]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/edac/amd64_edac.c
brcm80211: smac: don't set up tx power limits during initialization
[mirror_ubuntu-zesty-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
395ae783 179 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
2bc65418 193
5980bb9c 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 195
39094443
BP
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
2bc65418
DT
199 return 0;
200}
201
395ae783 202static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
203{
204 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 205 u32 min_scrubrate = 0x5;
2bc65418 206
87b3e0e6
BP
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
73ba8593
BP
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
87b3e0e6 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
215}
216
39094443 217static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
218{
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
39094443 221 int i, retval = -EINVAL;
2bc65418 222
73ba8593
BP
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
5980bb9c 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
228
229 scrubval = scrubval & 0x001F;
230
926311fd 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 232 if (scrubrates[i].scrubval == scrubval) {
39094443 233 retval = scrubrates[i].bandwidth;
2bc65418
DT
234 break;
235 }
236 }
39094443 237 return retval;
2bc65418
DT
238}
239
6775763a 240/*
7f19bf75
BP
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
6775763a 243 */
b487c33e
BP
244static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
6775763a 246{
7f19bf75 247 u64 addr;
6775763a
DT
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
7f19bf75
BP
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
259}
260
261/*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269{
270 struct amd64_pvt *pvt;
b487c33e 271 unsigned node_id;
6775763a
DT
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
7f19bf75 285 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
286
287 if (intlv_en == 0) {
7f19bf75 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 290 goto found;
6775763a 291 }
8edc5445 292 goto err_no_match;
6775763a
DT
293 }
294
72f158fe
BP
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
24f9a7fe 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
7f19bf75 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
306 break; /* intlv_sel field matches */
307
7f19bf75 308 if (++node_id >= DRAM_RANGES)
6775763a
DT
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
6775763a
DT
317 return NULL;
318 }
319
320found:
b487c33e 321 return edac_mc_find((int)node_id);
6775763a
DT
322
323err_no_match:
324 debugf2("sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
326
327 return NULL;
328}
e2ce7255
DT
329
330/*
11c75ead
BP
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 333 */
11c75ead
BP
334static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
e2ce7255 336{
11c75ead
BP
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
e2ce7255 339
11c75ead
BP
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
e2ce7255 350
11c75ead
BP
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
e2ce7255 356
11c75ead 357 *base = (csbase & base_bits) << addr_shift;
e2ce7255 358
11c75ead
BP
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
364}
365
11c75ead
BP
366#define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
614ec9d8
BP
369#define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
11c75ead
BP
372#define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
e2ce7255
DT
375/*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380{
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
11c75ead
BP
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
389 continue;
390
11c75ead
BP
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
e2ce7255
DT
394
395 if ((input_addr & mask) == (base & mask)) {
396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
399
400 return csrow;
401 }
402 }
e2ce7255
DT
403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
405
406 return -1;
407}
408
e2ce7255
DT
409/*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427{
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
1433eb99 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
433 debugf1(" revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
435 return 1;
436 }
437
bc21fa57 438 /* valid for Fam10h and above */
c8e518d5 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 return 1;
442 }
443
c8e518d5 444 if (!dhar_valid(pvt)) {
e2ce7255
DT
445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
bc21fa57 468 base = dhar_base(pvt);
e2ce7255
DT
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
bc21fa57 474 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 475 else
bc21fa57 476 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
477
478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
93c2df58
DT
486/*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516{
7f19bf75 517 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
7f19bf75 521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
531 debugf2("using DHAR to translate SysAddr 0x%lx to "
532 "DramAddr 0x%lx\n",
533 (unsigned long)sys_addr,
534 (unsigned long)dram_addr);
535
536 return dram_addr;
537 }
538 }
539
540 /*
541 * Translate the SysAddr to a DramAddr as shown near the start of
542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
543 * only deals with 40-bit values. Therefore we discard bits 63-40 of
544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
545 * discard are all 1s. Otherwise the bits we discard are all 0s. See
546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 * Programmer's Manual Volume 1 Application Programming.
548 */
f678b8cc 549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
550
551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 (unsigned long)dram_addr);
554 return dram_addr;
555}
556
557/*
558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
560 * for node interleaving.
561 */
562static int num_node_interleave_bits(unsigned intlv_en)
563{
564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 int n;
566
567 BUG_ON(intlv_en > 7);
568 n = intlv_shift_table[intlv_en];
569 return n;
570}
571
572/* Translate the DramAddr given by @dram_addr to an InputAddr. */
573static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574{
575 struct amd64_pvt *pvt;
576 int intlv_shift;
577 u64 input_addr;
578
579 pvt = mci->pvt_info;
580
581 /*
582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 * concerning translating a DramAddr to an InputAddr.
584 */
7f19bf75 585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 (dram_addr & 0xfff);
93c2df58
DT
588
589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 intlv_shift, (unsigned long)dram_addr,
591 (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596/*
597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
598 * assumed that @sys_addr maps to the node given by mci.
599 */
600static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601{
602 u64 input_addr;
603
604 input_addr =
605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606
607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 (unsigned long)sys_addr, (unsigned long)input_addr);
609
610 return input_addr;
611}
612
613
614/*
615 * @input_addr is an InputAddr associated with the node represented by mci.
616 * Translate @input_addr to a DramAddr and return the result.
617 */
618static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619{
620 struct amd64_pvt *pvt;
b487c33e 621 unsigned node_id, intlv_shift;
93c2df58
DT
622 u64 bits, dram_addr;
623 u32 intlv_sel;
624
625 /*
626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 * this procedure. When translating from a DramAddr to an InputAddr, the
629 * bits used for node interleaving are discarded. Here we recover these
630 * bits from the IntlvSel field of the DRAM Limit register (section
631 * 3.4.4.2) for the node that input_addr is associated with.
632 */
633 pvt = mci->pvt_info;
634 node_id = pvt->mc_node_id;
b487c33e
BP
635
636 BUG_ON(node_id > 7);
93c2df58 637
7f19bf75 638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
639 if (intlv_shift == 0) {
640 debugf1(" InputAddr 0x%lx translates to DramAddr of "
641 "same value\n", (unsigned long)input_addr);
642
643 return input_addr;
644 }
645
f678b8cc
BP
646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 (input_addr & 0xfff);
93c2df58 648
7f19bf75 649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
650 dram_addr = bits + (intlv_sel << 12);
651
652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 "(%d node interleave bits)\n", (unsigned long)input_addr,
654 (unsigned long)dram_addr, intlv_shift);
655
656 return dram_addr;
657}
658
659/*
660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661 * @dram_addr to a SysAddr.
662 */
663static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664{
665 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 666 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
667 int ret = 0;
668
669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 &hole_size);
671 if (!ret) {
672 if ((dram_addr >= hole_base) &&
673 (dram_addr < (hole_base + hole_size))) {
674 sys_addr = dram_addr + hole_offset;
675
676 debugf1("using DHAR to translate DramAddr 0x%lx to "
677 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 (unsigned long)sys_addr);
679
680 return sys_addr;
681 }
682 }
683
7f19bf75 684 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
685 sys_addr = dram_addr + base;
686
687 /*
688 * The sys_addr we have computed up to this point is a 40-bit value
689 * because the k8 deals with 40-bit values. However, the value we are
690 * supposed to return is a full 64-bit physical address. The AMD
691 * x86-64 architecture specifies that the most significant implemented
692 * address bit through bit 63 of a physical address must be either all
693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
694 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 * Programming.
697 */
698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699
700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 pvt->mc_node_id, (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705}
706
707/*
708 * @input_addr is an InputAddr associated with the node given by mci. Translate
709 * @input_addr to a SysAddr.
710 */
711static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 u64 input_addr)
713{
714 return dram_addr_to_sys_addr(mci,
715 input_addr_to_dram_addr(mci, input_addr));
716}
717
93c2df58
DT
718/* Map the Error address to a PAGE and PAGE OFFSET. */
719static inline void error_address_to_page_and_offset(u64 error_address,
720 u32 *page, u32 *offset)
721{
722 *page = (u32) (error_address >> PAGE_SHIFT);
723 *offset = ((u32) error_address) & ~PAGE_MASK;
724}
725
726/*
727 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
728 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
729 * of a node that detected an ECC memory error. mci represents the node that
730 * the error address maps to (possibly different from the node that detected
731 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
732 * error.
733 */
734static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
735{
736 int csrow;
737
738 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
739
740 if (csrow == -1)
24f9a7fe
BP
741 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
742 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
743 return csrow;
744}
e2ce7255 745
bfc04aec 746static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 747
2da11654
DT
748/*
749 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
750 * are ECC capable.
751 */
1f6189ed 752static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 753{
cb328507 754 u8 bit;
1f6189ed 755 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 756
1433eb99 757 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
758 ? 19
759 : 17;
760
584fcff4 761 if (pvt->dclr0 & BIT(bit))
2da11654
DT
762 edac_cap = EDAC_FLAG_SECDED;
763
764 return edac_cap;
765}
766
8c671751 767static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 768
68798e17
BP
769static void amd64_dump_dramcfg_low(u32 dclr, int chan)
770{
771 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
772
773 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
774 (dclr & BIT(16)) ? "un" : "",
775 (dclr & BIT(19)) ? "yes" : "no");
776
777 debugf1(" PAR/ERR parity: %s\n",
778 (dclr & BIT(8)) ? "enabled" : "disabled");
779
cb328507
BP
780 if (boot_cpu_data.x86 == 0x10)
781 debugf1(" DCT 128bit mode width: %s\n",
782 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
783
784 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
785 (dclr & BIT(12)) ? "yes" : "no",
786 (dclr & BIT(13)) ? "yes" : "no",
787 (dclr & BIT(14)) ? "yes" : "no",
788 (dclr & BIT(15)) ? "yes" : "no");
789}
790
2da11654 791/* Display and decode various NB registers for debug purposes. */
b2b0c605 792static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 793{
68798e17
BP
794 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
795
796 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 797 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 798
68798e17 799 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
800 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
801 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
802
803 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 804
8de1d91e 805 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 806
8de1d91e
BP
807 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
808 "offset: 0x%08x\n",
bc21fa57
BP
809 pvt->dhar, dhar_base(pvt),
810 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
811 : f10_dhar_offset(pvt));
2da11654 812
c8e518d5 813 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 814
8c671751 815 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 816
8de1d91e 817 /* everything below this point is Fam10h and above */
4d796364 818 if (boot_cpu_data.x86 == 0xf)
2da11654 819 return;
4d796364 820
8c671751 821 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 822
a3b7db09 823 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 824
8de1d91e 825 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
826 if (!dct_ganging_enabled(pvt))
827 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
828}
829
94be4bff 830/*
11c75ead 831 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 832 */
11c75ead 833static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 834{
1433eb99 835 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
836 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 838 } else {
11c75ead
BP
839 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
840 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
841 }
842}
843
844/*
11c75ead 845 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 846 */
b2b0c605 847static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 848{
11c75ead 849 int cs;
94be4bff 850
11c75ead 851 prep_chip_selects(pvt);
94be4bff 852
11c75ead 853 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
854 int reg0 = DCSB0 + (cs * 4);
855 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
856 u32 *base0 = &pvt->csels[0].csbases[cs];
857 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 858
11c75ead 859 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 860 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 861 cs, *base0, reg0);
94be4bff 862
11c75ead
BP
863 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
864 continue;
b2b0c605 865
11c75ead
BP
866 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
867 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
868 cs, *base1, reg1);
94be4bff
DT
869 }
870
11c75ead 871 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
872 int reg0 = DCSM0 + (cs * 4);
873 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
874 u32 *mask0 = &pvt->csels[0].csmasks[cs];
875 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 876
11c75ead 877 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 878 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 879 cs, *mask0, reg0);
94be4bff 880
11c75ead
BP
881 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
882 continue;
b2b0c605 883
11c75ead
BP
884 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
885 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
886 cs, *mask1, reg1);
94be4bff
DT
887 }
888}
889
24f9a7fe 890static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
891{
892 enum mem_type type;
893
cb328507
BP
894 /* F15h supports only DDR3 */
895 if (boot_cpu_data.x86 >= 0x15)
896 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
897 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
898 if (pvt->dchr0 & DDR3_MODE)
899 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
900 else
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 902 } else {
94be4bff
DT
903 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
904 }
905
24f9a7fe 906 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
907
908 return type;
909}
910
cb328507 911/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
912static int k8_early_channel_count(struct amd64_pvt *pvt)
913{
cb328507 914 int flag;
ddff876d 915
9f56da0e 916 if (pvt->ext_model >= K8_REV_F)
ddff876d 917 /* RevF (NPT) and later */
41d8bfab 918 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 919 else
ddff876d
DT
920 /* RevE and earlier */
921 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
922
923 /* not used */
924 pvt->dclr1 = 0;
925
926 return (flag) ? 2 : 1;
927}
928
70046624
BP
929/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
930static u64 get_error_address(struct mce *m)
ddff876d 931{
c1ae6830
BP
932 struct cpuinfo_x86 *c = &boot_cpu_data;
933 u64 addr;
70046624
BP
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
c1ae6830 937 if (c->x86 == 0xf) {
70046624
BP
938 start_bit = 3;
939 end_bit = 39;
940 }
941
c1ae6830
BP
942 addr = m->addr & GENMASK(start_bit, end_bit);
943
944 /*
945 * Erratum 637 workaround
946 */
947 if (c->x86 == 0x15) {
948 struct amd64_pvt *pvt;
949 u64 cc6_base, tmp_addr;
950 u32 tmp;
951 u8 mce_nid, intlv_en;
952
953 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
954 return addr;
955
956 mce_nid = amd_get_nb_id(m->extcpu);
957 pvt = mcis[mce_nid]->pvt_info;
958
959 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
960 intlv_en = tmp >> 21 & 0x7;
961
962 /* add [47:27] + 3 trailing bits */
963 cc6_base = (tmp & GENMASK(0, 20)) << 3;
964
965 /* reverse and add DramIntlvEn */
966 cc6_base |= intlv_en ^ 0x7;
967
968 /* pin at [47:24] */
969 cc6_base <<= 24;
970
971 if (!intlv_en)
972 return cc6_base | (addr & GENMASK(0, 23));
973
974 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
975
976 /* faster log2 */
977 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
978
979 /* OR DramIntlvSel into bits [14:12] */
980 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
981
982 /* add remaining [11:0] bits from original MC4_ADDR */
983 tmp_addr |= addr & GENMASK(0, 11);
984
985 return cc6_base | tmp_addr;
986 }
987
988 return addr;
ddff876d
DT
989}
990
7f19bf75 991static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 992{
f08e457c 993 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 994 int off = range << 3;
ddff876d 995
7f19bf75
BP
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 998
f08e457c 999 if (c->x86 == 0xf)
7f19bf75 1000 return;
ddff876d 1001
7f19bf75
BP
1002 if (!dram_rw(pvt, range))
1003 return;
ddff876d 1004
7f19bf75
BP
1005 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1006 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1007
1008 /* Factor in CC6 save area by reading dst node's limit reg */
1009 if (c->x86 == 0x15) {
1010 struct pci_dev *f1 = NULL;
1011 u8 nid = dram_dst_node(pvt, range);
1012 u32 llim;
1013
1014 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1015 if (WARN_ON(!f1))
1016 return;
1017
1018 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1019
1020 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1021
1022 /* {[39:27],111b} */
1023 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1024
1025 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1026
1027 /* [47:40] */
1028 pvt->ranges[range].lim.hi |= llim >> 13;
1029
1030 pci_dev_put(f1);
1031 }
ddff876d
DT
1032}
1033
f192c7b1
BP
1034static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1035 u16 syndrome)
ddff876d
DT
1036{
1037 struct mem_ctl_info *src_mci;
f192c7b1 1038 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1039 int channel, csrow;
1040 u32 page, offset;
ddff876d 1041
ab5a503c
MCC
1042 error_address_to_page_and_offset(sys_addr, &page, &offset);
1043
1044 /*
1045 * Find out which node the error address belongs to. This may be
1046 * different from the node that detected the error.
1047 */
1048 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1049 if (!src_mci) {
1050 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1051 (unsigned long)sys_addr);
1052 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1053 page, offset, syndrome,
1054 -1, -1, -1,
1055 EDAC_MOD_STR,
1056 "failed to map error addr to a node",
1057 NULL);
1058 return;
1059 }
1060
1061 /* Now map the sys_addr to a CSROW */
1062 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1063 if (csrow < 0) {
1064 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1065 page, offset, syndrome,
1066 -1, -1, -1,
1067 EDAC_MOD_STR,
1068 "failed to map error addr to a csrow",
1069 NULL);
1070 return;
1071 }
1072
ddff876d 1073 /* CHIPKILL enabled */
f192c7b1 1074 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1076 if (channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
ab5a503c
MCC
1082 amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1083 "possible error reporting race\n",
1084 syndrome);
1085 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1086 page, offset, syndrome,
1087 csrow, -1, -1,
1088 EDAC_MOD_STR,
1089 "unknown syndrome - possible error reporting race",
1090 NULL);
ddff876d
DT
1091 return;
1092 }
1093 } else {
1094 /*
1095 * non-chipkill ecc mode
1096 *
1097 * The k8 documentation is unclear about how to determine the
1098 * channel number when using non-chipkill memory. This method
1099 * was obtained from email communication with someone at AMD.
1100 * (Wish the email was placed in this comment - norsk)
1101 */
44e9e2ee 1102 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1103 }
1104
ab5a503c
MCC
1105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci,
1106 page, offset, syndrome,
1107 csrow, channel, -1,
1108 EDAC_MOD_STR, "", NULL);
ddff876d
DT
1109}
1110
41d8bfab 1111static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1112{
41d8bfab 1113 unsigned shift = 0;
ddff876d 1114
41d8bfab
BP
1115 if (i <= 2)
1116 shift = i;
1117 else if (!(i & 0x1))
1118 shift = i >> 1;
1433eb99 1119 else
41d8bfab 1120 shift = (i + 1) >> 1;
ddff876d 1121
41d8bfab
BP
1122 return 128 << (shift + !!dct_width);
1123}
1124
1125static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 unsigned cs_mode)
1127{
1128 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129
1130 if (pvt->ext_model >= K8_REV_F) {
1131 WARN_ON(cs_mode > 11);
1132 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 }
1134 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1135 unsigned diff;
41d8bfab
BP
1136 WARN_ON(cs_mode > 10);
1137
11b0a314
BP
1138 /*
1139 * the below calculation, besides trying to win an obfuscated C
1140 * contest, maps cs_mode values to DIMM chip select sizes. The
1141 * mappings are:
1142 *
1143 * cs_mode CS size (mb)
1144 * ======= ============
1145 * 0 32
1146 * 1 64
1147 * 2 128
1148 * 3 128
1149 * 4 256
1150 * 5 512
1151 * 6 256
1152 * 7 512
1153 * 8 1024
1154 * 9 1024
1155 * 10 2048
1156 *
1157 * Basically, it calculates a value with which to shift the
1158 * smallest CS size of 32MB.
1159 *
1160 * ddr[23]_cs_size have a similar purpose.
1161 */
1162 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1163
1164 return 32 << (cs_mode - diff);
41d8bfab
BP
1165 }
1166 else {
1167 WARN_ON(cs_mode > 6);
1168 return 32 << cs_mode;
1169 }
ddff876d
DT
1170}
1171
1afd3c98
DT
1172/*
1173 * Get the number of DCT channels in use.
1174 *
1175 * Return:
1176 * number of Memory Channels in operation
1177 * Pass back:
1178 * contents of the DCL0_LOW register
1179 */
7d20d14d 1180static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1181{
6ba5dcdc 1182 int i, j, channels = 0;
1afd3c98 1183
7d20d14d 1184 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1185 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1186 return 2;
1afd3c98
DT
1187
1188 /*
d16149e8
BP
1189 * Need to check if in unganged mode: In such, there are 2 channels,
1190 * but they are not in 128 bit mode and thus the above 'dclr0' status
1191 * bit will be OFF.
1afd3c98
DT
1192 *
1193 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1194 * their CSEnable bit on. If so, then SINGLE DIMM case.
1195 */
d16149e8 1196 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1197
1afd3c98
DT
1198 /*
1199 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1200 * is more than just one DIMM present in unganged mode. Need to check
1201 * both controllers since DIMMs can be placed in either one.
1202 */
525a1b20
BP
1203 for (i = 0; i < 2; i++) {
1204 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1205
57a30854
WW
1206 for (j = 0; j < 4; j++) {
1207 if (DBAM_DIMM(j, dbam) > 0) {
1208 channels++;
1209 break;
1210 }
1211 }
1afd3c98
DT
1212 }
1213
d16149e8
BP
1214 if (channels > 2)
1215 channels = 2;
1216
24f9a7fe 1217 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1218
1219 return channels;
1afd3c98
DT
1220}
1221
41d8bfab 1222static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1223{
41d8bfab
BP
1224 unsigned shift = 0;
1225 int cs_size = 0;
1226
1227 if (i == 0 || i == 3 || i == 4)
1228 cs_size = -1;
1229 else if (i <= 2)
1230 shift = i;
1231 else if (i == 12)
1232 shift = 7;
1233 else if (!(i & 0x1))
1234 shift = i >> 1;
1235 else
1236 shift = (i + 1) >> 1;
1237
1238 if (cs_size != -1)
1239 cs_size = (128 * (1 << !!dct_width)) << shift;
1240
1241 return cs_size;
1242}
1243
1244static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1245 unsigned cs_mode)
1246{
1247 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1248
1249 WARN_ON(cs_mode > 11);
1433eb99
BP
1250
1251 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1252 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1253 else
41d8bfab
BP
1254 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1255}
1256
1257/*
1258 * F15h supports only 64bit DCT interfaces
1259 */
1260static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261 unsigned cs_mode)
1262{
1263 WARN_ON(cs_mode > 12);
1433eb99 1264
41d8bfab 1265 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1266}
1267
5a5d2371 1268static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1269{
6163b5d4 1270
5a5d2371
BP
1271 if (boot_cpu_data.x86 == 0xf)
1272 return;
1273
78da121e
BP
1274 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1275 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1276 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1277
5a5d2371
BP
1278 debugf0(" DCTs operate in %s mode.\n",
1279 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1280
1281 if (!dct_ganging_enabled(pvt))
1282 debugf0(" Address range split per DCT: %s\n",
1283 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1284
78da121e 1285 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1286 "DRAM cleared since last warm reset: %s\n",
1287 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1288 (dct_memory_cleared(pvt) ? "yes" : "no"));
1289
78da121e
BP
1290 debugf0(" channel interleave: %s, "
1291 "interleave bits selector: 0x%x\n",
72381bd5 1292 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1293 dct_sel_interleave_addr(pvt));
1294 }
1295
78da121e 1296 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1297}
1298
f71d0a05 1299/*
229a7a11 1300 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1301 * Interleaving Modes.
1302 */
b15f0fca 1303static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1304 bool hi_range_sel, u8 intlv_en)
6163b5d4 1305{
151fa71c 1306 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1307
1308 if (dct_ganging_enabled(pvt))
229a7a11 1309 return 0;
6163b5d4 1310
229a7a11
BP
1311 if (hi_range_sel)
1312 return dct_sel_high;
6163b5d4 1313
229a7a11
BP
1314 /*
1315 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1316 */
1317 if (dct_interleave_enabled(pvt)) {
1318 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1319
1320 /* return DCT select function: 0=DCT0, 1=DCT1 */
1321 if (!intlv_addr)
1322 return sys_addr >> 6 & 1;
1323
1324 if (intlv_addr & 0x2) {
1325 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1326 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1327
1328 return ((sys_addr >> shift) & 1) ^ temp;
1329 }
1330
1331 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1332 }
1333
1334 if (dct_high_range_enabled(pvt))
1335 return ~dct_sel_high & 1;
6163b5d4
DT
1336
1337 return 0;
1338}
1339
c8e518d5 1340/* Convert the sys_addr to the normalized DCT address */
e761359a 1341static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1342 u64 sys_addr, bool hi_rng,
1343 u32 dct_sel_base_addr)
6163b5d4
DT
1344{
1345 u64 chan_off;
c8e518d5
BP
1346 u64 dram_base = get_dram_base(pvt, range);
1347 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1348 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1349
c8e518d5
BP
1350 if (hi_rng) {
1351 /*
1352 * if
1353 * base address of high range is below 4Gb
1354 * (bits [47:27] at [31:11])
1355 * DRAM address space on this DCT is hoisted above 4Gb &&
1356 * sys_addr > 4Gb
1357 *
1358 * remove hole offset from sys_addr
1359 * else
1360 * remove high range offset from sys_addr
1361 */
1362 if ((!(dct_sel_base_addr >> 16) ||
1363 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1364 dhar_valid(pvt) &&
c8e518d5 1365 (sys_addr >= BIT_64(32)))
bc21fa57 1366 chan_off = hole_off;
6163b5d4
DT
1367 else
1368 chan_off = dct_sel_base_off;
1369 } else {
c8e518d5
BP
1370 /*
1371 * if
1372 * we have a valid hole &&
1373 * sys_addr > 4Gb
1374 *
1375 * remove hole
1376 * else
1377 * remove dram base to normalize to DCT address
1378 */
972ea17a 1379 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1380 chan_off = hole_off;
6163b5d4 1381 else
c8e518d5 1382 chan_off = dram_base;
6163b5d4
DT
1383 }
1384
c8e518d5 1385 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1386}
1387
6163b5d4
DT
1388/*
1389 * checks if the csrow passed in is marked as SPARED, if so returns the new
1390 * spare row
1391 */
11c75ead 1392static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1393{
614ec9d8
BP
1394 int tmp_cs;
1395
1396 if (online_spare_swap_done(pvt, dct) &&
1397 csrow == online_spare_bad_dramcs(pvt, dct)) {
1398
1399 for_each_chip_select(tmp_cs, dct, pvt) {
1400 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1401 csrow = tmp_cs;
1402 break;
1403 }
1404 }
6163b5d4
DT
1405 }
1406 return csrow;
1407}
1408
1409/*
1410 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1411 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1412 *
1413 * Return:
1414 * -EINVAL: NOT FOUND
1415 * 0..csrow = Chip-Select Row
1416 */
b15f0fca 1417static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1418{
1419 struct mem_ctl_info *mci;
1420 struct amd64_pvt *pvt;
11c75ead 1421 u64 cs_base, cs_mask;
6163b5d4
DT
1422 int cs_found = -EINVAL;
1423 int csrow;
1424
cc4d8860 1425 mci = mcis[nid];
6163b5d4
DT
1426 if (!mci)
1427 return cs_found;
1428
1429 pvt = mci->pvt_info;
1430
11c75ead 1431 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1432
11c75ead
BP
1433 for_each_chip_select(csrow, dct, pvt) {
1434 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1435 continue;
1436
11c75ead 1437 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1438
11c75ead
BP
1439 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1440 csrow, cs_base, cs_mask);
6163b5d4 1441
11c75ead 1442 cs_mask = ~cs_mask;
6163b5d4 1443
11c75ead
BP
1444 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1445 "(CSBase & ~CSMask)=0x%llx\n",
1446 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1447
11c75ead
BP
1448 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1449 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1450
1451 debugf1(" MATCH csrow=%d\n", cs_found);
1452 break;
1453 }
1454 }
1455 return cs_found;
1456}
1457
95b0ef55
BP
1458/*
1459 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1460 * swapped with a region located at the bottom of memory so that the GPU can use
1461 * the interleaved region and thus two channels.
1462 */
b15f0fca 1463static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1464{
1465 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1466
1467 if (boot_cpu_data.x86 == 0x10) {
1468 /* only revC3 and revE have that feature */
1469 if (boot_cpu_data.x86_model < 4 ||
1470 (boot_cpu_data.x86_model < 0xa &&
1471 boot_cpu_data.x86_mask < 3))
1472 return sys_addr;
1473 }
1474
1475 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1476
1477 if (!(swap_reg & 0x1))
1478 return sys_addr;
1479
1480 swap_base = (swap_reg >> 3) & 0x7f;
1481 swap_limit = (swap_reg >> 11) & 0x7f;
1482 rgn_size = (swap_reg >> 20) & 0x7f;
1483 tmp_addr = sys_addr >> 27;
1484
1485 if (!(sys_addr >> 34) &&
1486 (((tmp_addr >= swap_base) &&
1487 (tmp_addr <= swap_limit)) ||
1488 (tmp_addr < rgn_size)))
1489 return sys_addr ^ (u64)swap_base << 27;
1490
1491 return sys_addr;
1492}
1493
f71d0a05 1494/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1495static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1496 u64 sys_addr, int *nid, int *chan_sel)
1497{
229a7a11 1498 int cs_found = -EINVAL;
c8e518d5 1499 u64 chan_addr;
5d4b58e8 1500 u32 dct_sel_base;
11c75ead 1501 u8 channel;
229a7a11 1502 bool high_range = false;
f71d0a05 1503
7f19bf75 1504 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1505 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1506 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1507
c8e518d5
BP
1508 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1509 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1510
355fba60
BP
1511 if (dhar_valid(pvt) &&
1512 dhar_base(pvt) <= sys_addr &&
1513 sys_addr < BIT_64(32)) {
1514 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1515 sys_addr);
1516 return -EINVAL;
1517 }
1518
f030ddfb 1519 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1520 return -EINVAL;
1521
b15f0fca 1522 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1523
f71d0a05
DT
1524 dct_sel_base = dct_sel_baseaddr(pvt);
1525
1526 /*
1527 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1528 * select between DCT0 and DCT1.
1529 */
1530 if (dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt) &&
1532 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1533 high_range = true;
f71d0a05 1534
b15f0fca 1535 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1536
b15f0fca 1537 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1538 high_range, dct_sel_base);
f71d0a05 1539
e2f79dbd
BP
1540 /* Remove node interleaving, see F1x120 */
1541 if (intlv_en)
1542 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1543 (chan_addr & 0xfff);
f71d0a05 1544
5d4b58e8 1545 /* remove channel interleave */
f71d0a05
DT
1546 if (dct_interleave_enabled(pvt) &&
1547 !dct_high_range_enabled(pvt) &&
1548 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1549
1550 if (dct_sel_interleave_addr(pvt) != 1) {
1551 if (dct_sel_interleave_addr(pvt) == 0x3)
1552 /* hash 9 */
1553 chan_addr = ((chan_addr >> 10) << 9) |
1554 (chan_addr & 0x1ff);
1555 else
1556 /* A[6] or hash 6 */
1557 chan_addr = ((chan_addr >> 7) << 6) |
1558 (chan_addr & 0x3f);
1559 } else
1560 /* A[12] */
1561 chan_addr = ((chan_addr >> 13) << 12) |
1562 (chan_addr & 0xfff);
f71d0a05
DT
1563 }
1564
5d4b58e8 1565 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1566
b15f0fca 1567 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1568
1569 if (cs_found >= 0) {
1570 *nid = node_id;
1571 *chan_sel = channel;
1572 }
1573 return cs_found;
1574}
1575
b15f0fca 1576static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1577 int *node, int *chan_sel)
1578{
e761359a
BP
1579 int cs_found = -EINVAL;
1580 unsigned range;
f71d0a05 1581
7f19bf75 1582 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1583
7f19bf75 1584 if (!dram_rw(pvt, range))
f71d0a05
DT
1585 continue;
1586
7f19bf75
BP
1587 if ((get_dram_base(pvt, range) <= sys_addr) &&
1588 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1589
b15f0fca 1590 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1591 sys_addr, node,
1592 chan_sel);
1593 if (cs_found >= 0)
1594 break;
1595 }
1596 }
1597 return cs_found;
1598}
1599
1600/*
bdc30a0c
BP
1601 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1602 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1603 *
bdc30a0c
BP
1604 * The @sys_addr is usually an error address received from the hardware
1605 * (MCX_ADDR).
f71d0a05 1606 */
b15f0fca 1607static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1608 u16 syndrome)
f71d0a05
DT
1609{
1610 struct amd64_pvt *pvt = mci->pvt_info;
1611 u32 page, offset;
f71d0a05
DT
1612 int nid, csrow, chan = 0;
1613
ab5a503c
MCC
1614 error_address_to_page_and_offset(sys_addr, &page, &offset);
1615
b15f0fca 1616 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1617
bdc30a0c 1618 if (csrow < 0) {
ab5a503c
MCC
1619 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1620 page, offset, syndrome,
1621 -1, -1, -1,
1622 EDAC_MOD_STR,
1623 "failed to map error addr to a csrow",
1624 NULL);
bdc30a0c
BP
1625 return;
1626 }
1627
bdc30a0c
BP
1628 /*
1629 * We need the syndromes for channel detection only when we're
1630 * ganged. Otherwise @chan should already contain the channel at
1631 * this point.
1632 */
a97fa68e 1633 if (dct_ganging_enabled(pvt))
bdc30a0c 1634 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1635
ab5a503c
MCC
1636 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1637 page, offset, syndrome,
1638 csrow, chan, -1,
1639 EDAC_MOD_STR, "", NULL);
f71d0a05
DT
1640}
1641
f71d0a05 1642/*
8566c4df 1643 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1644 * CSROWs
f71d0a05 1645 */
8c671751 1646static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1647{
603adaf6 1648 int dimm, size0, size1, factor = 0;
525a1b20
BP
1649 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1650 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1651
8566c4df 1652 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1653 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1654 factor = 1;
1655
8566c4df 1656 /* K8 families < revF not supported yet */
1433eb99 1657 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1658 return;
1659 else
1660 WARN_ON(ctrl != 0);
1661 }
1662
4d796364 1663 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1664 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1665 : pvt->csels[0].csbases;
f71d0a05 1666
4d796364 1667 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1668
8566c4df
BP
1669 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1670
f71d0a05
DT
1671 /* Dump memory sizes for DIMM and its CSROWs */
1672 for (dimm = 0; dimm < 4; dimm++) {
1673
1674 size0 = 0;
11c75ead 1675 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1676 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1677 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1678
1679 size1 = 0;
11c75ead 1680 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1681 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1682 DBAM_DIMM(dimm, dbam));
f71d0a05 1683
24f9a7fe
BP
1684 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1685 dimm * 2, size0 << factor,
1686 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1687 }
1688}
1689
4d37607a
DT
1690static struct amd64_family_type amd64_family_types[] = {
1691 [K8_CPUS] = {
0092b20d 1692 .ctl_name = "K8",
8d5b5d9c
BP
1693 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1694 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1695 .ops = {
1433eb99 1696 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1697 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1698 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1699 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1700 }
1701 },
1702 [F10_CPUS] = {
0092b20d 1703 .ctl_name = "F10h",
8d5b5d9c
BP
1704 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1705 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1706 .ops = {
7d20d14d 1707 .early_channel_count = f1x_early_channel_count,
b15f0fca 1708 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1709 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1710 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1711 }
1712 },
1713 [F15_CPUS] = {
1714 .ctl_name = "F15h",
df71a053
BP
1715 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1716 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1717 .ops = {
7d20d14d 1718 .early_channel_count = f1x_early_channel_count,
b15f0fca 1719 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1720 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1721 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1722 }
1723 },
4d37607a
DT
1724};
1725
1726static struct pci_dev *pci_get_related_function(unsigned int vendor,
1727 unsigned int device,
1728 struct pci_dev *related)
1729{
1730 struct pci_dev *dev = NULL;
1731
1732 dev = pci_get_device(vendor, device, dev);
1733 while (dev) {
1734 if ((dev->bus->number == related->bus->number) &&
1735 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1736 break;
1737 dev = pci_get_device(vendor, device, dev);
1738 }
1739
1740 return dev;
1741}
1742
b1289d6f 1743/*
bfc04aec
BP
1744 * These are tables of eigenvectors (one per line) which can be used for the
1745 * construction of the syndrome tables. The modified syndrome search algorithm
1746 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1747 *
bfc04aec 1748 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1749 */
bfc04aec
BP
1750static u16 x4_vectors[] = {
1751 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1752 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1753 0x0001, 0x0002, 0x0004, 0x0008,
1754 0x1013, 0x3032, 0x4044, 0x8088,
1755 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1756 0x4857, 0xc4fe, 0x13cc, 0x3288,
1757 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1758 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1759 0x15c1, 0x2a42, 0x89ac, 0x4758,
1760 0x2b03, 0x1602, 0x4f0c, 0xca08,
1761 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1762 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1763 0x2b87, 0x164e, 0x642c, 0xdc18,
1764 0x40b9, 0x80de, 0x1094, 0x20e8,
1765 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1766 0x11c1, 0x2242, 0x84ac, 0x4c58,
1767 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1768 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1769 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1770 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1771 0x16b3, 0x3d62, 0x4f34, 0x8518,
1772 0x1e2f, 0x391a, 0x5cac, 0xf858,
1773 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1774 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1775 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1776 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1777 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1778 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1779 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1780 0x185d, 0x2ca6, 0x7914, 0x9e28,
1781 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1782 0x4199, 0x82ee, 0x19f4, 0x2e58,
1783 0x4807, 0xc40e, 0x130c, 0x3208,
1784 0x1905, 0x2e0a, 0x5804, 0xac08,
1785 0x213f, 0x132a, 0xadfc, 0x5ba8,
1786 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1787};
1788
bfc04aec
BP
1789static u16 x8_vectors[] = {
1790 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1791 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1792 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1793 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1794 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1795 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1796 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1797 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1798 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1799 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1800 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1801 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1802 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1803 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1804 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1805 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1806 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1807 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1808 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1809};
1810
d34a6ecd
BP
1811static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1812 unsigned v_dim)
b1289d6f 1813{
bfc04aec
BP
1814 unsigned int i, err_sym;
1815
1816 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1817 u16 s = syndrome;
d34a6ecd
BP
1818 unsigned v_idx = err_sym * v_dim;
1819 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1820
1821 /* walk over all 16 bits of the syndrome */
1822 for (i = 1; i < (1U << 16); i <<= 1) {
1823
1824 /* if bit is set in that eigenvector... */
1825 if (v_idx < v_end && vectors[v_idx] & i) {
1826 u16 ev_comp = vectors[v_idx++];
1827
1828 /* ... and bit set in the modified syndrome, */
1829 if (s & i) {
1830 /* remove it. */
1831 s ^= ev_comp;
4d37607a 1832
bfc04aec
BP
1833 if (!s)
1834 return err_sym;
1835 }
b1289d6f 1836
bfc04aec
BP
1837 } else if (s & i)
1838 /* can't get to zero, move to next symbol */
1839 break;
1840 }
b1289d6f
DT
1841 }
1842
1843 debugf0("syndrome(%x) not found\n", syndrome);
1844 return -1;
1845}
d27bf6fa 1846
bfc04aec
BP
1847static int map_err_sym_to_channel(int err_sym, int sym_size)
1848{
1849 if (sym_size == 4)
1850 switch (err_sym) {
1851 case 0x20:
1852 case 0x21:
1853 return 0;
1854 break;
1855 case 0x22:
1856 case 0x23:
1857 return 1;
1858 break;
1859 default:
1860 return err_sym >> 4;
1861 break;
1862 }
1863 /* x8 symbols */
1864 else
1865 switch (err_sym) {
1866 /* imaginary bits not in a DIMM */
1867 case 0x10:
1868 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1869 err_sym);
1870 return -1;
1871 break;
1872
1873 case 0x11:
1874 return 0;
1875 break;
1876 case 0x12:
1877 return 1;
1878 break;
1879 default:
1880 return err_sym >> 3;
1881 break;
1882 }
1883 return -1;
1884}
1885
1886static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1887{
1888 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1889 int err_sym = -1;
1890
a3b7db09 1891 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1892 err_sym = decode_syndrome(syndrome, x8_vectors,
1893 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1894 pvt->ecc_sym_sz);
1895 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1896 err_sym = decode_syndrome(syndrome, x4_vectors,
1897 ARRAY_SIZE(x4_vectors),
a3b7db09 1898 pvt->ecc_sym_sz);
ad6a32e9 1899 else {
a3b7db09 1900 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1901 return err_sym;
bfc04aec 1902 }
ad6a32e9 1903
a3b7db09 1904 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1905}
1906
d27bf6fa
DT
1907/*
1908 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1909 * ADDRESS and process.
1910 */
f192c7b1 1911static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1912{
1913 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1914 u64 sys_addr;
f192c7b1 1915 u16 syndrome;
d27bf6fa
DT
1916
1917 /* Ensure that the Error Address is VALID */
f192c7b1 1918 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1919 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
ab5a503c
MCC
1920 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1921 0, 0, 0,
1922 -1, -1, -1,
1923 EDAC_MOD_STR,
1924 "HW has no ERROR_ADDRESS available",
1925 NULL);
d27bf6fa
DT
1926 return;
1927 }
1928
70046624 1929 sys_addr = get_error_address(m);
f192c7b1 1930 syndrome = extract_syndrome(m->status);
d27bf6fa 1931
24f9a7fe 1932 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1933
f192c7b1 1934 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1935}
1936
1937/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1938static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1939{
1f6bcee7 1940 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1941 int csrow;
44e9e2ee 1942 u64 sys_addr;
d27bf6fa 1943 u32 page, offset;
d27bf6fa
DT
1944
1945 log_mci = mci;
1946
f192c7b1 1947 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1948 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
ab5a503c
MCC
1949 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1950 0, 0, 0,
1951 -1, -1, -1,
1952 EDAC_MOD_STR,
1953 "HW has no ERROR_ADDRESS available",
1954 NULL);
d27bf6fa
DT
1955 return;
1956 }
1957
70046624 1958 sys_addr = get_error_address(m);
ab5a503c 1959 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1960
1961 /*
1962 * Find out which node the error address belongs to. This may be
1963 * different from the node that detected the error.
1964 */
44e9e2ee 1965 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1966 if (!src_mci) {
24f9a7fe
BP
1967 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1968 (unsigned long)sys_addr);
ab5a503c
MCC
1969 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1970 page, offset, 0,
1971 -1, -1, -1,
1972 EDAC_MOD_STR,
1973 "ERROR ADDRESS NOT mapped to a MC", NULL);
d27bf6fa
DT
1974 return;
1975 }
1976
1977 log_mci = src_mci;
1978
44e9e2ee 1979 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1980 if (csrow < 0) {
24f9a7fe
BP
1981 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1982 (unsigned long)sys_addr);
ab5a503c
MCC
1983 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1984 page, offset, 0,
1985 -1, -1, -1,
1986 EDAC_MOD_STR,
1987 "ERROR ADDRESS NOT mapped to CS",
1988 NULL);
d27bf6fa 1989 } else {
ab5a503c
MCC
1990 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1991 page, offset, 0,
1992 csrow, -1, -1,
1993 EDAC_MOD_STR, "", NULL);
d27bf6fa
DT
1994 }
1995}
1996
549d042d 1997static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1998 struct mce *m)
d27bf6fa 1999{
f192c7b1
BP
2000 u16 ec = EC(m->status);
2001 u8 xec = XEC(m->status, 0x1f);
2002 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 2003
b70ef010 2004 /* Bail early out if this was an 'observed' error */
5980bb9c 2005 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2006 return;
d27bf6fa 2007
ecaf5606
BP
2008 /* Do only ECC errors */
2009 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2010 return;
d27bf6fa 2011
ecaf5606 2012 if (ecc_type == 2)
f192c7b1 2013 amd64_handle_ce(mci, m);
ecaf5606 2014 else if (ecc_type == 1)
f192c7b1 2015 amd64_handle_ue(mci, m);
d27bf6fa
DT
2016}
2017
b0b07a2b 2018void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2019{
b0b07a2b 2020 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 2021}
d27bf6fa 2022
0ec449ee 2023/*
8d5b5d9c 2024 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2025 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2026 */
360b7f3c 2027static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2028{
0ec449ee 2029 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2030 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2031 if (!pvt->F1) {
24f9a7fe
BP
2032 amd64_err("error address map device not found: "
2033 "vendor %x device 0x%x (broken BIOS?)\n",
2034 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2035 return -ENODEV;
0ec449ee
DT
2036 }
2037
2038 /* Reserve the MISC Device */
8d5b5d9c
BP
2039 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2040 if (!pvt->F3) {
2041 pci_dev_put(pvt->F1);
2042 pvt->F1 = NULL;
0ec449ee 2043
24f9a7fe
BP
2044 amd64_err("error F3 device not found: "
2045 "vendor %x device 0x%x (broken BIOS?)\n",
2046 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2047
bbd0c1f6 2048 return -ENODEV;
0ec449ee 2049 }
8d5b5d9c
BP
2050 debugf1("F1: %s\n", pci_name(pvt->F1));
2051 debugf1("F2: %s\n", pci_name(pvt->F2));
2052 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2053
2054 return 0;
2055}
2056
360b7f3c 2057static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2058{
8d5b5d9c
BP
2059 pci_dev_put(pvt->F1);
2060 pci_dev_put(pvt->F3);
0ec449ee
DT
2061}
2062
2063/*
2064 * Retrieve the hardware registers of the memory controller (this includes the
2065 * 'Address Map' and 'Misc' device regs)
2066 */
360b7f3c 2067static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2068{
a3b7db09 2069 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2070 u64 msr_val;
ad6a32e9 2071 u32 tmp;
e761359a 2072 unsigned range;
0ec449ee
DT
2073
2074 /*
2075 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2076 * those are Read-As-Zero
2077 */
e97f8bb8
BP
2078 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2079 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2080
2081 /* check first whether TOP_MEM2 is enabled */
2082 rdmsrl(MSR_K8_SYSCFG, msr_val);
2083 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2084 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2085 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2086 } else
2087 debugf0(" TOP_MEM2 disabled.\n");
2088
5980bb9c 2089 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2090
5a5d2371 2091 read_dram_ctl_register(pvt);
0ec449ee 2092
7f19bf75
BP
2093 for (range = 0; range < DRAM_RANGES; range++) {
2094 u8 rw;
0ec449ee 2095
7f19bf75
BP
2096 /* read settings for this DRAM range */
2097 read_dram_base_limit_regs(pvt, range);
2098
2099 rw = dram_rw(pvt, range);
2100 if (!rw)
2101 continue;
2102
2103 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2104 range,
2105 get_dram_base(pvt, range),
2106 get_dram_limit(pvt, range));
2107
2108 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2109 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2110 (rw & 0x1) ? "R" : "-",
2111 (rw & 0x2) ? "W" : "-",
2112 dram_intlv_sel(pvt, range),
2113 dram_dst_node(pvt, range));
0ec449ee
DT
2114 }
2115
b2b0c605 2116 read_dct_base_mask(pvt);
0ec449ee 2117
bc21fa57 2118 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2119 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2120
8d5b5d9c 2121 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2122
cb328507
BP
2123 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2124 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2125
78da121e 2126 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2127 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2128 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2129 }
ad6a32e9 2130
a3b7db09
BP
2131 pvt->ecc_sym_sz = 4;
2132
2133 if (c->x86 >= 0x10) {
b2b0c605 2134 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2135 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2136
a3b7db09
BP
2137 /* F10h, revD and later can do x8 ECC too */
2138 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2139 pvt->ecc_sym_sz = 8;
2140 }
b2b0c605 2141 dump_misc_regs(pvt);
0ec449ee
DT
2142}
2143
2144/*
2145 * NOTE: CPU Revision Dependent code
2146 *
2147 * Input:
11c75ead 2148 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2149 * k8 private pointer to -->
2150 * DRAM Bank Address mapping register
2151 * node_id
2152 * DCL register where dual_channel_active is
2153 *
2154 * The DBAM register consists of 4 sets of 4 bits each definitions:
2155 *
2156 * Bits: CSROWs
2157 * 0-3 CSROWs 0 and 1
2158 * 4-7 CSROWs 2 and 3
2159 * 8-11 CSROWs 4 and 5
2160 * 12-15 CSROWs 6 and 7
2161 *
2162 * Values range from: 0 to 15
2163 * The meaning of the values depends on CPU revision and dual-channel state,
2164 * see relevant BKDG more info.
2165 *
2166 * The memory controller provides for total of only 8 CSROWs in its current
2167 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2168 * single channel or two (2) DIMMs in dual channel mode.
2169 *
2170 * The following code logic collapses the various tables for CSROW based on CPU
2171 * revision.
2172 *
2173 * Returns:
2174 * The number of PAGE_SIZE pages on the specified CSROW number it
2175 * encompasses
2176 *
2177 */
41d8bfab 2178static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2179{
1433eb99 2180 u32 cs_mode, nr_pages;
f92cae45 2181 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2182
2183 /*
2184 * The math on this doesn't look right on the surface because x/2*4 can
2185 * be simplified to x*2 but this expression makes use of the fact that
2186 * it is integral math where 1/2=0. This intermediate value becomes the
2187 * number of bits to shift the DBAM register to extract the proper CSROW
2188 * field.
2189 */
f92cae45 2190 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2191
41d8bfab 2192 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2193
1433eb99 2194 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
a895bf8b 2195 debugf0(" nr_pages/channel= %u channel-count = %d\n",
0ec449ee
DT
2196 nr_pages, pvt->channel_count);
2197
2198 return nr_pages;
2199}
2200
2201/*
2202 * Initialize the array of csrow attribute instances, based on the values
2203 * from pci config hardware registers.
2204 */
360b7f3c 2205static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2206{
2207 struct csrow_info *csrow;
2299ef71 2208 struct amd64_pvt *pvt = mci->pvt_info;
5e2af0c0 2209 u64 base, mask;
2299ef71 2210 u32 val;
084a4fcc
MCC
2211 int i, j, empty = 1;
2212 enum mem_type mtype;
2213 enum edac_type edac_mode;
a895bf8b 2214 int nr_pages = 0;
0ec449ee 2215
a97fa68e 2216 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2217
2299ef71 2218 pvt->nbcfg = val;
0ec449ee 2219
2299ef71
BP
2220 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2221 pvt->mc_node_id, val,
a97fa68e 2222 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2223
11c75ead 2224 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2225 csrow = &mci->csrows[i];
2226
f92cae45 2227 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
0ec449ee
DT
2228 debugf1("----CSROW %d EMPTY for node %d\n", i,
2229 pvt->mc_node_id);
2230 continue;
2231 }
2232
2233 debugf1("----CSROW %d VALID for MC node %d\n",
2234 i, pvt->mc_node_id);
2235
2236 empty = 0;
f92cae45 2237 if (csrow_enabled(i, 0, pvt))
a895bf8b 2238 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
f92cae45 2239 if (csrow_enabled(i, 1, pvt))
a895bf8b 2240 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
11c75ead
BP
2241
2242 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
0ec449ee
DT
2243 /* 8 bytes of resolution */
2244
084a4fcc 2245 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2246
2247 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
a895bf8b 2248 debugf1(" nr_pages: %u\n", nr_pages * pvt->channel_count);
0ec449ee
DT
2249
2250 /*
2251 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2252 */
a97fa68e 2253 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2254 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2255 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2256 else
084a4fcc
MCC
2257 edac_mode = EDAC_NONE;
2258
2259 for (j = 0; j < pvt->channel_count; j++) {
2260 csrow->channels[j].dimm->mtype = mtype;
2261 csrow->channels[j].dimm->edac_mode = edac_mode;
a895bf8b 2262 csrow->channels[j].dimm->nr_pages = nr_pages;
084a4fcc 2263 }
0ec449ee
DT
2264 }
2265
2266 return empty;
2267}
d27bf6fa 2268
f6d6ae96 2269/* get all cores on this DCT */
b487c33e 2270static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2271{
2272 int cpu;
2273
2274 for_each_online_cpu(cpu)
2275 if (amd_get_nb_id(cpu) == nid)
2276 cpumask_set_cpu(cpu, mask);
2277}
2278
2279/* check MCG_CTL on all the cpus on this node */
b487c33e 2280static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2281{
2282 cpumask_var_t mask;
50542251 2283 int cpu, nbe;
f6d6ae96
BP
2284 bool ret = false;
2285
2286 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2287 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2288 return false;
2289 }
2290
2291 get_cpus_on_this_dct_cpumask(mask, nid);
2292
f6d6ae96
BP
2293 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2294
2295 for_each_cpu(cpu, mask) {
50542251 2296 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2297 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2298
2299 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2300 cpu, reg->q,
f6d6ae96
BP
2301 (nbe ? "enabled" : "disabled"));
2302
2303 if (!nbe)
2304 goto out;
f6d6ae96
BP
2305 }
2306 ret = true;
2307
2308out:
f6d6ae96
BP
2309 free_cpumask_var(mask);
2310 return ret;
2311}
2312
2299ef71 2313static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2314{
2315 cpumask_var_t cmask;
50542251 2316 int cpu;
f6d6ae96
BP
2317
2318 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2319 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2320 return false;
2321 }
2322
ae7bb7c6 2323 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2324
f6d6ae96
BP
2325 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2326
2327 for_each_cpu(cpu, cmask) {
2328
50542251
BP
2329 struct msr *reg = per_cpu_ptr(msrs, cpu);
2330
f6d6ae96 2331 if (on) {
5980bb9c 2332 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2333 s->flags.nb_mce_enable = 1;
f6d6ae96 2334
5980bb9c 2335 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2336 } else {
2337 /*
d95cf4de 2338 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2339 */
ae7bb7c6 2340 if (!s->flags.nb_mce_enable)
5980bb9c 2341 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2342 }
f6d6ae96
BP
2343 }
2344 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2345
f6d6ae96
BP
2346 free_cpumask_var(cmask);
2347
2348 return 0;
2349}
2350
2299ef71
BP
2351static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2352 struct pci_dev *F3)
f9431992 2353{
2299ef71 2354 bool ret = true;
c9f4f26e 2355 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2356
2299ef71
BP
2357 if (toggle_ecc_err_reporting(s, nid, ON)) {
2358 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2359 return false;
2360 }
2361
c9f4f26e 2362 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2363
ae7bb7c6
BP
2364 s->old_nbctl = value & mask;
2365 s->nbctl_valid = true;
f9431992
DT
2366
2367 value |= mask;
c9f4f26e 2368 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2369
a97fa68e 2370 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2371
a97fa68e
BP
2372 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2373 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2374
a97fa68e 2375 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2376 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2377
ae7bb7c6 2378 s->flags.nb_ecc_prev = 0;
d95cf4de 2379
f9431992 2380 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2381 value |= NBCFG_ECC_ENABLE;
2382 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2383
a97fa68e 2384 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2385
a97fa68e 2386 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2387 amd64_warn("Hardware rejected DRAM ECC enable,"
2388 "check memory DIMM configuration.\n");
2299ef71 2389 ret = false;
f9431992 2390 } else {
24f9a7fe 2391 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2392 }
d95cf4de 2393 } else {
ae7bb7c6 2394 s->flags.nb_ecc_prev = 1;
f9431992 2395 }
d95cf4de 2396
a97fa68e
BP
2397 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2398 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2399
2299ef71 2400 return ret;
f9431992
DT
2401}
2402
360b7f3c
BP
2403static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2404 struct pci_dev *F3)
f9431992 2405{
c9f4f26e
BP
2406 u32 value, mask = 0x3; /* UECC/CECC enable */
2407
f9431992 2408
ae7bb7c6 2409 if (!s->nbctl_valid)
f9431992
DT
2410 return;
2411
c9f4f26e 2412 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2413 value &= ~mask;
ae7bb7c6 2414 value |= s->old_nbctl;
f9431992 2415
c9f4f26e 2416 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2417
ae7bb7c6
BP
2418 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2419 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2420 amd64_read_pci_cfg(F3, NBCFG, &value);
2421 value &= ~NBCFG_ECC_ENABLE;
2422 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2423 }
2424
2425 /* restore the NB Enable MCGCTL bit */
2299ef71 2426 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2427 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2428}
2429
2430/*
2299ef71
BP
2431 * EDAC requires that the BIOS have ECC enabled before
2432 * taking over the processing of ECC errors. A command line
2433 * option allows to force-enable hardware ECC later in
2434 * enable_ecc_error_reporting().
f9431992 2435 */
cab4d277
BP
2436static const char *ecc_msg =
2437 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2438 " Either enable ECC checking or force module loading by setting "
2439 "'ecc_enable_override'.\n"
2440 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2441
2299ef71 2442static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2443{
2444 u32 value;
2299ef71 2445 u8 ecc_en = 0;
06724535 2446 bool nb_mce_en = false;
f9431992 2447
a97fa68e 2448 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2449
a97fa68e 2450 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2451 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2452
2299ef71 2453 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2454 if (!nb_mce_en)
2299ef71
BP
2455 amd64_notice("NB MCE bank disabled, set MSR "
2456 "0x%08x[4] on node %d to enable.\n",
2457 MSR_IA32_MCG_CTL, nid);
f9431992 2458
2299ef71
BP
2459 if (!ecc_en || !nb_mce_en) {
2460 amd64_notice("%s", ecc_msg);
2461 return false;
2462 }
2463 return true;
f9431992
DT
2464}
2465
7d6034d3
DT
2466struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2467 ARRAY_SIZE(amd64_inj_attrs) +
2468 1];
2469
2470struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2471
360b7f3c 2472static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2473{
2474 unsigned int i = 0, j = 0;
2475
2476 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2477 sysfs_attrs[i] = amd64_dbg_attrs[i];
2478
a135cef7
BP
2479 if (boot_cpu_data.x86 >= 0x10)
2480 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2481 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2482
2483 sysfs_attrs[i] = terminator;
2484
2485 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2486}
2487
df71a053
BP
2488static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2489 struct amd64_family_type *fam)
7d6034d3
DT
2490{
2491 struct amd64_pvt *pvt = mci->pvt_info;
2492
2493 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2494 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2495
5980bb9c 2496 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2497 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2498
5980bb9c 2499 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2500 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2501
2502 mci->edac_cap = amd64_determine_edac_cap(pvt);
2503 mci->mod_name = EDAC_MOD_STR;
2504 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2505 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2506 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2507 mci->ctl_page_to_phys = NULL;
2508
7d6034d3
DT
2509 /* memory scrubber interface */
2510 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2511 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2512}
2513
0092b20d
BP
2514/*
2515 * returns a pointer to the family descriptor on success, NULL otherwise.
2516 */
2517static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2518{
0092b20d
BP
2519 u8 fam = boot_cpu_data.x86;
2520 struct amd64_family_type *fam_type = NULL;
2521
2522 switch (fam) {
395ae783 2523 case 0xf:
0092b20d 2524 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2525 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2526 break;
df71a053 2527
395ae783 2528 case 0x10:
0092b20d 2529 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2530 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2531 break;
2532
2533 case 0x15:
2534 fam_type = &amd64_family_types[F15_CPUS];
2535 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2536 break;
2537
2538 default:
24f9a7fe 2539 amd64_err("Unsupported family!\n");
0092b20d 2540 return NULL;
395ae783 2541 }
0092b20d 2542
b8cfa02f
BP
2543 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2544
df71a053 2545 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2546 (fam == 0xf ?
24f9a7fe
BP
2547 (pvt->ext_model >= K8_REV_F ? "revF or later "
2548 : "revE or earlier ")
2549 : ""), pvt->mc_node_id);
0092b20d 2550 return fam_type;
395ae783
BP
2551}
2552
2299ef71 2553static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2554{
2555 struct amd64_pvt *pvt = NULL;
0092b20d 2556 struct amd64_family_type *fam_type = NULL;
360b7f3c 2557 struct mem_ctl_info *mci = NULL;
ab5a503c 2558 struct edac_mc_layer layers[2];
7d6034d3 2559 int err = 0, ret;
360b7f3c 2560 u8 nid = get_node_id(F2);
7d6034d3
DT
2561
2562 ret = -ENOMEM;
2563 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2564 if (!pvt)
360b7f3c 2565 goto err_ret;
7d6034d3 2566
360b7f3c 2567 pvt->mc_node_id = nid;
8d5b5d9c 2568 pvt->F2 = F2;
7d6034d3 2569
395ae783 2570 ret = -EINVAL;
0092b20d
BP
2571 fam_type = amd64_per_family_init(pvt);
2572 if (!fam_type)
395ae783
BP
2573 goto err_free;
2574
7d6034d3 2575 ret = -ENODEV;
360b7f3c 2576 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2577 if (err)
2578 goto err_free;
2579
360b7f3c 2580 read_mc_regs(pvt);
7d6034d3 2581
7d6034d3
DT
2582 /*
2583 * We need to determine how many memory channels there are. Then use
2584 * that information for calculating the size of the dynamic instance
360b7f3c 2585 * tables in the 'mci' structure.
7d6034d3 2586 */
360b7f3c 2587 ret = -EINVAL;
7d6034d3
DT
2588 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2589 if (pvt->channel_count < 0)
360b7f3c 2590 goto err_siblings;
7d6034d3
DT
2591
2592 ret = -ENOMEM;
ab5a503c
MCC
2593 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2594 layers[0].size = pvt->csels[0].b_cnt;
2595 layers[0].is_virt_csrow = true;
2596 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2597 layers[1].size = pvt->channel_count;
2598 layers[1].is_virt_csrow = false;
ca0907b9 2599 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2600 if (!mci)
360b7f3c 2601 goto err_siblings;
7d6034d3
DT
2602
2603 mci->pvt_info = pvt;
8d5b5d9c 2604 mci->dev = &pvt->F2->dev;
7d6034d3 2605
df71a053 2606 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2607
2608 if (init_csrows(mci))
7d6034d3
DT
2609 mci->edac_cap = EDAC_FLAG_NONE;
2610
360b7f3c 2611 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2612
2613 ret = -ENODEV;
2614 if (edac_mc_add_mc(mci)) {
2615 debugf1("failed edac_mc_add_mc()\n");
2616 goto err_add_mc;
2617 }
2618
549d042d
BP
2619 /* register stuff with EDAC MCE */
2620 if (report_gart_errors)
2621 amd_report_gart_errors(true);
2622
2623 amd_register_ecc_decoder(amd64_decode_bus_error);
2624
360b7f3c
BP
2625 mcis[nid] = mci;
2626
2627 atomic_inc(&drv_instances);
2628
7d6034d3
DT
2629 return 0;
2630
2631err_add_mc:
2632 edac_mc_free(mci);
2633
360b7f3c
BP
2634err_siblings:
2635 free_mc_sibling_devs(pvt);
7d6034d3 2636
360b7f3c
BP
2637err_free:
2638 kfree(pvt);
7d6034d3 2639
360b7f3c 2640err_ret:
7d6034d3
DT
2641 return ret;
2642}
2643
2299ef71 2644static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2645 const struct pci_device_id *mc_type)
7d6034d3 2646{
ae7bb7c6 2647 u8 nid = get_node_id(pdev);
2299ef71 2648 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2649 struct ecc_settings *s;
2299ef71 2650 int ret = 0;
7d6034d3 2651
7d6034d3 2652 ret = pci_enable_device(pdev);
b8cfa02f
BP
2653 if (ret < 0) {
2654 debugf0("ret=%d\n", ret);
2655 return -EIO;
2656 }
7d6034d3 2657
ae7bb7c6
BP
2658 ret = -ENOMEM;
2659 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2660 if (!s)
2299ef71 2661 goto err_out;
ae7bb7c6
BP
2662
2663 ecc_stngs[nid] = s;
2664
2299ef71
BP
2665 if (!ecc_enabled(F3, nid)) {
2666 ret = -ENODEV;
2667
2668 if (!ecc_enable_override)
2669 goto err_enable;
2670
2671 amd64_warn("Forcing ECC on!\n");
2672
2673 if (!enable_ecc_error_reporting(s, nid, F3))
2674 goto err_enable;
2675 }
2676
2677 ret = amd64_init_one_instance(pdev);
360b7f3c 2678 if (ret < 0) {
ae7bb7c6 2679 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2680 restore_ecc_error_reporting(s, nid, F3);
2681 }
7d6034d3
DT
2682
2683 return ret;
2299ef71
BP
2684
2685err_enable:
2686 kfree(s);
2687 ecc_stngs[nid] = NULL;
2688
2689err_out:
2690 return ret;
7d6034d3
DT
2691}
2692
2693static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2694{
2695 struct mem_ctl_info *mci;
2696 struct amd64_pvt *pvt;
360b7f3c
BP
2697 u8 nid = get_node_id(pdev);
2698 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2699 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2700
2701 /* Remove from EDAC CORE tracking list */
2702 mci = edac_mc_del_mc(&pdev->dev);
2703 if (!mci)
2704 return;
2705
2706 pvt = mci->pvt_info;
2707
360b7f3c 2708 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2709
360b7f3c 2710 free_mc_sibling_devs(pvt);
7d6034d3 2711
549d042d
BP
2712 /* unregister from EDAC MCE */
2713 amd_report_gart_errors(false);
2714 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2715
360b7f3c
BP
2716 kfree(ecc_stngs[nid]);
2717 ecc_stngs[nid] = NULL;
ae7bb7c6 2718
7d6034d3 2719 /* Free the EDAC CORE resources */
8f68ed97 2720 mci->pvt_info = NULL;
360b7f3c 2721 mcis[nid] = NULL;
8f68ed97
BP
2722
2723 kfree(pvt);
7d6034d3
DT
2724 edac_mc_free(mci);
2725}
2726
2727/*
2728 * This table is part of the interface for loading drivers for PCI devices. The
2729 * PCI core identifies what devices are on a system during boot, and then
2730 * inquiry this table to see if this driver is for a given device found.
2731 */
36c46f31 2732static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2733 {
2734 .vendor = PCI_VENDOR_ID_AMD,
2735 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2736 .subvendor = PCI_ANY_ID,
2737 .subdevice = PCI_ANY_ID,
2738 .class = 0,
2739 .class_mask = 0,
7d6034d3
DT
2740 },
2741 {
2742 .vendor = PCI_VENDOR_ID_AMD,
2743 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2744 .subvendor = PCI_ANY_ID,
2745 .subdevice = PCI_ANY_ID,
2746 .class = 0,
2747 .class_mask = 0,
7d6034d3 2748 },
df71a053
BP
2749 {
2750 .vendor = PCI_VENDOR_ID_AMD,
2751 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2752 .subvendor = PCI_ANY_ID,
2753 .subdevice = PCI_ANY_ID,
2754 .class = 0,
2755 .class_mask = 0,
2756 },
2757
7d6034d3
DT
2758 {0, }
2759};
2760MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2761
2762static struct pci_driver amd64_pci_driver = {
2763 .name = EDAC_MOD_STR,
2299ef71 2764 .probe = amd64_probe_one_instance,
7d6034d3
DT
2765 .remove = __devexit_p(amd64_remove_one_instance),
2766 .id_table = amd64_pci_table,
2767};
2768
360b7f3c 2769static void setup_pci_device(void)
7d6034d3
DT
2770{
2771 struct mem_ctl_info *mci;
2772 struct amd64_pvt *pvt;
2773
2774 if (amd64_ctl_pci)
2775 return;
2776
cc4d8860 2777 mci = mcis[0];
7d6034d3
DT
2778 if (mci) {
2779
2780 pvt = mci->pvt_info;
2781 amd64_ctl_pci =
8d5b5d9c 2782 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2783
2784 if (!amd64_ctl_pci) {
2785 pr_warning("%s(): Unable to create PCI control\n",
2786 __func__);
2787
2788 pr_warning("%s(): PCI error report via EDAC not set\n",
2789 __func__);
2790 }
2791 }
2792}
2793
2794static int __init amd64_edac_init(void)
2795{
360b7f3c 2796 int err = -ENODEV;
7d6034d3 2797
df71a053 2798 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2799
2800 opstate_init();
2801
9653a5c7 2802 if (amd_cache_northbridges() < 0)
56b34b91 2803 goto err_ret;
7d6034d3 2804
cc4d8860 2805 err = -ENOMEM;
ae7bb7c6
BP
2806 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2807 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2808 if (!(mcis && ecc_stngs))
a9f0fbe2 2809 goto err_free;
cc4d8860 2810
50542251 2811 msrs = msrs_alloc();
56b34b91 2812 if (!msrs)
360b7f3c 2813 goto err_free;
50542251 2814
7d6034d3
DT
2815 err = pci_register_driver(&amd64_pci_driver);
2816 if (err)
56b34b91 2817 goto err_pci;
7d6034d3 2818
56b34b91 2819 err = -ENODEV;
360b7f3c
BP
2820 if (!atomic_read(&drv_instances))
2821 goto err_no_instances;
7d6034d3 2822
360b7f3c
BP
2823 setup_pci_device();
2824 return 0;
7d6034d3 2825
360b7f3c 2826err_no_instances:
7d6034d3 2827 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2828
56b34b91
BP
2829err_pci:
2830 msrs_free(msrs);
2831 msrs = NULL;
cc4d8860 2832
360b7f3c
BP
2833err_free:
2834 kfree(mcis);
2835 mcis = NULL;
2836
2837 kfree(ecc_stngs);
2838 ecc_stngs = NULL;
2839
56b34b91 2840err_ret:
7d6034d3
DT
2841 return err;
2842}
2843
2844static void __exit amd64_edac_exit(void)
2845{
2846 if (amd64_ctl_pci)
2847 edac_pci_release_generic_ctl(amd64_ctl_pci);
2848
2849 pci_unregister_driver(&amd64_pci_driver);
50542251 2850
ae7bb7c6
BP
2851 kfree(ecc_stngs);
2852 ecc_stngs = NULL;
2853
cc4d8860
BP
2854 kfree(mcis);
2855 mcis = NULL;
2856
50542251
BP
2857 msrs_free(msrs);
2858 msrs = NULL;
7d6034d3
DT
2859}
2860
2861module_init(amd64_edac_init);
2862module_exit(amd64_edac_exit);
2863
2864MODULE_LICENSE("GPL");
2865MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2866 "Dave Peterson, Thayne Harbaugh");
2867MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2868 EDAC_AMD64_VERSION);
2869
2870module_param(edac_op_state, int, 0444);
2871MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");