]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.c
iwlwifi: move eeprom into priv
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
395ae783 179 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
2bc65418 193
5980bb9c 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 195
39094443
BP
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
2bc65418
DT
199 return 0;
200}
201
395ae783 202static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
203{
204 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 205 u32 min_scrubrate = 0x5;
2bc65418 206
87b3e0e6
BP
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
73ba8593
BP
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
87b3e0e6 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
215}
216
39094443 217static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
218{
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
39094443 221 int i, retval = -EINVAL;
2bc65418 222
73ba8593
BP
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
5980bb9c 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
228
229 scrubval = scrubval & 0x001F;
230
926311fd 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 232 if (scrubrates[i].scrubval == scrubval) {
39094443 233 retval = scrubrates[i].bandwidth;
2bc65418
DT
234 break;
235 }
236 }
39094443 237 return retval;
2bc65418
DT
238}
239
6775763a 240/*
7f19bf75
BP
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
6775763a 243 */
b487c33e
BP
244static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
6775763a 246{
7f19bf75 247 u64 addr;
6775763a
DT
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
7f19bf75
BP
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
259}
260
261/*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269{
270 struct amd64_pvt *pvt;
b487c33e 271 unsigned node_id;
6775763a
DT
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
7f19bf75 285 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
286
287 if (intlv_en == 0) {
7f19bf75 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 290 goto found;
6775763a 291 }
8edc5445 292 goto err_no_match;
6775763a
DT
293 }
294
72f158fe
BP
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
24f9a7fe 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
7f19bf75 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
306 break; /* intlv_sel field matches */
307
7f19bf75 308 if (++node_id >= DRAM_RANGES)
6775763a
DT
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
6775763a
DT
317 return NULL;
318 }
319
320found:
b487c33e 321 return edac_mc_find((int)node_id);
6775763a
DT
322
323err_no_match:
324 debugf2("sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
326
327 return NULL;
328}
e2ce7255
DT
329
330/*
11c75ead
BP
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 333 */
11c75ead
BP
334static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
e2ce7255 336{
11c75ead
BP
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
e2ce7255 339
11c75ead
BP
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
e2ce7255 350
11c75ead
BP
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
e2ce7255 356
11c75ead 357 *base = (csbase & base_bits) << addr_shift;
e2ce7255 358
11c75ead
BP
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
364}
365
11c75ead
BP
366#define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
614ec9d8
BP
369#define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
11c75ead
BP
372#define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
e2ce7255
DT
375/*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380{
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
11c75ead
BP
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
389 continue;
390
11c75ead
BP
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
e2ce7255
DT
394
395 if ((input_addr & mask) == (base & mask)) {
396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
399
400 return csrow;
401 }
402 }
e2ce7255
DT
403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
405
406 return -1;
407}
408
e2ce7255
DT
409/*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427{
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
1433eb99 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
433 debugf1(" revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
435 return 1;
436 }
437
bc21fa57 438 /* valid for Fam10h and above */
c8e518d5 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 return 1;
442 }
443
c8e518d5 444 if (!dhar_valid(pvt)) {
e2ce7255
DT
445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
bc21fa57 468 base = dhar_base(pvt);
e2ce7255
DT
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
bc21fa57 474 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 475 else
bc21fa57 476 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
477
478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
93c2df58
DT
486/*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516{
7f19bf75 517 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
7f19bf75 521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
531 debugf2("using DHAR to translate SysAddr 0x%lx to "
532 "DramAddr 0x%lx\n",
533 (unsigned long)sys_addr,
534 (unsigned long)dram_addr);
535
536 return dram_addr;
537 }
538 }
539
540 /*
541 * Translate the SysAddr to a DramAddr as shown near the start of
542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
543 * only deals with 40-bit values. Therefore we discard bits 63-40 of
544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
545 * discard are all 1s. Otherwise the bits we discard are all 0s. See
546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 * Programmer's Manual Volume 1 Application Programming.
548 */
f678b8cc 549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
550
551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 (unsigned long)dram_addr);
554 return dram_addr;
555}
556
557/*
558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
560 * for node interleaving.
561 */
562static int num_node_interleave_bits(unsigned intlv_en)
563{
564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 int n;
566
567 BUG_ON(intlv_en > 7);
568 n = intlv_shift_table[intlv_en];
569 return n;
570}
571
572/* Translate the DramAddr given by @dram_addr to an InputAddr. */
573static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574{
575 struct amd64_pvt *pvt;
576 int intlv_shift;
577 u64 input_addr;
578
579 pvt = mci->pvt_info;
580
581 /*
582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 * concerning translating a DramAddr to an InputAddr.
584 */
7f19bf75 585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 (dram_addr & 0xfff);
93c2df58
DT
588
589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 intlv_shift, (unsigned long)dram_addr,
591 (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596/*
597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
598 * assumed that @sys_addr maps to the node given by mci.
599 */
600static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601{
602 u64 input_addr;
603
604 input_addr =
605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606
607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 (unsigned long)sys_addr, (unsigned long)input_addr);
609
610 return input_addr;
611}
612
613
614/*
615 * @input_addr is an InputAddr associated with the node represented by mci.
616 * Translate @input_addr to a DramAddr and return the result.
617 */
618static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619{
620 struct amd64_pvt *pvt;
b487c33e 621 unsigned node_id, intlv_shift;
93c2df58
DT
622 u64 bits, dram_addr;
623 u32 intlv_sel;
624
625 /*
626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 * this procedure. When translating from a DramAddr to an InputAddr, the
629 * bits used for node interleaving are discarded. Here we recover these
630 * bits from the IntlvSel field of the DRAM Limit register (section
631 * 3.4.4.2) for the node that input_addr is associated with.
632 */
633 pvt = mci->pvt_info;
634 node_id = pvt->mc_node_id;
b487c33e
BP
635
636 BUG_ON(node_id > 7);
93c2df58 637
7f19bf75 638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
639 if (intlv_shift == 0) {
640 debugf1(" InputAddr 0x%lx translates to DramAddr of "
641 "same value\n", (unsigned long)input_addr);
642
643 return input_addr;
644 }
645
f678b8cc
BP
646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 (input_addr & 0xfff);
93c2df58 648
7f19bf75 649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
650 dram_addr = bits + (intlv_sel << 12);
651
652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 "(%d node interleave bits)\n", (unsigned long)input_addr,
654 (unsigned long)dram_addr, intlv_shift);
655
656 return dram_addr;
657}
658
659/*
660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661 * @dram_addr to a SysAddr.
662 */
663static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664{
665 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 666 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
667 int ret = 0;
668
669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 &hole_size);
671 if (!ret) {
672 if ((dram_addr >= hole_base) &&
673 (dram_addr < (hole_base + hole_size))) {
674 sys_addr = dram_addr + hole_offset;
675
676 debugf1("using DHAR to translate DramAddr 0x%lx to "
677 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 (unsigned long)sys_addr);
679
680 return sys_addr;
681 }
682 }
683
7f19bf75 684 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
685 sys_addr = dram_addr + base;
686
687 /*
688 * The sys_addr we have computed up to this point is a 40-bit value
689 * because the k8 deals with 40-bit values. However, the value we are
690 * supposed to return is a full 64-bit physical address. The AMD
691 * x86-64 architecture specifies that the most significant implemented
692 * address bit through bit 63 of a physical address must be either all
693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
694 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 * Programming.
697 */
698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699
700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 pvt->mc_node_id, (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705}
706
707/*
708 * @input_addr is an InputAddr associated with the node given by mci. Translate
709 * @input_addr to a SysAddr.
710 */
711static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 u64 input_addr)
713{
714 return dram_addr_to_sys_addr(mci,
715 input_addr_to_dram_addr(mci, input_addr));
716}
717
718/*
719 * Find the minimum and maximum InputAddr values that map to the given @csrow.
720 * Pass back these values in *input_addr_min and *input_addr_max.
721 */
722static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
723 u64 *input_addr_min, u64 *input_addr_max)
724{
725 struct amd64_pvt *pvt;
726 u64 base, mask;
727
728 pvt = mci->pvt_info;
11c75ead 729 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 730
11c75ead 731 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
732
733 *input_addr_min = base & ~mask;
11c75ead 734 *input_addr_max = base | mask;
93c2df58
DT
735}
736
93c2df58
DT
737/* Map the Error address to a PAGE and PAGE OFFSET. */
738static inline void error_address_to_page_and_offset(u64 error_address,
739 u32 *page, u32 *offset)
740{
741 *page = (u32) (error_address >> PAGE_SHIFT);
742 *offset = ((u32) error_address) & ~PAGE_MASK;
743}
744
745/*
746 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
747 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
748 * of a node that detected an ECC memory error. mci represents the node that
749 * the error address maps to (possibly different from the node that detected
750 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
751 * error.
752 */
753static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
754{
755 int csrow;
756
757 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
758
759 if (csrow == -1)
24f9a7fe
BP
760 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
761 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
762 return csrow;
763}
e2ce7255 764
bfc04aec 765static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 766
2da11654
DT
767/*
768 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
769 * are ECC capable.
770 */
1f6189ed 771static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 772{
cb328507 773 u8 bit;
1f6189ed 774 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 775
1433eb99 776 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
777 ? 19
778 : 17;
779
584fcff4 780 if (pvt->dclr0 & BIT(bit))
2da11654
DT
781 edac_cap = EDAC_FLAG_SECDED;
782
783 return edac_cap;
784}
785
8c671751 786static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 787
68798e17
BP
788static void amd64_dump_dramcfg_low(u32 dclr, int chan)
789{
790 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
791
792 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
793 (dclr & BIT(16)) ? "un" : "",
794 (dclr & BIT(19)) ? "yes" : "no");
795
796 debugf1(" PAR/ERR parity: %s\n",
797 (dclr & BIT(8)) ? "enabled" : "disabled");
798
cb328507
BP
799 if (boot_cpu_data.x86 == 0x10)
800 debugf1(" DCT 128bit mode width: %s\n",
801 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
802
803 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
804 (dclr & BIT(12)) ? "yes" : "no",
805 (dclr & BIT(13)) ? "yes" : "no",
806 (dclr & BIT(14)) ? "yes" : "no",
807 (dclr & BIT(15)) ? "yes" : "no");
808}
809
2da11654 810/* Display and decode various NB registers for debug purposes. */
b2b0c605 811static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 812{
68798e17
BP
813 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
814
815 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 816 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 817
68798e17 818 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
819 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
820 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
821
822 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 823
8de1d91e 824 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 825
8de1d91e
BP
826 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
827 "offset: 0x%08x\n",
bc21fa57
BP
828 pvt->dhar, dhar_base(pvt),
829 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
830 : f10_dhar_offset(pvt));
2da11654 831
c8e518d5 832 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 833
8c671751 834 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 835
8de1d91e 836 /* everything below this point is Fam10h and above */
4d796364 837 if (boot_cpu_data.x86 == 0xf)
2da11654 838 return;
4d796364 839
8c671751 840 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 841
a3b7db09 842 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 843
8de1d91e 844 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
845 if (!dct_ganging_enabled(pvt))
846 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
847}
848
94be4bff 849/*
11c75ead 850 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 851 */
11c75ead 852static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 853{
1433eb99 854 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
855 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 857 } else {
11c75ead
BP
858 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
859 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
860 }
861}
862
863/*
11c75ead 864 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 865 */
b2b0c605 866static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 867{
11c75ead 868 int cs;
94be4bff 869
11c75ead 870 prep_chip_selects(pvt);
94be4bff 871
11c75ead 872 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
873 int reg0 = DCSB0 + (cs * 4);
874 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
875 u32 *base0 = &pvt->csels[0].csbases[cs];
876 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 877
11c75ead 878 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 879 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 880 cs, *base0, reg0);
94be4bff 881
11c75ead
BP
882 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
883 continue;
b2b0c605 884
11c75ead
BP
885 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
886 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
887 cs, *base1, reg1);
94be4bff
DT
888 }
889
11c75ead 890 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
891 int reg0 = DCSM0 + (cs * 4);
892 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
893 u32 *mask0 = &pvt->csels[0].csmasks[cs];
894 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 895
11c75ead 896 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 897 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 898 cs, *mask0, reg0);
94be4bff 899
11c75ead
BP
900 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
901 continue;
b2b0c605 902
11c75ead
BP
903 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
904 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
905 cs, *mask1, reg1);
94be4bff
DT
906 }
907}
908
24f9a7fe 909static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
910{
911 enum mem_type type;
912
cb328507
BP
913 /* F15h supports only DDR3 */
914 if (boot_cpu_data.x86 >= 0x15)
915 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
916 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
917 if (pvt->dchr0 & DDR3_MODE)
918 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
919 else
920 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 921 } else {
94be4bff
DT
922 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
923 }
924
24f9a7fe 925 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
926
927 return type;
928}
929
cb328507 930/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
931static int k8_early_channel_count(struct amd64_pvt *pvt)
932{
cb328507 933 int flag;
ddff876d 934
9f56da0e 935 if (pvt->ext_model >= K8_REV_F)
ddff876d 936 /* RevF (NPT) and later */
41d8bfab 937 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 938 else
ddff876d
DT
939 /* RevE and earlier */
940 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
941
942 /* not used */
943 pvt->dclr1 = 0;
944
945 return (flag) ? 2 : 1;
946}
947
70046624
BP
948/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
949static u64 get_error_address(struct mce *m)
ddff876d 950{
c1ae6830
BP
951 struct cpuinfo_x86 *c = &boot_cpu_data;
952 u64 addr;
70046624
BP
953 u8 start_bit = 1;
954 u8 end_bit = 47;
955
c1ae6830 956 if (c->x86 == 0xf) {
70046624
BP
957 start_bit = 3;
958 end_bit = 39;
959 }
960
c1ae6830
BP
961 addr = m->addr & GENMASK(start_bit, end_bit);
962
963 /*
964 * Erratum 637 workaround
965 */
966 if (c->x86 == 0x15) {
967 struct amd64_pvt *pvt;
968 u64 cc6_base, tmp_addr;
969 u32 tmp;
970 u8 mce_nid, intlv_en;
971
972 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
973 return addr;
974
975 mce_nid = amd_get_nb_id(m->extcpu);
976 pvt = mcis[mce_nid]->pvt_info;
977
978 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
979 intlv_en = tmp >> 21 & 0x7;
980
981 /* add [47:27] + 3 trailing bits */
982 cc6_base = (tmp & GENMASK(0, 20)) << 3;
983
984 /* reverse and add DramIntlvEn */
985 cc6_base |= intlv_en ^ 0x7;
986
987 /* pin at [47:24] */
988 cc6_base <<= 24;
989
990 if (!intlv_en)
991 return cc6_base | (addr & GENMASK(0, 23));
992
993 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
994
995 /* faster log2 */
996 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
997
998 /* OR DramIntlvSel into bits [14:12] */
999 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
1000
1001 /* add remaining [11:0] bits from original MC4_ADDR */
1002 tmp_addr |= addr & GENMASK(0, 11);
1003
1004 return cc6_base | tmp_addr;
1005 }
1006
1007 return addr;
ddff876d
DT
1008}
1009
7f19bf75 1010static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 1011{
f08e457c 1012 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 1013 int off = range << 3;
ddff876d 1014
7f19bf75
BP
1015 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1016 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1017
f08e457c 1018 if (c->x86 == 0xf)
7f19bf75 1019 return;
ddff876d 1020
7f19bf75
BP
1021 if (!dram_rw(pvt, range))
1022 return;
ddff876d 1023
7f19bf75
BP
1024 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1025 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
1026
1027 /* Factor in CC6 save area by reading dst node's limit reg */
1028 if (c->x86 == 0x15) {
1029 struct pci_dev *f1 = NULL;
1030 u8 nid = dram_dst_node(pvt, range);
1031 u32 llim;
1032
1033 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1034 if (WARN_ON(!f1))
1035 return;
1036
1037 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1038
1039 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1040
1041 /* {[39:27],111b} */
1042 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1043
1044 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1045
1046 /* [47:40] */
1047 pvt->ranges[range].lim.hi |= llim >> 13;
1048
1049 pci_dev_put(f1);
1050 }
ddff876d
DT
1051}
1052
f192c7b1
BP
1053static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1054 u16 syndrome)
ddff876d
DT
1055{
1056 struct mem_ctl_info *src_mci;
f192c7b1 1057 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
1058 int channel, csrow;
1059 u32 page, offset;
ddff876d
DT
1060
1061 /* CHIPKILL enabled */
f192c7b1 1062 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 1063 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1064 if (channel < 0) {
1065 /*
1066 * Syndrome didn't map, so we don't know which of the
1067 * 2 DIMMs is in error. So we need to ID 'both' of them
1068 * as suspect.
1069 */
24f9a7fe
BP
1070 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1071 "error reporting race\n", syndrome);
ddff876d
DT
1072 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1073 return;
1074 }
1075 } else {
1076 /*
1077 * non-chipkill ecc mode
1078 *
1079 * The k8 documentation is unclear about how to determine the
1080 * channel number when using non-chipkill memory. This method
1081 * was obtained from email communication with someone at AMD.
1082 * (Wish the email was placed in this comment - norsk)
1083 */
44e9e2ee 1084 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1085 }
1086
1087 /*
1088 * Find out which node the error address belongs to. This may be
1089 * different from the node that detected the error.
1090 */
44e9e2ee 1091 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1092 if (!src_mci) {
24f9a7fe 1093 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1094 (unsigned long)sys_addr);
ddff876d
DT
1095 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1096 return;
1097 }
1098
44e9e2ee
BP
1099 /* Now map the sys_addr to a CSROW */
1100 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1101 if (csrow < 0) {
1102 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1103 } else {
44e9e2ee 1104 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1105
1106 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1107 channel, EDAC_MOD_STR);
1108 }
1109}
1110
41d8bfab 1111static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1112{
41d8bfab 1113 unsigned shift = 0;
ddff876d 1114
41d8bfab
BP
1115 if (i <= 2)
1116 shift = i;
1117 else if (!(i & 0x1))
1118 shift = i >> 1;
1433eb99 1119 else
41d8bfab 1120 shift = (i + 1) >> 1;
ddff876d 1121
41d8bfab
BP
1122 return 128 << (shift + !!dct_width);
1123}
1124
1125static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 unsigned cs_mode)
1127{
1128 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129
1130 if (pvt->ext_model >= K8_REV_F) {
1131 WARN_ON(cs_mode > 11);
1132 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 }
1134 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1135 unsigned diff;
41d8bfab
BP
1136 WARN_ON(cs_mode > 10);
1137
11b0a314
BP
1138 /*
1139 * the below calculation, besides trying to win an obfuscated C
1140 * contest, maps cs_mode values to DIMM chip select sizes. The
1141 * mappings are:
1142 *
1143 * cs_mode CS size (mb)
1144 * ======= ============
1145 * 0 32
1146 * 1 64
1147 * 2 128
1148 * 3 128
1149 * 4 256
1150 * 5 512
1151 * 6 256
1152 * 7 512
1153 * 8 1024
1154 * 9 1024
1155 * 10 2048
1156 *
1157 * Basically, it calculates a value with which to shift the
1158 * smallest CS size of 32MB.
1159 *
1160 * ddr[23]_cs_size have a similar purpose.
1161 */
1162 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1163
1164 return 32 << (cs_mode - diff);
41d8bfab
BP
1165 }
1166 else {
1167 WARN_ON(cs_mode > 6);
1168 return 32 << cs_mode;
1169 }
ddff876d
DT
1170}
1171
1afd3c98
DT
1172/*
1173 * Get the number of DCT channels in use.
1174 *
1175 * Return:
1176 * number of Memory Channels in operation
1177 * Pass back:
1178 * contents of the DCL0_LOW register
1179 */
7d20d14d 1180static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1181{
6ba5dcdc 1182 int i, j, channels = 0;
1afd3c98 1183
7d20d14d 1184 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1185 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1186 return 2;
1afd3c98
DT
1187
1188 /*
d16149e8
BP
1189 * Need to check if in unganged mode: In such, there are 2 channels,
1190 * but they are not in 128 bit mode and thus the above 'dclr0' status
1191 * bit will be OFF.
1afd3c98
DT
1192 *
1193 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1194 * their CSEnable bit on. If so, then SINGLE DIMM case.
1195 */
d16149e8 1196 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1197
1afd3c98
DT
1198 /*
1199 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1200 * is more than just one DIMM present in unganged mode. Need to check
1201 * both controllers since DIMMs can be placed in either one.
1202 */
525a1b20
BP
1203 for (i = 0; i < 2; i++) {
1204 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1205
57a30854
WW
1206 for (j = 0; j < 4; j++) {
1207 if (DBAM_DIMM(j, dbam) > 0) {
1208 channels++;
1209 break;
1210 }
1211 }
1afd3c98
DT
1212 }
1213
d16149e8
BP
1214 if (channels > 2)
1215 channels = 2;
1216
24f9a7fe 1217 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1218
1219 return channels;
1afd3c98
DT
1220}
1221
41d8bfab 1222static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1223{
41d8bfab
BP
1224 unsigned shift = 0;
1225 int cs_size = 0;
1226
1227 if (i == 0 || i == 3 || i == 4)
1228 cs_size = -1;
1229 else if (i <= 2)
1230 shift = i;
1231 else if (i == 12)
1232 shift = 7;
1233 else if (!(i & 0x1))
1234 shift = i >> 1;
1235 else
1236 shift = (i + 1) >> 1;
1237
1238 if (cs_size != -1)
1239 cs_size = (128 * (1 << !!dct_width)) << shift;
1240
1241 return cs_size;
1242}
1243
1244static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1245 unsigned cs_mode)
1246{
1247 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1248
1249 WARN_ON(cs_mode > 11);
1433eb99
BP
1250
1251 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1252 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1253 else
41d8bfab
BP
1254 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1255}
1256
1257/*
1258 * F15h supports only 64bit DCT interfaces
1259 */
1260static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261 unsigned cs_mode)
1262{
1263 WARN_ON(cs_mode > 12);
1433eb99 1264
41d8bfab 1265 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1266}
1267
5a5d2371 1268static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1269{
6163b5d4 1270
5a5d2371
BP
1271 if (boot_cpu_data.x86 == 0xf)
1272 return;
1273
78da121e
BP
1274 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1275 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1276 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1277
5a5d2371
BP
1278 debugf0(" DCTs operate in %s mode.\n",
1279 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1280
1281 if (!dct_ganging_enabled(pvt))
1282 debugf0(" Address range split per DCT: %s\n",
1283 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1284
78da121e 1285 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1286 "DRAM cleared since last warm reset: %s\n",
1287 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1288 (dct_memory_cleared(pvt) ? "yes" : "no"));
1289
78da121e
BP
1290 debugf0(" channel interleave: %s, "
1291 "interleave bits selector: 0x%x\n",
72381bd5 1292 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1293 dct_sel_interleave_addr(pvt));
1294 }
1295
78da121e 1296 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1297}
1298
f71d0a05 1299/*
229a7a11 1300 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1301 * Interleaving Modes.
1302 */
b15f0fca 1303static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1304 bool hi_range_sel, u8 intlv_en)
6163b5d4 1305{
151fa71c 1306 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1307
1308 if (dct_ganging_enabled(pvt))
229a7a11 1309 return 0;
6163b5d4 1310
229a7a11
BP
1311 if (hi_range_sel)
1312 return dct_sel_high;
6163b5d4 1313
229a7a11
BP
1314 /*
1315 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1316 */
1317 if (dct_interleave_enabled(pvt)) {
1318 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1319
1320 /* return DCT select function: 0=DCT0, 1=DCT1 */
1321 if (!intlv_addr)
1322 return sys_addr >> 6 & 1;
1323
1324 if (intlv_addr & 0x2) {
1325 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1326 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1327
1328 return ((sys_addr >> shift) & 1) ^ temp;
1329 }
1330
1331 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1332 }
1333
1334 if (dct_high_range_enabled(pvt))
1335 return ~dct_sel_high & 1;
6163b5d4
DT
1336
1337 return 0;
1338}
1339
c8e518d5 1340/* Convert the sys_addr to the normalized DCT address */
e761359a 1341static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1342 u64 sys_addr, bool hi_rng,
1343 u32 dct_sel_base_addr)
6163b5d4
DT
1344{
1345 u64 chan_off;
c8e518d5
BP
1346 u64 dram_base = get_dram_base(pvt, range);
1347 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1348 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1349
c8e518d5
BP
1350 if (hi_rng) {
1351 /*
1352 * if
1353 * base address of high range is below 4Gb
1354 * (bits [47:27] at [31:11])
1355 * DRAM address space on this DCT is hoisted above 4Gb &&
1356 * sys_addr > 4Gb
1357 *
1358 * remove hole offset from sys_addr
1359 * else
1360 * remove high range offset from sys_addr
1361 */
1362 if ((!(dct_sel_base_addr >> 16) ||
1363 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1364 dhar_valid(pvt) &&
c8e518d5 1365 (sys_addr >= BIT_64(32)))
bc21fa57 1366 chan_off = hole_off;
6163b5d4
DT
1367 else
1368 chan_off = dct_sel_base_off;
1369 } else {
c8e518d5
BP
1370 /*
1371 * if
1372 * we have a valid hole &&
1373 * sys_addr > 4Gb
1374 *
1375 * remove hole
1376 * else
1377 * remove dram base to normalize to DCT address
1378 */
972ea17a 1379 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1380 chan_off = hole_off;
6163b5d4 1381 else
c8e518d5 1382 chan_off = dram_base;
6163b5d4
DT
1383 }
1384
c8e518d5 1385 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1386}
1387
6163b5d4
DT
1388/*
1389 * checks if the csrow passed in is marked as SPARED, if so returns the new
1390 * spare row
1391 */
11c75ead 1392static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1393{
614ec9d8
BP
1394 int tmp_cs;
1395
1396 if (online_spare_swap_done(pvt, dct) &&
1397 csrow == online_spare_bad_dramcs(pvt, dct)) {
1398
1399 for_each_chip_select(tmp_cs, dct, pvt) {
1400 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1401 csrow = tmp_cs;
1402 break;
1403 }
1404 }
6163b5d4
DT
1405 }
1406 return csrow;
1407}
1408
1409/*
1410 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1411 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1412 *
1413 * Return:
1414 * -EINVAL: NOT FOUND
1415 * 0..csrow = Chip-Select Row
1416 */
b15f0fca 1417static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1418{
1419 struct mem_ctl_info *mci;
1420 struct amd64_pvt *pvt;
11c75ead 1421 u64 cs_base, cs_mask;
6163b5d4
DT
1422 int cs_found = -EINVAL;
1423 int csrow;
1424
cc4d8860 1425 mci = mcis[nid];
6163b5d4
DT
1426 if (!mci)
1427 return cs_found;
1428
1429 pvt = mci->pvt_info;
1430
11c75ead 1431 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1432
11c75ead
BP
1433 for_each_chip_select(csrow, dct, pvt) {
1434 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1435 continue;
1436
11c75ead 1437 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1438
11c75ead
BP
1439 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1440 csrow, cs_base, cs_mask);
6163b5d4 1441
11c75ead 1442 cs_mask = ~cs_mask;
6163b5d4 1443
11c75ead
BP
1444 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1445 "(CSBase & ~CSMask)=0x%llx\n",
1446 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1447
11c75ead
BP
1448 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1449 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1450
1451 debugf1(" MATCH csrow=%d\n", cs_found);
1452 break;
1453 }
1454 }
1455 return cs_found;
1456}
1457
95b0ef55
BP
1458/*
1459 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1460 * swapped with a region located at the bottom of memory so that the GPU can use
1461 * the interleaved region and thus two channels.
1462 */
b15f0fca 1463static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1464{
1465 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1466
1467 if (boot_cpu_data.x86 == 0x10) {
1468 /* only revC3 and revE have that feature */
1469 if (boot_cpu_data.x86_model < 4 ||
1470 (boot_cpu_data.x86_model < 0xa &&
1471 boot_cpu_data.x86_mask < 3))
1472 return sys_addr;
1473 }
1474
1475 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1476
1477 if (!(swap_reg & 0x1))
1478 return sys_addr;
1479
1480 swap_base = (swap_reg >> 3) & 0x7f;
1481 swap_limit = (swap_reg >> 11) & 0x7f;
1482 rgn_size = (swap_reg >> 20) & 0x7f;
1483 tmp_addr = sys_addr >> 27;
1484
1485 if (!(sys_addr >> 34) &&
1486 (((tmp_addr >= swap_base) &&
1487 (tmp_addr <= swap_limit)) ||
1488 (tmp_addr < rgn_size)))
1489 return sys_addr ^ (u64)swap_base << 27;
1490
1491 return sys_addr;
1492}
1493
f71d0a05 1494/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1495static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1496 u64 sys_addr, int *nid, int *chan_sel)
1497{
229a7a11 1498 int cs_found = -EINVAL;
c8e518d5 1499 u64 chan_addr;
5d4b58e8 1500 u32 dct_sel_base;
11c75ead 1501 u8 channel;
229a7a11 1502 bool high_range = false;
f71d0a05 1503
7f19bf75 1504 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1505 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1506 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1507
c8e518d5
BP
1508 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1509 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1510
355fba60
BP
1511 if (dhar_valid(pvt) &&
1512 dhar_base(pvt) <= sys_addr &&
1513 sys_addr < BIT_64(32)) {
1514 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1515 sys_addr);
1516 return -EINVAL;
1517 }
1518
f030ddfb 1519 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1520 return -EINVAL;
1521
b15f0fca 1522 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1523
f71d0a05
DT
1524 dct_sel_base = dct_sel_baseaddr(pvt);
1525
1526 /*
1527 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1528 * select between DCT0 and DCT1.
1529 */
1530 if (dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt) &&
1532 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1533 high_range = true;
f71d0a05 1534
b15f0fca 1535 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1536
b15f0fca 1537 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1538 high_range, dct_sel_base);
f71d0a05 1539
e2f79dbd
BP
1540 /* Remove node interleaving, see F1x120 */
1541 if (intlv_en)
1542 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1543 (chan_addr & 0xfff);
f71d0a05 1544
5d4b58e8 1545 /* remove channel interleave */
f71d0a05
DT
1546 if (dct_interleave_enabled(pvt) &&
1547 !dct_high_range_enabled(pvt) &&
1548 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1549
1550 if (dct_sel_interleave_addr(pvt) != 1) {
1551 if (dct_sel_interleave_addr(pvt) == 0x3)
1552 /* hash 9 */
1553 chan_addr = ((chan_addr >> 10) << 9) |
1554 (chan_addr & 0x1ff);
1555 else
1556 /* A[6] or hash 6 */
1557 chan_addr = ((chan_addr >> 7) << 6) |
1558 (chan_addr & 0x3f);
1559 } else
1560 /* A[12] */
1561 chan_addr = ((chan_addr >> 13) << 12) |
1562 (chan_addr & 0xfff);
f71d0a05
DT
1563 }
1564
5d4b58e8 1565 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1566
b15f0fca 1567 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1568
1569 if (cs_found >= 0) {
1570 *nid = node_id;
1571 *chan_sel = channel;
1572 }
1573 return cs_found;
1574}
1575
b15f0fca 1576static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1577 int *node, int *chan_sel)
1578{
e761359a
BP
1579 int cs_found = -EINVAL;
1580 unsigned range;
f71d0a05 1581
7f19bf75 1582 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1583
7f19bf75 1584 if (!dram_rw(pvt, range))
f71d0a05
DT
1585 continue;
1586
7f19bf75
BP
1587 if ((get_dram_base(pvt, range) <= sys_addr) &&
1588 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1589
b15f0fca 1590 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1591 sys_addr, node,
1592 chan_sel);
1593 if (cs_found >= 0)
1594 break;
1595 }
1596 }
1597 return cs_found;
1598}
1599
1600/*
bdc30a0c
BP
1601 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1602 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1603 *
bdc30a0c
BP
1604 * The @sys_addr is usually an error address received from the hardware
1605 * (MCX_ADDR).
f71d0a05 1606 */
b15f0fca 1607static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1608 u16 syndrome)
f71d0a05
DT
1609{
1610 struct amd64_pvt *pvt = mci->pvt_info;
1611 u32 page, offset;
f71d0a05
DT
1612 int nid, csrow, chan = 0;
1613
b15f0fca 1614 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1615
bdc30a0c
BP
1616 if (csrow < 0) {
1617 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1618 return;
1619 }
1620
1621 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1622
bdc30a0c
BP
1623 /*
1624 * We need the syndromes for channel detection only when we're
1625 * ganged. Otherwise @chan should already contain the channel at
1626 * this point.
1627 */
a97fa68e 1628 if (dct_ganging_enabled(pvt))
bdc30a0c 1629 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1630
bdc30a0c
BP
1631 if (chan >= 0)
1632 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1633 EDAC_MOD_STR);
1634 else
f71d0a05 1635 /*
bdc30a0c 1636 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1637 */
bdc30a0c 1638 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1639 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1640 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1641}
1642
f71d0a05 1643/*
8566c4df 1644 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1645 * CSROWs
f71d0a05 1646 */
8c671751 1647static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1648{
603adaf6 1649 int dimm, size0, size1, factor = 0;
525a1b20
BP
1650 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1651 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1652
8566c4df 1653 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1654 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1655 factor = 1;
1656
8566c4df 1657 /* K8 families < revF not supported yet */
1433eb99 1658 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1659 return;
1660 else
1661 WARN_ON(ctrl != 0);
1662 }
1663
4d796364 1664 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1665 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1666 : pvt->csels[0].csbases;
f71d0a05 1667
4d796364 1668 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1669
8566c4df
BP
1670 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1671
f71d0a05
DT
1672 /* Dump memory sizes for DIMM and its CSROWs */
1673 for (dimm = 0; dimm < 4; dimm++) {
1674
1675 size0 = 0;
11c75ead 1676 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1677 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1678 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1679
1680 size1 = 0;
11c75ead 1681 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1682 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1683 DBAM_DIMM(dimm, dbam));
f71d0a05 1684
24f9a7fe
BP
1685 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1686 dimm * 2, size0 << factor,
1687 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1688 }
1689}
1690
4d37607a
DT
1691static struct amd64_family_type amd64_family_types[] = {
1692 [K8_CPUS] = {
0092b20d 1693 .ctl_name = "K8",
8d5b5d9c
BP
1694 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1695 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1696 .ops = {
1433eb99 1697 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1698 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1699 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1700 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1701 }
1702 },
1703 [F10_CPUS] = {
0092b20d 1704 .ctl_name = "F10h",
8d5b5d9c
BP
1705 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1706 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1707 .ops = {
7d20d14d 1708 .early_channel_count = f1x_early_channel_count,
b15f0fca 1709 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1710 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1711 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1712 }
1713 },
1714 [F15_CPUS] = {
1715 .ctl_name = "F15h",
df71a053
BP
1716 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1717 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1718 .ops = {
7d20d14d 1719 .early_channel_count = f1x_early_channel_count,
b15f0fca 1720 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1721 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1722 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1723 }
1724 },
4d37607a
DT
1725};
1726
1727static struct pci_dev *pci_get_related_function(unsigned int vendor,
1728 unsigned int device,
1729 struct pci_dev *related)
1730{
1731 struct pci_dev *dev = NULL;
1732
1733 dev = pci_get_device(vendor, device, dev);
1734 while (dev) {
1735 if ((dev->bus->number == related->bus->number) &&
1736 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1737 break;
1738 dev = pci_get_device(vendor, device, dev);
1739 }
1740
1741 return dev;
1742}
1743
b1289d6f 1744/*
bfc04aec
BP
1745 * These are tables of eigenvectors (one per line) which can be used for the
1746 * construction of the syndrome tables. The modified syndrome search algorithm
1747 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1748 *
bfc04aec 1749 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1750 */
bfc04aec
BP
1751static u16 x4_vectors[] = {
1752 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1753 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1754 0x0001, 0x0002, 0x0004, 0x0008,
1755 0x1013, 0x3032, 0x4044, 0x8088,
1756 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1757 0x4857, 0xc4fe, 0x13cc, 0x3288,
1758 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1759 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1760 0x15c1, 0x2a42, 0x89ac, 0x4758,
1761 0x2b03, 0x1602, 0x4f0c, 0xca08,
1762 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1763 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1764 0x2b87, 0x164e, 0x642c, 0xdc18,
1765 0x40b9, 0x80de, 0x1094, 0x20e8,
1766 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1767 0x11c1, 0x2242, 0x84ac, 0x4c58,
1768 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1769 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1770 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1771 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1772 0x16b3, 0x3d62, 0x4f34, 0x8518,
1773 0x1e2f, 0x391a, 0x5cac, 0xf858,
1774 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1775 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1776 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1777 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1778 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1779 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1780 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1781 0x185d, 0x2ca6, 0x7914, 0x9e28,
1782 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1783 0x4199, 0x82ee, 0x19f4, 0x2e58,
1784 0x4807, 0xc40e, 0x130c, 0x3208,
1785 0x1905, 0x2e0a, 0x5804, 0xac08,
1786 0x213f, 0x132a, 0xadfc, 0x5ba8,
1787 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1788};
1789
bfc04aec
BP
1790static u16 x8_vectors[] = {
1791 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1792 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1793 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1794 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1795 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1796 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1797 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1798 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1799 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1800 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1801 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1802 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1803 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1804 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1805 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1806 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1807 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1808 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1809 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1810};
1811
d34a6ecd
BP
1812static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1813 unsigned v_dim)
b1289d6f 1814{
bfc04aec
BP
1815 unsigned int i, err_sym;
1816
1817 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1818 u16 s = syndrome;
d34a6ecd
BP
1819 unsigned v_idx = err_sym * v_dim;
1820 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1821
1822 /* walk over all 16 bits of the syndrome */
1823 for (i = 1; i < (1U << 16); i <<= 1) {
1824
1825 /* if bit is set in that eigenvector... */
1826 if (v_idx < v_end && vectors[v_idx] & i) {
1827 u16 ev_comp = vectors[v_idx++];
1828
1829 /* ... and bit set in the modified syndrome, */
1830 if (s & i) {
1831 /* remove it. */
1832 s ^= ev_comp;
4d37607a 1833
bfc04aec
BP
1834 if (!s)
1835 return err_sym;
1836 }
b1289d6f 1837
bfc04aec
BP
1838 } else if (s & i)
1839 /* can't get to zero, move to next symbol */
1840 break;
1841 }
b1289d6f
DT
1842 }
1843
1844 debugf0("syndrome(%x) not found\n", syndrome);
1845 return -1;
1846}
d27bf6fa 1847
bfc04aec
BP
1848static int map_err_sym_to_channel(int err_sym, int sym_size)
1849{
1850 if (sym_size == 4)
1851 switch (err_sym) {
1852 case 0x20:
1853 case 0x21:
1854 return 0;
1855 break;
1856 case 0x22:
1857 case 0x23:
1858 return 1;
1859 break;
1860 default:
1861 return err_sym >> 4;
1862 break;
1863 }
1864 /* x8 symbols */
1865 else
1866 switch (err_sym) {
1867 /* imaginary bits not in a DIMM */
1868 case 0x10:
1869 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1870 err_sym);
1871 return -1;
1872 break;
1873
1874 case 0x11:
1875 return 0;
1876 break;
1877 case 0x12:
1878 return 1;
1879 break;
1880 default:
1881 return err_sym >> 3;
1882 break;
1883 }
1884 return -1;
1885}
1886
1887static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1888{
1889 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1890 int err_sym = -1;
1891
a3b7db09 1892 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1893 err_sym = decode_syndrome(syndrome, x8_vectors,
1894 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1895 pvt->ecc_sym_sz);
1896 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1897 err_sym = decode_syndrome(syndrome, x4_vectors,
1898 ARRAY_SIZE(x4_vectors),
a3b7db09 1899 pvt->ecc_sym_sz);
ad6a32e9 1900 else {
a3b7db09 1901 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1902 return err_sym;
bfc04aec 1903 }
ad6a32e9 1904
a3b7db09 1905 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1906}
1907
d27bf6fa
DT
1908/*
1909 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1910 * ADDRESS and process.
1911 */
f192c7b1 1912static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1913{
1914 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1915 u64 sys_addr;
f192c7b1 1916 u16 syndrome;
d27bf6fa
DT
1917
1918 /* Ensure that the Error Address is VALID */
f192c7b1 1919 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1920 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1921 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1922 return;
1923 }
1924
70046624 1925 sys_addr = get_error_address(m);
f192c7b1 1926 syndrome = extract_syndrome(m->status);
d27bf6fa 1927
24f9a7fe 1928 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1929
f192c7b1 1930 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1931}
1932
1933/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1934static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1935{
1f6bcee7 1936 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1937 int csrow;
44e9e2ee 1938 u64 sys_addr;
d27bf6fa 1939 u32 page, offset;
d27bf6fa
DT
1940
1941 log_mci = mci;
1942
f192c7b1 1943 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1944 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1945 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1946 return;
1947 }
1948
70046624 1949 sys_addr = get_error_address(m);
d27bf6fa
DT
1950
1951 /*
1952 * Find out which node the error address belongs to. This may be
1953 * different from the node that detected the error.
1954 */
44e9e2ee 1955 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1956 if (!src_mci) {
24f9a7fe
BP
1957 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1958 (unsigned long)sys_addr);
d27bf6fa
DT
1959 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1960 return;
1961 }
1962
1963 log_mci = src_mci;
1964
44e9e2ee 1965 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1966 if (csrow < 0) {
24f9a7fe
BP
1967 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1968 (unsigned long)sys_addr);
d27bf6fa
DT
1969 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1970 } else {
44e9e2ee 1971 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1972 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1973 }
1974}
1975
549d042d 1976static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1977 struct mce *m)
d27bf6fa 1978{
f192c7b1
BP
1979 u16 ec = EC(m->status);
1980 u8 xec = XEC(m->status, 0x1f);
1981 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1982
b70ef010 1983 /* Bail early out if this was an 'observed' error */
5980bb9c 1984 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1985 return;
d27bf6fa 1986
ecaf5606
BP
1987 /* Do only ECC errors */
1988 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1989 return;
d27bf6fa 1990
ecaf5606 1991 if (ecc_type == 2)
f192c7b1 1992 amd64_handle_ce(mci, m);
ecaf5606 1993 else if (ecc_type == 1)
f192c7b1 1994 amd64_handle_ue(mci, m);
d27bf6fa
DT
1995}
1996
b0b07a2b 1997void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1998{
b0b07a2b 1999 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 2000}
d27bf6fa 2001
0ec449ee 2002/*
8d5b5d9c 2003 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2004 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2005 */
360b7f3c 2006static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2007{
0ec449ee 2008 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2009 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2010 if (!pvt->F1) {
24f9a7fe
BP
2011 amd64_err("error address map device not found: "
2012 "vendor %x device 0x%x (broken BIOS?)\n",
2013 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2014 return -ENODEV;
0ec449ee
DT
2015 }
2016
2017 /* Reserve the MISC Device */
8d5b5d9c
BP
2018 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2019 if (!pvt->F3) {
2020 pci_dev_put(pvt->F1);
2021 pvt->F1 = NULL;
0ec449ee 2022
24f9a7fe
BP
2023 amd64_err("error F3 device not found: "
2024 "vendor %x device 0x%x (broken BIOS?)\n",
2025 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2026
bbd0c1f6 2027 return -ENODEV;
0ec449ee 2028 }
8d5b5d9c
BP
2029 debugf1("F1: %s\n", pci_name(pvt->F1));
2030 debugf1("F2: %s\n", pci_name(pvt->F2));
2031 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2032
2033 return 0;
2034}
2035
360b7f3c 2036static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2037{
8d5b5d9c
BP
2038 pci_dev_put(pvt->F1);
2039 pci_dev_put(pvt->F3);
0ec449ee
DT
2040}
2041
2042/*
2043 * Retrieve the hardware registers of the memory controller (this includes the
2044 * 'Address Map' and 'Misc' device regs)
2045 */
360b7f3c 2046static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2047{
a3b7db09 2048 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 2049 u64 msr_val;
ad6a32e9 2050 u32 tmp;
e761359a 2051 unsigned range;
0ec449ee
DT
2052
2053 /*
2054 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2055 * those are Read-As-Zero
2056 */
e97f8bb8
BP
2057 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2058 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2059
2060 /* check first whether TOP_MEM2 is enabled */
2061 rdmsrl(MSR_K8_SYSCFG, msr_val);
2062 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2063 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2064 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2065 } else
2066 debugf0(" TOP_MEM2 disabled.\n");
2067
5980bb9c 2068 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2069
5a5d2371 2070 read_dram_ctl_register(pvt);
0ec449ee 2071
7f19bf75
BP
2072 for (range = 0; range < DRAM_RANGES; range++) {
2073 u8 rw;
0ec449ee 2074
7f19bf75
BP
2075 /* read settings for this DRAM range */
2076 read_dram_base_limit_regs(pvt, range);
2077
2078 rw = dram_rw(pvt, range);
2079 if (!rw)
2080 continue;
2081
2082 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2083 range,
2084 get_dram_base(pvt, range),
2085 get_dram_limit(pvt, range));
2086
2087 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2088 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2089 (rw & 0x1) ? "R" : "-",
2090 (rw & 0x2) ? "W" : "-",
2091 dram_intlv_sel(pvt, range),
2092 dram_dst_node(pvt, range));
0ec449ee
DT
2093 }
2094
b2b0c605 2095 read_dct_base_mask(pvt);
0ec449ee 2096
bc21fa57 2097 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2098 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2099
8d5b5d9c 2100 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2101
cb328507
BP
2102 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2103 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2104
78da121e 2105 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2106 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2107 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2108 }
ad6a32e9 2109
a3b7db09
BP
2110 pvt->ecc_sym_sz = 4;
2111
2112 if (c->x86 >= 0x10) {
b2b0c605 2113 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2114 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2115
a3b7db09
BP
2116 /* F10h, revD and later can do x8 ECC too */
2117 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2118 pvt->ecc_sym_sz = 8;
2119 }
b2b0c605 2120 dump_misc_regs(pvt);
0ec449ee
DT
2121}
2122
2123/*
2124 * NOTE: CPU Revision Dependent code
2125 *
2126 * Input:
11c75ead 2127 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2128 * k8 private pointer to -->
2129 * DRAM Bank Address mapping register
2130 * node_id
2131 * DCL register where dual_channel_active is
2132 *
2133 * The DBAM register consists of 4 sets of 4 bits each definitions:
2134 *
2135 * Bits: CSROWs
2136 * 0-3 CSROWs 0 and 1
2137 * 4-7 CSROWs 2 and 3
2138 * 8-11 CSROWs 4 and 5
2139 * 12-15 CSROWs 6 and 7
2140 *
2141 * Values range from: 0 to 15
2142 * The meaning of the values depends on CPU revision and dual-channel state,
2143 * see relevant BKDG more info.
2144 *
2145 * The memory controller provides for total of only 8 CSROWs in its current
2146 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2147 * single channel or two (2) DIMMs in dual channel mode.
2148 *
2149 * The following code logic collapses the various tables for CSROW based on CPU
2150 * revision.
2151 *
2152 * Returns:
2153 * The number of PAGE_SIZE pages on the specified CSROW number it
2154 * encompasses
2155 *
2156 */
41d8bfab 2157static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2158{
1433eb99 2159 u32 cs_mode, nr_pages;
f92cae45 2160 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2161
2162 /*
2163 * The math on this doesn't look right on the surface because x/2*4 can
2164 * be simplified to x*2 but this expression makes use of the fact that
2165 * it is integral math where 1/2=0. This intermediate value becomes the
2166 * number of bits to shift the DBAM register to extract the proper CSROW
2167 * field.
2168 */
f92cae45 2169 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2170
41d8bfab 2171 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2172
1433eb99 2173 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2174 debugf0(" nr_pages= %u channel-count = %d\n",
2175 nr_pages, pvt->channel_count);
2176
2177 return nr_pages;
2178}
2179
2180/*
2181 * Initialize the array of csrow attribute instances, based on the values
2182 * from pci config hardware registers.
2183 */
360b7f3c 2184static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2185{
2186 struct csrow_info *csrow;
2299ef71 2187 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2188 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2189 u32 val;
6ba5dcdc 2190 int i, empty = 1;
0ec449ee 2191
a97fa68e 2192 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2193
2299ef71 2194 pvt->nbcfg = val;
0ec449ee 2195
2299ef71
BP
2196 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2197 pvt->mc_node_id, val,
a97fa68e 2198 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2199
11c75ead 2200 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2201 csrow = &mci->csrows[i];
2202
f92cae45 2203 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
0ec449ee
DT
2204 debugf1("----CSROW %d EMPTY for node %d\n", i,
2205 pvt->mc_node_id);
2206 continue;
2207 }
2208
2209 debugf1("----CSROW %d VALID for MC node %d\n",
2210 i, pvt->mc_node_id);
2211
2212 empty = 0;
f92cae45
AS
2213 if (csrow_enabled(i, 0, pvt))
2214 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2215 if (csrow_enabled(i, 1, pvt))
2216 csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
0ec449ee
DT
2217 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2218 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2219 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2220 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2221 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2222
2223 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2224 csrow->page_mask = ~mask;
0ec449ee
DT
2225 /* 8 bytes of resolution */
2226
24f9a7fe 2227 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2228
2229 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2230 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2231 (unsigned long)input_addr_min,
2232 (unsigned long)input_addr_max);
2233 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2234 (unsigned long)sys_addr, csrow->page_mask);
2235 debugf1(" nr_pages: %u first_page: 0x%lx "
2236 "last_page: 0x%lx\n",
2237 (unsigned)csrow->nr_pages,
2238 csrow->first_page, csrow->last_page);
2239
2240 /*
2241 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2242 */
a97fa68e 2243 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2244 csrow->edac_mode =
a97fa68e 2245 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2246 EDAC_S4ECD4ED : EDAC_SECDED;
2247 else
2248 csrow->edac_mode = EDAC_NONE;
2249 }
2250
2251 return empty;
2252}
d27bf6fa 2253
f6d6ae96 2254/* get all cores on this DCT */
b487c33e 2255static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2256{
2257 int cpu;
2258
2259 for_each_online_cpu(cpu)
2260 if (amd_get_nb_id(cpu) == nid)
2261 cpumask_set_cpu(cpu, mask);
2262}
2263
2264/* check MCG_CTL on all the cpus on this node */
b487c33e 2265static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2266{
2267 cpumask_var_t mask;
50542251 2268 int cpu, nbe;
f6d6ae96
BP
2269 bool ret = false;
2270
2271 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2272 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2273 return false;
2274 }
2275
2276 get_cpus_on_this_dct_cpumask(mask, nid);
2277
f6d6ae96
BP
2278 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2279
2280 for_each_cpu(cpu, mask) {
50542251 2281 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2282 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2283
2284 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2285 cpu, reg->q,
f6d6ae96
BP
2286 (nbe ? "enabled" : "disabled"));
2287
2288 if (!nbe)
2289 goto out;
f6d6ae96
BP
2290 }
2291 ret = true;
2292
2293out:
f6d6ae96
BP
2294 free_cpumask_var(mask);
2295 return ret;
2296}
2297
2299ef71 2298static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2299{
2300 cpumask_var_t cmask;
50542251 2301 int cpu;
f6d6ae96
BP
2302
2303 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2304 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2305 return false;
2306 }
2307
ae7bb7c6 2308 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2309
f6d6ae96
BP
2310 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2311
2312 for_each_cpu(cpu, cmask) {
2313
50542251
BP
2314 struct msr *reg = per_cpu_ptr(msrs, cpu);
2315
f6d6ae96 2316 if (on) {
5980bb9c 2317 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2318 s->flags.nb_mce_enable = 1;
f6d6ae96 2319
5980bb9c 2320 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2321 } else {
2322 /*
d95cf4de 2323 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2324 */
ae7bb7c6 2325 if (!s->flags.nb_mce_enable)
5980bb9c 2326 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2327 }
f6d6ae96
BP
2328 }
2329 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2330
f6d6ae96
BP
2331 free_cpumask_var(cmask);
2332
2333 return 0;
2334}
2335
2299ef71
BP
2336static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2337 struct pci_dev *F3)
f9431992 2338{
2299ef71 2339 bool ret = true;
c9f4f26e 2340 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2341
2299ef71
BP
2342 if (toggle_ecc_err_reporting(s, nid, ON)) {
2343 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2344 return false;
2345 }
2346
c9f4f26e 2347 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2348
ae7bb7c6
BP
2349 s->old_nbctl = value & mask;
2350 s->nbctl_valid = true;
f9431992
DT
2351
2352 value |= mask;
c9f4f26e 2353 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2354
a97fa68e 2355 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2356
a97fa68e
BP
2357 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2358 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2359
a97fa68e 2360 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2361 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2362
ae7bb7c6 2363 s->flags.nb_ecc_prev = 0;
d95cf4de 2364
f9431992 2365 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2366 value |= NBCFG_ECC_ENABLE;
2367 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2368
a97fa68e 2369 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2370
a97fa68e 2371 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2372 amd64_warn("Hardware rejected DRAM ECC enable,"
2373 "check memory DIMM configuration.\n");
2299ef71 2374 ret = false;
f9431992 2375 } else {
24f9a7fe 2376 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2377 }
d95cf4de 2378 } else {
ae7bb7c6 2379 s->flags.nb_ecc_prev = 1;
f9431992 2380 }
d95cf4de 2381
a97fa68e
BP
2382 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2383 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2384
2299ef71 2385 return ret;
f9431992
DT
2386}
2387
360b7f3c
BP
2388static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2389 struct pci_dev *F3)
f9431992 2390{
c9f4f26e
BP
2391 u32 value, mask = 0x3; /* UECC/CECC enable */
2392
f9431992 2393
ae7bb7c6 2394 if (!s->nbctl_valid)
f9431992
DT
2395 return;
2396
c9f4f26e 2397 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2398 value &= ~mask;
ae7bb7c6 2399 value |= s->old_nbctl;
f9431992 2400
c9f4f26e 2401 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2402
ae7bb7c6
BP
2403 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2404 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2405 amd64_read_pci_cfg(F3, NBCFG, &value);
2406 value &= ~NBCFG_ECC_ENABLE;
2407 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2408 }
2409
2410 /* restore the NB Enable MCGCTL bit */
2299ef71 2411 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2412 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2413}
2414
2415/*
2299ef71
BP
2416 * EDAC requires that the BIOS have ECC enabled before
2417 * taking over the processing of ECC errors. A command line
2418 * option allows to force-enable hardware ECC later in
2419 * enable_ecc_error_reporting().
f9431992 2420 */
cab4d277
BP
2421static const char *ecc_msg =
2422 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2423 " Either enable ECC checking or force module loading by setting "
2424 "'ecc_enable_override'.\n"
2425 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2426
2299ef71 2427static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2428{
2429 u32 value;
2299ef71 2430 u8 ecc_en = 0;
06724535 2431 bool nb_mce_en = false;
f9431992 2432
a97fa68e 2433 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2434
a97fa68e 2435 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2436 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2437
2299ef71 2438 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2439 if (!nb_mce_en)
2299ef71
BP
2440 amd64_notice("NB MCE bank disabled, set MSR "
2441 "0x%08x[4] on node %d to enable.\n",
2442 MSR_IA32_MCG_CTL, nid);
f9431992 2443
2299ef71
BP
2444 if (!ecc_en || !nb_mce_en) {
2445 amd64_notice("%s", ecc_msg);
2446 return false;
2447 }
2448 return true;
f9431992
DT
2449}
2450
7d6034d3
DT
2451struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2452 ARRAY_SIZE(amd64_inj_attrs) +
2453 1];
2454
2455struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2456
360b7f3c 2457static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2458{
2459 unsigned int i = 0, j = 0;
2460
2461 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2462 sysfs_attrs[i] = amd64_dbg_attrs[i];
2463
a135cef7
BP
2464 if (boot_cpu_data.x86 >= 0x10)
2465 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2466 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2467
2468 sysfs_attrs[i] = terminator;
2469
2470 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2471}
2472
df71a053
BP
2473static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2474 struct amd64_family_type *fam)
7d6034d3
DT
2475{
2476 struct amd64_pvt *pvt = mci->pvt_info;
2477
2478 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2479 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2480
5980bb9c 2481 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2482 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2483
5980bb9c 2484 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2485 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2486
2487 mci->edac_cap = amd64_determine_edac_cap(pvt);
2488 mci->mod_name = EDAC_MOD_STR;
2489 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2490 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2491 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2492 mci->ctl_page_to_phys = NULL;
2493
7d6034d3
DT
2494 /* memory scrubber interface */
2495 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2496 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2497}
2498
0092b20d
BP
2499/*
2500 * returns a pointer to the family descriptor on success, NULL otherwise.
2501 */
2502static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2503{
0092b20d
BP
2504 u8 fam = boot_cpu_data.x86;
2505 struct amd64_family_type *fam_type = NULL;
2506
2507 switch (fam) {
395ae783 2508 case 0xf:
0092b20d 2509 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2510 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2511 break;
df71a053 2512
395ae783 2513 case 0x10:
0092b20d 2514 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2515 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2516 break;
2517
2518 case 0x15:
2519 fam_type = &amd64_family_types[F15_CPUS];
2520 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2521 break;
2522
2523 default:
24f9a7fe 2524 amd64_err("Unsupported family!\n");
0092b20d 2525 return NULL;
395ae783 2526 }
0092b20d 2527
b8cfa02f
BP
2528 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2529
df71a053 2530 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2531 (fam == 0xf ?
24f9a7fe
BP
2532 (pvt->ext_model >= K8_REV_F ? "revF or later "
2533 : "revE or earlier ")
2534 : ""), pvt->mc_node_id);
0092b20d 2535 return fam_type;
395ae783
BP
2536}
2537
2299ef71 2538static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2539{
2540 struct amd64_pvt *pvt = NULL;
0092b20d 2541 struct amd64_family_type *fam_type = NULL;
360b7f3c 2542 struct mem_ctl_info *mci = NULL;
7d6034d3 2543 int err = 0, ret;
360b7f3c 2544 u8 nid = get_node_id(F2);
7d6034d3
DT
2545
2546 ret = -ENOMEM;
2547 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2548 if (!pvt)
360b7f3c 2549 goto err_ret;
7d6034d3 2550
360b7f3c 2551 pvt->mc_node_id = nid;
8d5b5d9c 2552 pvt->F2 = F2;
7d6034d3 2553
395ae783 2554 ret = -EINVAL;
0092b20d
BP
2555 fam_type = amd64_per_family_init(pvt);
2556 if (!fam_type)
395ae783
BP
2557 goto err_free;
2558
7d6034d3 2559 ret = -ENODEV;
360b7f3c 2560 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2561 if (err)
2562 goto err_free;
2563
360b7f3c 2564 read_mc_regs(pvt);
7d6034d3 2565
7d6034d3
DT
2566 /*
2567 * We need to determine how many memory channels there are. Then use
2568 * that information for calculating the size of the dynamic instance
360b7f3c 2569 * tables in the 'mci' structure.
7d6034d3 2570 */
360b7f3c 2571 ret = -EINVAL;
7d6034d3
DT
2572 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2573 if (pvt->channel_count < 0)
360b7f3c 2574 goto err_siblings;
7d6034d3
DT
2575
2576 ret = -ENOMEM;
11c75ead 2577 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2578 if (!mci)
360b7f3c 2579 goto err_siblings;
7d6034d3
DT
2580
2581 mci->pvt_info = pvt;
8d5b5d9c 2582 mci->dev = &pvt->F2->dev;
7d6034d3 2583
df71a053 2584 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2585
2586 if (init_csrows(mci))
7d6034d3
DT
2587 mci->edac_cap = EDAC_FLAG_NONE;
2588
360b7f3c 2589 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2590
2591 ret = -ENODEV;
2592 if (edac_mc_add_mc(mci)) {
2593 debugf1("failed edac_mc_add_mc()\n");
2594 goto err_add_mc;
2595 }
2596
549d042d
BP
2597 /* register stuff with EDAC MCE */
2598 if (report_gart_errors)
2599 amd_report_gart_errors(true);
2600
2601 amd_register_ecc_decoder(amd64_decode_bus_error);
2602
360b7f3c
BP
2603 mcis[nid] = mci;
2604
2605 atomic_inc(&drv_instances);
2606
7d6034d3
DT
2607 return 0;
2608
2609err_add_mc:
2610 edac_mc_free(mci);
2611
360b7f3c
BP
2612err_siblings:
2613 free_mc_sibling_devs(pvt);
7d6034d3 2614
360b7f3c
BP
2615err_free:
2616 kfree(pvt);
7d6034d3 2617
360b7f3c 2618err_ret:
7d6034d3
DT
2619 return ret;
2620}
2621
2299ef71 2622static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2623 const struct pci_device_id *mc_type)
7d6034d3 2624{
ae7bb7c6 2625 u8 nid = get_node_id(pdev);
2299ef71 2626 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2627 struct ecc_settings *s;
2299ef71 2628 int ret = 0;
7d6034d3 2629
7d6034d3 2630 ret = pci_enable_device(pdev);
b8cfa02f
BP
2631 if (ret < 0) {
2632 debugf0("ret=%d\n", ret);
2633 return -EIO;
2634 }
7d6034d3 2635
ae7bb7c6
BP
2636 ret = -ENOMEM;
2637 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2638 if (!s)
2299ef71 2639 goto err_out;
ae7bb7c6
BP
2640
2641 ecc_stngs[nid] = s;
2642
2299ef71
BP
2643 if (!ecc_enabled(F3, nid)) {
2644 ret = -ENODEV;
2645
2646 if (!ecc_enable_override)
2647 goto err_enable;
2648
2649 amd64_warn("Forcing ECC on!\n");
2650
2651 if (!enable_ecc_error_reporting(s, nid, F3))
2652 goto err_enable;
2653 }
2654
2655 ret = amd64_init_one_instance(pdev);
360b7f3c 2656 if (ret < 0) {
ae7bb7c6 2657 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2658 restore_ecc_error_reporting(s, nid, F3);
2659 }
7d6034d3
DT
2660
2661 return ret;
2299ef71
BP
2662
2663err_enable:
2664 kfree(s);
2665 ecc_stngs[nid] = NULL;
2666
2667err_out:
2668 return ret;
7d6034d3
DT
2669}
2670
2671static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2672{
2673 struct mem_ctl_info *mci;
2674 struct amd64_pvt *pvt;
360b7f3c
BP
2675 u8 nid = get_node_id(pdev);
2676 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2677 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2678
2679 /* Remove from EDAC CORE tracking list */
2680 mci = edac_mc_del_mc(&pdev->dev);
2681 if (!mci)
2682 return;
2683
2684 pvt = mci->pvt_info;
2685
360b7f3c 2686 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2687
360b7f3c 2688 free_mc_sibling_devs(pvt);
7d6034d3 2689
549d042d
BP
2690 /* unregister from EDAC MCE */
2691 amd_report_gart_errors(false);
2692 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2693
360b7f3c
BP
2694 kfree(ecc_stngs[nid]);
2695 ecc_stngs[nid] = NULL;
ae7bb7c6 2696
7d6034d3 2697 /* Free the EDAC CORE resources */
8f68ed97 2698 mci->pvt_info = NULL;
360b7f3c 2699 mcis[nid] = NULL;
8f68ed97
BP
2700
2701 kfree(pvt);
7d6034d3
DT
2702 edac_mc_free(mci);
2703}
2704
2705/*
2706 * This table is part of the interface for loading drivers for PCI devices. The
2707 * PCI core identifies what devices are on a system during boot, and then
2708 * inquiry this table to see if this driver is for a given device found.
2709 */
36c46f31 2710static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2711 {
2712 .vendor = PCI_VENDOR_ID_AMD,
2713 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2714 .subvendor = PCI_ANY_ID,
2715 .subdevice = PCI_ANY_ID,
2716 .class = 0,
2717 .class_mask = 0,
7d6034d3
DT
2718 },
2719 {
2720 .vendor = PCI_VENDOR_ID_AMD,
2721 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2722 .subvendor = PCI_ANY_ID,
2723 .subdevice = PCI_ANY_ID,
2724 .class = 0,
2725 .class_mask = 0,
7d6034d3 2726 },
df71a053
BP
2727 {
2728 .vendor = PCI_VENDOR_ID_AMD,
2729 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2730 .subvendor = PCI_ANY_ID,
2731 .subdevice = PCI_ANY_ID,
2732 .class = 0,
2733 .class_mask = 0,
2734 },
2735
7d6034d3
DT
2736 {0, }
2737};
2738MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2739
2740static struct pci_driver amd64_pci_driver = {
2741 .name = EDAC_MOD_STR,
2299ef71 2742 .probe = amd64_probe_one_instance,
7d6034d3
DT
2743 .remove = __devexit_p(amd64_remove_one_instance),
2744 .id_table = amd64_pci_table,
2745};
2746
360b7f3c 2747static void setup_pci_device(void)
7d6034d3
DT
2748{
2749 struct mem_ctl_info *mci;
2750 struct amd64_pvt *pvt;
2751
2752 if (amd64_ctl_pci)
2753 return;
2754
cc4d8860 2755 mci = mcis[0];
7d6034d3
DT
2756 if (mci) {
2757
2758 pvt = mci->pvt_info;
2759 amd64_ctl_pci =
8d5b5d9c 2760 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2761
2762 if (!amd64_ctl_pci) {
2763 pr_warning("%s(): Unable to create PCI control\n",
2764 __func__);
2765
2766 pr_warning("%s(): PCI error report via EDAC not set\n",
2767 __func__);
2768 }
2769 }
2770}
2771
2772static int __init amd64_edac_init(void)
2773{
360b7f3c 2774 int err = -ENODEV;
7d6034d3 2775
df71a053 2776 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2777
2778 opstate_init();
2779
9653a5c7 2780 if (amd_cache_northbridges() < 0)
56b34b91 2781 goto err_ret;
7d6034d3 2782
cc4d8860 2783 err = -ENOMEM;
ae7bb7c6
BP
2784 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2785 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2786 if (!(mcis && ecc_stngs))
a9f0fbe2 2787 goto err_free;
cc4d8860 2788
50542251 2789 msrs = msrs_alloc();
56b34b91 2790 if (!msrs)
360b7f3c 2791 goto err_free;
50542251 2792
7d6034d3
DT
2793 err = pci_register_driver(&amd64_pci_driver);
2794 if (err)
56b34b91 2795 goto err_pci;
7d6034d3 2796
56b34b91 2797 err = -ENODEV;
360b7f3c
BP
2798 if (!atomic_read(&drv_instances))
2799 goto err_no_instances;
7d6034d3 2800
360b7f3c
BP
2801 setup_pci_device();
2802 return 0;
7d6034d3 2803
360b7f3c 2804err_no_instances:
7d6034d3 2805 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2806
56b34b91
BP
2807err_pci:
2808 msrs_free(msrs);
2809 msrs = NULL;
cc4d8860 2810
360b7f3c
BP
2811err_free:
2812 kfree(mcis);
2813 mcis = NULL;
2814
2815 kfree(ecc_stngs);
2816 ecc_stngs = NULL;
2817
56b34b91 2818err_ret:
7d6034d3
DT
2819 return err;
2820}
2821
2822static void __exit amd64_edac_exit(void)
2823{
2824 if (amd64_ctl_pci)
2825 edac_pci_release_generic_ctl(amd64_ctl_pci);
2826
2827 pci_unregister_driver(&amd64_pci_driver);
50542251 2828
ae7bb7c6
BP
2829 kfree(ecc_stngs);
2830 ecc_stngs = NULL;
2831
cc4d8860
BP
2832 kfree(mcis);
2833 mcis = NULL;
2834
50542251
BP
2835 msrs_free(msrs);
2836 msrs = NULL;
7d6034d3
DT
2837}
2838
2839module_init(amd64_edac_init);
2840module_exit(amd64_edac_exit);
2841
2842MODULE_LICENSE("GPL");
2843MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2844 "Dave Peterson, Thayne Harbaugh");
2845MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2846 EDAC_AMD64_VERSION);
2847
2848module_param(edac_op_state, int, 0444);
2849MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");