]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/amd64_edac.c
Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
94c1acf2 101 * F16h: has only 1 DCT
b2b0c605
BP
102 */
103static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105{
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110}
111
112static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114{
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116}
117
73ba8593
BP
118/*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122{
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
18b94f66 126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
73ba8593
BP
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129}
130
b2b0c605
BP
131static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133{
b2b0c605
BP
134 u8 dct = 0;
135
18b94f66 136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
b2b0c605 137 if (addr >= 0x140 && addr <= 0x1a0) {
18b94f66 138 dct = (pvt->model >= 0x30) ? 3 : 1;
b2b0c605
BP
139 addr -= 0x100;
140 }
141
73ba8593 142 f15h_select_dct(pvt, dct);
b2b0c605
BP
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145}
146
2bc65418
DT
147/*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161/*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
d1ea71cd 165static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
166{
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
2bc65418 178 */
168bfeef 179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
395ae783 184 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
2bc65418
DT
189 }
190
191 scrubval = scrubrates[i].scrubval;
2bc65418 192
5980bb9c 193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 194
39094443
BP
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
2bc65418
DT
198 return 0;
199}
200
d1ea71cd 201static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
202{
203 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 204 u32 min_scrubrate = 0x5;
2bc65418 205
a4b4bedc 206 if (pvt->fam == 0xf)
87b3e0e6
BP
207 min_scrubrate = 0x0;
208
3f0aba4f
BP
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
211 f15h_select_dct(pvt, 0);
212
d1ea71cd 213 return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
214}
215
d1ea71cd 216static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
217{
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
39094443 220 int i, retval = -EINVAL;
2bc65418 221
3f0aba4f
BP
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
73ba8593
BP
224 f15h_select_dct(pvt, 0);
225
5980bb9c 226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
227
228 scrubval = scrubval & 0x001F;
229
926311fd 230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 231 if (scrubrates[i].scrubval == scrubval) {
39094443 232 retval = scrubrates[i].bandwidth;
2bc65418
DT
233 break;
234 }
235 }
39094443 236 return retval;
2bc65418
DT
237}
238
6775763a 239/*
7f19bf75
BP
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
6775763a 242 */
d1ea71cd 243static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 244{
7f19bf75 245 u64 addr;
6775763a
DT
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
7f19bf75
BP
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
257}
258
259/*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267{
268 struct amd64_pvt *pvt;
c7e5301a 269 u8 node_id;
6775763a
DT
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
7f19bf75 283 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
284
285 if (intlv_en == 0) {
7f19bf75 286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 287 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 288 goto found;
6775763a 289 }
8edc5445 290 goto err_no_match;
6775763a
DT
291 }
292
72f158fe
BP
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
24f9a7fe 296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
7f19bf75 303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
304 break; /* intlv_sel field matches */
305
7f19bf75 306 if (++node_id >= DRAM_RANGES)
6775763a
DT
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
d1ea71cd 311 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
6775763a
DT
315 return NULL;
316 }
317
318found:
b487c33e 319 return edac_mc_find((int)node_id);
6775763a
DT
320
321err_no_match:
956b9ba1
JP
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
6775763a
DT
324
325 return NULL;
326}
e2ce7255
DT
327
328/*
11c75ead
BP
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 331 */
11c75ead
BP
332static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
e2ce7255 334{
11c75ead
BP
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
e2ce7255 337
18b94f66 338 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
341 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
342 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 343 addr_shift = 4;
94c1acf2
AG
344
345 /*
18b94f66
AG
346 * F16h and F15h, models 30h and later need two addr_shift values:
347 * 8 for high and 6 for low (cf. F16h BKDG).
348 */
349 } else if (pvt->fam == 0x16 ||
350 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
351 csbase = pvt->csels[dct].csbases[csrow];
352 csmask = pvt->csels[dct].csmasks[csrow >> 1];
353
10ef6b0d
CG
354 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
355 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
356
357 *mask = ~0ULL;
358 /* poke holes for the csmask */
10ef6b0d
CG
359 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
360 (GENMASK_ULL(30, 19) << 8));
94c1acf2 361
10ef6b0d
CG
362 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
363 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
364
365 return;
11c75ead
BP
366 } else {
367 csbase = pvt->csels[dct].csbases[csrow];
368 csmask = pvt->csels[dct].csmasks[csrow >> 1];
369 addr_shift = 8;
e2ce7255 370
a4b4bedc 371 if (pvt->fam == 0x15)
10ef6b0d
CG
372 base_bits = mask_bits =
373 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 374 else
10ef6b0d
CG
375 base_bits = mask_bits =
376 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 377 }
e2ce7255 378
11c75ead 379 *base = (csbase & base_bits) << addr_shift;
e2ce7255 380
11c75ead
BP
381 *mask = ~0ULL;
382 /* poke holes for the csmask */
383 *mask &= ~(mask_bits << addr_shift);
384 /* OR them in */
385 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
386}
387
11c75ead
BP
388#define for_each_chip_select(i, dct, pvt) \
389 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
390
614ec9d8
BP
391#define chip_select_base(i, dct, pvt) \
392 pvt->csels[dct].csbases[i]
393
11c75ead
BP
394#define for_each_chip_select_mask(i, dct, pvt) \
395 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
396
e2ce7255
DT
397/*
398 * @input_addr is an InputAddr associated with the node given by mci. Return the
399 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
400 */
401static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
402{
403 struct amd64_pvt *pvt;
404 int csrow;
405 u64 base, mask;
406
407 pvt = mci->pvt_info;
408
11c75ead
BP
409 for_each_chip_select(csrow, 0, pvt) {
410 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
411 continue;
412
11c75ead
BP
413 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
414
415 mask = ~mask;
e2ce7255
DT
416
417 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
418 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
419 (unsigned long)input_addr, csrow,
420 pvt->mc_node_id);
e2ce7255
DT
421
422 return csrow;
423 }
424 }
956b9ba1
JP
425 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
426 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
427
428 return -1;
429}
430
e2ce7255
DT
431/*
432 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
433 * for the node represented by mci. Info is passed back in *hole_base,
434 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
435 * info is invalid. Info may be invalid for either of the following reasons:
436 *
437 * - The revision of the node is not E or greater. In this case, the DRAM Hole
438 * Address Register does not exist.
439 *
440 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
441 * indicating that its contents are not valid.
442 *
443 * The values passed back in *hole_base, *hole_offset, and *hole_size are
444 * complete 32-bit values despite the fact that the bitfields in the DHAR
445 * only represent bits 31-24 of the base and offset values.
446 */
447int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
448 u64 *hole_offset, u64 *hole_size)
449{
450 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
451
452 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 453 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
454 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
455 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
456 return 1;
457 }
458
bc21fa57 459 /* valid for Fam10h and above */
a4b4bedc 460 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 461 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
462 return 1;
463 }
464
c8e518d5 465 if (!dhar_valid(pvt)) {
956b9ba1
JP
466 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
467 pvt->mc_node_id);
e2ce7255
DT
468 return 1;
469 }
470
471 /* This node has Memory Hoisting */
472
473 /* +------------------+--------------------+--------------------+-----
474 * | memory | DRAM hole | relocated |
475 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
476 * | | | DRAM hole |
477 * | | | [0x100000000, |
478 * | | | (0x100000000+ |
479 * | | | (0xffffffff-x))] |
480 * +------------------+--------------------+--------------------+-----
481 *
482 * Above is a diagram of physical memory showing the DRAM hole and the
483 * relocated addresses from the DRAM hole. As shown, the DRAM hole
484 * starts at address x (the base address) and extends through address
485 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
486 * addresses in the hole so that they start at 0x100000000.
487 */
488
1f31677e
BP
489 *hole_base = dhar_base(pvt);
490 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 491
a4b4bedc
BP
492 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
493 : k8_dhar_offset(pvt);
e2ce7255 494
956b9ba1
JP
495 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
496 pvt->mc_node_id, (unsigned long)*hole_base,
497 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
498
499 return 0;
500}
501EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
502
93c2df58
DT
503/*
504 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
505 * assumed that sys_addr maps to the node given by mci.
506 *
507 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
508 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
509 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
510 * then it is also involved in translating a SysAddr to a DramAddr. Sections
511 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
512 * These parts of the documentation are unclear. I interpret them as follows:
513 *
514 * When node n receives a SysAddr, it processes the SysAddr as follows:
515 *
516 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
517 * Limit registers for node n. If the SysAddr is not within the range
518 * specified by the base and limit values, then node n ignores the Sysaddr
519 * (since it does not map to node n). Otherwise continue to step 2 below.
520 *
521 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
522 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
523 * the range of relocated addresses (starting at 0x100000000) from the DRAM
524 * hole. If not, skip to step 3 below. Else get the value of the
525 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
526 * offset defined by this value from the SysAddr.
527 *
528 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
529 * Base register for node n. To obtain the DramAddr, subtract the base
530 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
531 */
532static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
533{
7f19bf75 534 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 535 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 536 int ret;
93c2df58 537
7f19bf75 538 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
539
540 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
541 &hole_size);
542 if (!ret) {
1f31677e
BP
543 if ((sys_addr >= (1ULL << 32)) &&
544 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
545 /* use DHAR to translate SysAddr to DramAddr */
546 dram_addr = sys_addr - hole_offset;
547
956b9ba1
JP
548 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
549 (unsigned long)sys_addr,
550 (unsigned long)dram_addr);
93c2df58
DT
551
552 return dram_addr;
553 }
554 }
555
556 /*
557 * Translate the SysAddr to a DramAddr as shown near the start of
558 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
559 * only deals with 40-bit values. Therefore we discard bits 63-40 of
560 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
561 * discard are all 1s. Otherwise the bits we discard are all 0s. See
562 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
563 * Programmer's Manual Volume 1 Application Programming.
564 */
10ef6b0d 565 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 566
956b9ba1
JP
567 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
568 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
569 return dram_addr;
570}
571
572/*
573 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
574 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
575 * for node interleaving.
576 */
577static int num_node_interleave_bits(unsigned intlv_en)
578{
579 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
580 int n;
581
582 BUG_ON(intlv_en > 7);
583 n = intlv_shift_table[intlv_en];
584 return n;
585}
586
587/* Translate the DramAddr given by @dram_addr to an InputAddr. */
588static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
589{
590 struct amd64_pvt *pvt;
591 int intlv_shift;
592 u64 input_addr;
593
594 pvt = mci->pvt_info;
595
596 /*
597 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
598 * concerning translating a DramAddr to an InputAddr.
599 */
7f19bf75 600 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 601 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 602 (dram_addr & 0xfff);
93c2df58 603
956b9ba1
JP
604 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
605 intlv_shift, (unsigned long)dram_addr,
606 (unsigned long)input_addr);
93c2df58
DT
607
608 return input_addr;
609}
610
611/*
612 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
613 * assumed that @sys_addr maps to the node given by mci.
614 */
615static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
616{
617 u64 input_addr;
618
619 input_addr =
620 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
621
956b9ba1
JP
622 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
623 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
624
625 return input_addr;
626}
627
93c2df58
DT
628/* Map the Error address to a PAGE and PAGE OFFSET. */
629static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 630 struct err_info *err)
93c2df58 631{
33ca0643
BP
632 err->page = (u32) (error_address >> PAGE_SHIFT);
633 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
634}
635
636/*
637 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
638 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
639 * of a node that detected an ECC memory error. mci represents the node that
640 * the error address maps to (possibly different from the node that detected
641 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
642 * error.
643 */
644static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
645{
646 int csrow;
647
648 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
649
650 if (csrow == -1)
24f9a7fe
BP
651 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
652 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
653 return csrow;
654}
e2ce7255 655
bfc04aec 656static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 657
2da11654
DT
658/*
659 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
660 * are ECC capable.
661 */
d1ea71cd 662static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 663{
cb328507 664 u8 bit;
1f6189ed 665 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 666
a4b4bedc 667 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
668 ? 19
669 : 17;
670
584fcff4 671 if (pvt->dclr0 & BIT(bit))
2da11654
DT
672 edac_cap = EDAC_FLAG_SECDED;
673
674 return edac_cap;
675}
676
d1ea71cd 677static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 678
d1ea71cd 679static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 680{
956b9ba1 681 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 682
956b9ba1
JP
683 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
684 (dclr & BIT(16)) ? "un" : "",
685 (dclr & BIT(19)) ? "yes" : "no");
68798e17 686
956b9ba1
JP
687 edac_dbg(1, " PAR/ERR parity: %s\n",
688 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 689
a4b4bedc 690 if (pvt->fam == 0x10)
956b9ba1
JP
691 edac_dbg(1, " DCT 128bit mode width: %s\n",
692 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 693
956b9ba1
JP
694 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
695 (dclr & BIT(12)) ? "yes" : "no",
696 (dclr & BIT(13)) ? "yes" : "no",
697 (dclr & BIT(14)) ? "yes" : "no",
698 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
699}
700
2da11654 701/* Display and decode various NB registers for debug purposes. */
b2b0c605 702static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 703{
956b9ba1 704 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 705
956b9ba1
JP
706 edac_dbg(1, " NB two channel DRAM capable: %s\n",
707 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 708
956b9ba1
JP
709 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
710 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
711 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 712
d1ea71cd 713 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 714
956b9ba1 715 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 716
956b9ba1
JP
717 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
718 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
719 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
720 : f10_dhar_offset(pvt));
2da11654 721
956b9ba1 722 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 723
d1ea71cd 724 debug_display_dimm_sizes(pvt, 0);
4d796364 725
8de1d91e 726 /* everything below this point is Fam10h and above */
a4b4bedc 727 if (pvt->fam == 0xf)
2da11654 728 return;
4d796364 729
d1ea71cd 730 debug_display_dimm_sizes(pvt, 1);
2da11654 731
a3b7db09 732 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 733
8de1d91e 734 /* Only if NOT ganged does dclr1 have valid info */
68798e17 735 if (!dct_ganging_enabled(pvt))
d1ea71cd 736 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
737}
738
94be4bff 739/*
18b94f66 740 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 741 */
11c75ead 742static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 743{
18b94f66 744 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
745 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
746 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
18b94f66
AG
747 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
748 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
749 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 750 } else {
11c75ead
BP
751 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
752 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
753 }
754}
755
756/*
11c75ead 757 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 758 */
b2b0c605 759static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 760{
11c75ead 761 int cs;
94be4bff 762
11c75ead 763 prep_chip_selects(pvt);
94be4bff 764
11c75ead 765 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
766 int reg0 = DCSB0 + (cs * 4);
767 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
768 u32 *base0 = &pvt->csels[0].csbases[cs];
769 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 770
11c75ead 771 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
772 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
773 cs, *base0, reg0);
94be4bff 774
a4b4bedc 775 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 776 continue;
b2b0c605 777
11c75ead 778 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
779 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
780 cs, *base1, reg1);
94be4bff
DT
781 }
782
11c75ead 783 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
784 int reg0 = DCSM0 + (cs * 4);
785 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
786 u32 *mask0 = &pvt->csels[0].csmasks[cs];
787 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 788
11c75ead 789 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
790 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
791 cs, *mask0, reg0);
94be4bff 792
a4b4bedc 793 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
11c75ead 794 continue;
b2b0c605 795
11c75ead 796 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
797 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
798 cs, *mask1, reg1);
94be4bff
DT
799 }
800}
801
d1ea71cd 802static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
803{
804 enum mem_type type;
805
cb328507 806 /* F15h supports only DDR3 */
a4b4bedc 807 if (pvt->fam >= 0x15)
cb328507 808 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
a4b4bedc 809 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
810 if (pvt->dchr0 & DDR3_MODE)
811 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
812 else
813 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 814 } else {
94be4bff
DT
815 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
816 }
817
24f9a7fe 818 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
819
820 return type;
821}
822
cb328507 823/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
824static int k8_early_channel_count(struct amd64_pvt *pvt)
825{
cb328507 826 int flag;
ddff876d 827
9f56da0e 828 if (pvt->ext_model >= K8_REV_F)
ddff876d 829 /* RevF (NPT) and later */
41d8bfab 830 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 831 else
ddff876d
DT
832 /* RevE and earlier */
833 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
834
835 /* not used */
836 pvt->dclr1 = 0;
837
838 return (flag) ? 2 : 1;
839}
840
70046624 841/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 842static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 843{
c1ae6830 844 u64 addr;
70046624
BP
845 u8 start_bit = 1;
846 u8 end_bit = 47;
847
a4b4bedc 848 if (pvt->fam == 0xf) {
70046624
BP
849 start_bit = 3;
850 end_bit = 39;
851 }
852
10ef6b0d 853 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
854
855 /*
856 * Erratum 637 workaround
857 */
a4b4bedc 858 if (pvt->fam == 0x15) {
c1ae6830
BP
859 struct amd64_pvt *pvt;
860 u64 cc6_base, tmp_addr;
861 u32 tmp;
8b84c8df
DB
862 u16 mce_nid;
863 u8 intlv_en;
c1ae6830 864
10ef6b0d 865 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
866 return addr;
867
868 mce_nid = amd_get_nb_id(m->extcpu);
869 pvt = mcis[mce_nid]->pvt_info;
870
871 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
872 intlv_en = tmp >> 21 & 0x7;
873
874 /* add [47:27] + 3 trailing bits */
10ef6b0d 875 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
876
877 /* reverse and add DramIntlvEn */
878 cc6_base |= intlv_en ^ 0x7;
879
880 /* pin at [47:24] */
881 cc6_base <<= 24;
882
883 if (!intlv_en)
10ef6b0d 884 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
885
886 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
887
888 /* faster log2 */
10ef6b0d 889 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
890
891 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 892 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
893
894 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 895 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
896
897 return cc6_base | tmp_addr;
898 }
899
900 return addr;
ddff876d
DT
901}
902
e2c0bffe
DB
903static struct pci_dev *pci_get_related_function(unsigned int vendor,
904 unsigned int device,
905 struct pci_dev *related)
906{
907 struct pci_dev *dev = NULL;
908
909 while ((dev = pci_get_device(vendor, device, dev))) {
910 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
911 (dev->bus->number == related->bus->number) &&
912 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
913 break;
914 }
915
916 return dev;
917}
918
7f19bf75 919static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 920{
e2c0bffe 921 struct amd_northbridge *nb;
18b94f66
AG
922 struct pci_dev *f1 = NULL;
923 unsigned int pci_func;
71d2a32e 924 int off = range << 3;
e2c0bffe 925 u32 llim;
ddff876d 926
7f19bf75
BP
927 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
928 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 929
18b94f66 930 if (pvt->fam == 0xf)
7f19bf75 931 return;
ddff876d 932
7f19bf75
BP
933 if (!dram_rw(pvt, range))
934 return;
ddff876d 935
7f19bf75
BP
936 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
937 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 938
e2c0bffe 939 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 940 if (pvt->fam != 0x15)
e2c0bffe 941 return;
f08e457c 942
e2c0bffe
DB
943 nb = node_to_amd_nb(dram_dst_node(pvt, range));
944 if (WARN_ON(!nb))
945 return;
f08e457c 946
18b94f66
AG
947 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
948 : PCI_DEVICE_ID_AMD_15H_NB_F1;
949
950 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
951 if (WARN_ON(!f1))
952 return;
f08e457c 953
e2c0bffe 954 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 955
10ef6b0d 956 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 957
e2c0bffe
DB
958 /* {[39:27],111b} */
959 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 960
10ef6b0d 961 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 962
e2c0bffe
DB
963 /* [47:40] */
964 pvt->ranges[range].lim.hi |= llim >> 13;
965
966 pci_dev_put(f1);
ddff876d
DT
967}
968
f192c7b1 969static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 970 struct err_info *err)
ddff876d 971{
f192c7b1 972 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 973
33ca0643 974 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
975
976 /*
977 * Find out which node the error address belongs to. This may be
978 * different from the node that detected the error.
979 */
33ca0643
BP
980 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
981 if (!err->src_mci) {
ab5a503c
MCC
982 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
983 (unsigned long)sys_addr);
33ca0643 984 err->err_code = ERR_NODE;
ab5a503c
MCC
985 return;
986 }
987
988 /* Now map the sys_addr to a CSROW */
33ca0643
BP
989 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
990 if (err->csrow < 0) {
991 err->err_code = ERR_CSROW;
ab5a503c
MCC
992 return;
993 }
994
ddff876d 995 /* CHIPKILL enabled */
f192c7b1 996 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
997 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
998 if (err->channel < 0) {
ddff876d
DT
999 /*
1000 * Syndrome didn't map, so we don't know which of the
1001 * 2 DIMMs is in error. So we need to ID 'both' of them
1002 * as suspect.
1003 */
33ca0643 1004 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1005 "possible error reporting race\n",
33ca0643
BP
1006 err->syndrome);
1007 err->err_code = ERR_CHANNEL;
ddff876d
DT
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
33ca0643 1019 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1020 }
ddff876d
DT
1021}
1022
41d8bfab 1023static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1024{
41d8bfab 1025 unsigned shift = 0;
ddff876d 1026
41d8bfab
BP
1027 if (i <= 2)
1028 shift = i;
1029 else if (!(i & 0x1))
1030 shift = i >> 1;
1433eb99 1031 else
41d8bfab 1032 shift = (i + 1) >> 1;
ddff876d 1033
41d8bfab
BP
1034 return 128 << (shift + !!dct_width);
1035}
1036
1037static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1038 unsigned cs_mode)
1039{
1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041
1042 if (pvt->ext_model >= K8_REV_F) {
1043 WARN_ON(cs_mode > 11);
1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 }
1046 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1047 unsigned diff;
41d8bfab
BP
1048 WARN_ON(cs_mode > 10);
1049
11b0a314
BP
1050 /*
1051 * the below calculation, besides trying to win an obfuscated C
1052 * contest, maps cs_mode values to DIMM chip select sizes. The
1053 * mappings are:
1054 *
1055 * cs_mode CS size (mb)
1056 * ======= ============
1057 * 0 32
1058 * 1 64
1059 * 2 128
1060 * 3 128
1061 * 4 256
1062 * 5 512
1063 * 6 256
1064 * 7 512
1065 * 8 1024
1066 * 9 1024
1067 * 10 2048
1068 *
1069 * Basically, it calculates a value with which to shift the
1070 * smallest CS size of 32MB.
1071 *
1072 * ddr[23]_cs_size have a similar purpose.
1073 */
1074 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1075
1076 return 32 << (cs_mode - diff);
41d8bfab
BP
1077 }
1078 else {
1079 WARN_ON(cs_mode > 6);
1080 return 32 << cs_mode;
1081 }
ddff876d
DT
1082}
1083
1afd3c98
DT
1084/*
1085 * Get the number of DCT channels in use.
1086 *
1087 * Return:
1088 * number of Memory Channels in operation
1089 * Pass back:
1090 * contents of the DCL0_LOW register
1091 */
7d20d14d 1092static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1093{
6ba5dcdc 1094 int i, j, channels = 0;
1afd3c98 1095
7d20d14d 1096 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1097 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1098 return 2;
1afd3c98
DT
1099
1100 /*
d16149e8
BP
1101 * Need to check if in unganged mode: In such, there are 2 channels,
1102 * but they are not in 128 bit mode and thus the above 'dclr0' status
1103 * bit will be OFF.
1afd3c98
DT
1104 *
1105 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1106 * their CSEnable bit on. If so, then SINGLE DIMM case.
1107 */
956b9ba1 1108 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1109
1afd3c98
DT
1110 /*
1111 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1112 * is more than just one DIMM present in unganged mode. Need to check
1113 * both controllers since DIMMs can be placed in either one.
1114 */
525a1b20
BP
1115 for (i = 0; i < 2; i++) {
1116 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1117
57a30854
WW
1118 for (j = 0; j < 4; j++) {
1119 if (DBAM_DIMM(j, dbam) > 0) {
1120 channels++;
1121 break;
1122 }
1123 }
1afd3c98
DT
1124 }
1125
d16149e8
BP
1126 if (channels > 2)
1127 channels = 2;
1128
24f9a7fe 1129 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1130
1131 return channels;
1afd3c98
DT
1132}
1133
41d8bfab 1134static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1135{
41d8bfab
BP
1136 unsigned shift = 0;
1137 int cs_size = 0;
1138
1139 if (i == 0 || i == 3 || i == 4)
1140 cs_size = -1;
1141 else if (i <= 2)
1142 shift = i;
1143 else if (i == 12)
1144 shift = 7;
1145 else if (!(i & 0x1))
1146 shift = i >> 1;
1147 else
1148 shift = (i + 1) >> 1;
1149
1150 if (cs_size != -1)
1151 cs_size = (128 * (1 << !!dct_width)) << shift;
1152
1153 return cs_size;
1154}
1155
1156static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1157 unsigned cs_mode)
1158{
1159 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1160
1161 WARN_ON(cs_mode > 11);
1433eb99
BP
1162
1163 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1164 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1165 else
41d8bfab
BP
1166 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1167}
1168
1169/*
1170 * F15h supports only 64bit DCT interfaces
1171 */
1172static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1173 unsigned cs_mode)
1174{
1175 WARN_ON(cs_mode > 12);
1433eb99 1176
41d8bfab 1177 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1178}
1179
94c1acf2 1180/*
18b94f66 1181 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1182 */
1183static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1184 unsigned cs_mode)
1185{
1186 WARN_ON(cs_mode > 12);
1187
1188 if (cs_mode == 6 || cs_mode == 8 ||
1189 cs_mode == 9 || cs_mode == 12)
1190 return -1;
1191 else
1192 return ddr3_cs_size(cs_mode, false);
1193}
1194
5a5d2371 1195static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1196{
6163b5d4 1197
a4b4bedc 1198 if (pvt->fam == 0xf)
5a5d2371
BP
1199 return;
1200
78da121e 1201 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1202 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1203 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1204
956b9ba1
JP
1205 edac_dbg(0, " DCTs operate in %s mode\n",
1206 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1207
1208 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1209 edac_dbg(0, " Address range split per DCT: %s\n",
1210 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1211
956b9ba1
JP
1212 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1213 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1214 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1215
956b9ba1
JP
1216 edac_dbg(0, " channel interleave: %s, "
1217 "interleave bits selector: 0x%x\n",
1218 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1219 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1220 }
1221
78da121e 1222 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1223}
1224
18b94f66
AG
1225/*
1226 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1227 * 2.10.12 Memory Interleaving Modes).
1228 */
1229static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1230 u8 intlv_en, int num_dcts_intlv,
1231 u32 dct_sel)
1232{
1233 u8 channel = 0;
1234 u8 select;
1235
1236 if (!(intlv_en))
1237 return (u8)(dct_sel);
1238
1239 if (num_dcts_intlv == 2) {
1240 select = (sys_addr >> 8) & 0x3;
1241 channel = select ? 0x3 : 0;
9d0e8d83
AG
1242 } else if (num_dcts_intlv == 4) {
1243 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1244 switch (intlv_addr) {
1245 case 0x4:
1246 channel = (sys_addr >> 8) & 0x3;
1247 break;
1248 case 0x5:
1249 channel = (sys_addr >> 9) & 0x3;
1250 break;
1251 }
1252 }
18b94f66
AG
1253 return channel;
1254}
1255
f71d0a05 1256/*
229a7a11 1257 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1258 * Interleaving Modes.
1259 */
b15f0fca 1260static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1261 bool hi_range_sel, u8 intlv_en)
6163b5d4 1262{
151fa71c 1263 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1264
1265 if (dct_ganging_enabled(pvt))
229a7a11 1266 return 0;
6163b5d4 1267
229a7a11
BP
1268 if (hi_range_sel)
1269 return dct_sel_high;
6163b5d4 1270
229a7a11
BP
1271 /*
1272 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1273 */
1274 if (dct_interleave_enabled(pvt)) {
1275 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1276
1277 /* return DCT select function: 0=DCT0, 1=DCT1 */
1278 if (!intlv_addr)
1279 return sys_addr >> 6 & 1;
1280
1281 if (intlv_addr & 0x2) {
1282 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1283 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1284
1285 return ((sys_addr >> shift) & 1) ^ temp;
1286 }
1287
1288 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1289 }
1290
1291 if (dct_high_range_enabled(pvt))
1292 return ~dct_sel_high & 1;
6163b5d4
DT
1293
1294 return 0;
1295}
1296
c8e518d5 1297/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1298static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1299 u64 sys_addr, bool hi_rng,
1300 u32 dct_sel_base_addr)
6163b5d4
DT
1301{
1302 u64 chan_off;
c8e518d5
BP
1303 u64 dram_base = get_dram_base(pvt, range);
1304 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1305 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1306
c8e518d5
BP
1307 if (hi_rng) {
1308 /*
1309 * if
1310 * base address of high range is below 4Gb
1311 * (bits [47:27] at [31:11])
1312 * DRAM address space on this DCT is hoisted above 4Gb &&
1313 * sys_addr > 4Gb
1314 *
1315 * remove hole offset from sys_addr
1316 * else
1317 * remove high range offset from sys_addr
1318 */
1319 if ((!(dct_sel_base_addr >> 16) ||
1320 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1321 dhar_valid(pvt) &&
c8e518d5 1322 (sys_addr >= BIT_64(32)))
bc21fa57 1323 chan_off = hole_off;
6163b5d4
DT
1324 else
1325 chan_off = dct_sel_base_off;
1326 } else {
c8e518d5
BP
1327 /*
1328 * if
1329 * we have a valid hole &&
1330 * sys_addr > 4Gb
1331 *
1332 * remove hole
1333 * else
1334 * remove dram base to normalize to DCT address
1335 */
972ea17a 1336 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1337 chan_off = hole_off;
6163b5d4 1338 else
c8e518d5 1339 chan_off = dram_base;
6163b5d4
DT
1340 }
1341
10ef6b0d 1342 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1343}
1344
6163b5d4
DT
1345/*
1346 * checks if the csrow passed in is marked as SPARED, if so returns the new
1347 * spare row
1348 */
11c75ead 1349static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1350{
614ec9d8
BP
1351 int tmp_cs;
1352
1353 if (online_spare_swap_done(pvt, dct) &&
1354 csrow == online_spare_bad_dramcs(pvt, dct)) {
1355
1356 for_each_chip_select(tmp_cs, dct, pvt) {
1357 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1358 csrow = tmp_cs;
1359 break;
1360 }
1361 }
6163b5d4
DT
1362 }
1363 return csrow;
1364}
1365
1366/*
1367 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1368 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1369 *
1370 * Return:
1371 * -EINVAL: NOT FOUND
1372 * 0..csrow = Chip-Select Row
1373 */
c7e5301a 1374static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1375{
1376 struct mem_ctl_info *mci;
1377 struct amd64_pvt *pvt;
11c75ead 1378 u64 cs_base, cs_mask;
6163b5d4
DT
1379 int cs_found = -EINVAL;
1380 int csrow;
1381
cc4d8860 1382 mci = mcis[nid];
6163b5d4
DT
1383 if (!mci)
1384 return cs_found;
1385
1386 pvt = mci->pvt_info;
1387
956b9ba1 1388 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1389
11c75ead
BP
1390 for_each_chip_select(csrow, dct, pvt) {
1391 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1392 continue;
1393
11c75ead 1394 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1395
956b9ba1
JP
1396 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1397 csrow, cs_base, cs_mask);
6163b5d4 1398
11c75ead 1399 cs_mask = ~cs_mask;
6163b5d4 1400
956b9ba1
JP
1401 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1402 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1403
11c75ead 1404 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1405 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1406 cs_found = csrow;
1407 break;
1408 }
11c75ead 1409 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1410
956b9ba1 1411 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1412 break;
1413 }
1414 }
1415 return cs_found;
1416}
1417
95b0ef55
BP
1418/*
1419 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1420 * swapped with a region located at the bottom of memory so that the GPU can use
1421 * the interleaved region and thus two channels.
1422 */
b15f0fca 1423static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1424{
1425 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1426
a4b4bedc 1427 if (pvt->fam == 0x10) {
95b0ef55 1428 /* only revC3 and revE have that feature */
a4b4bedc 1429 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1430 return sys_addr;
1431 }
1432
1433 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1434
1435 if (!(swap_reg & 0x1))
1436 return sys_addr;
1437
1438 swap_base = (swap_reg >> 3) & 0x7f;
1439 swap_limit = (swap_reg >> 11) & 0x7f;
1440 rgn_size = (swap_reg >> 20) & 0x7f;
1441 tmp_addr = sys_addr >> 27;
1442
1443 if (!(sys_addr >> 34) &&
1444 (((tmp_addr >= swap_base) &&
1445 (tmp_addr <= swap_limit)) ||
1446 (tmp_addr < rgn_size)))
1447 return sys_addr ^ (u64)swap_base << 27;
1448
1449 return sys_addr;
1450}
1451
f71d0a05 1452/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1453static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1454 u64 sys_addr, int *chan_sel)
f71d0a05 1455{
229a7a11 1456 int cs_found = -EINVAL;
c8e518d5 1457 u64 chan_addr;
5d4b58e8 1458 u32 dct_sel_base;
11c75ead 1459 u8 channel;
229a7a11 1460 bool high_range = false;
f71d0a05 1461
7f19bf75 1462 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1463 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1464 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1465
956b9ba1
JP
1466 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1467 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1468
355fba60
BP
1469 if (dhar_valid(pvt) &&
1470 dhar_base(pvt) <= sys_addr &&
1471 sys_addr < BIT_64(32)) {
1472 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1473 sys_addr);
1474 return -EINVAL;
1475 }
1476
f030ddfb 1477 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1478 return -EINVAL;
1479
b15f0fca 1480 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1481
f71d0a05
DT
1482 dct_sel_base = dct_sel_baseaddr(pvt);
1483
1484 /*
1485 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1486 * select between DCT0 and DCT1.
1487 */
1488 if (dct_high_range_enabled(pvt) &&
1489 !dct_ganging_enabled(pvt) &&
1490 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1491 high_range = true;
f71d0a05 1492
b15f0fca 1493 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1494
b15f0fca 1495 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1496 high_range, dct_sel_base);
f71d0a05 1497
e2f79dbd
BP
1498 /* Remove node interleaving, see F1x120 */
1499 if (intlv_en)
1500 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1501 (chan_addr & 0xfff);
f71d0a05 1502
5d4b58e8 1503 /* remove channel interleave */
f71d0a05
DT
1504 if (dct_interleave_enabled(pvt) &&
1505 !dct_high_range_enabled(pvt) &&
1506 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1507
1508 if (dct_sel_interleave_addr(pvt) != 1) {
1509 if (dct_sel_interleave_addr(pvt) == 0x3)
1510 /* hash 9 */
1511 chan_addr = ((chan_addr >> 10) << 9) |
1512 (chan_addr & 0x1ff);
1513 else
1514 /* A[6] or hash 6 */
1515 chan_addr = ((chan_addr >> 7) << 6) |
1516 (chan_addr & 0x3f);
1517 } else
1518 /* A[12] */
1519 chan_addr = ((chan_addr >> 13) << 12) |
1520 (chan_addr & 0xfff);
f71d0a05
DT
1521 }
1522
956b9ba1 1523 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1524
b15f0fca 1525 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1526
33ca0643 1527 if (cs_found >= 0)
f71d0a05 1528 *chan_sel = channel;
33ca0643 1529
f71d0a05
DT
1530 return cs_found;
1531}
1532
18b94f66
AG
1533static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1534 u64 sys_addr, int *chan_sel)
1535{
1536 int cs_found = -EINVAL;
1537 int num_dcts_intlv = 0;
1538 u64 chan_addr, chan_offset;
1539 u64 dct_base, dct_limit;
1540 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1541 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1542
1543 u64 dhar_offset = f10_dhar_offset(pvt);
1544 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1545 u8 node_id = dram_dst_node(pvt, range);
1546 u8 intlv_en = dram_intlv_en(pvt, range);
1547
1548 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1549 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1550
1551 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1552 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1553
1554 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1555 range, sys_addr, get_dram_limit(pvt, range));
1556
1557 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1558 !(get_dram_limit(pvt, range) >= sys_addr))
1559 return -EINVAL;
1560
1561 if (dhar_valid(pvt) &&
1562 dhar_base(pvt) <= sys_addr &&
1563 sys_addr < BIT_64(32)) {
1564 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1565 sys_addr);
1566 return -EINVAL;
1567 }
1568
1569 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1570 dct_base = (u64) dct_sel_baseaddr(pvt);
1571 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1572
1573 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1574 !(dct_base <= (sys_addr >> 27) &&
1575 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1576 return -EINVAL;
1577
1578 /* Verify number of dct's that participate in channel interleaving. */
1579 num_dcts_intlv = (int) hweight8(intlv_en);
1580
1581 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1582 return -EINVAL;
1583
1584 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1585 num_dcts_intlv, dct_sel);
1586
1587 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1588 if (channel > 3)
18b94f66
AG
1589 return -EINVAL;
1590
1591 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1592
1593 /* Get normalized DCT addr */
1594 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1595 chan_offset = dhar_offset;
1596 else
4fc06b31 1597 chan_offset = dct_base << 27;
18b94f66
AG
1598
1599 chan_addr = sys_addr - chan_offset;
1600
1601 /* remove channel interleave */
1602 if (num_dcts_intlv == 2) {
1603 if (intlv_addr == 0x4)
1604 chan_addr = ((chan_addr >> 9) << 8) |
1605 (chan_addr & 0xff);
1606 else if (intlv_addr == 0x5)
1607 chan_addr = ((chan_addr >> 10) << 9) |
1608 (chan_addr & 0x1ff);
1609 else
1610 return -EINVAL;
1611
1612 } else if (num_dcts_intlv == 4) {
1613 if (intlv_addr == 0x4)
1614 chan_addr = ((chan_addr >> 10) << 8) |
1615 (chan_addr & 0xff);
1616 else if (intlv_addr == 0x5)
1617 chan_addr = ((chan_addr >> 11) << 9) |
1618 (chan_addr & 0x1ff);
1619 else
1620 return -EINVAL;
1621 }
1622
1623 if (dct_offset_en) {
1624 amd64_read_pci_cfg(pvt->F1,
1625 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1626 &tmp);
4fc06b31 1627 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1628 }
1629
1630 f15h_select_dct(pvt, channel);
1631
1632 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1633
1634 /*
1635 * Find Chip select:
1636 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1637 * there is support for 4 DCT's, but only 2 are currently functional.
1638 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1639 * pvt->csels[1]. So we need to use '1' here to get correct info.
1640 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1641 */
1642 alias_channel = (channel == 3) ? 1 : channel;
1643
1644 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1645
1646 if (cs_found >= 0)
1647 *chan_sel = alias_channel;
1648
1649 return cs_found;
1650}
1651
1652static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1653 u64 sys_addr,
1654 int *chan_sel)
f71d0a05 1655{
e761359a
BP
1656 int cs_found = -EINVAL;
1657 unsigned range;
f71d0a05 1658
7f19bf75 1659 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1660 if (!dram_rw(pvt, range))
f71d0a05
DT
1661 continue;
1662
18b94f66
AG
1663 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1664 cs_found = f15_m30h_match_to_this_node(pvt, range,
1665 sys_addr,
1666 chan_sel);
f71d0a05 1667
18b94f66
AG
1668 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1669 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1670 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1671 sys_addr, chan_sel);
f71d0a05
DT
1672 if (cs_found >= 0)
1673 break;
1674 }
1675 }
1676 return cs_found;
1677}
1678
1679/*
bdc30a0c
BP
1680 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1681 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1682 *
bdc30a0c
BP
1683 * The @sys_addr is usually an error address received from the hardware
1684 * (MCX_ADDR).
f71d0a05 1685 */
b15f0fca 1686static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1687 struct err_info *err)
f71d0a05
DT
1688{
1689 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1690
33ca0643 1691 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1692
33ca0643
BP
1693 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1694 if (err->csrow < 0) {
1695 err->err_code = ERR_CSROW;
bdc30a0c
BP
1696 return;
1697 }
1698
bdc30a0c
BP
1699 /*
1700 * We need the syndromes for channel detection only when we're
1701 * ganged. Otherwise @chan should already contain the channel at
1702 * this point.
1703 */
a97fa68e 1704 if (dct_ganging_enabled(pvt))
33ca0643 1705 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1706}
1707
f71d0a05 1708/*
8566c4df 1709 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1710 * CSROWs
f71d0a05 1711 */
d1ea71cd 1712static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1713{
bb89f5a0 1714 int dimm, size0, size1;
525a1b20
BP
1715 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1716 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1717
a4b4bedc 1718 if (pvt->fam == 0xf) {
8566c4df 1719 /* K8 families < revF not supported yet */
1433eb99 1720 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1721 return;
1722 else
1723 WARN_ON(ctrl != 0);
1724 }
1725
4d796364 1726 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1727 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1728 : pvt->csels[0].csbases;
f71d0a05 1729
956b9ba1
JP
1730 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1731 ctrl, dbam);
f71d0a05 1732
8566c4df
BP
1733 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1734
f71d0a05
DT
1735 /* Dump memory sizes for DIMM and its CSROWs */
1736 for (dimm = 0; dimm < 4; dimm++) {
1737
1738 size0 = 0;
11c75ead 1739 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1740 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1741 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1742
1743 size1 = 0;
11c75ead 1744 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1745 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1746 DBAM_DIMM(dimm, dbam));
f71d0a05 1747
24f9a7fe 1748 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1749 dimm * 2, size0,
1750 dimm * 2 + 1, size1);
f71d0a05
DT
1751 }
1752}
1753
d1ea71cd 1754static struct amd64_family_type family_types[] = {
4d37607a 1755 [K8_CPUS] = {
0092b20d 1756 .ctl_name = "K8",
8d5b5d9c
BP
1757 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1758 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1759 .ops = {
1433eb99 1760 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1762 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1763 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1764 }
1765 },
1766 [F10_CPUS] = {
0092b20d 1767 .ctl_name = "F10h",
8d5b5d9c
BP
1768 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1769 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1770 .ops = {
7d20d14d 1771 .early_channel_count = f1x_early_channel_count,
b15f0fca 1772 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1773 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1774 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1775 }
1776 },
1777 [F15_CPUS] = {
1778 .ctl_name = "F15h",
df71a053
BP
1779 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1780 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1781 .ops = {
7d20d14d 1782 .early_channel_count = f1x_early_channel_count,
b15f0fca 1783 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1784 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1785 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1786 }
1787 },
18b94f66
AG
1788 [F15_M30H_CPUS] = {
1789 .ctl_name = "F15h_M30h",
1790 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1791 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1792 .ops = {
1793 .early_channel_count = f1x_early_channel_count,
1794 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1795 .dbam_to_cs = f16_dbam_to_chip_select,
1796 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1797 }
1798 },
94c1acf2
AG
1799 [F16_CPUS] = {
1800 .ctl_name = "F16h",
1801 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1802 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1803 .ops = {
1804 .early_channel_count = f1x_early_channel_count,
1805 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1806 .dbam_to_cs = f16_dbam_to_chip_select,
1807 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1808 }
1809 },
85a8885b
AG
1810 [F16_M30H_CPUS] = {
1811 .ctl_name = "F16h_M30h",
1812 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
1813 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
1814 .ops = {
1815 .early_channel_count = f1x_early_channel_count,
1816 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1817 .dbam_to_cs = f16_dbam_to_chip_select,
1818 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1819 }
1820 },
4d37607a
DT
1821};
1822
b1289d6f 1823/*
bfc04aec
BP
1824 * These are tables of eigenvectors (one per line) which can be used for the
1825 * construction of the syndrome tables. The modified syndrome search algorithm
1826 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1827 *
bfc04aec 1828 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1829 */
c7e5301a 1830static const u16 x4_vectors[] = {
bfc04aec
BP
1831 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1832 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1833 0x0001, 0x0002, 0x0004, 0x0008,
1834 0x1013, 0x3032, 0x4044, 0x8088,
1835 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1836 0x4857, 0xc4fe, 0x13cc, 0x3288,
1837 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1838 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1839 0x15c1, 0x2a42, 0x89ac, 0x4758,
1840 0x2b03, 0x1602, 0x4f0c, 0xca08,
1841 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1842 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1843 0x2b87, 0x164e, 0x642c, 0xdc18,
1844 0x40b9, 0x80de, 0x1094, 0x20e8,
1845 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1846 0x11c1, 0x2242, 0x84ac, 0x4c58,
1847 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1848 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1849 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1850 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1851 0x16b3, 0x3d62, 0x4f34, 0x8518,
1852 0x1e2f, 0x391a, 0x5cac, 0xf858,
1853 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1854 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1855 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1856 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1857 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1858 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1859 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1860 0x185d, 0x2ca6, 0x7914, 0x9e28,
1861 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1862 0x4199, 0x82ee, 0x19f4, 0x2e58,
1863 0x4807, 0xc40e, 0x130c, 0x3208,
1864 0x1905, 0x2e0a, 0x5804, 0xac08,
1865 0x213f, 0x132a, 0xadfc, 0x5ba8,
1866 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1867};
1868
c7e5301a 1869static const u16 x8_vectors[] = {
bfc04aec
BP
1870 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1871 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1872 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1873 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1874 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1875 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1876 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1877 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1878 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1879 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1880 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1881 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1882 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1883 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1884 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1885 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1886 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1887 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1888 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1889};
1890
c7e5301a 1891static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 1892 unsigned v_dim)
b1289d6f 1893{
bfc04aec
BP
1894 unsigned int i, err_sym;
1895
1896 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1897 u16 s = syndrome;
d34a6ecd
BP
1898 unsigned v_idx = err_sym * v_dim;
1899 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1900
1901 /* walk over all 16 bits of the syndrome */
1902 for (i = 1; i < (1U << 16); i <<= 1) {
1903
1904 /* if bit is set in that eigenvector... */
1905 if (v_idx < v_end && vectors[v_idx] & i) {
1906 u16 ev_comp = vectors[v_idx++];
1907
1908 /* ... and bit set in the modified syndrome, */
1909 if (s & i) {
1910 /* remove it. */
1911 s ^= ev_comp;
4d37607a 1912
bfc04aec
BP
1913 if (!s)
1914 return err_sym;
1915 }
b1289d6f 1916
bfc04aec
BP
1917 } else if (s & i)
1918 /* can't get to zero, move to next symbol */
1919 break;
1920 }
b1289d6f
DT
1921 }
1922
956b9ba1 1923 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1924 return -1;
1925}
d27bf6fa 1926
bfc04aec
BP
1927static int map_err_sym_to_channel(int err_sym, int sym_size)
1928{
1929 if (sym_size == 4)
1930 switch (err_sym) {
1931 case 0x20:
1932 case 0x21:
1933 return 0;
1934 break;
1935 case 0x22:
1936 case 0x23:
1937 return 1;
1938 break;
1939 default:
1940 return err_sym >> 4;
1941 break;
1942 }
1943 /* x8 symbols */
1944 else
1945 switch (err_sym) {
1946 /* imaginary bits not in a DIMM */
1947 case 0x10:
1948 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1949 err_sym);
1950 return -1;
1951 break;
1952
1953 case 0x11:
1954 return 0;
1955 break;
1956 case 0x12:
1957 return 1;
1958 break;
1959 default:
1960 return err_sym >> 3;
1961 break;
1962 }
1963 return -1;
1964}
1965
1966static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1967{
1968 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1969 int err_sym = -1;
1970
a3b7db09 1971 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1972 err_sym = decode_syndrome(syndrome, x8_vectors,
1973 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1974 pvt->ecc_sym_sz);
1975 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1976 err_sym = decode_syndrome(syndrome, x4_vectors,
1977 ARRAY_SIZE(x4_vectors),
a3b7db09 1978 pvt->ecc_sym_sz);
ad6a32e9 1979 else {
a3b7db09 1980 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1981 return err_sym;
bfc04aec 1982 }
ad6a32e9 1983
a3b7db09 1984 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1985}
1986
33ca0643
BP
1987static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1988 u8 ecc_type)
d27bf6fa 1989{
33ca0643
BP
1990 enum hw_event_mc_err_type err_type;
1991 const char *string;
d27bf6fa 1992
33ca0643
BP
1993 if (ecc_type == 2)
1994 err_type = HW_EVENT_ERR_CORRECTED;
1995 else if (ecc_type == 1)
1996 err_type = HW_EVENT_ERR_UNCORRECTED;
1997 else {
1998 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1999 return;
2000 }
2001
33ca0643
BP
2002 switch (err->err_code) {
2003 case DECODE_OK:
2004 string = "";
2005 break;
2006 case ERR_NODE:
2007 string = "Failed to map error addr to a node";
2008 break;
2009 case ERR_CSROW:
2010 string = "Failed to map error addr to a csrow";
2011 break;
2012 case ERR_CHANNEL:
2013 string = "unknown syndrome - possible error reporting race";
2014 break;
2015 default:
2016 string = "WTF error";
2017 break;
d27bf6fa 2018 }
33ca0643
BP
2019
2020 edac_mc_handle_error(err_type, mci, 1,
2021 err->page, err->offset, err->syndrome,
2022 err->csrow, err->channel, -1,
2023 string, "");
d27bf6fa
DT
2024}
2025
df781d03 2026static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2027{
df781d03 2028 struct mem_ctl_info *mci = mcis[node_id];
33ca0643 2029 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 2030 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2031 u8 xec = XEC(m->status, 0x1f);
2032 u16 ec = EC(m->status);
33ca0643
BP
2033 u64 sys_addr;
2034 struct err_info err;
d27bf6fa 2035
66fed2d4 2036 /* Bail out early if this was an 'observed' error */
5980bb9c 2037 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2038 return;
d27bf6fa 2039
ecaf5606
BP
2040 /* Do only ECC errors */
2041 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2042 return;
d27bf6fa 2043
33ca0643
BP
2044 memset(&err, 0, sizeof(err));
2045
a4b4bedc 2046 sys_addr = get_error_address(pvt, m);
33ca0643 2047
ecaf5606 2048 if (ecc_type == 2)
33ca0643
BP
2049 err.syndrome = extract_syndrome(m->status);
2050
2051 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2052
2053 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2054}
2055
0ec449ee 2056/*
8d5b5d9c 2057 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 2058 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 2059 */
360b7f3c 2060static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 2061{
0ec449ee 2062 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2063 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2064 if (!pvt->F1) {
24f9a7fe
BP
2065 amd64_err("error address map device not found: "
2066 "vendor %x device 0x%x (broken BIOS?)\n",
2067 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2068 return -ENODEV;
0ec449ee
DT
2069 }
2070
2071 /* Reserve the MISC Device */
8d5b5d9c
BP
2072 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2073 if (!pvt->F3) {
2074 pci_dev_put(pvt->F1);
2075 pvt->F1 = NULL;
0ec449ee 2076
24f9a7fe
BP
2077 amd64_err("error F3 device not found: "
2078 "vendor %x device 0x%x (broken BIOS?)\n",
2079 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2080
bbd0c1f6 2081 return -ENODEV;
0ec449ee 2082 }
956b9ba1
JP
2083 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2084 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2085 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2086
2087 return 0;
2088}
2089
360b7f3c 2090static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2091{
8d5b5d9c
BP
2092 pci_dev_put(pvt->F1);
2093 pci_dev_put(pvt->F3);
0ec449ee
DT
2094}
2095
2096/*
2097 * Retrieve the hardware registers of the memory controller (this includes the
2098 * 'Address Map' and 'Misc' device regs)
2099 */
360b7f3c 2100static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2101{
a4b4bedc 2102 unsigned range;
0ec449ee 2103 u64 msr_val;
ad6a32e9 2104 u32 tmp;
0ec449ee
DT
2105
2106 /*
2107 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2108 * those are Read-As-Zero
2109 */
e97f8bb8 2110 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2111 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2112
2113 /* check first whether TOP_MEM2 is enabled */
2114 rdmsrl(MSR_K8_SYSCFG, msr_val);
2115 if (msr_val & (1U << 21)) {
e97f8bb8 2116 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2117 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2118 } else
956b9ba1 2119 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2120
5980bb9c 2121 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2122
5a5d2371 2123 read_dram_ctl_register(pvt);
0ec449ee 2124
7f19bf75
BP
2125 for (range = 0; range < DRAM_RANGES; range++) {
2126 u8 rw;
0ec449ee 2127
7f19bf75
BP
2128 /* read settings for this DRAM range */
2129 read_dram_base_limit_regs(pvt, range);
2130
2131 rw = dram_rw(pvt, range);
2132 if (!rw)
2133 continue;
2134
956b9ba1
JP
2135 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2136 range,
2137 get_dram_base(pvt, range),
2138 get_dram_limit(pvt, range));
7f19bf75 2139
956b9ba1
JP
2140 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2141 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2142 (rw & 0x1) ? "R" : "-",
2143 (rw & 0x2) ? "W" : "-",
2144 dram_intlv_sel(pvt, range),
2145 dram_dst_node(pvt, range));
0ec449ee
DT
2146 }
2147
b2b0c605 2148 read_dct_base_mask(pvt);
0ec449ee 2149
bc21fa57 2150 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2151 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2152
8d5b5d9c 2153 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2154
cb328507
BP
2155 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2156 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2157
78da121e 2158 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2159 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2160 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2161 }
ad6a32e9 2162
a3b7db09
BP
2163 pvt->ecc_sym_sz = 4;
2164
a4b4bedc 2165 if (pvt->fam >= 0x10) {
b2b0c605 2166 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
a4b4bedc 2167 if (pvt->fam != 0x16)
94c1acf2
AG
2168 /* F16h has only DCT0 */
2169 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2170
a3b7db09 2171 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2172 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2173 pvt->ecc_sym_sz = 8;
2174 }
b2b0c605 2175 dump_misc_regs(pvt);
0ec449ee
DT
2176}
2177
2178/*
2179 * NOTE: CPU Revision Dependent code
2180 *
2181 * Input:
11c75ead 2182 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2183 * k8 private pointer to -->
2184 * DRAM Bank Address mapping register
2185 * node_id
2186 * DCL register where dual_channel_active is
2187 *
2188 * The DBAM register consists of 4 sets of 4 bits each definitions:
2189 *
2190 * Bits: CSROWs
2191 * 0-3 CSROWs 0 and 1
2192 * 4-7 CSROWs 2 and 3
2193 * 8-11 CSROWs 4 and 5
2194 * 12-15 CSROWs 6 and 7
2195 *
2196 * Values range from: 0 to 15
2197 * The meaning of the values depends on CPU revision and dual-channel state,
2198 * see relevant BKDG more info.
2199 *
2200 * The memory controller provides for total of only 8 CSROWs in its current
2201 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2202 * single channel or two (2) DIMMs in dual channel mode.
2203 *
2204 * The following code logic collapses the various tables for CSROW based on CPU
2205 * revision.
2206 *
2207 * Returns:
2208 * The number of PAGE_SIZE pages on the specified CSROW number it
2209 * encompasses
2210 *
2211 */
d1ea71cd 2212static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2213{
1433eb99 2214 u32 cs_mode, nr_pages;
f92cae45 2215 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2216
10de6497 2217
0ec449ee
DT
2218 /*
2219 * The math on this doesn't look right on the surface because x/2*4 can
2220 * be simplified to x*2 but this expression makes use of the fact that
2221 * it is integral math where 1/2=0. This intermediate value becomes the
2222 * number of bits to shift the DBAM register to extract the proper CSROW
2223 * field.
2224 */
0a5dfc31 2225 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2226
41d8bfab 2227 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2228
10de6497
BP
2229 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2230 csrow_nr, dct, cs_mode);
2231 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2232
2233 return nr_pages;
2234}
2235
2236/*
2237 * Initialize the array of csrow attribute instances, based on the values
2238 * from pci config hardware registers.
2239 */
360b7f3c 2240static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2241{
10de6497 2242 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2243 struct csrow_info *csrow;
de3910eb 2244 struct dimm_info *dimm;
084a4fcc 2245 enum edac_type edac_mode;
10de6497
BP
2246 enum mem_type mtype;
2247 int i, j, empty = 1;
a895bf8b 2248 int nr_pages = 0;
10de6497 2249 u32 val;
0ec449ee 2250
a97fa68e 2251 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2252
2299ef71 2253 pvt->nbcfg = val;
0ec449ee 2254
956b9ba1
JP
2255 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2256 pvt->mc_node_id, val,
2257 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2258
10de6497
BP
2259 /*
2260 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2261 */
11c75ead 2262 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2263 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2264 bool row_dct1 = false;
0ec449ee 2265
a4b4bedc 2266 if (pvt->fam != 0xf)
10de6497
BP
2267 row_dct1 = !!csrow_enabled(i, 1, pvt);
2268
2269 if (!row_dct0 && !row_dct1)
0ec449ee 2270 continue;
0ec449ee 2271
10de6497 2272 csrow = mci->csrows[i];
0ec449ee 2273 empty = 0;
10de6497
BP
2274
2275 edac_dbg(1, "MC node: %d, csrow: %d\n",
2276 pvt->mc_node_id, i);
2277
1eef1282 2278 if (row_dct0) {
d1ea71cd 2279 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2280 csrow->channels[0]->dimm->nr_pages = nr_pages;
2281 }
11c75ead 2282
10de6497 2283 /* K8 has only one DCT */
a4b4bedc 2284 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2285 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2286
2287 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2288 nr_pages += row_dct1_pages;
2289 }
0ec449ee 2290
d1ea71cd 2291 mtype = determine_memory_type(pvt, i);
0ec449ee 2292
10de6497 2293 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2294
2295 /*
2296 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2297 */
a97fa68e 2298 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2299 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2300 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2301 else
084a4fcc
MCC
2302 edac_mode = EDAC_NONE;
2303
2304 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2305 dimm = csrow->channels[j]->dimm;
2306 dimm->mtype = mtype;
2307 dimm->edac_mode = edac_mode;
084a4fcc 2308 }
0ec449ee
DT
2309 }
2310
2311 return empty;
2312}
d27bf6fa 2313
f6d6ae96 2314/* get all cores on this DCT */
8b84c8df 2315static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2316{
2317 int cpu;
2318
2319 for_each_online_cpu(cpu)
2320 if (amd_get_nb_id(cpu) == nid)
2321 cpumask_set_cpu(cpu, mask);
2322}
2323
2324/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2325static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2326{
2327 cpumask_var_t mask;
50542251 2328 int cpu, nbe;
f6d6ae96
BP
2329 bool ret = false;
2330
2331 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2332 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2333 return false;
2334 }
2335
2336 get_cpus_on_this_dct_cpumask(mask, nid);
2337
f6d6ae96
BP
2338 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2339
2340 for_each_cpu(cpu, mask) {
50542251 2341 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2342 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2343
956b9ba1
JP
2344 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2345 cpu, reg->q,
2346 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2347
2348 if (!nbe)
2349 goto out;
f6d6ae96
BP
2350 }
2351 ret = true;
2352
2353out:
f6d6ae96
BP
2354 free_cpumask_var(mask);
2355 return ret;
2356}
2357
c7e5301a 2358static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2359{
2360 cpumask_var_t cmask;
50542251 2361 int cpu;
f6d6ae96
BP
2362
2363 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2364 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2365 return false;
2366 }
2367
ae7bb7c6 2368 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2369
f6d6ae96
BP
2370 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2371
2372 for_each_cpu(cpu, cmask) {
2373
50542251
BP
2374 struct msr *reg = per_cpu_ptr(msrs, cpu);
2375
f6d6ae96 2376 if (on) {
5980bb9c 2377 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2378 s->flags.nb_mce_enable = 1;
f6d6ae96 2379
5980bb9c 2380 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2381 } else {
2382 /*
d95cf4de 2383 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2384 */
ae7bb7c6 2385 if (!s->flags.nb_mce_enable)
5980bb9c 2386 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2387 }
f6d6ae96
BP
2388 }
2389 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2390
f6d6ae96
BP
2391 free_cpumask_var(cmask);
2392
2393 return 0;
2394}
2395
c7e5301a 2396static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2397 struct pci_dev *F3)
f9431992 2398{
2299ef71 2399 bool ret = true;
c9f4f26e 2400 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2401
2299ef71
BP
2402 if (toggle_ecc_err_reporting(s, nid, ON)) {
2403 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2404 return false;
2405 }
2406
c9f4f26e 2407 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2408
ae7bb7c6
BP
2409 s->old_nbctl = value & mask;
2410 s->nbctl_valid = true;
f9431992
DT
2411
2412 value |= mask;
c9f4f26e 2413 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2414
a97fa68e 2415 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2416
956b9ba1
JP
2417 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2418 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2419
a97fa68e 2420 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2421 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2422
ae7bb7c6 2423 s->flags.nb_ecc_prev = 0;
d95cf4de 2424
f9431992 2425 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2426 value |= NBCFG_ECC_ENABLE;
2427 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2428
a97fa68e 2429 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2430
a97fa68e 2431 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2432 amd64_warn("Hardware rejected DRAM ECC enable,"
2433 "check memory DIMM configuration.\n");
2299ef71 2434 ret = false;
f9431992 2435 } else {
24f9a7fe 2436 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2437 }
d95cf4de 2438 } else {
ae7bb7c6 2439 s->flags.nb_ecc_prev = 1;
f9431992 2440 }
d95cf4de 2441
956b9ba1
JP
2442 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2443 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2444
2299ef71 2445 return ret;
f9431992
DT
2446}
2447
c7e5301a 2448static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2449 struct pci_dev *F3)
f9431992 2450{
c9f4f26e
BP
2451 u32 value, mask = 0x3; /* UECC/CECC enable */
2452
f9431992 2453
ae7bb7c6 2454 if (!s->nbctl_valid)
f9431992
DT
2455 return;
2456
c9f4f26e 2457 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2458 value &= ~mask;
ae7bb7c6 2459 value |= s->old_nbctl;
f9431992 2460
c9f4f26e 2461 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2462
ae7bb7c6
BP
2463 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2464 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2465 amd64_read_pci_cfg(F3, NBCFG, &value);
2466 value &= ~NBCFG_ECC_ENABLE;
2467 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2468 }
2469
2470 /* restore the NB Enable MCGCTL bit */
2299ef71 2471 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2472 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2473}
2474
2475/*
2299ef71
BP
2476 * EDAC requires that the BIOS have ECC enabled before
2477 * taking over the processing of ECC errors. A command line
2478 * option allows to force-enable hardware ECC later in
2479 * enable_ecc_error_reporting().
f9431992 2480 */
cab4d277
BP
2481static const char *ecc_msg =
2482 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2483 " Either enable ECC checking or force module loading by setting "
2484 "'ecc_enable_override'.\n"
2485 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2486
c7e5301a 2487static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2488{
2489 u32 value;
2299ef71 2490 u8 ecc_en = 0;
06724535 2491 bool nb_mce_en = false;
f9431992 2492
a97fa68e 2493 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2494
a97fa68e 2495 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2496 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2497
d1ea71cd 2498 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
06724535 2499 if (!nb_mce_en)
2299ef71
BP
2500 amd64_notice("NB MCE bank disabled, set MSR "
2501 "0x%08x[4] on node %d to enable.\n",
2502 MSR_IA32_MCG_CTL, nid);
f9431992 2503
2299ef71
BP
2504 if (!ecc_en || !nb_mce_en) {
2505 amd64_notice("%s", ecc_msg);
2506 return false;
2507 }
2508 return true;
f9431992
DT
2509}
2510
c5608759 2511static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2512{
a4b4bedc 2513 struct amd64_pvt *pvt = mci->pvt_info;
c5608759 2514 int rc;
7d6034d3 2515
c5608759
MCC
2516 rc = amd64_create_sysfs_dbg_files(mci);
2517 if (rc < 0)
2518 return rc;
7d6034d3 2519
a4b4bedc 2520 if (pvt->fam >= 0x10) {
c5608759
MCC
2521 rc = amd64_create_sysfs_inject_files(mci);
2522 if (rc < 0)
2523 return rc;
2524 }
2525
2526 return 0;
2527}
7d6034d3 2528
c5608759
MCC
2529static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2530{
a4b4bedc
BP
2531 struct amd64_pvt *pvt = mci->pvt_info;
2532
c5608759 2533 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2534
a4b4bedc 2535 if (pvt->fam >= 0x10)
c5608759 2536 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2537}
2538
df71a053
BP
2539static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2540 struct amd64_family_type *fam)
7d6034d3
DT
2541{
2542 struct amd64_pvt *pvt = mci->pvt_info;
2543
2544 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2545 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2546
5980bb9c 2547 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2548 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2549
5980bb9c 2550 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2551 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2552
d1ea71cd 2553 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
2554 mci->mod_name = EDAC_MOD_STR;
2555 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2556 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2557 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2558 mci->ctl_page_to_phys = NULL;
2559
7d6034d3 2560 /* memory scrubber interface */
d1ea71cd
BP
2561 mci->set_sdram_scrub_rate = set_scrub_rate;
2562 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
2563}
2564
0092b20d
BP
2565/*
2566 * returns a pointer to the family descriptor on success, NULL otherwise.
2567 */
d1ea71cd 2568static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 2569{
0092b20d
BP
2570 struct amd64_family_type *fam_type = NULL;
2571
18b94f66 2572 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2573 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2574 pvt->model = boot_cpu_data.x86_model;
2575 pvt->fam = boot_cpu_data.x86;
2576
2577 switch (pvt->fam) {
395ae783 2578 case 0xf:
d1ea71cd
BP
2579 fam_type = &family_types[K8_CPUS];
2580 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 2581 break;
df71a053 2582
395ae783 2583 case 0x10:
d1ea71cd
BP
2584 fam_type = &family_types[F10_CPUS];
2585 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
2586 break;
2587
2588 case 0x15:
18b94f66 2589 if (pvt->model == 0x30) {
d1ea71cd
BP
2590 fam_type = &family_types[F15_M30H_CPUS];
2591 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66
AG
2592 break;
2593 }
2594
d1ea71cd
BP
2595 fam_type = &family_types[F15_CPUS];
2596 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
2597 break;
2598
94c1acf2 2599 case 0x16:
85a8885b
AG
2600 if (pvt->model == 0x30) {
2601 fam_type = &family_types[F16_M30H_CPUS];
2602 pvt->ops = &family_types[F16_M30H_CPUS].ops;
2603 break;
2604 }
d1ea71cd
BP
2605 fam_type = &family_types[F16_CPUS];
2606 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
2607 break;
2608
395ae783 2609 default:
24f9a7fe 2610 amd64_err("Unsupported family!\n");
0092b20d 2611 return NULL;
395ae783 2612 }
0092b20d 2613
df71a053 2614 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2615 (pvt->fam == 0xf ?
24f9a7fe
BP
2616 (pvt->ext_model >= K8_REV_F ? "revF or later "
2617 : "revE or earlier ")
2618 : ""), pvt->mc_node_id);
0092b20d 2619 return fam_type;
395ae783
BP
2620}
2621
d1ea71cd 2622static int init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2623{
2624 struct amd64_pvt *pvt = NULL;
0092b20d 2625 struct amd64_family_type *fam_type = NULL;
360b7f3c 2626 struct mem_ctl_info *mci = NULL;
ab5a503c 2627 struct edac_mc_layer layers[2];
7d6034d3 2628 int err = 0, ret;
772c3ff3 2629 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2630
2631 ret = -ENOMEM;
2632 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2633 if (!pvt)
360b7f3c 2634 goto err_ret;
7d6034d3 2635
360b7f3c 2636 pvt->mc_node_id = nid;
8d5b5d9c 2637 pvt->F2 = F2;
7d6034d3 2638
395ae783 2639 ret = -EINVAL;
d1ea71cd 2640 fam_type = per_family_init(pvt);
0092b20d 2641 if (!fam_type)
395ae783
BP
2642 goto err_free;
2643
7d6034d3 2644 ret = -ENODEV;
360b7f3c 2645 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2646 if (err)
2647 goto err_free;
2648
360b7f3c 2649 read_mc_regs(pvt);
7d6034d3 2650
7d6034d3
DT
2651 /*
2652 * We need to determine how many memory channels there are. Then use
2653 * that information for calculating the size of the dynamic instance
360b7f3c 2654 * tables in the 'mci' structure.
7d6034d3 2655 */
360b7f3c 2656 ret = -EINVAL;
7d6034d3
DT
2657 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2658 if (pvt->channel_count < 0)
360b7f3c 2659 goto err_siblings;
7d6034d3
DT
2660
2661 ret = -ENOMEM;
ab5a503c
MCC
2662 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2663 layers[0].size = pvt->csels[0].b_cnt;
2664 layers[0].is_virt_csrow = true;
2665 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2666
2667 /*
2668 * Always allocate two channels since we can have setups with DIMMs on
2669 * only one channel. Also, this simplifies handling later for the price
2670 * of a couple of KBs tops.
2671 */
2672 layers[1].size = 2;
ab5a503c 2673 layers[1].is_virt_csrow = false;
f0a56c48 2674
ca0907b9 2675 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2676 if (!mci)
360b7f3c 2677 goto err_siblings;
7d6034d3
DT
2678
2679 mci->pvt_info = pvt;
fd687502 2680 mci->pdev = &pvt->F2->dev;
7d6034d3 2681
df71a053 2682 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2683
2684 if (init_csrows(mci))
7d6034d3
DT
2685 mci->edac_cap = EDAC_FLAG_NONE;
2686
7d6034d3
DT
2687 ret = -ENODEV;
2688 if (edac_mc_add_mc(mci)) {
956b9ba1 2689 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2690 goto err_add_mc;
2691 }
c5608759 2692 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2693 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2694 goto err_add_sysfs;
2695 }
7d6034d3 2696
549d042d
BP
2697 /* register stuff with EDAC MCE */
2698 if (report_gart_errors)
2699 amd_report_gart_errors(true);
2700
df781d03 2701 amd_register_ecc_decoder(decode_bus_error);
549d042d 2702
360b7f3c
BP
2703 mcis[nid] = mci;
2704
2705 atomic_inc(&drv_instances);
2706
7d6034d3
DT
2707 return 0;
2708
c5608759
MCC
2709err_add_sysfs:
2710 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2711err_add_mc:
2712 edac_mc_free(mci);
2713
360b7f3c
BP
2714err_siblings:
2715 free_mc_sibling_devs(pvt);
7d6034d3 2716
360b7f3c
BP
2717err_free:
2718 kfree(pvt);
7d6034d3 2719
360b7f3c 2720err_ret:
7d6034d3
DT
2721 return ret;
2722}
2723
d1ea71cd
BP
2724static int probe_one_instance(struct pci_dev *pdev,
2725 const struct pci_device_id *mc_type)
7d6034d3 2726{
772c3ff3 2727 u16 nid = amd_get_node_id(pdev);
2299ef71 2728 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2729 struct ecc_settings *s;
2299ef71 2730 int ret = 0;
7d6034d3 2731
7d6034d3 2732 ret = pci_enable_device(pdev);
b8cfa02f 2733 if (ret < 0) {
956b9ba1 2734 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2735 return -EIO;
2736 }
7d6034d3 2737
ae7bb7c6
BP
2738 ret = -ENOMEM;
2739 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2740 if (!s)
2299ef71 2741 goto err_out;
ae7bb7c6
BP
2742
2743 ecc_stngs[nid] = s;
2744
2299ef71
BP
2745 if (!ecc_enabled(F3, nid)) {
2746 ret = -ENODEV;
2747
2748 if (!ecc_enable_override)
2749 goto err_enable;
2750
2751 amd64_warn("Forcing ECC on!\n");
2752
2753 if (!enable_ecc_error_reporting(s, nid, F3))
2754 goto err_enable;
2755 }
2756
d1ea71cd 2757 ret = init_one_instance(pdev);
360b7f3c 2758 if (ret < 0) {
ae7bb7c6 2759 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2760 restore_ecc_error_reporting(s, nid, F3);
2761 }
7d6034d3
DT
2762
2763 return ret;
2299ef71
BP
2764
2765err_enable:
2766 kfree(s);
2767 ecc_stngs[nid] = NULL;
2768
2769err_out:
2770 return ret;
7d6034d3
DT
2771}
2772
d1ea71cd 2773static void remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2774{
2775 struct mem_ctl_info *mci;
2776 struct amd64_pvt *pvt;
772c3ff3 2777 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2778 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2779 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2780
c5608759 2781 mci = find_mci_by_dev(&pdev->dev);
a4b4bedc
BP
2782 WARN_ON(!mci);
2783
c5608759 2784 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2785 /* Remove from EDAC CORE tracking list */
2786 mci = edac_mc_del_mc(&pdev->dev);
2787 if (!mci)
2788 return;
2789
2790 pvt = mci->pvt_info;
2791
360b7f3c 2792 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2793
360b7f3c 2794 free_mc_sibling_devs(pvt);
7d6034d3 2795
549d042d
BP
2796 /* unregister from EDAC MCE */
2797 amd_report_gart_errors(false);
df781d03 2798 amd_unregister_ecc_decoder(decode_bus_error);
549d042d 2799
360b7f3c
BP
2800 kfree(ecc_stngs[nid]);
2801 ecc_stngs[nid] = NULL;
ae7bb7c6 2802
7d6034d3 2803 /* Free the EDAC CORE resources */
8f68ed97 2804 mci->pvt_info = NULL;
360b7f3c 2805 mcis[nid] = NULL;
8f68ed97
BP
2806
2807 kfree(pvt);
7d6034d3
DT
2808 edac_mc_free(mci);
2809}
2810
2811/*
2812 * This table is part of the interface for loading drivers for PCI devices. The
2813 * PCI core identifies what devices are on a system during boot, and then
2814 * inquiry this table to see if this driver is for a given device found.
2815 */
ba935f40 2816static const struct pci_device_id amd64_pci_table[] = {
7d6034d3
DT
2817 {
2818 .vendor = PCI_VENDOR_ID_AMD,
2819 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2820 .subvendor = PCI_ANY_ID,
2821 .subdevice = PCI_ANY_ID,
2822 .class = 0,
2823 .class_mask = 0,
7d6034d3
DT
2824 },
2825 {
2826 .vendor = PCI_VENDOR_ID_AMD,
2827 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2828 .subvendor = PCI_ANY_ID,
2829 .subdevice = PCI_ANY_ID,
2830 .class = 0,
2831 .class_mask = 0,
7d6034d3 2832 },
df71a053
BP
2833 {
2834 .vendor = PCI_VENDOR_ID_AMD,
2835 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2836 .subvendor = PCI_ANY_ID,
2837 .subdevice = PCI_ANY_ID,
2838 .class = 0,
2839 .class_mask = 0,
2840 },
18b94f66
AG
2841 {
2842 .vendor = PCI_VENDOR_ID_AMD,
2843 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2844 .subvendor = PCI_ANY_ID,
2845 .subdevice = PCI_ANY_ID,
2846 .class = 0,
2847 .class_mask = 0,
2848 },
94c1acf2
AG
2849 {
2850 .vendor = PCI_VENDOR_ID_AMD,
2851 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2852 .subvendor = PCI_ANY_ID,
2853 .subdevice = PCI_ANY_ID,
2854 .class = 0,
2855 .class_mask = 0,
2856 },
85a8885b
AG
2857 {
2858 .vendor = PCI_VENDOR_ID_AMD,
2859 .device = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2860 .subvendor = PCI_ANY_ID,
2861 .subdevice = PCI_ANY_ID,
2862 .class = 0,
2863 .class_mask = 0,
2864 },
df71a053 2865
7d6034d3
DT
2866 {0, }
2867};
2868MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2869
2870static struct pci_driver amd64_pci_driver = {
2871 .name = EDAC_MOD_STR,
d1ea71cd
BP
2872 .probe = probe_one_instance,
2873 .remove = remove_one_instance,
7d6034d3
DT
2874 .id_table = amd64_pci_table,
2875};
2876
360b7f3c 2877static void setup_pci_device(void)
7d6034d3
DT
2878{
2879 struct mem_ctl_info *mci;
2880 struct amd64_pvt *pvt;
2881
d1ea71cd 2882 if (pci_ctl)
7d6034d3
DT
2883 return;
2884
cc4d8860 2885 mci = mcis[0];
d1ea71cd
BP
2886 if (!mci)
2887 return;
7d6034d3 2888
d1ea71cd
BP
2889 pvt = mci->pvt_info;
2890 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2891 if (!pci_ctl) {
2892 pr_warn("%s(): Unable to create PCI control\n", __func__);
2893 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
2894 }
2895}
2896
2897static int __init amd64_edac_init(void)
2898{
360b7f3c 2899 int err = -ENODEV;
7d6034d3 2900
df71a053 2901 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2902
2903 opstate_init();
2904
9653a5c7 2905 if (amd_cache_northbridges() < 0)
56b34b91 2906 goto err_ret;
7d6034d3 2907
cc4d8860 2908 err = -ENOMEM;
ae7bb7c6
BP
2909 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2910 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2911 if (!(mcis && ecc_stngs))
a9f0fbe2 2912 goto err_free;
cc4d8860 2913
50542251 2914 msrs = msrs_alloc();
56b34b91 2915 if (!msrs)
360b7f3c 2916 goto err_free;
50542251 2917
7d6034d3
DT
2918 err = pci_register_driver(&amd64_pci_driver);
2919 if (err)
56b34b91 2920 goto err_pci;
7d6034d3 2921
56b34b91 2922 err = -ENODEV;
360b7f3c
BP
2923 if (!atomic_read(&drv_instances))
2924 goto err_no_instances;
7d6034d3 2925
360b7f3c
BP
2926 setup_pci_device();
2927 return 0;
7d6034d3 2928
360b7f3c 2929err_no_instances:
7d6034d3 2930 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2931
56b34b91
BP
2932err_pci:
2933 msrs_free(msrs);
2934 msrs = NULL;
cc4d8860 2935
360b7f3c
BP
2936err_free:
2937 kfree(mcis);
2938 mcis = NULL;
2939
2940 kfree(ecc_stngs);
2941 ecc_stngs = NULL;
2942
56b34b91 2943err_ret:
7d6034d3
DT
2944 return err;
2945}
2946
2947static void __exit amd64_edac_exit(void)
2948{
d1ea71cd
BP
2949 if (pci_ctl)
2950 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3
DT
2951
2952 pci_unregister_driver(&amd64_pci_driver);
50542251 2953
ae7bb7c6
BP
2954 kfree(ecc_stngs);
2955 ecc_stngs = NULL;
2956
cc4d8860
BP
2957 kfree(mcis);
2958 mcis = NULL;
2959
50542251
BP
2960 msrs_free(msrs);
2961 msrs = NULL;
7d6034d3
DT
2962}
2963
2964module_init(amd64_edac_init);
2965module_exit(amd64_edac_exit);
2966
2967MODULE_LICENSE("GPL");
2968MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2969 "Dave Peterson, Thayne Harbaugh");
2970MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2971 EDAC_AMD64_VERSION);
2972
2973module_param(edac_op_state, int, 0444);
2974MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");