddev->cap_mask); |
1848 | dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); | |
1849 | dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); | |
1850 | if (ecc->legacy_mode && !memcpy_channels) { | |
1851 | dev_warn(ecc->dev, | |
1852 | "Legacy memcpy is enabled, things might not work\n"); | |
02f77ef1 | 1853 | |
1be5336b PU |
1854 | dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); |
1855 | s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; | |
1856 | s_ddev->directions = BIT(DMA_MEM_TO_MEM); | |
1857 | } | |
02f77ef1 | 1858 | |
1be5336b PU |
1859 | s_ddev->device_prep_slave_sg = edma_prep_slave_sg; |
1860 | s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; | |
1861 | s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; | |
1862 | s_ddev->device_free_chan_resources = edma_free_chan_resources; | |
1863 | s_ddev->device_issue_pending = edma_issue_pending; | |
1864 | s_ddev->device_tx_status = edma_tx_status; | |
1865 | s_ddev->device_config = edma_slave_config; | |
1866 | s_ddev->device_pause = edma_dma_pause; | |
1867 | s_ddev->device_resume = edma_dma_resume; | |
1868 | s_ddev->device_terminate_all = edma_terminate_all; | |
b84730ff | 1869 | s_ddev->device_synchronize = edma_synchronize; |
1be5336b PU |
1870 | |
1871 | s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; | |
1872 | s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; | |
1873 | s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); | |
1874 | s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | |
ea09ea51 | 1875 | s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ |
1be5336b PU |
1876 | |
1877 | s_ddev->dev = ecc->dev; | |
1878 | INIT_LIST_HEAD(&s_ddev->channels); | |
1879 | ||
1880 | if (memcpy_channels) { | |
1881 | m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); | |
1882 | ecc->dma_memcpy = m_ddev; | |
1883 | ||
1884 | dma_cap_zero(m_ddev->cap_mask); | |
1885 | dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); | |
1886 | ||
1887 | m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; | |
1888 | m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; | |
1889 | m_ddev->device_free_chan_resources = edma_free_chan_resources; | |
1890 | m_ddev->device_issue_pending = edma_issue_pending; | |
1891 | m_ddev->device_tx_status = edma_tx_status; | |
1892 | m_ddev->device_config = edma_slave_config; | |
1893 | m_ddev->device_pause = edma_dma_pause; | |
1894 | m_ddev->device_resume = edma_dma_resume; | |
1895 | m_ddev->device_terminate_all = edma_terminate_all; | |
b84730ff | 1896 | m_ddev->device_synchronize = edma_synchronize; |
1be5336b PU |
1897 | |
1898 | m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; | |
1899 | m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; | |
1900 | m_ddev->directions = BIT(DMA_MEM_TO_MEM); | |
1901 | m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | |
1902 | ||
1903 | m_ddev->dev = ecc->dev; | |
1904 | INIT_LIST_HEAD(&m_ddev->channels); | |
1905 | } else if (!ecc->legacy_mode) { | |
1906 | dev_info(ecc->dev, "memcpy is disabled\n"); | |
1907 | } | |
02f77ef1 | 1908 | |
cb782059 | 1909 | for (i = 0; i < ecc->num_channels; i++) { |
02f77ef1 | 1910 | struct edma_chan *echan = &ecc->slave_chans[i]; |
2b6b3b74 | 1911 | echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); |
c2dde5f8 MP |
1912 | echan->ecc = ecc; |
1913 | echan->vchan.desc_free = edma_desc_free; | |
1914 | ||
1be5336b PU |
1915 | if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) |
1916 | vchan_init(&echan->vchan, m_ddev); | |
1917 | else | |
1918 | vchan_init(&echan->vchan, s_ddev); | |
c2dde5f8 MP |
1919 | |
1920 | INIT_LIST_HEAD(&echan->node); | |
1921 | for (j = 0; j < EDMA_MAX_SLOTS; j++) | |
1922 | echan->slot[j] = -1; | |
1923 | } | |
1924 | } | |
1925 | ||
2b6b3b74 PU |
1926 | static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, |
1927 | struct edma_cc *ecc) | |
1928 | { | |
1929 | int i; | |
1930 | u32 value, cccfg; | |
1931 | s8 (*queue_priority_map)[2]; | |
1932 | ||
1933 | /* Decode the eDMA3 configuration from CCCFG register */ | |
1934 | cccfg = edma_read(ecc, EDMA_CCCFG); | |
1935 | ||
1936 | value = GET_NUM_REGN(cccfg); | |
1937 | ecc->num_region = BIT(value); | |
1938 | ||
1939 | value = GET_NUM_DMACH(cccfg); | |
1940 | ecc->num_channels = BIT(value + 1); | |
1941 | ||
633e42b8 PU |
1942 | value = GET_NUM_QDMACH(cccfg); |
1943 | ecc->num_qchannels = value * 2; | |
1944 | ||
2b6b3b74 PU |
1945 | value = GET_NUM_PAENTRY(cccfg); |
1946 | ecc->num_slots = BIT(value + 4); | |
1947 | ||
1948 | value = GET_NUM_EVQUE(cccfg); | |
1949 | ecc->num_tc = value + 1; | |
1950 | ||
4ab54f69 PU |
1951 | ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; |
1952 | ||
2b6b3b74 PU |
1953 | dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); |
1954 | dev_dbg(dev, "num_region: %u\n", ecc->num_region); | |
1955 | dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); | |
633e42b8 | 1956 | dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); |
2b6b3b74 PU |
1957 | dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); |
1958 | dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); | |
4ab54f69 | 1959 | dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); |
2b6b3b74 PU |
1960 | |
1961 | /* Nothing need to be done if queue priority is provided */ | |
1962 | if (pdata->queue_priority_mapping) | |
1963 | return 0; | |
1964 | ||
1965 | /* | |
1966 | * Configure TC/queue priority as follows: | |
1967 | * Q0 - priority 0 | |
1968 | * Q1 - priority 1 | |
1969 | * Q2 - priority 2 | |
1970 | * ... | |
1971 | * The meaning of priority numbers: 0 highest priority, 7 lowest | |
1972 | * priority. So Q0 is the highest priority queue and the last queue has | |
1973 | * the lowest priority. | |
1974 | */ | |
547c6e27 | 1975 | queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), |
2b6b3b74 PU |
1976 | GFP_KERNEL); |
1977 | if (!queue_priority_map) | |
1978 | return -ENOMEM; | |
1979 | ||
1980 | for (i = 0; i < ecc->num_tc; i++) { | |
1981 | queue_priority_map[i][0] = i; | |
1982 | queue_priority_map[i][1] = i; | |
1983 | } | |
1984 | queue_priority_map[i][0] = -1; | |
1985 | queue_priority_map[i][1] = -1; | |
1986 | ||
1987 | pdata->queue_priority_mapping = queue_priority_map; | |
1988 | /* Default queue has the lowest priority */ | |
1989 | pdata->default_queue = i - 1; | |
1990 | ||
1991 | return 0; | |
1992 | } | |
1993 | ||
1994 | #if IS_ENABLED(CONFIG_OF) | |
1995 | static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, | |
1996 | size_t sz) | |
1997 | { | |
1998 | const char pname[] = "ti,edma-xbar-event-map"; | |
1999 | struct resource res; | |
2000 | void __iomem *xbar; | |
2001 | s16 (*xbar_chans)[2]; | |
2002 | size_t nelm = sz / sizeof(s16); | |
2003 | u32 shift, offset, mux; | |
2004 | int ret, i; | |
2005 | ||
547c6e27 | 2006 | xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); |
2b6b3b74 PU |
2007 | if (!xbar_chans) |
2008 | return -ENOMEM; | |
2009 | ||
2010 | ret = of_address_to_resource(dev->of_node, 1, &res); | |
2011 | if (ret) | |
2012 | return -ENOMEM; | |
2013 | ||
2014 | xbar = devm_ioremap(dev, res.start, resource_size(&res)); | |
2015 | if (!xbar) | |
2016 | return -ENOMEM; | |
2017 | ||
2018 | ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, | |
2019 | nelm); | |
2020 | if (ret) | |
2021 | return -EIO; | |
2022 | ||
2023 | /* Invalidate last entry for the other user of this mess */ | |
2024 | nelm >>= 1; | |
2025 | xbar_chans[nelm][0] = -1; | |
2026 | xbar_chans[nelm][1] = -1; | |
2027 | ||
2028 | for (i = 0; i < nelm; i++) { | |
2029 | shift = (xbar_chans[i][1] & 0x03) << 3; | |
2030 | offset = xbar_chans[i][1] & 0xfffffffc; | |
2031 | mux = readl(xbar + offset); | |
2032 | mux &= ~(0xff << shift); | |
2033 | mux |= xbar_chans[i][0] << shift; | |
2034 | writel(mux, (xbar + offset)); | |
2035 | } | |
2036 | ||
2037 | pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; | |
2038 | return 0; | |
2039 | } | |
2040 | ||
1be5336b PU |
2041 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
2042 | bool legacy_mode) | |
2b6b3b74 PU |
2043 | { |
2044 | struct edma_soc_info *info; | |
966a87b5 | 2045 | struct property *prop; |
f1d1e34f | 2046 | int sz, ret; |
2b6b3b74 PU |
2047 | |
2048 | info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); | |
2049 | if (!info) | |
2050 | return ERR_PTR(-ENOMEM); | |
2051 | ||
1be5336b PU |
2052 | if (legacy_mode) { |
2053 | prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", | |
2054 | &sz); | |
2055 | if (prop) { | |
2056 | ret = edma_xbar_event_map(dev, info, sz); | |
2057 | if (ret) | |
2058 | return ERR_PTR(ret); | |
2059 | } | |
2060 | return info; | |
2061 | } | |
2062 | ||
2063 | /* Get the list of channels allocated to be used for memcpy */ | |
2064 | prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); | |
2065 | if (prop) { | |
2066 | const char pname[] = "ti,edma-memcpy-channels"; | |
ecb7dece PU |
2067 | size_t nelm = sz / sizeof(s32); |
2068 | s32 *memcpy_ch; | |
1be5336b | 2069 | |
ecb7dece | 2070 | memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), |
1be5336b PU |
2071 | GFP_KERNEL); |
2072 | if (!memcpy_ch) | |
2073 | return ERR_PTR(-ENOMEM); | |
2074 | ||
ecb7dece PU |
2075 | ret = of_property_read_u32_array(dev->of_node, pname, |
2076 | (u32 *)memcpy_ch, nelm); | |
1be5336b PU |
2077 | if (ret) |
2078 | return ERR_PTR(ret); | |
2079 | ||
2080 | memcpy_ch[nelm] = -1; | |
2081 | info->memcpy_channels = memcpy_ch; | |
2082 | } | |
2083 | ||
2084 | prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", | |
2085 | &sz); | |
966a87b5 | 2086 | if (prop) { |
1be5336b | 2087 | const char pname[] = "ti,edma-reserved-slot-ranges"; |
ae0add74 | 2088 | u32 (*tmp)[2]; |
1be5336b | 2089 | s16 (*rsv_slots)[2]; |
ae0add74 | 2090 | size_t nelm = sz / sizeof(*tmp); |
1be5336b | 2091 | struct edma_rsv_info *rsv_info; |
ae0add74 | 2092 | int i; |
1be5336b PU |
2093 | |
2094 | if (!nelm) | |
2095 | return info; | |
2096 | ||
ae0add74 PU |
2097 | tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); |
2098 | if (!tmp) | |
2099 | return ERR_PTR(-ENOMEM); | |
2100 | ||
1be5336b | 2101 | rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); |
ae0add74 PU |
2102 | if (!rsv_info) { |
2103 | kfree(tmp); | |
1be5336b | 2104 | return ERR_PTR(-ENOMEM); |
ae0add74 | 2105 | } |
1be5336b PU |
2106 | |
2107 | rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), | |
2108 | GFP_KERNEL); | |
ae0add74 PU |
2109 | if (!rsv_slots) { |
2110 | kfree(tmp); | |
1be5336b | 2111 | return ERR_PTR(-ENOMEM); |
ae0add74 | 2112 | } |
1be5336b | 2113 | |
ae0add74 PU |
2114 | ret = of_property_read_u32_array(dev->of_node, pname, |
2115 | (u32 *)tmp, nelm * 2); | |
2116 | if (ret) { | |
2117 | kfree(tmp); | |
966a87b5 | 2118 | return ERR_PTR(ret); |
ae0add74 | 2119 | } |
1be5336b | 2120 | |
ae0add74 PU |
2121 | for (i = 0; i < nelm; i++) { |
2122 | rsv_slots[i][0] = tmp[i][0]; | |
2123 | rsv_slots[i][1] = tmp[i][1]; | |
2124 | } | |
1be5336b PU |
2125 | rsv_slots[nelm][0] = -1; |
2126 | rsv_slots[nelm][1] = -1; | |
ae0add74 | 2127 | |
1be5336b PU |
2128 | info->rsv = rsv_info; |
2129 | info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; | |
ae0add74 PU |
2130 | |
2131 | kfree(tmp); | |
966a87b5 | 2132 | } |
2b6b3b74 PU |
2133 | |
2134 | return info; | |
2135 | } | |
1be5336b PU |
2136 | |
2137 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, | |
2138 | struct of_dma *ofdma) | |
2139 | { | |
2140 | struct edma_cc *ecc = ofdma->of_dma_data; | |
2141 | struct dma_chan *chan = NULL; | |
2142 | struct edma_chan *echan; | |
2143 | int i; | |
2144 | ||
2145 | if (!ecc || dma_spec->args_count < 1) | |
2146 | return NULL; | |
2147 | ||
2148 | for (i = 0; i < ecc->num_channels; i++) { | |
2149 | echan = &ecc->slave_chans[i]; | |
2150 | if (echan->ch_num == dma_spec->args[0]) { | |
2151 | chan = &echan->vchan.chan; | |
2152 | break; | |
2153 | } | |
2154 | } | |
2155 | ||
2156 | if (!chan) | |
2157 | return NULL; | |
2158 | ||
2159 | if (echan->ecc->legacy_mode && dma_spec->args_count == 1) | |
2160 | goto out; | |
2161 | ||
2162 | if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && | |
2163 | dma_spec->args[1] < echan->ecc->num_tc) { | |
2164 | echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; | |
2165 | goto out; | |
2166 | } | |
2167 | ||
2168 | return NULL; | |
2169 | out: | |
2170 | /* The channel is going to be used as HW synchronized */ | |
2171 | echan->hw_triggered = true; | |
2172 | return dma_get_slave_channel(chan); | |
2173 | } | |
2b6b3b74 | 2174 | #else |
1be5336b PU |
2175 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
2176 | bool legacy_mode) | |
2b6b3b74 PU |
2177 | { |
2178 | return ERR_PTR(-EINVAL); | |
2179 | } | |
1be5336b PU |
2180 | |
2181 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, | |
2182 | struct of_dma *ofdma) | |
2183 | { | |
2184 | return NULL; | |
2185 | } | |
2b6b3b74 PU |
2186 | #endif |
2187 | ||
463a1f8b | 2188 | static int edma_probe(struct platform_device *pdev) |
c2dde5f8 | 2189 | { |
2b6b3b74 PU |
2190 | struct edma_soc_info *info = pdev->dev.platform_data; |
2191 | s8 (*queue_priority_mapping)[2]; | |
2192 | int i, off, ln; | |
2b6b3b74 PU |
2193 | const s16 (*rsv_slots)[2]; |
2194 | const s16 (*xbar_chans)[2]; | |
2195 | int irq; | |
2196 | char *irq_name; | |
2197 | struct resource *mem; | |
2198 | struct device_node *node = pdev->dev.of_node; | |
2199 | struct device *dev = &pdev->dev; | |
2200 | struct edma_cc *ecc; | |
1be5336b | 2201 | bool legacy_mode = true; |
c2dde5f8 MP |
2202 | int ret; |
2203 | ||
2b6b3b74 | 2204 | if (node) { |
1be5336b PU |
2205 | const struct of_device_id *match; |
2206 | ||
2207 | match = of_match_node(edma_of_ids, node); | |
b7862742 | 2208 | if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) |
1be5336b PU |
2209 | legacy_mode = false; |
2210 | ||
2211 | info = edma_setup_info_from_dt(dev, legacy_mode); | |
2b6b3b74 PU |
2212 | if (IS_ERR(info)) { |
2213 | dev_err(dev, "failed to get DT data\n"); | |
2214 | return PTR_ERR(info); | |
2215 | } | |
2216 | } | |
2217 | ||
2218 | if (!info) | |
2219 | return -ENODEV; | |
2220 | ||
2221 | pm_runtime_enable(dev); | |
2222 | ret = pm_runtime_get_sync(dev); | |
2223 | if (ret < 0) { | |
2224 | dev_err(dev, "pm_runtime_get_sync() failed\n"); | |
2225 | return ret; | |
2226 | } | |
2227 | ||
907f74a0 | 2228 | ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); |
94cb0e79 RK |
2229 | if (ret) |
2230 | return ret; | |
2231 | ||
907f74a0 | 2232 | ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); |
aef94fea | 2233 | if (!ecc) |
c2dde5f8 | 2234 | return -ENOMEM; |
c2dde5f8 | 2235 | |
2b6b3b74 PU |
2236 | ecc->dev = dev; |
2237 | ecc->id = pdev->id; | |
1be5336b | 2238 | ecc->legacy_mode = legacy_mode; |
2b6b3b74 PU |
2239 | /* When booting with DT the pdev->id is -1 */ |
2240 | if (ecc->id < 0) | |
2241 | ecc->id = 0; | |
2242 | ||
2243 | mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); | |
2244 | if (!mem) { | |
2245 | dev_dbg(dev, "mem resource not found, using index 0\n"); | |
2246 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | |
2247 | if (!mem) { | |
2248 | dev_err(dev, "no mem resource?\n"); | |
2249 | return -ENODEV; | |
2250 | } | |
2251 | } | |
2252 | ecc->base = devm_ioremap_resource(dev, mem); | |
2253 | if (IS_ERR(ecc->base)) | |
2254 | return PTR_ERR(ecc->base); | |
2255 | ||
2256 | platform_set_drvdata(pdev, ecc); | |
2257 | ||
2258 | /* Get eDMA3 configuration from IP */ | |
2259 | ret = edma_setup_from_hw(dev, info, ecc); | |
2260 | if (ret) | |
2261 | return ret; | |
2262 | ||
cb782059 PU |
2263 | /* Allocate memory based on the information we got from the IP */ |
2264 | ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, | |
2265 | sizeof(*ecc->slave_chans), GFP_KERNEL); | |
2266 | if (!ecc->slave_chans) | |
2267 | return -ENOMEM; | |
2268 | ||
7a73b135 | 2269 | ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), |
cb782059 | 2270 | sizeof(unsigned long), GFP_KERNEL); |
7a73b135 | 2271 | if (!ecc->slot_inuse) |
cb782059 PU |
2272 | return -ENOMEM; |
2273 | ||
2b6b3b74 PU |
2274 | ecc->default_queue = info->default_queue; |
2275 | ||
2276 | for (i = 0; i < ecc->num_slots; i++) | |
2277 | edma_write_slot(ecc, i, &dummy_paramset); | |
2278 | ||
2b6b3b74 | 2279 | if (info->rsv) { |
2b6b3b74 PU |
2280 | /* Set the reserved slots in inuse list */ |
2281 | rsv_slots = info->rsv->rsv_slots; | |
2282 | if (rsv_slots) { | |
2283 | for (i = 0; rsv_slots[i][0] != -1; i++) { | |
2284 | off = rsv_slots[i][0]; | |
2285 | ln = rsv_slots[i][1]; | |
1634d308 | 2286 | edma_set_bits(off, ln, ecc->slot_inuse); |
2b6b3b74 PU |
2287 | } |
2288 | } | |
2289 | } | |
2290 | ||
2291 | /* Clear the xbar mapped channels in unused list */ | |
2292 | xbar_chans = info->xbar_chans; | |
2293 | if (xbar_chans) { | |
2294 | for (i = 0; xbar_chans[i][1] != -1; i++) { | |
2295 | off = xbar_chans[i][1]; | |
2b6b3b74 PU |
2296 | } |
2297 | } | |
2298 | ||
2299 | irq = platform_get_irq_byname(pdev, "edma3_ccint"); | |
2300 | if (irq < 0 && node) | |
2301 | irq = irq_of_parse_and_map(node, 0); | |
2302 | ||
2303 | if (irq >= 0) { | |
2304 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", | |
2305 | dev_name(dev)); | |
2306 | ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, | |
2307 | ecc); | |
2308 | if (ret) { | |
2309 | dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); | |
2310 | return ret; | |
2311 | } | |
638001e0 | 2312 | ecc->ccint = irq; |
2b6b3b74 PU |
2313 | } |
2314 | ||
2315 | irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); | |
2316 | if (irq < 0 && node) | |
2317 | irq = irq_of_parse_and_map(node, 2); | |
2318 | ||
2319 | if (irq >= 0) { | |
2320 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", | |
2321 | dev_name(dev)); | |
2322 | ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, | |
2323 | ecc); | |
2324 | if (ret) { | |
2325 | dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); | |
2326 | return ret; | |
2327 | } | |
638001e0 | 2328 | ecc->ccerrint = irq; |
2b6b3b74 PU |
2329 | } |
2330 | ||
e4e886c6 PU |
2331 | ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); |
2332 | if (ecc->dummy_slot < 0) { | |
2333 | dev_err(dev, "Can't allocate PaRAM dummy slot\n"); | |
2334 | return ecc->dummy_slot; | |
2335 | } | |
2336 | ||
2b6b3b74 PU |
2337 | queue_priority_mapping = info->queue_priority_mapping; |
2338 | ||
1be5336b PU |
2339 | if (!ecc->legacy_mode) { |
2340 | int lowest_priority = 0; | |
2341 | struct of_phandle_args tc_args; | |
2342 | ||
2343 | ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, | |
2344 | sizeof(*ecc->tc_list), GFP_KERNEL); | |
2345 | if (!ecc->tc_list) | |
2346 | return -ENOMEM; | |
2347 | ||
2348 | for (i = 0;; i++) { | |
2349 | ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", | |
2350 | 1, i, &tc_args); | |
2351 | if (ret || i == ecc->num_tc) | |
2352 | break; | |
2353 | ||
2354 | ecc->tc_list[i].node = tc_args.np; | |
2355 | ecc->tc_list[i].id = i; | |
2356 | queue_priority_mapping[i][1] = tc_args.args[0]; | |
2357 | if (queue_priority_mapping[i][1] > lowest_priority) { | |
2358 | lowest_priority = queue_priority_mapping[i][1]; | |
2359 | info->default_queue = i; | |
2360 | } | |
2361 | } | |
2362 | } | |
2363 | ||
2b6b3b74 PU |
2364 | /* Event queue priority mapping */ |
2365 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | |
2366 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], | |
2367 | queue_priority_mapping[i][1]); | |
ca304fa9 | 2368 | |
2b6b3b74 PU |
2369 | for (i = 0; i < ecc->num_region; i++) { |
2370 | edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); | |
2371 | edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); | |
2372 | edma_write_array(ecc, EDMA_QRAE, i, 0x0); | |
2373 | } | |
2374 | ecc->info = info; | |
2375 | ||
02f77ef1 | 2376 | /* Init the dma device and channels */ |
1be5336b | 2377 | edma_dma_init(ecc, legacy_mode); |
c2dde5f8 | 2378 | |
34cf3011 PU |
2379 | for (i = 0; i < ecc->num_channels; i++) { |
2380 | /* Assign all channels to the default queue */ | |
f9425deb PU |
2381 | edma_assign_channel_eventq(&ecc->slave_chans[i], |
2382 | info->default_queue); | |
34cf3011 PU |
2383 | /* Set entry slot to the dummy slot */ |
2384 | edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); | |
2385 | } | |
2386 | ||
23e6723c PU |
2387 | ecc->dma_slave.filter.map = info->slave_map; |
2388 | ecc->dma_slave.filter.mapcnt = info->slavecnt; | |
2389 | ecc->dma_slave.filter.fn = edma_filter_fn; | |
2390 | ||
c2dde5f8 | 2391 | ret = dma_async_device_register(&ecc->dma_slave); |
1be5336b PU |
2392 | if (ret) { |
2393 | dev_err(dev, "slave ddev registration failed (%d)\n", ret); | |
c2dde5f8 | 2394 | goto err_reg1; |
1be5336b PU |
2395 | } |
2396 | ||
2397 | if (ecc->dma_memcpy) { | |
2398 | ret = dma_async_device_register(ecc->dma_memcpy); | |
2399 | if (ret) { | |
2400 | dev_err(dev, "memcpy ddev registration failed (%d)\n", | |
2401 | ret); | |
2402 | dma_async_device_unregister(&ecc->dma_slave); | |
2403 | goto err_reg1; | |
2404 | } | |
2405 | } | |
c2dde5f8 | 2406 | |
2b6b3b74 | 2407 | if (node) |
1be5336b | 2408 | of_dma_controller_register(node, of_edma_xlate, ecc); |
dc9b6055 | 2409 | |
907f74a0 | 2410 | dev_info(dev, "TI EDMA DMA engine driver\n"); |
c2dde5f8 MP |
2411 | |
2412 | return 0; | |
2413 | ||
2414 | err_reg1: | |
2b6b3b74 | 2415 | edma_free_slot(ecc, ecc->dummy_slot); |
c2dde5f8 MP |
2416 | return ret; |
2417 | } | |
2418 | ||
f4e0628b VK |
2419 | static void edma_cleanupp_vchan(struct dma_device *dmadev) |
2420 | { | |
2421 | struct edma_chan *echan, *_echan; | |
2422 | ||
2423 | list_for_each_entry_safe(echan, _echan, | |
2424 | &dmadev->channels, vchan.chan.device_node) { | |
2425 | list_del(&echan->vchan.chan.device_node); | |
2426 | tasklet_kill(&echan->vchan.task); | |
2427 | } | |
2428 | } | |
2429 | ||
4bf27b8b | 2430 | static int edma_remove(struct platform_device *pdev) |
c2dde5f8 MP |
2431 | { |
2432 | struct device *dev = &pdev->dev; | |
2433 | struct edma_cc *ecc = dev_get_drvdata(dev); | |
2434 | ||
638001e0 VK |
2435 | devm_free_irq(dev, ecc->ccint, ecc); |
2436 | devm_free_irq(dev, ecc->ccerrint, ecc); | |
2437 | ||
f4e0628b VK |
2438 | edma_cleanupp_vchan(&ecc->dma_slave); |
2439 | ||
907f74a0 PU |
2440 | if (dev->of_node) |
2441 | of_dma_controller_free(dev->of_node); | |
c2dde5f8 | 2442 | dma_async_device_unregister(&ecc->dma_slave); |
1be5336b PU |
2443 | if (ecc->dma_memcpy) |
2444 | dma_async_device_unregister(ecc->dma_memcpy); | |
2b6b3b74 | 2445 | edma_free_slot(ecc, ecc->dummy_slot); |
c2dde5f8 MP |
2446 | |
2447 | return 0; | |
2448 | } | |
2449 | ||
2b6b3b74 | 2450 | #ifdef CONFIG_PM_SLEEP |
1be5336b PU |
2451 | static int edma_pm_suspend(struct device *dev) |
2452 | { | |
2453 | struct edma_cc *ecc = dev_get_drvdata(dev); | |
2454 | struct edma_chan *echan = ecc->slave_chans; | |
2455 | int i; | |
2456 | ||
2457 | for (i = 0; i < ecc->num_channels; i++) { | |
23f49fd2 | 2458 | if (echan[i].alloced) |
1be5336b | 2459 | edma_setup_interrupt(&echan[i], false); |
1be5336b PU |
2460 | } |
2461 | ||
2462 | return 0; | |
2463 | } | |
2464 | ||
2b6b3b74 PU |
2465 | static int edma_pm_resume(struct device *dev) |
2466 | { | |
2467 | struct edma_cc *ecc = dev_get_drvdata(dev); | |
e4e886c6 | 2468 | struct edma_chan *echan = ecc->slave_chans; |
2b6b3b74 PU |
2469 | int i; |
2470 | s8 (*queue_priority_mapping)[2]; | |
2471 | ||
08c824e8 V |
2472 | /* re initialize dummy slot to dummy param set */ |
2473 | edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); | |
2474 | ||
2b6b3b74 PU |
2475 | queue_priority_mapping = ecc->info->queue_priority_mapping; |
2476 | ||
2477 | /* Event queue priority mapping */ | |
2478 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | |
2479 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], | |
2480 | queue_priority_mapping[i][1]); | |
2481 | ||
2b6b3b74 | 2482 | for (i = 0; i < ecc->num_channels; i++) { |
e4e886c6 | 2483 | if (echan[i].alloced) { |
2b6b3b74 PU |
2484 | /* ensure access through shadow region 0 */ |
2485 | edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, | |
2486 | BIT(i & 0x1f)); | |
2487 | ||
34cf3011 | 2488 | edma_setup_interrupt(&echan[i], true); |
e4e886c6 PU |
2489 | |
2490 | /* Set up channel -> slot mapping for the entry slot */ | |
34cf3011 | 2491 | edma_set_chmap(&echan[i], echan[i].slot[0]); |
2b6b3b74 PU |
2492 | } |
2493 | } | |
2494 | ||
2495 | return 0; | |
2496 | } | |
2497 | #endif | |
2498 | ||
2499 | static const struct dev_pm_ops edma_pm_ops = { | |
1be5336b | 2500 | SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) |
2b6b3b74 PU |
2501 | }; |
2502 | ||
c2dde5f8 MP |
2503 | static struct platform_driver edma_driver = { |
2504 | .probe = edma_probe, | |
a7d6e3ec | 2505 | .remove = edma_remove, |
c2dde5f8 | 2506 | .driver = { |
2b6b3b74 PU |
2507 | .name = "edma", |
2508 | .pm = &edma_pm_ops, | |
2509 | .of_match_table = edma_of_ids, | |
c2dde5f8 MP |
2510 | }, |
2511 | }; | |
2512 | ||
4fa2d09c PU |
2513 | static int edma_tptc_probe(struct platform_device *pdev) |
2514 | { | |
23f49fd2 PU |
2515 | pm_runtime_enable(&pdev->dev); |
2516 | return pm_runtime_get_sync(&pdev->dev); | |
4fa2d09c PU |
2517 | } |
2518 | ||
34635b1a | 2519 | static struct platform_driver edma_tptc_driver = { |
4fa2d09c | 2520 | .probe = edma_tptc_probe, |
34635b1a PU |
2521 | .driver = { |
2522 | .name = "edma3-tptc", | |
2523 | .of_match_table = edma_tptc_of_ids, | |
2524 | }, | |
2525 | }; | |
2526 | ||
c2dde5f8 MP |
2527 | bool edma_filter_fn(struct dma_chan *chan, void *param) |
2528 | { | |
1be5336b PU |
2529 | bool match = false; |
2530 | ||
c2dde5f8 MP |
2531 | if (chan->device->dev->driver == &edma_driver.driver) { |
2532 | struct edma_chan *echan = to_edma_chan(chan); | |
2533 | unsigned ch_req = *(unsigned *)param; | |
1be5336b PU |
2534 | if (ch_req == echan->ch_num) { |
2535 | /* The channel is going to be used as HW synchronized */ | |
2536 | echan->hw_triggered = true; | |
2537 | match = true; | |
2538 | } | |
c2dde5f8 | 2539 | } |
1be5336b | 2540 | return match; |
c2dde5f8 MP |
2541 | } |
2542 | EXPORT_SYMBOL(edma_filter_fn); | |
2543 | ||
c2dde5f8 MP |
2544 | static int edma_init(void) |
2545 | { | |
34635b1a PU |
2546 | int ret; |
2547 | ||
2548 | ret = platform_driver_register(&edma_tptc_driver); | |
2549 | if (ret) | |
2550 | return ret; | |
2551 | ||
5305e4d6 | 2552 | return platform_driver_register(&edma_driver); |
c2dde5f8 MP |
2553 | } |
2554 | subsys_initcall(edma_init); | |
2555 | ||
2556 | static void __exit edma_exit(void) | |
2557 | { | |
c2dde5f8 | 2558 | platform_driver_unregister(&edma_driver); |
34635b1a | 2559 | platform_driver_unregister(&edma_tptc_driver); |
c2dde5f8 MP |
2560 | } |
2561 | module_exit(edma_exit); | |
2562 | ||
d71505b6 | 2563 | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); |
c2dde5f8 MP |
2564 | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
2565 | MODULE_LICENSE("GPL v2"); |