]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.c
virtio_net: spelling fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
94c1acf2 101 * F16h: has only 1 DCT
b2b0c605
BP
102 */
103static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105{
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110}
111
112static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114{
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116}
117
73ba8593
BP
118/*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122{
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
18b94f66 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
73ba8593
BP
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129}
130
b2b0c605
BP
131static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133{
b2b0c605
BP
134 u8 dct = 0;
135
18b94f66 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
b2b0c605 137 if (addr >= 0x140 && addr <= 0x1a0) {
18b94f66 138 dct = (pvt->model >= 0x30) ? 3 : 1;
b2b0c605
BP
139 addr -= 0x100;
140 }
141
73ba8593 142 f15h_select_dct(pvt, dct);
b2b0c605
BP
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145}
146
2bc65418
DT
147/*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161/*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
395ae783 165static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
166{
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
2bc65418 178 */
168bfeef 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
395ae783 184 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
2bc65418
DT
189 }
190
191 scrubval = scrubrates[i].scrubval;
2bc65418 192
5980bb9c 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 194
39094443
BP
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
2bc65418
DT
198 return 0;
199}
200
395ae783 201static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
202{
203 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 204 u32 min_scrubrate = 0x5;
2bc65418 205
a4b4bedc 206 if (pvt->fam == 0xf)
87b3e0e6
BP
207 min_scrubrate = 0x0;
208
3f0aba4f
BP
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
211 f15h_select_dct(pvt, 0);
212
87b3e0e6 213 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
214}
215
39094443 216static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
217{
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
39094443 220 int i, retval = -EINVAL;
2bc65418 221
3f0aba4f
BP
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
224 f15h_select_dct(pvt, 0);
225
5980bb9c 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
227
228 scrubval = scrubval & 0x001F;
229
926311fd 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 231 if (scrubrates[i].scrubval == scrubval) {
39094443 232 retval = scrubrates[i].bandwidth;
2bc65418
DT
233 break;
234 }
235 }
39094443 236 return retval;
2bc65418
DT
237}
238
6775763a 239/*
7f19bf75
BP
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
6775763a 242 */
b487c33e 243static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
c7e5301a 244 u8 nid)
6775763a 245{
7f19bf75 246 u64 addr;
6775763a
DT
247
248 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
249 * all ones if the most significant implemented address bit is 1.
250 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
251 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
252 * Application Programming.
253 */
254 addr = sys_addr & 0x000000ffffffffffull;
255
7f19bf75
BP
256 return ((addr >= get_dram_base(pvt, nid)) &&
257 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
258}
259
260/*
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
263 *
264 * On failure, return NULL.
265 */
266static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
268{
269 struct amd64_pvt *pvt;
c7e5301a 270 u8 node_id;
6775763a
DT
271 u32 intlv_en, bits;
272
273 /*
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
276 */
277 pvt = mci->pvt_info;
278
279 /*
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
283 */
7f19bf75 284 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
285
286 if (intlv_en == 0) {
7f19bf75 287 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 289 goto found;
6775763a 290 }
8edc5445 291 goto err_no_match;
6775763a
DT
292 }
293
72f158fe
BP
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
24f9a7fe 297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
298 return NULL;
299 }
300
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
302
303 for (node_id = 0; ; ) {
7f19bf75 304 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
305 break; /* intlv_sel field matches */
306
7f19bf75 307 if (++node_id >= DRAM_RANGES)
6775763a
DT
308 goto err_no_match;
309 }
310
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
6775763a
DT
316 return NULL;
317 }
318
319found:
b487c33e 320 return edac_mc_find((int)node_id);
6775763a
DT
321
322err_no_match:
956b9ba1
JP
323 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
6775763a
DT
325
326 return NULL;
327}
e2ce7255
DT
328
329/*
11c75ead
BP
330 * compute the CS base address of the @csrow on the DRAM controller @dct.
331 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 332 */
11c75ead
BP
333static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
334 u64 *base, u64 *mask)
e2ce7255 335{
11c75ead
BP
336 u64 csbase, csmask, base_bits, mask_bits;
337 u8 addr_shift;
e2ce7255 338
18b94f66 339 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
340 csbase = pvt->csels[dct].csbases[csrow];
341 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
342 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
343 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 344 addr_shift = 4;
94c1acf2
AG
345
346 /*
18b94f66
AG
347 * F16h and F15h, models 30h and later need two addr_shift values:
348 * 8 for high and 6 for low (cf. F16h BKDG).
349 */
350 } else if (pvt->fam == 0x16 ||
351 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
352 csbase = pvt->csels[dct].csbases[csrow];
353 csmask = pvt->csels[dct].csmasks[csrow >> 1];
354
10ef6b0d
CG
355 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
356 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
357
358 *mask = ~0ULL;
359 /* poke holes for the csmask */
10ef6b0d
CG
360 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
361 (GENMASK_ULL(30, 19) << 8));
94c1acf2 362
10ef6b0d
CG
363 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
364 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
365
366 return;
11c75ead
BP
367 } else {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow >> 1];
370 addr_shift = 8;
e2ce7255 371
a4b4bedc 372 if (pvt->fam == 0x15)
10ef6b0d
CG
373 base_bits = mask_bits =
374 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 375 else
10ef6b0d
CG
376 base_bits = mask_bits =
377 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 378 }
e2ce7255 379
11c75ead 380 *base = (csbase & base_bits) << addr_shift;
e2ce7255 381
11c75ead
BP
382 *mask = ~0ULL;
383 /* poke holes for the csmask */
384 *mask &= ~(mask_bits << addr_shift);
385 /* OR them in */
386 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
387}
388
11c75ead
BP
389#define for_each_chip_select(i, dct, pvt) \
390 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
391
614ec9d8
BP
392#define chip_select_base(i, dct, pvt) \
393 pvt->csels[dct].csbases[i]
394
11c75ead
BP
395#define for_each_chip_select_mask(i, dct, pvt) \
396 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
397
e2ce7255
DT
398/*
399 * @input_addr is an InputAddr associated with the node given by mci. Return the
400 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
401 */
402static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
403{
404 struct amd64_pvt *pvt;
405 int csrow;
406 u64 base, mask;
407
408 pvt = mci->pvt_info;
409
11c75ead
BP
410 for_each_chip_select(csrow, 0, pvt) {
411 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
412 continue;
413
11c75ead
BP
414 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
415
416 mask = ~mask;
e2ce7255
DT
417
418 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
419 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
420 (unsigned long)input_addr, csrow,
421 pvt->mc_node_id);
e2ce7255
DT
422
423 return csrow;
424 }
425 }
956b9ba1
JP
426 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
427 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
428
429 return -1;
430}
431
e2ce7255
DT
432/*
433 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
434 * for the node represented by mci. Info is passed back in *hole_base,
435 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
436 * info is invalid. Info may be invalid for either of the following reasons:
437 *
438 * - The revision of the node is not E or greater. In this case, the DRAM Hole
439 * Address Register does not exist.
440 *
441 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
442 * indicating that its contents are not valid.
443 *
444 * The values passed back in *hole_base, *hole_offset, and *hole_size are
445 * complete 32-bit values despite the fact that the bitfields in the DHAR
446 * only represent bits 31-24 of the base and offset values.
447 */
448int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
449 u64 *hole_offset, u64 *hole_size)
450{
451 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
452
453 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 454 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
455 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
456 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
457 return 1;
458 }
459
bc21fa57 460 /* valid for Fam10h and above */
a4b4bedc 461 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 462 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
463 return 1;
464 }
465
c8e518d5 466 if (!dhar_valid(pvt)) {
956b9ba1
JP
467 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
468 pvt->mc_node_id);
e2ce7255
DT
469 return 1;
470 }
471
472 /* This node has Memory Hoisting */
473
474 /* +------------------+--------------------+--------------------+-----
475 * | memory | DRAM hole | relocated |
476 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
477 * | | | DRAM hole |
478 * | | | [0x100000000, |
479 * | | | (0x100000000+ |
480 * | | | (0xffffffff-x))] |
481 * +------------------+--------------------+--------------------+-----
482 *
483 * Above is a diagram of physical memory showing the DRAM hole and the
484 * relocated addresses from the DRAM hole. As shown, the DRAM hole
485 * starts at address x (the base address) and extends through address
486 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
487 * addresses in the hole so that they start at 0x100000000.
488 */
489
1f31677e
BP
490 *hole_base = dhar_base(pvt);
491 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 492
a4b4bedc
BP
493 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
494 : k8_dhar_offset(pvt);
e2ce7255 495
956b9ba1
JP
496 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
497 pvt->mc_node_id, (unsigned long)*hole_base,
498 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
499
500 return 0;
501}
502EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
503
93c2df58
DT
504/*
505 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
506 * assumed that sys_addr maps to the node given by mci.
507 *
508 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
509 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
510 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
511 * then it is also involved in translating a SysAddr to a DramAddr. Sections
512 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
513 * These parts of the documentation are unclear. I interpret them as follows:
514 *
515 * When node n receives a SysAddr, it processes the SysAddr as follows:
516 *
517 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
518 * Limit registers for node n. If the SysAddr is not within the range
519 * specified by the base and limit values, then node n ignores the Sysaddr
520 * (since it does not map to node n). Otherwise continue to step 2 below.
521 *
522 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
523 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
524 * the range of relocated addresses (starting at 0x100000000) from the DRAM
525 * hole. If not, skip to step 3 below. Else get the value of the
526 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
527 * offset defined by this value from the SysAddr.
528 *
529 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
530 * Base register for node n. To obtain the DramAddr, subtract the base
531 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
532 */
533static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
534{
7f19bf75 535 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 536 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 537 int ret;
93c2df58 538
7f19bf75 539 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
540
541 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
542 &hole_size);
543 if (!ret) {
1f31677e
BP
544 if ((sys_addr >= (1ULL << 32)) &&
545 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
546 /* use DHAR to translate SysAddr to DramAddr */
547 dram_addr = sys_addr - hole_offset;
548
956b9ba1
JP
549 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
550 (unsigned long)sys_addr,
551 (unsigned long)dram_addr);
93c2df58
DT
552
553 return dram_addr;
554 }
555 }
556
557 /*
558 * Translate the SysAddr to a DramAddr as shown near the start of
559 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
560 * only deals with 40-bit values. Therefore we discard bits 63-40 of
561 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
562 * discard are all 1s. Otherwise the bits we discard are all 0s. See
563 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
564 * Programmer's Manual Volume 1 Application Programming.
565 */
10ef6b0d 566 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 567
956b9ba1
JP
568 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
569 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
570 return dram_addr;
571}
572
573/*
574 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
575 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
576 * for node interleaving.
577 */
578static int num_node_interleave_bits(unsigned intlv_en)
579{
580 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
581 int n;
582
583 BUG_ON(intlv_en > 7);
584 n = intlv_shift_table[intlv_en];
585 return n;
586}
587
588/* Translate the DramAddr given by @dram_addr to an InputAddr. */
589static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
590{
591 struct amd64_pvt *pvt;
592 int intlv_shift;
593 u64 input_addr;
594
595 pvt = mci->pvt_info;
596
597 /*
598 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
599 * concerning translating a DramAddr to an InputAddr.
600 */
7f19bf75 601 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 602 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 603 (dram_addr & 0xfff);
93c2df58 604
956b9ba1
JP
605 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
606 intlv_shift, (unsigned long)dram_addr,
607 (unsigned long)input_addr);
93c2df58
DT
608
609 return input_addr;
610}
611
612/*
613 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
614 * assumed that @sys_addr maps to the node given by mci.
615 */
616static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
617{
618 u64 input_addr;
619
620 input_addr =
621 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
622
956b9ba1
JP
623 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
624 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
625
626 return input_addr;
627}
628
93c2df58
DT
629/* Map the Error address to a PAGE and PAGE OFFSET. */
630static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 631 struct err_info *err)
93c2df58 632{
33ca0643
BP
633 err->page = (u32) (error_address >> PAGE_SHIFT);
634 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
635}
636
637/*
638 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
639 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
640 * of a node that detected an ECC memory error. mci represents the node that
641 * the error address maps to (possibly different from the node that detected
642 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
643 * error.
644 */
645static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
646{
647 int csrow;
648
649 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
650
651 if (csrow == -1)
24f9a7fe
BP
652 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
653 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
654 return csrow;
655}
e2ce7255 656
bfc04aec 657static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 658
2da11654
DT
659/*
660 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
661 * are ECC capable.
662 */
1f6189ed 663static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 664{
cb328507 665 u8 bit;
1f6189ed 666 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 667
a4b4bedc 668 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
669 ? 19
670 : 17;
671
584fcff4 672 if (pvt->dclr0 & BIT(bit))
2da11654
DT
673 edac_cap = EDAC_FLAG_SECDED;
674
675 return edac_cap;
676}
677
8c671751 678static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 679
a4b4bedc 680static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 681{
956b9ba1 682 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 683
956b9ba1
JP
684 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
685 (dclr & BIT(16)) ? "un" : "",
686 (dclr & BIT(19)) ? "yes" : "no");
68798e17 687
956b9ba1
JP
688 edac_dbg(1, " PAR/ERR parity: %s\n",
689 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 690
a4b4bedc 691 if (pvt->fam == 0x10)
956b9ba1
JP
692 edac_dbg(1, " DCT 128bit mode width: %s\n",
693 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 694
956b9ba1
JP
695 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
696 (dclr & BIT(12)) ? "yes" : "no",
697 (dclr & BIT(13)) ? "yes" : "no",
698 (dclr & BIT(14)) ? "yes" : "no",
699 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
700}
701
2da11654 702/* Display and decode various NB registers for debug purposes. */
b2b0c605 703static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 704{
956b9ba1 705 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 706
956b9ba1
JP
707 edac_dbg(1, " NB two channel DRAM capable: %s\n",
708 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 709
956b9ba1
JP
710 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
711 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
712 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 713
a4b4bedc 714 amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 715
956b9ba1 716 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 717
956b9ba1
JP
718 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
719 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
720 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
721 : f10_dhar_offset(pvt));
2da11654 722
956b9ba1 723 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 724
8c671751 725 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 726
8de1d91e 727 /* everything below this point is Fam10h and above */
a4b4bedc 728 if (pvt->fam == 0xf)
2da11654 729 return;
4d796364 730
8c671751 731 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 732
a3b7db09 733 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 734
8de1d91e 735 /* Only if NOT ganged does dclr1 have valid info */
68798e17 736 if (!dct_ganging_enabled(pvt))
a4b4bedc 737 amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
738}
739
94be4bff 740/*
18b94f66 741 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 742 */
11c75ead 743static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 744{
18b94f66 745 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
746 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
747 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
18b94f66
AG
748 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
749 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
750 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 751 } else {
11c75ead
BP
752 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
753 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
754 }
755}
756
757/*
11c75ead 758 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 759 */
b2b0c605 760static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 761{
11c75ead 762 int cs;
94be4bff 763
11c75ead 764 prep_chip_selects(pvt);
94be4bff 765
11c75ead 766 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
767 int reg0 = DCSB0 + (cs * 4);
768 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
769 u32 *base0 = &pvt->csels[0].csbases[cs];
770 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 771
11c75ead 772 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
773 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
774 cs, *base0, reg0);
94be4bff 775
a4b4bedc 776 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 777 continue;
b2b0c605 778
11c75ead 779 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
780 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
781 cs, *base1, reg1);
94be4bff
DT
782 }
783
11c75ead 784 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
785 int reg0 = DCSM0 + (cs * 4);
786 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
787 u32 *mask0 = &pvt->csels[0].csmasks[cs];
788 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 789
11c75ead 790 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
791 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
792 cs, *mask0, reg0);
94be4bff 793
a4b4bedc 794 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 795 continue;
b2b0c605 796
11c75ead 797 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
798 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
799 cs, *mask1, reg1);
94be4bff
DT
800 }
801}
802
24f9a7fe 803static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
804{
805 enum mem_type type;
806
cb328507 807 /* F15h supports only DDR3 */
a4b4bedc 808 if (pvt->fam >= 0x15)
cb328507 809 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
a4b4bedc 810 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
811 if (pvt->dchr0 & DDR3_MODE)
812 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
813 else
814 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 815 } else {
94be4bff
DT
816 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
817 }
818
24f9a7fe 819 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
820
821 return type;
822}
823
cb328507 824/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
825static int k8_early_channel_count(struct amd64_pvt *pvt)
826{
cb328507 827 int flag;
ddff876d 828
9f56da0e 829 if (pvt->ext_model >= K8_REV_F)
ddff876d 830 /* RevF (NPT) and later */
41d8bfab 831 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 832 else
ddff876d
DT
833 /* RevE and earlier */
834 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
835
836 /* not used */
837 pvt->dclr1 = 0;
838
839 return (flag) ? 2 : 1;
840}
841
70046624 842/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 843static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 844{
c1ae6830 845 u64 addr;
70046624
BP
846 u8 start_bit = 1;
847 u8 end_bit = 47;
848
a4b4bedc 849 if (pvt->fam == 0xf) {
70046624
BP
850 start_bit = 3;
851 end_bit = 39;
852 }
853
10ef6b0d 854 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
855
856 /*
857 * Erratum 637 workaround
858 */
a4b4bedc 859 if (pvt->fam == 0x15) {
c1ae6830
BP
860 struct amd64_pvt *pvt;
861 u64 cc6_base, tmp_addr;
862 u32 tmp;
8b84c8df
DB
863 u16 mce_nid;
864 u8 intlv_en;
c1ae6830 865
10ef6b0d 866 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
867 return addr;
868
869 mce_nid = amd_get_nb_id(m->extcpu);
870 pvt = mcis[mce_nid]->pvt_info;
871
872 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
873 intlv_en = tmp >> 21 & 0x7;
874
875 /* add [47:27] + 3 trailing bits */
10ef6b0d 876 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
877
878 /* reverse and add DramIntlvEn */
879 cc6_base |= intlv_en ^ 0x7;
880
881 /* pin at [47:24] */
882 cc6_base <<= 24;
883
884 if (!intlv_en)
10ef6b0d 885 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
886
887 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
888
889 /* faster log2 */
10ef6b0d 890 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
891
892 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 893 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
894
895 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 896 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
897
898 return cc6_base | tmp_addr;
899 }
900
901 return addr;
ddff876d
DT
902}
903
e2c0bffe
DB
904static struct pci_dev *pci_get_related_function(unsigned int vendor,
905 unsigned int device,
906 struct pci_dev *related)
907{
908 struct pci_dev *dev = NULL;
909
910 while ((dev = pci_get_device(vendor, device, dev))) {
911 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
912 (dev->bus->number == related->bus->number) &&
913 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
914 break;
915 }
916
917 return dev;
918}
919
7f19bf75 920static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 921{
e2c0bffe 922 struct amd_northbridge *nb;
18b94f66
AG
923 struct pci_dev *f1 = NULL;
924 unsigned int pci_func;
71d2a32e 925 int off = range << 3;
e2c0bffe 926 u32 llim;
ddff876d 927
7f19bf75
BP
928 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
929 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 930
18b94f66 931 if (pvt->fam == 0xf)
7f19bf75 932 return;
ddff876d 933
7f19bf75
BP
934 if (!dram_rw(pvt, range))
935 return;
ddff876d 936
7f19bf75
BP
937 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
938 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 939
e2c0bffe 940 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 941 if (pvt->fam != 0x15)
e2c0bffe 942 return;
f08e457c 943
e2c0bffe
DB
944 nb = node_to_amd_nb(dram_dst_node(pvt, range));
945 if (WARN_ON(!nb))
946 return;
f08e457c 947
18b94f66
AG
948 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
949 : PCI_DEVICE_ID_AMD_15H_NB_F1;
950
951 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
952 if (WARN_ON(!f1))
953 return;
f08e457c 954
e2c0bffe 955 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 956
10ef6b0d 957 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 958
e2c0bffe
DB
959 /* {[39:27],111b} */
960 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 961
10ef6b0d 962 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 963
e2c0bffe
DB
964 /* [47:40] */
965 pvt->ranges[range].lim.hi |= llim >> 13;
966
967 pci_dev_put(f1);
ddff876d
DT
968}
969
f192c7b1 970static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 971 struct err_info *err)
ddff876d 972{
f192c7b1 973 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 974
33ca0643 975 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
976
977 /*
978 * Find out which node the error address belongs to. This may be
979 * different from the node that detected the error.
980 */
33ca0643
BP
981 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
982 if (!err->src_mci) {
ab5a503c
MCC
983 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
984 (unsigned long)sys_addr);
33ca0643 985 err->err_code = ERR_NODE;
ab5a503c
MCC
986 return;
987 }
988
989 /* Now map the sys_addr to a CSROW */
33ca0643
BP
990 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
991 if (err->csrow < 0) {
992 err->err_code = ERR_CSROW;
ab5a503c
MCC
993 return;
994 }
995
ddff876d 996 /* CHIPKILL enabled */
f192c7b1 997 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
998 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
999 if (err->channel < 0) {
ddff876d
DT
1000 /*
1001 * Syndrome didn't map, so we don't know which of the
1002 * 2 DIMMs is in error. So we need to ID 'both' of them
1003 * as suspect.
1004 */
33ca0643 1005 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1006 "possible error reporting race\n",
33ca0643
BP
1007 err->syndrome);
1008 err->err_code = ERR_CHANNEL;
ddff876d
DT
1009 return;
1010 }
1011 } else {
1012 /*
1013 * non-chipkill ecc mode
1014 *
1015 * The k8 documentation is unclear about how to determine the
1016 * channel number when using non-chipkill memory. This method
1017 * was obtained from email communication with someone at AMD.
1018 * (Wish the email was placed in this comment - norsk)
1019 */
33ca0643 1020 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1021 }
ddff876d
DT
1022}
1023
41d8bfab 1024static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1025{
41d8bfab 1026 unsigned shift = 0;
ddff876d 1027
41d8bfab
BP
1028 if (i <= 2)
1029 shift = i;
1030 else if (!(i & 0x1))
1031 shift = i >> 1;
1433eb99 1032 else
41d8bfab 1033 shift = (i + 1) >> 1;
ddff876d 1034
41d8bfab
BP
1035 return 128 << (shift + !!dct_width);
1036}
1037
1038static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1039 unsigned cs_mode)
1040{
1041 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1042
1043 if (pvt->ext_model >= K8_REV_F) {
1044 WARN_ON(cs_mode > 11);
1045 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1046 }
1047 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1048 unsigned diff;
41d8bfab
BP
1049 WARN_ON(cs_mode > 10);
1050
11b0a314
BP
1051 /*
1052 * the below calculation, besides trying to win an obfuscated C
1053 * contest, maps cs_mode values to DIMM chip select sizes. The
1054 * mappings are:
1055 *
1056 * cs_mode CS size (mb)
1057 * ======= ============
1058 * 0 32
1059 * 1 64
1060 * 2 128
1061 * 3 128
1062 * 4 256
1063 * 5 512
1064 * 6 256
1065 * 7 512
1066 * 8 1024
1067 * 9 1024
1068 * 10 2048
1069 *
1070 * Basically, it calculates a value with which to shift the
1071 * smallest CS size of 32MB.
1072 *
1073 * ddr[23]_cs_size have a similar purpose.
1074 */
1075 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1076
1077 return 32 << (cs_mode - diff);
41d8bfab
BP
1078 }
1079 else {
1080 WARN_ON(cs_mode > 6);
1081 return 32 << cs_mode;
1082 }
ddff876d
DT
1083}
1084
1afd3c98
DT
1085/*
1086 * Get the number of DCT channels in use.
1087 *
1088 * Return:
1089 * number of Memory Channels in operation
1090 * Pass back:
1091 * contents of the DCL0_LOW register
1092 */
7d20d14d 1093static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1094{
6ba5dcdc 1095 int i, j, channels = 0;
1afd3c98 1096
7d20d14d 1097 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1098 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1099 return 2;
1afd3c98
DT
1100
1101 /*
d16149e8
BP
1102 * Need to check if in unganged mode: In such, there are 2 channels,
1103 * but they are not in 128 bit mode and thus the above 'dclr0' status
1104 * bit will be OFF.
1afd3c98
DT
1105 *
1106 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1107 * their CSEnable bit on. If so, then SINGLE DIMM case.
1108 */
956b9ba1 1109 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1110
1afd3c98
DT
1111 /*
1112 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1113 * is more than just one DIMM present in unganged mode. Need to check
1114 * both controllers since DIMMs can be placed in either one.
1115 */
525a1b20
BP
1116 for (i = 0; i < 2; i++) {
1117 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1118
57a30854
WW
1119 for (j = 0; j < 4; j++) {
1120 if (DBAM_DIMM(j, dbam) > 0) {
1121 channels++;
1122 break;
1123 }
1124 }
1afd3c98
DT
1125 }
1126
d16149e8
BP
1127 if (channels > 2)
1128 channels = 2;
1129
24f9a7fe 1130 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1131
1132 return channels;
1afd3c98
DT
1133}
1134
41d8bfab 1135static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1136{
41d8bfab
BP
1137 unsigned shift = 0;
1138 int cs_size = 0;
1139
1140 if (i == 0 || i == 3 || i == 4)
1141 cs_size = -1;
1142 else if (i <= 2)
1143 shift = i;
1144 else if (i == 12)
1145 shift = 7;
1146 else if (!(i & 0x1))
1147 shift = i >> 1;
1148 else
1149 shift = (i + 1) >> 1;
1150
1151 if (cs_size != -1)
1152 cs_size = (128 * (1 << !!dct_width)) << shift;
1153
1154 return cs_size;
1155}
1156
1157static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1158 unsigned cs_mode)
1159{
1160 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1161
1162 WARN_ON(cs_mode > 11);
1433eb99
BP
1163
1164 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1165 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1166 else
41d8bfab
BP
1167 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1168}
1169
1170/*
1171 * F15h supports only 64bit DCT interfaces
1172 */
1173static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1174 unsigned cs_mode)
1175{
1176 WARN_ON(cs_mode > 12);
1433eb99 1177
41d8bfab 1178 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1179}
1180
94c1acf2 1181/*
18b94f66 1182 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1183 */
1184static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1185 unsigned cs_mode)
1186{
1187 WARN_ON(cs_mode > 12);
1188
1189 if (cs_mode == 6 || cs_mode == 8 ||
1190 cs_mode == 9 || cs_mode == 12)
1191 return -1;
1192 else
1193 return ddr3_cs_size(cs_mode, false);
1194}
1195
5a5d2371 1196static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1197{
6163b5d4 1198
a4b4bedc 1199 if (pvt->fam == 0xf)
5a5d2371
BP
1200 return;
1201
78da121e 1202 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1203 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1204 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1205
956b9ba1
JP
1206 edac_dbg(0, " DCTs operate in %s mode\n",
1207 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1208
1209 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1210 edac_dbg(0, " Address range split per DCT: %s\n",
1211 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1212
956b9ba1
JP
1213 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1214 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1215 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1216
956b9ba1
JP
1217 edac_dbg(0, " channel interleave: %s, "
1218 "interleave bits selector: 0x%x\n",
1219 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1220 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1221 }
1222
78da121e 1223 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1224}
1225
18b94f66
AG
1226/*
1227 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1228 * 2.10.12 Memory Interleaving Modes).
1229 */
1230static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1231 u8 intlv_en, int num_dcts_intlv,
1232 u32 dct_sel)
1233{
1234 u8 channel = 0;
1235 u8 select;
1236
1237 if (!(intlv_en))
1238 return (u8)(dct_sel);
1239
1240 if (num_dcts_intlv == 2) {
1241 select = (sys_addr >> 8) & 0x3;
1242 channel = select ? 0x3 : 0;
1243 } else if (num_dcts_intlv == 4)
1244 channel = (sys_addr >> 8) & 0x7;
1245
1246 return channel;
1247}
1248
f71d0a05 1249/*
229a7a11 1250 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1251 * Interleaving Modes.
1252 */
b15f0fca 1253static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1254 bool hi_range_sel, u8 intlv_en)
6163b5d4 1255{
151fa71c 1256 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1257
1258 if (dct_ganging_enabled(pvt))
229a7a11 1259 return 0;
6163b5d4 1260
229a7a11
BP
1261 if (hi_range_sel)
1262 return dct_sel_high;
6163b5d4 1263
229a7a11
BP
1264 /*
1265 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1266 */
1267 if (dct_interleave_enabled(pvt)) {
1268 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1269
1270 /* return DCT select function: 0=DCT0, 1=DCT1 */
1271 if (!intlv_addr)
1272 return sys_addr >> 6 & 1;
1273
1274 if (intlv_addr & 0x2) {
1275 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1276 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1277
1278 return ((sys_addr >> shift) & 1) ^ temp;
1279 }
1280
1281 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1282 }
1283
1284 if (dct_high_range_enabled(pvt))
1285 return ~dct_sel_high & 1;
6163b5d4
DT
1286
1287 return 0;
1288}
1289
c8e518d5 1290/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1291static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1292 u64 sys_addr, bool hi_rng,
1293 u32 dct_sel_base_addr)
6163b5d4
DT
1294{
1295 u64 chan_off;
c8e518d5
BP
1296 u64 dram_base = get_dram_base(pvt, range);
1297 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1298 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1299
c8e518d5
BP
1300 if (hi_rng) {
1301 /*
1302 * if
1303 * base address of high range is below 4Gb
1304 * (bits [47:27] at [31:11])
1305 * DRAM address space on this DCT is hoisted above 4Gb &&
1306 * sys_addr > 4Gb
1307 *
1308 * remove hole offset from sys_addr
1309 * else
1310 * remove high range offset from sys_addr
1311 */
1312 if ((!(dct_sel_base_addr >> 16) ||
1313 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1314 dhar_valid(pvt) &&
c8e518d5 1315 (sys_addr >= BIT_64(32)))
bc21fa57 1316 chan_off = hole_off;
6163b5d4
DT
1317 else
1318 chan_off = dct_sel_base_off;
1319 } else {
c8e518d5
BP
1320 /*
1321 * if
1322 * we have a valid hole &&
1323 * sys_addr > 4Gb
1324 *
1325 * remove hole
1326 * else
1327 * remove dram base to normalize to DCT address
1328 */
972ea17a 1329 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1330 chan_off = hole_off;
6163b5d4 1331 else
c8e518d5 1332 chan_off = dram_base;
6163b5d4
DT
1333 }
1334
10ef6b0d 1335 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1336}
1337
6163b5d4
DT
1338/*
1339 * checks if the csrow passed in is marked as SPARED, if so returns the new
1340 * spare row
1341 */
11c75ead 1342static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1343{
614ec9d8
BP
1344 int tmp_cs;
1345
1346 if (online_spare_swap_done(pvt, dct) &&
1347 csrow == online_spare_bad_dramcs(pvt, dct)) {
1348
1349 for_each_chip_select(tmp_cs, dct, pvt) {
1350 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1351 csrow = tmp_cs;
1352 break;
1353 }
1354 }
6163b5d4
DT
1355 }
1356 return csrow;
1357}
1358
1359/*
1360 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1361 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1362 *
1363 * Return:
1364 * -EINVAL: NOT FOUND
1365 * 0..csrow = Chip-Select Row
1366 */
c7e5301a 1367static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1368{
1369 struct mem_ctl_info *mci;
1370 struct amd64_pvt *pvt;
11c75ead 1371 u64 cs_base, cs_mask;
6163b5d4
DT
1372 int cs_found = -EINVAL;
1373 int csrow;
1374
cc4d8860 1375 mci = mcis[nid];
6163b5d4
DT
1376 if (!mci)
1377 return cs_found;
1378
1379 pvt = mci->pvt_info;
1380
956b9ba1 1381 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1382
11c75ead
BP
1383 for_each_chip_select(csrow, dct, pvt) {
1384 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1385 continue;
1386
11c75ead 1387 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1388
956b9ba1
JP
1389 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1390 csrow, cs_base, cs_mask);
6163b5d4 1391
11c75ead 1392 cs_mask = ~cs_mask;
6163b5d4 1393
956b9ba1
JP
1394 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1395 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1396
11c75ead 1397 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1398 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1399 cs_found = csrow;
1400 break;
1401 }
11c75ead 1402 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1403
956b9ba1 1404 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1405 break;
1406 }
1407 }
1408 return cs_found;
1409}
1410
95b0ef55
BP
1411/*
1412 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1413 * swapped with a region located at the bottom of memory so that the GPU can use
1414 * the interleaved region and thus two channels.
1415 */
b15f0fca 1416static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1417{
1418 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1419
a4b4bedc 1420 if (pvt->fam == 0x10) {
95b0ef55 1421 /* only revC3 and revE have that feature */
a4b4bedc 1422 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1423 return sys_addr;
1424 }
1425
1426 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1427
1428 if (!(swap_reg & 0x1))
1429 return sys_addr;
1430
1431 swap_base = (swap_reg >> 3) & 0x7f;
1432 swap_limit = (swap_reg >> 11) & 0x7f;
1433 rgn_size = (swap_reg >> 20) & 0x7f;
1434 tmp_addr = sys_addr >> 27;
1435
1436 if (!(sys_addr >> 34) &&
1437 (((tmp_addr >= swap_base) &&
1438 (tmp_addr <= swap_limit)) ||
1439 (tmp_addr < rgn_size)))
1440 return sys_addr ^ (u64)swap_base << 27;
1441
1442 return sys_addr;
1443}
1444
f71d0a05 1445/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1446static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1447 u64 sys_addr, int *chan_sel)
f71d0a05 1448{
229a7a11 1449 int cs_found = -EINVAL;
c8e518d5 1450 u64 chan_addr;
5d4b58e8 1451 u32 dct_sel_base;
11c75ead 1452 u8 channel;
229a7a11 1453 bool high_range = false;
f71d0a05 1454
7f19bf75 1455 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1456 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1457 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1458
956b9ba1
JP
1459 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1460 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1461
355fba60
BP
1462 if (dhar_valid(pvt) &&
1463 dhar_base(pvt) <= sys_addr &&
1464 sys_addr < BIT_64(32)) {
1465 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1466 sys_addr);
1467 return -EINVAL;
1468 }
1469
f030ddfb 1470 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1471 return -EINVAL;
1472
b15f0fca 1473 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1474
f71d0a05
DT
1475 dct_sel_base = dct_sel_baseaddr(pvt);
1476
1477 /*
1478 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1479 * select between DCT0 and DCT1.
1480 */
1481 if (dct_high_range_enabled(pvt) &&
1482 !dct_ganging_enabled(pvt) &&
1483 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1484 high_range = true;
f71d0a05 1485
b15f0fca 1486 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1487
b15f0fca 1488 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1489 high_range, dct_sel_base);
f71d0a05 1490
e2f79dbd
BP
1491 /* Remove node interleaving, see F1x120 */
1492 if (intlv_en)
1493 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1494 (chan_addr & 0xfff);
f71d0a05 1495
5d4b58e8 1496 /* remove channel interleave */
f71d0a05
DT
1497 if (dct_interleave_enabled(pvt) &&
1498 !dct_high_range_enabled(pvt) &&
1499 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1500
1501 if (dct_sel_interleave_addr(pvt) != 1) {
1502 if (dct_sel_interleave_addr(pvt) == 0x3)
1503 /* hash 9 */
1504 chan_addr = ((chan_addr >> 10) << 9) |
1505 (chan_addr & 0x1ff);
1506 else
1507 /* A[6] or hash 6 */
1508 chan_addr = ((chan_addr >> 7) << 6) |
1509 (chan_addr & 0x3f);
1510 } else
1511 /* A[12] */
1512 chan_addr = ((chan_addr >> 13) << 12) |
1513 (chan_addr & 0xfff);
f71d0a05
DT
1514 }
1515
956b9ba1 1516 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1517
b15f0fca 1518 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1519
33ca0643 1520 if (cs_found >= 0)
f71d0a05 1521 *chan_sel = channel;
33ca0643 1522
f71d0a05
DT
1523 return cs_found;
1524}
1525
18b94f66
AG
1526static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1527 u64 sys_addr, int *chan_sel)
1528{
1529 int cs_found = -EINVAL;
1530 int num_dcts_intlv = 0;
1531 u64 chan_addr, chan_offset;
1532 u64 dct_base, dct_limit;
1533 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1534 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1535
1536 u64 dhar_offset = f10_dhar_offset(pvt);
1537 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1538 u8 node_id = dram_dst_node(pvt, range);
1539 u8 intlv_en = dram_intlv_en(pvt, range);
1540
1541 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1542 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1543
1544 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1545 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1546
1547 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1548 range, sys_addr, get_dram_limit(pvt, range));
1549
1550 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1551 !(get_dram_limit(pvt, range) >= sys_addr))
1552 return -EINVAL;
1553
1554 if (dhar_valid(pvt) &&
1555 dhar_base(pvt) <= sys_addr &&
1556 sys_addr < BIT_64(32)) {
1557 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1558 sys_addr);
1559 return -EINVAL;
1560 }
1561
1562 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1563 dct_base = (u64) dct_sel_baseaddr(pvt);
1564 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1565
1566 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1567 !(dct_base <= (sys_addr >> 27) &&
1568 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1569 return -EINVAL;
1570
1571 /* Verify number of dct's that participate in channel interleaving. */
1572 num_dcts_intlv = (int) hweight8(intlv_en);
1573
1574 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1575 return -EINVAL;
1576
1577 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1578 num_dcts_intlv, dct_sel);
1579
1580 /* Verify we stay within the MAX number of channels allowed */
1581 if (channel > 4 || channel < 0)
1582 return -EINVAL;
1583
1584 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1585
1586 /* Get normalized DCT addr */
1587 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1588 chan_offset = dhar_offset;
1589 else
4fc06b31 1590 chan_offset = dct_base << 27;
18b94f66
AG
1591
1592 chan_addr = sys_addr - chan_offset;
1593
1594 /* remove channel interleave */
1595 if (num_dcts_intlv == 2) {
1596 if (intlv_addr == 0x4)
1597 chan_addr = ((chan_addr >> 9) << 8) |
1598 (chan_addr & 0xff);
1599 else if (intlv_addr == 0x5)
1600 chan_addr = ((chan_addr >> 10) << 9) |
1601 (chan_addr & 0x1ff);
1602 else
1603 return -EINVAL;
1604
1605 } else if (num_dcts_intlv == 4) {
1606 if (intlv_addr == 0x4)
1607 chan_addr = ((chan_addr >> 10) << 8) |
1608 (chan_addr & 0xff);
1609 else if (intlv_addr == 0x5)
1610 chan_addr = ((chan_addr >> 11) << 9) |
1611 (chan_addr & 0x1ff);
1612 else
1613 return -EINVAL;
1614 }
1615
1616 if (dct_offset_en) {
1617 amd64_read_pci_cfg(pvt->F1,
1618 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1619 &tmp);
4fc06b31 1620 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1621 }
1622
1623 f15h_select_dct(pvt, channel);
1624
1625 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1626
1627 /*
1628 * Find Chip select:
1629 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1630 * there is support for 4 DCT's, but only 2 are currently functional.
1631 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1632 * pvt->csels[1]. So we need to use '1' here to get correct info.
1633 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1634 */
1635 alias_channel = (channel == 3) ? 1 : channel;
1636
1637 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1638
1639 if (cs_found >= 0)
1640 *chan_sel = alias_channel;
1641
1642 return cs_found;
1643}
1644
1645static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1646 u64 sys_addr,
1647 int *chan_sel)
f71d0a05 1648{
e761359a
BP
1649 int cs_found = -EINVAL;
1650 unsigned range;
f71d0a05 1651
7f19bf75 1652 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1653 if (!dram_rw(pvt, range))
f71d0a05
DT
1654 continue;
1655
18b94f66
AG
1656 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1657 cs_found = f15_m30h_match_to_this_node(pvt, range,
1658 sys_addr,
1659 chan_sel);
f71d0a05 1660
18b94f66
AG
1661 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1662 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1663 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1664 sys_addr, chan_sel);
f71d0a05
DT
1665 if (cs_found >= 0)
1666 break;
1667 }
1668 }
1669 return cs_found;
1670}
1671
1672/*
bdc30a0c
BP
1673 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1674 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1675 *
bdc30a0c
BP
1676 * The @sys_addr is usually an error address received from the hardware
1677 * (MCX_ADDR).
f71d0a05 1678 */
b15f0fca 1679static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1680 struct err_info *err)
f71d0a05
DT
1681{
1682 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1683
33ca0643 1684 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1685
33ca0643
BP
1686 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1687 if (err->csrow < 0) {
1688 err->err_code = ERR_CSROW;
bdc30a0c
BP
1689 return;
1690 }
1691
bdc30a0c
BP
1692 /*
1693 * We need the syndromes for channel detection only when we're
1694 * ganged. Otherwise @chan should already contain the channel at
1695 * this point.
1696 */
a97fa68e 1697 if (dct_ganging_enabled(pvt))
33ca0643 1698 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1699}
1700
f71d0a05 1701/*
8566c4df 1702 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1703 * CSROWs
f71d0a05 1704 */
8c671751 1705static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1706{
bb89f5a0 1707 int dimm, size0, size1;
525a1b20
BP
1708 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1709 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1710
a4b4bedc 1711 if (pvt->fam == 0xf) {
8566c4df 1712 /* K8 families < revF not supported yet */
1433eb99 1713 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1714 return;
1715 else
1716 WARN_ON(ctrl != 0);
1717 }
1718
4d796364 1719 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1720 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1721 : pvt->csels[0].csbases;
f71d0a05 1722
956b9ba1
JP
1723 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1724 ctrl, dbam);
f71d0a05 1725
8566c4df
BP
1726 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1727
f71d0a05
DT
1728 /* Dump memory sizes for DIMM and its CSROWs */
1729 for (dimm = 0; dimm < 4; dimm++) {
1730
1731 size0 = 0;
11c75ead 1732 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1733 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1734 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1735
1736 size1 = 0;
11c75ead 1737 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1738 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1739 DBAM_DIMM(dimm, dbam));
f71d0a05 1740
24f9a7fe 1741 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1742 dimm * 2, size0,
1743 dimm * 2 + 1, size1);
f71d0a05
DT
1744 }
1745}
1746
4d37607a
DT
1747static struct amd64_family_type amd64_family_types[] = {
1748 [K8_CPUS] = {
0092b20d 1749 .ctl_name = "K8",
8d5b5d9c
BP
1750 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1751 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1752 .ops = {
1433eb99 1753 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1754 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1755 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1756 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1757 }
1758 },
1759 [F10_CPUS] = {
0092b20d 1760 .ctl_name = "F10h",
8d5b5d9c
BP
1761 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1762 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1763 .ops = {
7d20d14d 1764 .early_channel_count = f1x_early_channel_count,
b15f0fca 1765 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1766 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1767 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1768 }
1769 },
1770 [F15_CPUS] = {
1771 .ctl_name = "F15h",
df71a053
BP
1772 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1773 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1774 .ops = {
7d20d14d 1775 .early_channel_count = f1x_early_channel_count,
b15f0fca 1776 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1777 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1778 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1779 }
1780 },
18b94f66
AG
1781 [F15_M30H_CPUS] = {
1782 .ctl_name = "F15h_M30h",
1783 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1784 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1785 .ops = {
1786 .early_channel_count = f1x_early_channel_count,
1787 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1788 .dbam_to_cs = f16_dbam_to_chip_select,
1789 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1790 }
1791 },
94c1acf2
AG
1792 [F16_CPUS] = {
1793 .ctl_name = "F16h",
1794 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1795 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1796 .ops = {
1797 .early_channel_count = f1x_early_channel_count,
1798 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1799 .dbam_to_cs = f16_dbam_to_chip_select,
1800 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1801 }
1802 },
4d37607a
DT
1803};
1804
b1289d6f 1805/*
bfc04aec
BP
1806 * These are tables of eigenvectors (one per line) which can be used for the
1807 * construction of the syndrome tables. The modified syndrome search algorithm
1808 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1809 *
bfc04aec 1810 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1811 */
c7e5301a 1812static const u16 x4_vectors[] = {
bfc04aec
BP
1813 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1814 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1815 0x0001, 0x0002, 0x0004, 0x0008,
1816 0x1013, 0x3032, 0x4044, 0x8088,
1817 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1818 0x4857, 0xc4fe, 0x13cc, 0x3288,
1819 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1820 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1821 0x15c1, 0x2a42, 0x89ac, 0x4758,
1822 0x2b03, 0x1602, 0x4f0c, 0xca08,
1823 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1824 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1825 0x2b87, 0x164e, 0x642c, 0xdc18,
1826 0x40b9, 0x80de, 0x1094, 0x20e8,
1827 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1828 0x11c1, 0x2242, 0x84ac, 0x4c58,
1829 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1830 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1831 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1832 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1833 0x16b3, 0x3d62, 0x4f34, 0x8518,
1834 0x1e2f, 0x391a, 0x5cac, 0xf858,
1835 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1836 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1837 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1838 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1839 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1840 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1841 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1842 0x185d, 0x2ca6, 0x7914, 0x9e28,
1843 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1844 0x4199, 0x82ee, 0x19f4, 0x2e58,
1845 0x4807, 0xc40e, 0x130c, 0x3208,
1846 0x1905, 0x2e0a, 0x5804, 0xac08,
1847 0x213f, 0x132a, 0xadfc, 0x5ba8,
1848 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1849};
1850
c7e5301a 1851static const u16 x8_vectors[] = {
bfc04aec
BP
1852 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1853 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1854 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1855 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1856 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1857 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1858 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1859 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1860 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1861 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1862 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1863 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1864 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1865 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1866 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1867 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1868 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1869 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1870 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1871};
1872
c7e5301a 1873static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 1874 unsigned v_dim)
b1289d6f 1875{
bfc04aec
BP
1876 unsigned int i, err_sym;
1877
1878 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1879 u16 s = syndrome;
d34a6ecd
BP
1880 unsigned v_idx = err_sym * v_dim;
1881 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1882
1883 /* walk over all 16 bits of the syndrome */
1884 for (i = 1; i < (1U << 16); i <<= 1) {
1885
1886 /* if bit is set in that eigenvector... */
1887 if (v_idx < v_end && vectors[v_idx] & i) {
1888 u16 ev_comp = vectors[v_idx++];
1889
1890 /* ... and bit set in the modified syndrome, */
1891 if (s & i) {
1892 /* remove it. */
1893 s ^= ev_comp;
4d37607a 1894
bfc04aec
BP
1895 if (!s)
1896 return err_sym;
1897 }
b1289d6f 1898
bfc04aec
BP
1899 } else if (s & i)
1900 /* can't get to zero, move to next symbol */
1901 break;
1902 }
b1289d6f
DT
1903 }
1904
956b9ba1 1905 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1906 return -1;
1907}
d27bf6fa 1908
bfc04aec
BP
1909static int map_err_sym_to_channel(int err_sym, int sym_size)
1910{
1911 if (sym_size == 4)
1912 switch (err_sym) {
1913 case 0x20:
1914 case 0x21:
1915 return 0;
1916 break;
1917 case 0x22:
1918 case 0x23:
1919 return 1;
1920 break;
1921 default:
1922 return err_sym >> 4;
1923 break;
1924 }
1925 /* x8 symbols */
1926 else
1927 switch (err_sym) {
1928 /* imaginary bits not in a DIMM */
1929 case 0x10:
1930 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1931 err_sym);
1932 return -1;
1933 break;
1934
1935 case 0x11:
1936 return 0;
1937 break;
1938 case 0x12:
1939 return 1;
1940 break;
1941 default:
1942 return err_sym >> 3;
1943 break;
1944 }
1945 return -1;
1946}
1947
1948static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1949{
1950 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1951 int err_sym = -1;
1952
a3b7db09 1953 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1954 err_sym = decode_syndrome(syndrome, x8_vectors,
1955 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1956 pvt->ecc_sym_sz);
1957 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1958 err_sym = decode_syndrome(syndrome, x4_vectors,
1959 ARRAY_SIZE(x4_vectors),
a3b7db09 1960 pvt->ecc_sym_sz);
ad6a32e9 1961 else {
a3b7db09 1962 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1963 return err_sym;
bfc04aec 1964 }
ad6a32e9 1965
a3b7db09 1966 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1967}
1968
33ca0643
BP
1969static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1970 u8 ecc_type)
d27bf6fa 1971{
33ca0643
BP
1972 enum hw_event_mc_err_type err_type;
1973 const char *string;
d27bf6fa 1974
33ca0643
BP
1975 if (ecc_type == 2)
1976 err_type = HW_EVENT_ERR_CORRECTED;
1977 else if (ecc_type == 1)
1978 err_type = HW_EVENT_ERR_UNCORRECTED;
1979 else {
1980 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1981 return;
1982 }
1983
33ca0643
BP
1984 switch (err->err_code) {
1985 case DECODE_OK:
1986 string = "";
1987 break;
1988 case ERR_NODE:
1989 string = "Failed to map error addr to a node";
1990 break;
1991 case ERR_CSROW:
1992 string = "Failed to map error addr to a csrow";
1993 break;
1994 case ERR_CHANNEL:
1995 string = "unknown syndrome - possible error reporting race";
1996 break;
1997 default:
1998 string = "WTF error";
1999 break;
d27bf6fa 2000 }
33ca0643
BP
2001
2002 edac_mc_handle_error(err_type, mci, 1,
2003 err->page, err->offset, err->syndrome,
2004 err->csrow, err->channel, -1,
2005 string, "");
d27bf6fa
DT
2006}
2007
549d042d 2008static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 2009 struct mce *m)
d27bf6fa 2010{
33ca0643 2011 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 2012 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2013 u8 xec = XEC(m->status, 0x1f);
2014 u16 ec = EC(m->status);
33ca0643
BP
2015 u64 sys_addr;
2016 struct err_info err;
d27bf6fa 2017
66fed2d4 2018 /* Bail out early if this was an 'observed' error */
5980bb9c 2019 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2020 return;
d27bf6fa 2021
ecaf5606
BP
2022 /* Do only ECC errors */
2023 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2024 return;
d27bf6fa 2025
33ca0643
BP
2026 memset(&err, 0, sizeof(err));
2027
a4b4bedc 2028 sys_addr = get_error_address(pvt, m);
33ca0643 2029
ecaf5606 2030 if (ecc_type == 2)
33ca0643
BP
2031 err.syndrome = extract_syndrome(m->status);
2032
2033 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2034
2035 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2036}
2037
b0b07a2b 2038void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2039{
b0b07a2b 2040 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 2041}
d27bf6fa 2042
0ec449ee 2043/*
8d5b5d9c 2044 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2045 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2046 */
360b7f3c 2047static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2048{
0ec449ee 2049 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2050 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2051 if (!pvt->F1) {
24f9a7fe
BP
2052 amd64_err("error address map device not found: "
2053 "vendor %x device 0x%x (broken BIOS?)\n",
2054 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2055 return -ENODEV;
0ec449ee
DT
2056 }
2057
2058 /* Reserve the MISC Device */
8d5b5d9c
BP
2059 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2060 if (!pvt->F3) {
2061 pci_dev_put(pvt->F1);
2062 pvt->F1 = NULL;
0ec449ee 2063
24f9a7fe
BP
2064 amd64_err("error F3 device not found: "
2065 "vendor %x device 0x%x (broken BIOS?)\n",
2066 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2067
bbd0c1f6 2068 return -ENODEV;
0ec449ee 2069 }
956b9ba1
JP
2070 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2071 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2072 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2073
2074 return 0;
2075}
2076
360b7f3c 2077static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2078{
8d5b5d9c
BP
2079 pci_dev_put(pvt->F1);
2080 pci_dev_put(pvt->F3);
0ec449ee
DT
2081}
2082
2083/*
2084 * Retrieve the hardware registers of the memory controller (this includes the
2085 * 'Address Map' and 'Misc' device regs)
2086 */
360b7f3c 2087static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2088{
a4b4bedc 2089 unsigned range;
0ec449ee 2090 u64 msr_val;
ad6a32e9 2091 u32 tmp;
0ec449ee
DT
2092
2093 /*
2094 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2095 * those are Read-As-Zero
2096 */
e97f8bb8 2097 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2098 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2099
2100 /* check first whether TOP_MEM2 is enabled */
2101 rdmsrl(MSR_K8_SYSCFG, msr_val);
2102 if (msr_val & (1U << 21)) {
e97f8bb8 2103 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2104 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2105 } else
956b9ba1 2106 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2107
5980bb9c 2108 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2109
5a5d2371 2110 read_dram_ctl_register(pvt);
0ec449ee 2111
7f19bf75
BP
2112 for (range = 0; range < DRAM_RANGES; range++) {
2113 u8 rw;
0ec449ee 2114
7f19bf75
BP
2115 /* read settings for this DRAM range */
2116 read_dram_base_limit_regs(pvt, range);
2117
2118 rw = dram_rw(pvt, range);
2119 if (!rw)
2120 continue;
2121
956b9ba1
JP
2122 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2123 range,
2124 get_dram_base(pvt, range),
2125 get_dram_limit(pvt, range));
7f19bf75 2126
956b9ba1
JP
2127 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2128 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2129 (rw & 0x1) ? "R" : "-",
2130 (rw & 0x2) ? "W" : "-",
2131 dram_intlv_sel(pvt, range),
2132 dram_dst_node(pvt, range));
0ec449ee
DT
2133 }
2134
b2b0c605 2135 read_dct_base_mask(pvt);
0ec449ee 2136
bc21fa57 2137 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2138 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2139
8d5b5d9c 2140 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2141
cb328507
BP
2142 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2143 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2144
78da121e 2145 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2146 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2147 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2148 }
ad6a32e9 2149
a3b7db09
BP
2150 pvt->ecc_sym_sz = 4;
2151
a4b4bedc 2152 if (pvt->fam >= 0x10) {
b2b0c605 2153 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
a4b4bedc 2154 if (pvt->fam != 0x16)
94c1acf2
AG
2155 /* F16h has only DCT0 */
2156 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2157
a3b7db09 2158 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2159 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2160 pvt->ecc_sym_sz = 8;
2161 }
b2b0c605 2162 dump_misc_regs(pvt);
0ec449ee
DT
2163}
2164
2165/*
2166 * NOTE: CPU Revision Dependent code
2167 *
2168 * Input:
11c75ead 2169 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2170 * k8 private pointer to -->
2171 * DRAM Bank Address mapping register
2172 * node_id
2173 * DCL register where dual_channel_active is
2174 *
2175 * The DBAM register consists of 4 sets of 4 bits each definitions:
2176 *
2177 * Bits: CSROWs
2178 * 0-3 CSROWs 0 and 1
2179 * 4-7 CSROWs 2 and 3
2180 * 8-11 CSROWs 4 and 5
2181 * 12-15 CSROWs 6 and 7
2182 *
2183 * Values range from: 0 to 15
2184 * The meaning of the values depends on CPU revision and dual-channel state,
2185 * see relevant BKDG more info.
2186 *
2187 * The memory controller provides for total of only 8 CSROWs in its current
2188 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2189 * single channel or two (2) DIMMs in dual channel mode.
2190 *
2191 * The following code logic collapses the various tables for CSROW based on CPU
2192 * revision.
2193 *
2194 * Returns:
2195 * The number of PAGE_SIZE pages on the specified CSROW number it
2196 * encompasses
2197 *
2198 */
41d8bfab 2199static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2200{
1433eb99 2201 u32 cs_mode, nr_pages;
f92cae45 2202 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2203
10de6497 2204
0ec449ee
DT
2205 /*
2206 * The math on this doesn't look right on the surface because x/2*4 can
2207 * be simplified to x*2 but this expression makes use of the fact that
2208 * it is integral math where 1/2=0. This intermediate value becomes the
2209 * number of bits to shift the DBAM register to extract the proper CSROW
2210 * field.
2211 */
0a5dfc31 2212 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2213
41d8bfab 2214 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2215
10de6497
BP
2216 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2217 csrow_nr, dct, cs_mode);
2218 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2219
2220 return nr_pages;
2221}
2222
2223/*
2224 * Initialize the array of csrow attribute instances, based on the values
2225 * from pci config hardware registers.
2226 */
360b7f3c 2227static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2228{
10de6497 2229 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2230 struct csrow_info *csrow;
de3910eb 2231 struct dimm_info *dimm;
084a4fcc 2232 enum edac_type edac_mode;
10de6497
BP
2233 enum mem_type mtype;
2234 int i, j, empty = 1;
a895bf8b 2235 int nr_pages = 0;
10de6497 2236 u32 val;
0ec449ee 2237
a97fa68e 2238 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2239
2299ef71 2240 pvt->nbcfg = val;
0ec449ee 2241
956b9ba1
JP
2242 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2243 pvt->mc_node_id, val,
2244 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2245
10de6497
BP
2246 /*
2247 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2248 */
11c75ead 2249 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2250 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2251 bool row_dct1 = false;
0ec449ee 2252
a4b4bedc 2253 if (pvt->fam != 0xf)
10de6497
BP
2254 row_dct1 = !!csrow_enabled(i, 1, pvt);
2255
2256 if (!row_dct0 && !row_dct1)
0ec449ee 2257 continue;
0ec449ee 2258
10de6497 2259 csrow = mci->csrows[i];
0ec449ee 2260 empty = 0;
10de6497
BP
2261
2262 edac_dbg(1, "MC node: %d, csrow: %d\n",
2263 pvt->mc_node_id, i);
2264
1eef1282 2265 if (row_dct0) {
a895bf8b 2266 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2267 csrow->channels[0]->dimm->nr_pages = nr_pages;
2268 }
11c75ead 2269
10de6497 2270 /* K8 has only one DCT */
a4b4bedc 2271 if (pvt->fam != 0xf && row_dct1) {
1eef1282
MCC
2272 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2273
2274 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2275 nr_pages += row_dct1_pages;
2276 }
0ec449ee 2277
084a4fcc 2278 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2279
10de6497 2280 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2281
2282 /*
2283 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2284 */
a97fa68e 2285 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2286 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2287 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2288 else
084a4fcc
MCC
2289 edac_mode = EDAC_NONE;
2290
2291 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2292 dimm = csrow->channels[j]->dimm;
2293 dimm->mtype = mtype;
2294 dimm->edac_mode = edac_mode;
084a4fcc 2295 }
0ec449ee
DT
2296 }
2297
2298 return empty;
2299}
d27bf6fa 2300
f6d6ae96 2301/* get all cores on this DCT */
8b84c8df 2302static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2303{
2304 int cpu;
2305
2306 for_each_online_cpu(cpu)
2307 if (amd_get_nb_id(cpu) == nid)
2308 cpumask_set_cpu(cpu, mask);
2309}
2310
2311/* check MCG_CTL on all the cpus on this node */
c7e5301a 2312static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2313{
2314 cpumask_var_t mask;
50542251 2315 int cpu, nbe;
f6d6ae96
BP
2316 bool ret = false;
2317
2318 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2319 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2320 return false;
2321 }
2322
2323 get_cpus_on_this_dct_cpumask(mask, nid);
2324
f6d6ae96
BP
2325 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2326
2327 for_each_cpu(cpu, mask) {
50542251 2328 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2329 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2330
956b9ba1
JP
2331 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2332 cpu, reg->q,
2333 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2334
2335 if (!nbe)
2336 goto out;
f6d6ae96
BP
2337 }
2338 ret = true;
2339
2340out:
f6d6ae96
BP
2341 free_cpumask_var(mask);
2342 return ret;
2343}
2344
c7e5301a 2345static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2346{
2347 cpumask_var_t cmask;
50542251 2348 int cpu;
f6d6ae96
BP
2349
2350 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2351 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2352 return false;
2353 }
2354
ae7bb7c6 2355 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2356
f6d6ae96
BP
2357 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2358
2359 for_each_cpu(cpu, cmask) {
2360
50542251
BP
2361 struct msr *reg = per_cpu_ptr(msrs, cpu);
2362
f6d6ae96 2363 if (on) {
5980bb9c 2364 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2365 s->flags.nb_mce_enable = 1;
f6d6ae96 2366
5980bb9c 2367 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2368 } else {
2369 /*
d95cf4de 2370 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2371 */
ae7bb7c6 2372 if (!s->flags.nb_mce_enable)
5980bb9c 2373 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2374 }
f6d6ae96
BP
2375 }
2376 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2377
f6d6ae96
BP
2378 free_cpumask_var(cmask);
2379
2380 return 0;
2381}
2382
c7e5301a 2383static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2384 struct pci_dev *F3)
f9431992 2385{
2299ef71 2386 bool ret = true;
c9f4f26e 2387 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2388
2299ef71
BP
2389 if (toggle_ecc_err_reporting(s, nid, ON)) {
2390 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2391 return false;
2392 }
2393
c9f4f26e 2394 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2395
ae7bb7c6
BP
2396 s->old_nbctl = value & mask;
2397 s->nbctl_valid = true;
f9431992
DT
2398
2399 value |= mask;
c9f4f26e 2400 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2401
a97fa68e 2402 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2403
956b9ba1
JP
2404 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2405 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2406
a97fa68e 2407 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2408 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2409
ae7bb7c6 2410 s->flags.nb_ecc_prev = 0;
d95cf4de 2411
f9431992 2412 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2413 value |= NBCFG_ECC_ENABLE;
2414 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2415
a97fa68e 2416 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2417
a97fa68e 2418 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2419 amd64_warn("Hardware rejected DRAM ECC enable,"
2420 "check memory DIMM configuration.\n");
2299ef71 2421 ret = false;
f9431992 2422 } else {
24f9a7fe 2423 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2424 }
d95cf4de 2425 } else {
ae7bb7c6 2426 s->flags.nb_ecc_prev = 1;
f9431992 2427 }
d95cf4de 2428
956b9ba1
JP
2429 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2430 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2431
2299ef71 2432 return ret;
f9431992
DT
2433}
2434
c7e5301a 2435static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2436 struct pci_dev *F3)
f9431992 2437{
c9f4f26e
BP
2438 u32 value, mask = 0x3; /* UECC/CECC enable */
2439
f9431992 2440
ae7bb7c6 2441 if (!s->nbctl_valid)
f9431992
DT
2442 return;
2443
c9f4f26e 2444 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2445 value &= ~mask;
ae7bb7c6 2446 value |= s->old_nbctl;
f9431992 2447
c9f4f26e 2448 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2449
ae7bb7c6
BP
2450 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2451 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2452 amd64_read_pci_cfg(F3, NBCFG, &value);
2453 value &= ~NBCFG_ECC_ENABLE;
2454 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2455 }
2456
2457 /* restore the NB Enable MCGCTL bit */
2299ef71 2458 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2459 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2460}
2461
2462/*
2299ef71
BP
2463 * EDAC requires that the BIOS have ECC enabled before
2464 * taking over the processing of ECC errors. A command line
2465 * option allows to force-enable hardware ECC later in
2466 * enable_ecc_error_reporting().
f9431992 2467 */
cab4d277
BP
2468static const char *ecc_msg =
2469 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2470 " Either enable ECC checking or force module loading by setting "
2471 "'ecc_enable_override'.\n"
2472 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2473
c7e5301a 2474static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2475{
2476 u32 value;
2299ef71 2477 u8 ecc_en = 0;
06724535 2478 bool nb_mce_en = false;
f9431992 2479
a97fa68e 2480 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2481
a97fa68e 2482 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2483 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2484
2299ef71 2485 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2486 if (!nb_mce_en)
2299ef71
BP
2487 amd64_notice("NB MCE bank disabled, set MSR "
2488 "0x%08x[4] on node %d to enable.\n",
2489 MSR_IA32_MCG_CTL, nid);
f9431992 2490
2299ef71
BP
2491 if (!ecc_en || !nb_mce_en) {
2492 amd64_notice("%s", ecc_msg);
2493 return false;
2494 }
2495 return true;
f9431992
DT
2496}
2497
c5608759 2498static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2499{
a4b4bedc 2500 struct amd64_pvt *pvt = mci->pvt_info;
c5608759 2501 int rc;
7d6034d3 2502
c5608759
MCC
2503 rc = amd64_create_sysfs_dbg_files(mci);
2504 if (rc < 0)
2505 return rc;
7d6034d3 2506
a4b4bedc 2507 if (pvt->fam >= 0x10) {
c5608759
MCC
2508 rc = amd64_create_sysfs_inject_files(mci);
2509 if (rc < 0)
2510 return rc;
2511 }
2512
2513 return 0;
2514}
7d6034d3 2515
c5608759
MCC
2516static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2517{
a4b4bedc
BP
2518 struct amd64_pvt *pvt = mci->pvt_info;
2519
c5608759 2520 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2521
a4b4bedc 2522 if (pvt->fam >= 0x10)
c5608759 2523 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2524}
2525
df71a053
BP
2526static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2527 struct amd64_family_type *fam)
7d6034d3
DT
2528{
2529 struct amd64_pvt *pvt = mci->pvt_info;
2530
2531 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2532 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2533
5980bb9c 2534 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2535 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2536
5980bb9c 2537 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2538 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2539
2540 mci->edac_cap = amd64_determine_edac_cap(pvt);
2541 mci->mod_name = EDAC_MOD_STR;
2542 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2543 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2544 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2545 mci->ctl_page_to_phys = NULL;
2546
7d6034d3
DT
2547 /* memory scrubber interface */
2548 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2549 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2550}
2551
0092b20d
BP
2552/*
2553 * returns a pointer to the family descriptor on success, NULL otherwise.
2554 */
2555static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2556{
0092b20d
BP
2557 struct amd64_family_type *fam_type = NULL;
2558
18b94f66 2559 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2560 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2561 pvt->model = boot_cpu_data.x86_model;
2562 pvt->fam = boot_cpu_data.x86;
2563
2564 switch (pvt->fam) {
395ae783 2565 case 0xf:
0092b20d 2566 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2567 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2568 break;
df71a053 2569
395ae783 2570 case 0x10:
0092b20d 2571 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2572 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2573 break;
2574
2575 case 0x15:
18b94f66
AG
2576 if (pvt->model == 0x30) {
2577 fam_type = &amd64_family_types[F15_M30H_CPUS];
2578 pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops;
2579 break;
2580 }
2581
df71a053
BP
2582 fam_type = &amd64_family_types[F15_CPUS];
2583 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2584 break;
2585
94c1acf2
AG
2586 case 0x16:
2587 fam_type = &amd64_family_types[F16_CPUS];
2588 pvt->ops = &amd64_family_types[F16_CPUS].ops;
2589 break;
2590
395ae783 2591 default:
24f9a7fe 2592 amd64_err("Unsupported family!\n");
0092b20d 2593 return NULL;
395ae783 2594 }
0092b20d 2595
df71a053 2596 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2597 (pvt->fam == 0xf ?
24f9a7fe
BP
2598 (pvt->ext_model >= K8_REV_F ? "revF or later "
2599 : "revE or earlier ")
2600 : ""), pvt->mc_node_id);
0092b20d 2601 return fam_type;
395ae783
BP
2602}
2603
2299ef71 2604static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2605{
2606 struct amd64_pvt *pvt = NULL;
0092b20d 2607 struct amd64_family_type *fam_type = NULL;
360b7f3c 2608 struct mem_ctl_info *mci = NULL;
ab5a503c 2609 struct edac_mc_layer layers[2];
7d6034d3 2610 int err = 0, ret;
772c3ff3 2611 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2612
2613 ret = -ENOMEM;
2614 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2615 if (!pvt)
360b7f3c 2616 goto err_ret;
7d6034d3 2617
360b7f3c 2618 pvt->mc_node_id = nid;
8d5b5d9c 2619 pvt->F2 = F2;
7d6034d3 2620
395ae783 2621 ret = -EINVAL;
0092b20d
BP
2622 fam_type = amd64_per_family_init(pvt);
2623 if (!fam_type)
395ae783
BP
2624 goto err_free;
2625
7d6034d3 2626 ret = -ENODEV;
360b7f3c 2627 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2628 if (err)
2629 goto err_free;
2630
360b7f3c 2631 read_mc_regs(pvt);
7d6034d3 2632
7d6034d3
DT
2633 /*
2634 * We need to determine how many memory channels there are. Then use
2635 * that information for calculating the size of the dynamic instance
360b7f3c 2636 * tables in the 'mci' structure.
7d6034d3 2637 */
360b7f3c 2638 ret = -EINVAL;
7d6034d3
DT
2639 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2640 if (pvt->channel_count < 0)
360b7f3c 2641 goto err_siblings;
7d6034d3
DT
2642
2643 ret = -ENOMEM;
ab5a503c
MCC
2644 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2645 layers[0].size = pvt->csels[0].b_cnt;
2646 layers[0].is_virt_csrow = true;
2647 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2648
2649 /*
2650 * Always allocate two channels since we can have setups with DIMMs on
2651 * only one channel. Also, this simplifies handling later for the price
2652 * of a couple of KBs tops.
2653 */
2654 layers[1].size = 2;
ab5a503c 2655 layers[1].is_virt_csrow = false;
f0a56c48 2656
ca0907b9 2657 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2658 if (!mci)
360b7f3c 2659 goto err_siblings;
7d6034d3
DT
2660
2661 mci->pvt_info = pvt;
fd687502 2662 mci->pdev = &pvt->F2->dev;
7d6034d3 2663
df71a053 2664 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2665
2666 if (init_csrows(mci))
7d6034d3
DT
2667 mci->edac_cap = EDAC_FLAG_NONE;
2668
7d6034d3
DT
2669 ret = -ENODEV;
2670 if (edac_mc_add_mc(mci)) {
956b9ba1 2671 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2672 goto err_add_mc;
2673 }
c5608759 2674 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2675 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2676 goto err_add_sysfs;
2677 }
7d6034d3 2678
549d042d
BP
2679 /* register stuff with EDAC MCE */
2680 if (report_gart_errors)
2681 amd_report_gart_errors(true);
2682
2683 amd_register_ecc_decoder(amd64_decode_bus_error);
2684
360b7f3c
BP
2685 mcis[nid] = mci;
2686
2687 atomic_inc(&drv_instances);
2688
7d6034d3
DT
2689 return 0;
2690
c5608759
MCC
2691err_add_sysfs:
2692 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2693err_add_mc:
2694 edac_mc_free(mci);
2695
360b7f3c
BP
2696err_siblings:
2697 free_mc_sibling_devs(pvt);
7d6034d3 2698
360b7f3c
BP
2699err_free:
2700 kfree(pvt);
7d6034d3 2701
360b7f3c 2702err_ret:
7d6034d3
DT
2703 return ret;
2704}
2705
9b3c6e85
GKH
2706static int amd64_probe_one_instance(struct pci_dev *pdev,
2707 const struct pci_device_id *mc_type)
7d6034d3 2708{
772c3ff3 2709 u16 nid = amd_get_node_id(pdev);
2299ef71 2710 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2711 struct ecc_settings *s;
2299ef71 2712 int ret = 0;
7d6034d3 2713
7d6034d3 2714 ret = pci_enable_device(pdev);
b8cfa02f 2715 if (ret < 0) {
956b9ba1 2716 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2717 return -EIO;
2718 }
7d6034d3 2719
ae7bb7c6
BP
2720 ret = -ENOMEM;
2721 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2722 if (!s)
2299ef71 2723 goto err_out;
ae7bb7c6
BP
2724
2725 ecc_stngs[nid] = s;
2726
2299ef71
BP
2727 if (!ecc_enabled(F3, nid)) {
2728 ret = -ENODEV;
2729
2730 if (!ecc_enable_override)
2731 goto err_enable;
2732
2733 amd64_warn("Forcing ECC on!\n");
2734
2735 if (!enable_ecc_error_reporting(s, nid, F3))
2736 goto err_enable;
2737 }
2738
2739 ret = amd64_init_one_instance(pdev);
360b7f3c 2740 if (ret < 0) {
ae7bb7c6 2741 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2742 restore_ecc_error_reporting(s, nid, F3);
2743 }
7d6034d3
DT
2744
2745 return ret;
2299ef71
BP
2746
2747err_enable:
2748 kfree(s);
2749 ecc_stngs[nid] = NULL;
2750
2751err_out:
2752 return ret;
7d6034d3
DT
2753}
2754
9b3c6e85 2755static void amd64_remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2756{
2757 struct mem_ctl_info *mci;
2758 struct amd64_pvt *pvt;
772c3ff3 2759 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2760 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2761 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2762
c5608759 2763 mci = find_mci_by_dev(&pdev->dev);
a4b4bedc
BP
2764 WARN_ON(!mci);
2765
c5608759 2766 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2767 /* Remove from EDAC CORE tracking list */
2768 mci = edac_mc_del_mc(&pdev->dev);
2769 if (!mci)
2770 return;
2771
2772 pvt = mci->pvt_info;
2773
360b7f3c 2774 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2775
360b7f3c 2776 free_mc_sibling_devs(pvt);
7d6034d3 2777
549d042d
BP
2778 /* unregister from EDAC MCE */
2779 amd_report_gart_errors(false);
2780 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2781
360b7f3c
BP
2782 kfree(ecc_stngs[nid]);
2783 ecc_stngs[nid] = NULL;
ae7bb7c6 2784
7d6034d3 2785 /* Free the EDAC CORE resources */
8f68ed97 2786 mci->pvt_info = NULL;
360b7f3c 2787 mcis[nid] = NULL;
8f68ed97
BP
2788
2789 kfree(pvt);
7d6034d3
DT
2790 edac_mc_free(mci);
2791}
2792
2793/*
2794 * This table is part of the interface for loading drivers for PCI devices. The
2795 * PCI core identifies what devices are on a system during boot, and then
2796 * inquiry this table to see if this driver is for a given device found.
2797 */
36c46f31 2798static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2799 {
2800 .vendor = PCI_VENDOR_ID_AMD,
2801 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2802 .subvendor = PCI_ANY_ID,
2803 .subdevice = PCI_ANY_ID,
2804 .class = 0,
2805 .class_mask = 0,
7d6034d3
DT
2806 },
2807 {
2808 .vendor = PCI_VENDOR_ID_AMD,
2809 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2810 .subvendor = PCI_ANY_ID,
2811 .subdevice = PCI_ANY_ID,
2812 .class = 0,
2813 .class_mask = 0,
7d6034d3 2814 },
df71a053
BP
2815 {
2816 .vendor = PCI_VENDOR_ID_AMD,
2817 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2818 .subvendor = PCI_ANY_ID,
2819 .subdevice = PCI_ANY_ID,
2820 .class = 0,
2821 .class_mask = 0,
2822 },
18b94f66
AG
2823 {
2824 .vendor = PCI_VENDOR_ID_AMD,
2825 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2826 .subvendor = PCI_ANY_ID,
2827 .subdevice = PCI_ANY_ID,
2828 .class = 0,
2829 .class_mask = 0,
2830 },
94c1acf2
AG
2831 {
2832 .vendor = PCI_VENDOR_ID_AMD,
2833 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2834 .subvendor = PCI_ANY_ID,
2835 .subdevice = PCI_ANY_ID,
2836 .class = 0,
2837 .class_mask = 0,
2838 },
df71a053 2839
7d6034d3
DT
2840 {0, }
2841};
2842MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2843
2844static struct pci_driver amd64_pci_driver = {
2845 .name = EDAC_MOD_STR,
2299ef71 2846 .probe = amd64_probe_one_instance,
9b3c6e85 2847 .remove = amd64_remove_one_instance,
7d6034d3
DT
2848 .id_table = amd64_pci_table,
2849};
2850
360b7f3c 2851static void setup_pci_device(void)
7d6034d3
DT
2852{
2853 struct mem_ctl_info *mci;
2854 struct amd64_pvt *pvt;
2855
2856 if (amd64_ctl_pci)
2857 return;
2858
cc4d8860 2859 mci = mcis[0];
7d6034d3
DT
2860 if (mci) {
2861
2862 pvt = mci->pvt_info;
2863 amd64_ctl_pci =
8d5b5d9c 2864 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2865
2866 if (!amd64_ctl_pci) {
2867 pr_warning("%s(): Unable to create PCI control\n",
2868 __func__);
2869
2870 pr_warning("%s(): PCI error report via EDAC not set\n",
2871 __func__);
2872 }
2873 }
2874}
2875
2876static int __init amd64_edac_init(void)
2877{
360b7f3c 2878 int err = -ENODEV;
7d6034d3 2879
df71a053 2880 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2881
2882 opstate_init();
2883
9653a5c7 2884 if (amd_cache_northbridges() < 0)
56b34b91 2885 goto err_ret;
7d6034d3 2886
cc4d8860 2887 err = -ENOMEM;
ae7bb7c6
BP
2888 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2889 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2890 if (!(mcis && ecc_stngs))
a9f0fbe2 2891 goto err_free;
cc4d8860 2892
50542251 2893 msrs = msrs_alloc();
56b34b91 2894 if (!msrs)
360b7f3c 2895 goto err_free;
50542251 2896
7d6034d3
DT
2897 err = pci_register_driver(&amd64_pci_driver);
2898 if (err)
56b34b91 2899 goto err_pci;
7d6034d3 2900
56b34b91 2901 err = -ENODEV;
360b7f3c
BP
2902 if (!atomic_read(&drv_instances))
2903 goto err_no_instances;
7d6034d3 2904
360b7f3c
BP
2905 setup_pci_device();
2906 return 0;
7d6034d3 2907
360b7f3c 2908err_no_instances:
7d6034d3 2909 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2910
56b34b91
BP
2911err_pci:
2912 msrs_free(msrs);
2913 msrs = NULL;
cc4d8860 2914
360b7f3c
BP
2915err_free:
2916 kfree(mcis);
2917 mcis = NULL;
2918
2919 kfree(ecc_stngs);
2920 ecc_stngs = NULL;
2921
56b34b91 2922err_ret:
7d6034d3
DT
2923 return err;
2924}
2925
2926static void __exit amd64_edac_exit(void)
2927{
2928 if (amd64_ctl_pci)
2929 edac_pci_release_generic_ctl(amd64_ctl_pci);
2930
2931 pci_unregister_driver(&amd64_pci_driver);
50542251 2932
ae7bb7c6
BP
2933 kfree(ecc_stngs);
2934 ecc_stngs = NULL;
2935
cc4d8860
BP
2936 kfree(mcis);
2937 mcis = NULL;
2938
50542251
BP
2939 msrs_free(msrs);
2940 msrs = NULL;
7d6034d3
DT
2941}
2942
2943module_init(amd64_edac_init);
2944module_exit(amd64_edac_exit);
2945
2946MODULE_LICENSE("GPL");
2947MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2948 "Dave Peterson, Thayne Harbaugh");
2949MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2950 EDAC_AMD64_VERSION);
2951
2952module_param(edac_op_state, int, 0444);
2953MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");