]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Use DBAM_DIMM macro
[mirror_ubuntu-zesty-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
2bc65418 176 */
168bfeef 177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
395ae783 182 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
2bc65418
DT
187 }
188
189 scrubval = scrubrates[i].scrubval;
2bc65418 190
5980bb9c 191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 192
39094443
BP
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
2bc65418
DT
196 return 0;
197}
198
395ae783 199static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
200{
201 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 202 u32 min_scrubrate = 0x5;
2bc65418 203
87b3e0e6
BP
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
73ba8593
BP
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
87b3e0e6 211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
212}
213
39094443 214static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
39094443 218 int i, retval = -EINVAL;
2bc65418 219
73ba8593
BP
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
5980bb9c 224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
225
226 scrubval = scrubval & 0x001F;
227
926311fd 228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 229 if (scrubrates[i].scrubval == scrubval) {
39094443 230 retval = scrubrates[i].bandwidth;
2bc65418
DT
231 break;
232 }
233 }
39094443 234 return retval;
2bc65418
DT
235}
236
6775763a 237/*
7f19bf75
BP
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
6775763a 240 */
b487c33e
BP
241static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 unsigned nid)
6775763a 243{
7f19bf75 244 u64 addr;
6775763a
DT
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
7f19bf75
BP
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
256}
257
258/*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266{
267 struct amd64_pvt *pvt;
b487c33e 268 unsigned node_id;
6775763a
DT
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
7f19bf75 282 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
283
284 if (intlv_en == 0) {
7f19bf75 285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 287 goto found;
6775763a 288 }
8edc5445 289 goto err_no_match;
6775763a
DT
290 }
291
72f158fe
BP
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
24f9a7fe 295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
7f19bf75 302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
303 break; /* intlv_sel field matches */
304
7f19bf75 305 if (++node_id >= DRAM_RANGES)
6775763a
DT
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
6775763a
DT
314 return NULL;
315 }
316
317found:
b487c33e 318 return edac_mc_find((int)node_id);
6775763a
DT
319
320err_no_match:
956b9ba1
JP
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
6775763a
DT
323
324 return NULL;
325}
e2ce7255
DT
326
327/*
11c75ead
BP
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 330 */
11c75ead
BP
331static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
e2ce7255 333{
11c75ead
BP
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
e2ce7255 336
11c75ead
BP
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
e2ce7255 347
11c75ead
BP
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
e2ce7255 353
11c75ead 354 *base = (csbase & base_bits) << addr_shift;
e2ce7255 355
11c75ead
BP
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
361}
362
11c75ead
BP
363#define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
614ec9d8
BP
366#define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
11c75ead
BP
369#define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
e2ce7255
DT
372/*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377{
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
11c75ead
BP
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
386 continue;
387
11c75ead
BP
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
e2ce7255
DT
391
392 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
e2ce7255
DT
396
397 return csrow;
398 }
399 }
956b9ba1
JP
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
402
403 return -1;
404}
405
e2ce7255
DT
406/*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424{
425 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
426
427 /* only revE and later have the DRAM Hole Address Register */
1433eb99 428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
431 return 1;
432 }
433
bc21fa57 434 /* valid for Fam10h and above */
c8e518d5 435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
437 return 1;
438 }
439
c8e518d5 440 if (!dhar_valid(pvt)) {
956b9ba1
JP
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
e2ce7255
DT
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
1f31677e
BP
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255
DT
466
467 if (boot_cpu_data.x86 > 0xf)
bc21fa57 468 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 469 else
bc21fa57 470 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 471
956b9ba1
JP
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
475
476 return 0;
477}
478EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
93c2df58
DT
480/*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510{
7f19bf75 511 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 513 int ret;
93c2df58 514
7f19bf75 515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
1f31677e
BP
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
956b9ba1
JP
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
93c2df58
DT
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
f678b8cc 542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 543
956b9ba1
JP
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
546 return dram_addr;
547}
548
549/*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554static int num_node_interleave_bits(unsigned intlv_en)
555{
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562}
563
564/* Translate the DramAddr given by @dram_addr to an InputAddr. */
565static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566{
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
7f19bf75 577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
93c2df58 580
956b9ba1
JP
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
93c2df58
DT
584
585 return input_addr;
586}
587
588/*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593{
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
956b9ba1
JP
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
601
602 return input_addr;
603}
604
605
606/*
607 * @input_addr is an InputAddr associated with the node represented by mci.
608 * Translate @input_addr to a DramAddr and return the result.
609 */
610static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
611{
612 struct amd64_pvt *pvt;
b487c33e 613 unsigned node_id, intlv_shift;
93c2df58
DT
614 u64 bits, dram_addr;
615 u32 intlv_sel;
616
617 /*
618 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * shows how to translate a DramAddr to an InputAddr. Here we reverse
620 * this procedure. When translating from a DramAddr to an InputAddr, the
621 * bits used for node interleaving are discarded. Here we recover these
622 * bits from the IntlvSel field of the DRAM Limit register (section
623 * 3.4.4.2) for the node that input_addr is associated with.
624 */
625 pvt = mci->pvt_info;
626 node_id = pvt->mc_node_id;
b487c33e
BP
627
628 BUG_ON(node_id > 7);
93c2df58 629
7f19bf75 630 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58 631 if (intlv_shift == 0) {
956b9ba1
JP
632 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
633 (unsigned long)input_addr);
93c2df58
DT
634
635 return input_addr;
636 }
637
f678b8cc
BP
638 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
639 (input_addr & 0xfff);
93c2df58 640
7f19bf75 641 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
642 dram_addr = bits + (intlv_sel << 12);
643
956b9ba1
JP
644 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
645 (unsigned long)input_addr,
646 (unsigned long)dram_addr, intlv_shift);
93c2df58
DT
647
648 return dram_addr;
649}
650
651/*
652 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
653 * @dram_addr to a SysAddr.
654 */
655static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
656{
657 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 658 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
659 int ret = 0;
660
661 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
662 &hole_size);
663 if (!ret) {
664 if ((dram_addr >= hole_base) &&
665 (dram_addr < (hole_base + hole_size))) {
666 sys_addr = dram_addr + hole_offset;
667
956b9ba1
JP
668 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
669 (unsigned long)dram_addr,
670 (unsigned long)sys_addr);
93c2df58
DT
671
672 return sys_addr;
673 }
674 }
675
7f19bf75 676 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
677 sys_addr = dram_addr + base;
678
679 /*
680 * The sys_addr we have computed up to this point is a 40-bit value
681 * because the k8 deals with 40-bit values. However, the value we are
682 * supposed to return is a full 64-bit physical address. The AMD
683 * x86-64 architecture specifies that the most significant implemented
684 * address bit through bit 63 of a physical address must be either all
685 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
686 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
687 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
688 * Programming.
689 */
690 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
691
956b9ba1
JP
692 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
693 pvt->mc_node_id, (unsigned long)dram_addr,
694 (unsigned long)sys_addr);
93c2df58
DT
695
696 return sys_addr;
697}
698
699/*
700 * @input_addr is an InputAddr associated with the node given by mci. Translate
701 * @input_addr to a SysAddr.
702 */
703static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
704 u64 input_addr)
705{
706 return dram_addr_to_sys_addr(mci,
707 input_addr_to_dram_addr(mci, input_addr));
708}
709
93c2df58
DT
710/* Map the Error address to a PAGE and PAGE OFFSET. */
711static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 712 struct err_info *err)
93c2df58 713{
33ca0643
BP
714 err->page = (u32) (error_address >> PAGE_SHIFT);
715 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
716}
717
718/*
719 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
720 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
721 * of a node that detected an ECC memory error. mci represents the node that
722 * the error address maps to (possibly different from the node that detected
723 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
724 * error.
725 */
726static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
727{
728 int csrow;
729
730 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
731
732 if (csrow == -1)
24f9a7fe
BP
733 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
734 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
735 return csrow;
736}
e2ce7255 737
bfc04aec 738static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 739
2da11654
DT
740/*
741 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
742 * are ECC capable.
743 */
1f6189ed 744static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 745{
cb328507 746 u8 bit;
1f6189ed 747 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 748
1433eb99 749 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
750 ? 19
751 : 17;
752
584fcff4 753 if (pvt->dclr0 & BIT(bit))
2da11654
DT
754 edac_cap = EDAC_FLAG_SECDED;
755
756 return edac_cap;
757}
758
8c671751 759static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 760
68798e17
BP
761static void amd64_dump_dramcfg_low(u32 dclr, int chan)
762{
956b9ba1 763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 764
956b9ba1
JP
765 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
766 (dclr & BIT(16)) ? "un" : "",
767 (dclr & BIT(19)) ? "yes" : "no");
68798e17 768
956b9ba1
JP
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 771
cb328507 772 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 775
956b9ba1
JP
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
781}
782
2da11654 783/* Display and decode various NB registers for debug purposes. */
b2b0c605 784static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 785{
956b9ba1 786 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 787
956b9ba1
JP
788 edac_dbg(1, " NB two channel DRAM capable: %s\n",
789 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 790
956b9ba1
JP
791 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
792 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
793 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
794
795 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 796
956b9ba1 797 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 798
956b9ba1
JP
799 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
800 pvt->dhar, dhar_base(pvt),
801 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
802 : f10_dhar_offset(pvt));
2da11654 803
956b9ba1 804 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 805
8c671751 806 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 807
8de1d91e 808 /* everything below this point is Fam10h and above */
4d796364 809 if (boot_cpu_data.x86 == 0xf)
2da11654 810 return;
4d796364 811
8c671751 812 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 813
a3b7db09 814 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 815
8de1d91e 816 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
817 if (!dct_ganging_enabled(pvt))
818 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
819}
820
94be4bff 821/*
11c75ead 822 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 823 */
11c75ead 824static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 825{
1433eb99 826 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
827 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
828 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 829 } else {
11c75ead
BP
830 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
831 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
832 }
833}
834
835/*
11c75ead 836 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 837 */
b2b0c605 838static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 839{
11c75ead 840 int cs;
94be4bff 841
11c75ead 842 prep_chip_selects(pvt);
94be4bff 843
11c75ead 844 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
845 int reg0 = DCSB0 + (cs * 4);
846 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
847 u32 *base0 = &pvt->csels[0].csbases[cs];
848 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 849
11c75ead 850 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
851 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
852 cs, *base0, reg0);
94be4bff 853
11c75ead
BP
854 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
855 continue;
b2b0c605 856
11c75ead 857 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
858 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
859 cs, *base1, reg1);
94be4bff
DT
860 }
861
11c75ead 862 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
863 int reg0 = DCSM0 + (cs * 4);
864 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
865 u32 *mask0 = &pvt->csels[0].csmasks[cs];
866 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 867
11c75ead 868 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
869 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
870 cs, *mask0, reg0);
94be4bff 871
11c75ead
BP
872 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
873 continue;
b2b0c605 874
11c75ead 875 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
876 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
877 cs, *mask1, reg1);
94be4bff
DT
878 }
879}
880
24f9a7fe 881static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
882{
883 enum mem_type type;
884
cb328507
BP
885 /* F15h supports only DDR3 */
886 if (boot_cpu_data.x86 >= 0x15)
887 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
888 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
889 if (pvt->dchr0 & DDR3_MODE)
890 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
891 else
892 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 893 } else {
94be4bff
DT
894 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
895 }
896
24f9a7fe 897 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
898
899 return type;
900}
901
cb328507 902/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
903static int k8_early_channel_count(struct amd64_pvt *pvt)
904{
cb328507 905 int flag;
ddff876d 906
9f56da0e 907 if (pvt->ext_model >= K8_REV_F)
ddff876d 908 /* RevF (NPT) and later */
41d8bfab 909 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 910 else
ddff876d
DT
911 /* RevE and earlier */
912 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
913
914 /* not used */
915 pvt->dclr1 = 0;
916
917 return (flag) ? 2 : 1;
918}
919
70046624
BP
920/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
921static u64 get_error_address(struct mce *m)
ddff876d 922{
c1ae6830
BP
923 struct cpuinfo_x86 *c = &boot_cpu_data;
924 u64 addr;
70046624
BP
925 u8 start_bit = 1;
926 u8 end_bit = 47;
927
c1ae6830 928 if (c->x86 == 0xf) {
70046624
BP
929 start_bit = 3;
930 end_bit = 39;
931 }
932
c1ae6830
BP
933 addr = m->addr & GENMASK(start_bit, end_bit);
934
935 /*
936 * Erratum 637 workaround
937 */
938 if (c->x86 == 0x15) {
939 struct amd64_pvt *pvt;
940 u64 cc6_base, tmp_addr;
941 u32 tmp;
942 u8 mce_nid, intlv_en;
943
944 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
945 return addr;
946
947 mce_nid = amd_get_nb_id(m->extcpu);
948 pvt = mcis[mce_nid]->pvt_info;
949
950 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
951 intlv_en = tmp >> 21 & 0x7;
952
953 /* add [47:27] + 3 trailing bits */
954 cc6_base = (tmp & GENMASK(0, 20)) << 3;
955
956 /* reverse and add DramIntlvEn */
957 cc6_base |= intlv_en ^ 0x7;
958
959 /* pin at [47:24] */
960 cc6_base <<= 24;
961
962 if (!intlv_en)
963 return cc6_base | (addr & GENMASK(0, 23));
964
965 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
966
967 /* faster log2 */
968 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
969
970 /* OR DramIntlvSel into bits [14:12] */
971 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
972
973 /* add remaining [11:0] bits from original MC4_ADDR */
974 tmp_addr |= addr & GENMASK(0, 11);
975
976 return cc6_base | tmp_addr;
977 }
978
979 return addr;
ddff876d
DT
980}
981
7f19bf75 982static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 983{
f08e457c 984 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 985 int off = range << 3;
ddff876d 986
7f19bf75
BP
987 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
988 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 989
f08e457c 990 if (c->x86 == 0xf)
7f19bf75 991 return;
ddff876d 992
7f19bf75
BP
993 if (!dram_rw(pvt, range))
994 return;
ddff876d 995
7f19bf75
BP
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c
BP
998
999 /* Factor in CC6 save area by reading dst node's limit reg */
1000 if (c->x86 == 0x15) {
1001 struct pci_dev *f1 = NULL;
1002 u8 nid = dram_dst_node(pvt, range);
1003 u32 llim;
1004
1005 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1006 if (WARN_ON(!f1))
1007 return;
1008
1009 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1010
1011 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1012
1013 /* {[39:27],111b} */
1014 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1015
1016 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1017
1018 /* [47:40] */
1019 pvt->ranges[range].lim.hi |= llim >> 13;
1020
1021 pci_dev_put(f1);
1022 }
ddff876d
DT
1023}
1024
f192c7b1 1025static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1026 struct err_info *err)
ddff876d 1027{
f192c7b1 1028 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1029
33ca0643 1030 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1031
1032 /*
1033 * Find out which node the error address belongs to. This may be
1034 * different from the node that detected the error.
1035 */
33ca0643
BP
1036 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1037 if (!err->src_mci) {
ab5a503c
MCC
1038 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1039 (unsigned long)sys_addr);
33ca0643 1040 err->err_code = ERR_NODE;
ab5a503c
MCC
1041 return;
1042 }
1043
1044 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1045 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1046 if (err->csrow < 0) {
1047 err->err_code = ERR_CSROW;
ab5a503c
MCC
1048 return;
1049 }
1050
ddff876d 1051 /* CHIPKILL enabled */
f192c7b1 1052 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1053 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1054 if (err->channel < 0) {
ddff876d
DT
1055 /*
1056 * Syndrome didn't map, so we don't know which of the
1057 * 2 DIMMs is in error. So we need to ID 'both' of them
1058 * as suspect.
1059 */
33ca0643 1060 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1061 "possible error reporting race\n",
33ca0643
BP
1062 err->syndrome);
1063 err->err_code = ERR_CHANNEL;
ddff876d
DT
1064 return;
1065 }
1066 } else {
1067 /*
1068 * non-chipkill ecc mode
1069 *
1070 * The k8 documentation is unclear about how to determine the
1071 * channel number when using non-chipkill memory. This method
1072 * was obtained from email communication with someone at AMD.
1073 * (Wish the email was placed in this comment - norsk)
1074 */
33ca0643 1075 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1076 }
ddff876d
DT
1077}
1078
41d8bfab 1079static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1080{
41d8bfab 1081 unsigned shift = 0;
ddff876d 1082
41d8bfab
BP
1083 if (i <= 2)
1084 shift = i;
1085 else if (!(i & 0x1))
1086 shift = i >> 1;
1433eb99 1087 else
41d8bfab 1088 shift = (i + 1) >> 1;
ddff876d 1089
41d8bfab
BP
1090 return 128 << (shift + !!dct_width);
1091}
1092
1093static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1094 unsigned cs_mode)
1095{
1096 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1097
1098 if (pvt->ext_model >= K8_REV_F) {
1099 WARN_ON(cs_mode > 11);
1100 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1101 }
1102 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1103 unsigned diff;
41d8bfab
BP
1104 WARN_ON(cs_mode > 10);
1105
11b0a314
BP
1106 /*
1107 * the below calculation, besides trying to win an obfuscated C
1108 * contest, maps cs_mode values to DIMM chip select sizes. The
1109 * mappings are:
1110 *
1111 * cs_mode CS size (mb)
1112 * ======= ============
1113 * 0 32
1114 * 1 64
1115 * 2 128
1116 * 3 128
1117 * 4 256
1118 * 5 512
1119 * 6 256
1120 * 7 512
1121 * 8 1024
1122 * 9 1024
1123 * 10 2048
1124 *
1125 * Basically, it calculates a value with which to shift the
1126 * smallest CS size of 32MB.
1127 *
1128 * ddr[23]_cs_size have a similar purpose.
1129 */
1130 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1131
1132 return 32 << (cs_mode - diff);
41d8bfab
BP
1133 }
1134 else {
1135 WARN_ON(cs_mode > 6);
1136 return 32 << cs_mode;
1137 }
ddff876d
DT
1138}
1139
1afd3c98
DT
1140/*
1141 * Get the number of DCT channels in use.
1142 *
1143 * Return:
1144 * number of Memory Channels in operation
1145 * Pass back:
1146 * contents of the DCL0_LOW register
1147 */
7d20d14d 1148static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1149{
6ba5dcdc 1150 int i, j, channels = 0;
1afd3c98 1151
7d20d14d 1152 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1153 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1154 return 2;
1afd3c98
DT
1155
1156 /*
d16149e8
BP
1157 * Need to check if in unganged mode: In such, there are 2 channels,
1158 * but they are not in 128 bit mode and thus the above 'dclr0' status
1159 * bit will be OFF.
1afd3c98
DT
1160 *
1161 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1162 * their CSEnable bit on. If so, then SINGLE DIMM case.
1163 */
956b9ba1 1164 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1165
1afd3c98
DT
1166 /*
1167 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1168 * is more than just one DIMM present in unganged mode. Need to check
1169 * both controllers since DIMMs can be placed in either one.
1170 */
525a1b20
BP
1171 for (i = 0; i < 2; i++) {
1172 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1173
57a30854
WW
1174 for (j = 0; j < 4; j++) {
1175 if (DBAM_DIMM(j, dbam) > 0) {
1176 channels++;
1177 break;
1178 }
1179 }
1afd3c98
DT
1180 }
1181
d16149e8
BP
1182 if (channels > 2)
1183 channels = 2;
1184
24f9a7fe 1185 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1186
1187 return channels;
1afd3c98
DT
1188}
1189
41d8bfab 1190static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1191{
41d8bfab
BP
1192 unsigned shift = 0;
1193 int cs_size = 0;
1194
1195 if (i == 0 || i == 3 || i == 4)
1196 cs_size = -1;
1197 else if (i <= 2)
1198 shift = i;
1199 else if (i == 12)
1200 shift = 7;
1201 else if (!(i & 0x1))
1202 shift = i >> 1;
1203 else
1204 shift = (i + 1) >> 1;
1205
1206 if (cs_size != -1)
1207 cs_size = (128 * (1 << !!dct_width)) << shift;
1208
1209 return cs_size;
1210}
1211
1212static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1213 unsigned cs_mode)
1214{
1215 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1216
1217 WARN_ON(cs_mode > 11);
1433eb99
BP
1218
1219 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1220 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1221 else
41d8bfab
BP
1222 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1223}
1224
1225/*
1226 * F15h supports only 64bit DCT interfaces
1227 */
1228static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1229 unsigned cs_mode)
1230{
1231 WARN_ON(cs_mode > 12);
1433eb99 1232
41d8bfab 1233 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1234}
1235
5a5d2371 1236static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1237{
6163b5d4 1238
5a5d2371
BP
1239 if (boot_cpu_data.x86 == 0xf)
1240 return;
1241
78da121e 1242 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1243 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1244 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1245
956b9ba1
JP
1246 edac_dbg(0, " DCTs operate in %s mode\n",
1247 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1248
1249 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1250 edac_dbg(0, " Address range split per DCT: %s\n",
1251 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1252
956b9ba1
JP
1253 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1254 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1255 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1256
956b9ba1
JP
1257 edac_dbg(0, " channel interleave: %s, "
1258 "interleave bits selector: 0x%x\n",
1259 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1260 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1261 }
1262
78da121e 1263 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1264}
1265
f71d0a05 1266/*
229a7a11 1267 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1268 * Interleaving Modes.
1269 */
b15f0fca 1270static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1271 bool hi_range_sel, u8 intlv_en)
6163b5d4 1272{
151fa71c 1273 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1274
1275 if (dct_ganging_enabled(pvt))
229a7a11 1276 return 0;
6163b5d4 1277
229a7a11
BP
1278 if (hi_range_sel)
1279 return dct_sel_high;
6163b5d4 1280
229a7a11
BP
1281 /*
1282 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1283 */
1284 if (dct_interleave_enabled(pvt)) {
1285 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1286
1287 /* return DCT select function: 0=DCT0, 1=DCT1 */
1288 if (!intlv_addr)
1289 return sys_addr >> 6 & 1;
1290
1291 if (intlv_addr & 0x2) {
1292 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1293 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1294
1295 return ((sys_addr >> shift) & 1) ^ temp;
1296 }
1297
1298 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1299 }
1300
1301 if (dct_high_range_enabled(pvt))
1302 return ~dct_sel_high & 1;
6163b5d4
DT
1303
1304 return 0;
1305}
1306
c8e518d5 1307/* Convert the sys_addr to the normalized DCT address */
e761359a 1308static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1309 u64 sys_addr, bool hi_rng,
1310 u32 dct_sel_base_addr)
6163b5d4
DT
1311{
1312 u64 chan_off;
c8e518d5
BP
1313 u64 dram_base = get_dram_base(pvt, range);
1314 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1315 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1316
c8e518d5
BP
1317 if (hi_rng) {
1318 /*
1319 * if
1320 * base address of high range is below 4Gb
1321 * (bits [47:27] at [31:11])
1322 * DRAM address space on this DCT is hoisted above 4Gb &&
1323 * sys_addr > 4Gb
1324 *
1325 * remove hole offset from sys_addr
1326 * else
1327 * remove high range offset from sys_addr
1328 */
1329 if ((!(dct_sel_base_addr >> 16) ||
1330 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1331 dhar_valid(pvt) &&
c8e518d5 1332 (sys_addr >= BIT_64(32)))
bc21fa57 1333 chan_off = hole_off;
6163b5d4
DT
1334 else
1335 chan_off = dct_sel_base_off;
1336 } else {
c8e518d5
BP
1337 /*
1338 * if
1339 * we have a valid hole &&
1340 * sys_addr > 4Gb
1341 *
1342 * remove hole
1343 * else
1344 * remove dram base to normalize to DCT address
1345 */
972ea17a 1346 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1347 chan_off = hole_off;
6163b5d4 1348 else
c8e518d5 1349 chan_off = dram_base;
6163b5d4
DT
1350 }
1351
c8e518d5 1352 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1353}
1354
6163b5d4
DT
1355/*
1356 * checks if the csrow passed in is marked as SPARED, if so returns the new
1357 * spare row
1358 */
11c75ead 1359static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1360{
614ec9d8
BP
1361 int tmp_cs;
1362
1363 if (online_spare_swap_done(pvt, dct) &&
1364 csrow == online_spare_bad_dramcs(pvt, dct)) {
1365
1366 for_each_chip_select(tmp_cs, dct, pvt) {
1367 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1368 csrow = tmp_cs;
1369 break;
1370 }
1371 }
6163b5d4
DT
1372 }
1373 return csrow;
1374}
1375
1376/*
1377 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1378 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1379 *
1380 * Return:
1381 * -EINVAL: NOT FOUND
1382 * 0..csrow = Chip-Select Row
1383 */
b15f0fca 1384static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1385{
1386 struct mem_ctl_info *mci;
1387 struct amd64_pvt *pvt;
11c75ead 1388 u64 cs_base, cs_mask;
6163b5d4
DT
1389 int cs_found = -EINVAL;
1390 int csrow;
1391
cc4d8860 1392 mci = mcis[nid];
6163b5d4
DT
1393 if (!mci)
1394 return cs_found;
1395
1396 pvt = mci->pvt_info;
1397
956b9ba1 1398 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1399
11c75ead
BP
1400 for_each_chip_select(csrow, dct, pvt) {
1401 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1402 continue;
1403
11c75ead 1404 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1405
956b9ba1
JP
1406 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1407 csrow, cs_base, cs_mask);
6163b5d4 1408
11c75ead 1409 cs_mask = ~cs_mask;
6163b5d4 1410
956b9ba1
JP
1411 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1412 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1413
11c75ead
BP
1414 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1415 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1416
956b9ba1 1417 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1418 break;
1419 }
1420 }
1421 return cs_found;
1422}
1423
95b0ef55
BP
1424/*
1425 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1426 * swapped with a region located at the bottom of memory so that the GPU can use
1427 * the interleaved region and thus two channels.
1428 */
b15f0fca 1429static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1430{
1431 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1432
1433 if (boot_cpu_data.x86 == 0x10) {
1434 /* only revC3 and revE have that feature */
1435 if (boot_cpu_data.x86_model < 4 ||
1436 (boot_cpu_data.x86_model < 0xa &&
1437 boot_cpu_data.x86_mask < 3))
1438 return sys_addr;
1439 }
1440
1441 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1442
1443 if (!(swap_reg & 0x1))
1444 return sys_addr;
1445
1446 swap_base = (swap_reg >> 3) & 0x7f;
1447 swap_limit = (swap_reg >> 11) & 0x7f;
1448 rgn_size = (swap_reg >> 20) & 0x7f;
1449 tmp_addr = sys_addr >> 27;
1450
1451 if (!(sys_addr >> 34) &&
1452 (((tmp_addr >= swap_base) &&
1453 (tmp_addr <= swap_limit)) ||
1454 (tmp_addr < rgn_size)))
1455 return sys_addr ^ (u64)swap_base << 27;
1456
1457 return sys_addr;
1458}
1459
f71d0a05 1460/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1461static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1462 u64 sys_addr, int *chan_sel)
f71d0a05 1463{
229a7a11 1464 int cs_found = -EINVAL;
c8e518d5 1465 u64 chan_addr;
5d4b58e8 1466 u32 dct_sel_base;
11c75ead 1467 u8 channel;
229a7a11 1468 bool high_range = false;
f71d0a05 1469
7f19bf75 1470 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1471 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1472 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1473
956b9ba1
JP
1474 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1475 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1476
355fba60
BP
1477 if (dhar_valid(pvt) &&
1478 dhar_base(pvt) <= sys_addr &&
1479 sys_addr < BIT_64(32)) {
1480 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1481 sys_addr);
1482 return -EINVAL;
1483 }
1484
f030ddfb 1485 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1486 return -EINVAL;
1487
b15f0fca 1488 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1489
f71d0a05
DT
1490 dct_sel_base = dct_sel_baseaddr(pvt);
1491
1492 /*
1493 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1494 * select between DCT0 and DCT1.
1495 */
1496 if (dct_high_range_enabled(pvt) &&
1497 !dct_ganging_enabled(pvt) &&
1498 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1499 high_range = true;
f71d0a05 1500
b15f0fca 1501 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1502
b15f0fca 1503 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1504 high_range, dct_sel_base);
f71d0a05 1505
e2f79dbd
BP
1506 /* Remove node interleaving, see F1x120 */
1507 if (intlv_en)
1508 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1509 (chan_addr & 0xfff);
f71d0a05 1510
5d4b58e8 1511 /* remove channel interleave */
f71d0a05
DT
1512 if (dct_interleave_enabled(pvt) &&
1513 !dct_high_range_enabled(pvt) &&
1514 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1515
1516 if (dct_sel_interleave_addr(pvt) != 1) {
1517 if (dct_sel_interleave_addr(pvt) == 0x3)
1518 /* hash 9 */
1519 chan_addr = ((chan_addr >> 10) << 9) |
1520 (chan_addr & 0x1ff);
1521 else
1522 /* A[6] or hash 6 */
1523 chan_addr = ((chan_addr >> 7) << 6) |
1524 (chan_addr & 0x3f);
1525 } else
1526 /* A[12] */
1527 chan_addr = ((chan_addr >> 13) << 12) |
1528 (chan_addr & 0xfff);
f71d0a05
DT
1529 }
1530
956b9ba1 1531 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1532
b15f0fca 1533 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1534
33ca0643 1535 if (cs_found >= 0)
f71d0a05 1536 *chan_sel = channel;
33ca0643 1537
f71d0a05
DT
1538 return cs_found;
1539}
1540
b15f0fca 1541static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
33ca0643 1542 int *chan_sel)
f71d0a05 1543{
e761359a
BP
1544 int cs_found = -EINVAL;
1545 unsigned range;
f71d0a05 1546
7f19bf75 1547 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1548
7f19bf75 1549 if (!dram_rw(pvt, range))
f71d0a05
DT
1550 continue;
1551
7f19bf75
BP
1552 if ((get_dram_base(pvt, range) <= sys_addr) &&
1553 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1554
b15f0fca 1555 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1556 sys_addr, chan_sel);
f71d0a05
DT
1557 if (cs_found >= 0)
1558 break;
1559 }
1560 }
1561 return cs_found;
1562}
1563
1564/*
bdc30a0c
BP
1565 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1566 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1567 *
bdc30a0c
BP
1568 * The @sys_addr is usually an error address received from the hardware
1569 * (MCX_ADDR).
f71d0a05 1570 */
b15f0fca 1571static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1572 struct err_info *err)
f71d0a05
DT
1573{
1574 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1575
33ca0643 1576 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1577
33ca0643
BP
1578 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1579 if (err->csrow < 0) {
1580 err->err_code = ERR_CSROW;
bdc30a0c
BP
1581 return;
1582 }
1583
bdc30a0c
BP
1584 /*
1585 * We need the syndromes for channel detection only when we're
1586 * ganged. Otherwise @chan should already contain the channel at
1587 * this point.
1588 */
a97fa68e 1589 if (dct_ganging_enabled(pvt))
33ca0643 1590 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1591}
1592
f71d0a05 1593/*
8566c4df 1594 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1595 * CSROWs
f71d0a05 1596 */
8c671751 1597static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1598{
bb89f5a0 1599 int dimm, size0, size1;
525a1b20
BP
1600 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1601 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1602
8566c4df
BP
1603 if (boot_cpu_data.x86 == 0xf) {
1604 /* K8 families < revF not supported yet */
1433eb99 1605 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1606 return;
1607 else
1608 WARN_ON(ctrl != 0);
1609 }
1610
4d796364 1611 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1612 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1613 : pvt->csels[0].csbases;
f71d0a05 1614
956b9ba1
JP
1615 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1616 ctrl, dbam);
f71d0a05 1617
8566c4df
BP
1618 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1619
f71d0a05
DT
1620 /* Dump memory sizes for DIMM and its CSROWs */
1621 for (dimm = 0; dimm < 4; dimm++) {
1622
1623 size0 = 0;
11c75ead 1624 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1625 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1626 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1627
1628 size1 = 0;
11c75ead 1629 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1630 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1631 DBAM_DIMM(dimm, dbam));
f71d0a05 1632
24f9a7fe 1633 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1634 dimm * 2, size0,
1635 dimm * 2 + 1, size1);
f71d0a05
DT
1636 }
1637}
1638
4d37607a
DT
1639static struct amd64_family_type amd64_family_types[] = {
1640 [K8_CPUS] = {
0092b20d 1641 .ctl_name = "K8",
8d5b5d9c
BP
1642 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1643 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1644 .ops = {
1433eb99 1645 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1646 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1647 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1648 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1649 }
1650 },
1651 [F10_CPUS] = {
0092b20d 1652 .ctl_name = "F10h",
8d5b5d9c
BP
1653 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1654 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1655 .ops = {
7d20d14d 1656 .early_channel_count = f1x_early_channel_count,
b15f0fca 1657 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1658 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1659 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1660 }
1661 },
1662 [F15_CPUS] = {
1663 .ctl_name = "F15h",
df71a053
BP
1664 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1665 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1666 .ops = {
7d20d14d 1667 .early_channel_count = f1x_early_channel_count,
b15f0fca 1668 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1669 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1670 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1671 }
1672 },
4d37607a
DT
1673};
1674
1675static struct pci_dev *pci_get_related_function(unsigned int vendor,
1676 unsigned int device,
1677 struct pci_dev *related)
1678{
1679 struct pci_dev *dev = NULL;
1680
1681 dev = pci_get_device(vendor, device, dev);
1682 while (dev) {
1683 if ((dev->bus->number == related->bus->number) &&
1684 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1685 break;
1686 dev = pci_get_device(vendor, device, dev);
1687 }
1688
1689 return dev;
1690}
1691
b1289d6f 1692/*
bfc04aec
BP
1693 * These are tables of eigenvectors (one per line) which can be used for the
1694 * construction of the syndrome tables. The modified syndrome search algorithm
1695 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1696 *
bfc04aec 1697 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1698 */
bfc04aec
BP
1699static u16 x4_vectors[] = {
1700 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1701 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1702 0x0001, 0x0002, 0x0004, 0x0008,
1703 0x1013, 0x3032, 0x4044, 0x8088,
1704 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1705 0x4857, 0xc4fe, 0x13cc, 0x3288,
1706 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1707 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1708 0x15c1, 0x2a42, 0x89ac, 0x4758,
1709 0x2b03, 0x1602, 0x4f0c, 0xca08,
1710 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1711 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1712 0x2b87, 0x164e, 0x642c, 0xdc18,
1713 0x40b9, 0x80de, 0x1094, 0x20e8,
1714 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1715 0x11c1, 0x2242, 0x84ac, 0x4c58,
1716 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1717 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1718 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1719 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1720 0x16b3, 0x3d62, 0x4f34, 0x8518,
1721 0x1e2f, 0x391a, 0x5cac, 0xf858,
1722 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1723 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1724 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1725 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1726 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1727 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1728 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1729 0x185d, 0x2ca6, 0x7914, 0x9e28,
1730 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1731 0x4199, 0x82ee, 0x19f4, 0x2e58,
1732 0x4807, 0xc40e, 0x130c, 0x3208,
1733 0x1905, 0x2e0a, 0x5804, 0xac08,
1734 0x213f, 0x132a, 0xadfc, 0x5ba8,
1735 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1736};
1737
bfc04aec
BP
1738static u16 x8_vectors[] = {
1739 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1740 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1741 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1742 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1743 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1744 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1745 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1746 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1747 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1748 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1749 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1750 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1751 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1752 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1753 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1754 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1755 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1756 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1757 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1758};
1759
d34a6ecd
BP
1760static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1761 unsigned v_dim)
b1289d6f 1762{
bfc04aec
BP
1763 unsigned int i, err_sym;
1764
1765 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1766 u16 s = syndrome;
d34a6ecd
BP
1767 unsigned v_idx = err_sym * v_dim;
1768 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1769
1770 /* walk over all 16 bits of the syndrome */
1771 for (i = 1; i < (1U << 16); i <<= 1) {
1772
1773 /* if bit is set in that eigenvector... */
1774 if (v_idx < v_end && vectors[v_idx] & i) {
1775 u16 ev_comp = vectors[v_idx++];
1776
1777 /* ... and bit set in the modified syndrome, */
1778 if (s & i) {
1779 /* remove it. */
1780 s ^= ev_comp;
4d37607a 1781
bfc04aec
BP
1782 if (!s)
1783 return err_sym;
1784 }
b1289d6f 1785
bfc04aec
BP
1786 } else if (s & i)
1787 /* can't get to zero, move to next symbol */
1788 break;
1789 }
b1289d6f
DT
1790 }
1791
956b9ba1 1792 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1793 return -1;
1794}
d27bf6fa 1795
bfc04aec
BP
1796static int map_err_sym_to_channel(int err_sym, int sym_size)
1797{
1798 if (sym_size == 4)
1799 switch (err_sym) {
1800 case 0x20:
1801 case 0x21:
1802 return 0;
1803 break;
1804 case 0x22:
1805 case 0x23:
1806 return 1;
1807 break;
1808 default:
1809 return err_sym >> 4;
1810 break;
1811 }
1812 /* x8 symbols */
1813 else
1814 switch (err_sym) {
1815 /* imaginary bits not in a DIMM */
1816 case 0x10:
1817 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1818 err_sym);
1819 return -1;
1820 break;
1821
1822 case 0x11:
1823 return 0;
1824 break;
1825 case 0x12:
1826 return 1;
1827 break;
1828 default:
1829 return err_sym >> 3;
1830 break;
1831 }
1832 return -1;
1833}
1834
1835static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1836{
1837 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1838 int err_sym = -1;
1839
a3b7db09 1840 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1841 err_sym = decode_syndrome(syndrome, x8_vectors,
1842 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1843 pvt->ecc_sym_sz);
1844 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1845 err_sym = decode_syndrome(syndrome, x4_vectors,
1846 ARRAY_SIZE(x4_vectors),
a3b7db09 1847 pvt->ecc_sym_sz);
ad6a32e9 1848 else {
a3b7db09 1849 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1850 return err_sym;
bfc04aec 1851 }
ad6a32e9 1852
a3b7db09 1853 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1854}
1855
33ca0643
BP
1856static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1857 u8 ecc_type)
d27bf6fa 1858{
33ca0643
BP
1859 enum hw_event_mc_err_type err_type;
1860 const char *string;
d27bf6fa 1861
33ca0643
BP
1862 if (ecc_type == 2)
1863 err_type = HW_EVENT_ERR_CORRECTED;
1864 else if (ecc_type == 1)
1865 err_type = HW_EVENT_ERR_UNCORRECTED;
1866 else {
1867 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1868 return;
1869 }
1870
33ca0643
BP
1871 switch (err->err_code) {
1872 case DECODE_OK:
1873 string = "";
1874 break;
1875 case ERR_NODE:
1876 string = "Failed to map error addr to a node";
1877 break;
1878 case ERR_CSROW:
1879 string = "Failed to map error addr to a csrow";
1880 break;
1881 case ERR_CHANNEL:
1882 string = "unknown syndrome - possible error reporting race";
1883 break;
1884 default:
1885 string = "WTF error";
1886 break;
d27bf6fa 1887 }
33ca0643
BP
1888
1889 edac_mc_handle_error(err_type, mci, 1,
1890 err->page, err->offset, err->syndrome,
1891 err->csrow, err->channel, -1,
1892 string, "");
d27bf6fa
DT
1893}
1894
549d042d 1895static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1896 struct mce *m)
d27bf6fa 1897{
33ca0643 1898 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 1899 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
1900 u8 xec = XEC(m->status, 0x1f);
1901 u16 ec = EC(m->status);
33ca0643
BP
1902 u64 sys_addr;
1903 struct err_info err;
d27bf6fa 1904
66fed2d4 1905 /* Bail out early if this was an 'observed' error */
5980bb9c 1906 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1907 return;
d27bf6fa 1908
ecaf5606
BP
1909 /* Do only ECC errors */
1910 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1911 return;
d27bf6fa 1912
33ca0643
BP
1913 memset(&err, 0, sizeof(err));
1914
1915 sys_addr = get_error_address(m);
1916
ecaf5606 1917 if (ecc_type == 2)
33ca0643
BP
1918 err.syndrome = extract_syndrome(m->status);
1919
1920 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1921
1922 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
1923}
1924
b0b07a2b 1925void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1926{
b0b07a2b 1927 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1928}
d27bf6fa 1929
0ec449ee 1930/*
8d5b5d9c 1931 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1932 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1933 */
360b7f3c 1934static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1935{
0ec449ee 1936 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1937 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1938 if (!pvt->F1) {
24f9a7fe
BP
1939 amd64_err("error address map device not found: "
1940 "vendor %x device 0x%x (broken BIOS?)\n",
1941 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1942 return -ENODEV;
0ec449ee
DT
1943 }
1944
1945 /* Reserve the MISC Device */
8d5b5d9c
BP
1946 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1947 if (!pvt->F3) {
1948 pci_dev_put(pvt->F1);
1949 pvt->F1 = NULL;
0ec449ee 1950
24f9a7fe
BP
1951 amd64_err("error F3 device not found: "
1952 "vendor %x device 0x%x (broken BIOS?)\n",
1953 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1954
bbd0c1f6 1955 return -ENODEV;
0ec449ee 1956 }
956b9ba1
JP
1957 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1958 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1959 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1960
1961 return 0;
1962}
1963
360b7f3c 1964static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1965{
8d5b5d9c
BP
1966 pci_dev_put(pvt->F1);
1967 pci_dev_put(pvt->F3);
0ec449ee
DT
1968}
1969
1970/*
1971 * Retrieve the hardware registers of the memory controller (this includes the
1972 * 'Address Map' and 'Misc' device regs)
1973 */
360b7f3c 1974static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1975{
a3b7db09 1976 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1977 u64 msr_val;
ad6a32e9 1978 u32 tmp;
e761359a 1979 unsigned range;
0ec449ee
DT
1980
1981 /*
1982 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1983 * those are Read-As-Zero
1984 */
e97f8bb8 1985 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 1986 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1987
1988 /* check first whether TOP_MEM2 is enabled */
1989 rdmsrl(MSR_K8_SYSCFG, msr_val);
1990 if (msr_val & (1U << 21)) {
e97f8bb8 1991 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 1992 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 1993 } else
956b9ba1 1994 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 1995
5980bb9c 1996 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1997
5a5d2371 1998 read_dram_ctl_register(pvt);
0ec449ee 1999
7f19bf75
BP
2000 for (range = 0; range < DRAM_RANGES; range++) {
2001 u8 rw;
0ec449ee 2002
7f19bf75
BP
2003 /* read settings for this DRAM range */
2004 read_dram_base_limit_regs(pvt, range);
2005
2006 rw = dram_rw(pvt, range);
2007 if (!rw)
2008 continue;
2009
956b9ba1
JP
2010 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2011 range,
2012 get_dram_base(pvt, range),
2013 get_dram_limit(pvt, range));
7f19bf75 2014
956b9ba1
JP
2015 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2016 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2017 (rw & 0x1) ? "R" : "-",
2018 (rw & 0x2) ? "W" : "-",
2019 dram_intlv_sel(pvt, range),
2020 dram_dst_node(pvt, range));
0ec449ee
DT
2021 }
2022
b2b0c605 2023 read_dct_base_mask(pvt);
0ec449ee 2024
bc21fa57 2025 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 2026 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 2027
8d5b5d9c 2028 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2029
cb328507
BP
2030 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2031 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 2032
78da121e 2033 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2034 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2035 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2036 }
ad6a32e9 2037
a3b7db09
BP
2038 pvt->ecc_sym_sz = 4;
2039
2040 if (c->x86 >= 0x10) {
b2b0c605 2041 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2042 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2043
a3b7db09
BP
2044 /* F10h, revD and later can do x8 ECC too */
2045 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2046 pvt->ecc_sym_sz = 8;
2047 }
b2b0c605 2048 dump_misc_regs(pvt);
0ec449ee
DT
2049}
2050
2051/*
2052 * NOTE: CPU Revision Dependent code
2053 *
2054 * Input:
11c75ead 2055 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2056 * k8 private pointer to -->
2057 * DRAM Bank Address mapping register
2058 * node_id
2059 * DCL register where dual_channel_active is
2060 *
2061 * The DBAM register consists of 4 sets of 4 bits each definitions:
2062 *
2063 * Bits: CSROWs
2064 * 0-3 CSROWs 0 and 1
2065 * 4-7 CSROWs 2 and 3
2066 * 8-11 CSROWs 4 and 5
2067 * 12-15 CSROWs 6 and 7
2068 *
2069 * Values range from: 0 to 15
2070 * The meaning of the values depends on CPU revision and dual-channel state,
2071 * see relevant BKDG more info.
2072 *
2073 * The memory controller provides for total of only 8 CSROWs in its current
2074 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2075 * single channel or two (2) DIMMs in dual channel mode.
2076 *
2077 * The following code logic collapses the various tables for CSROW based on CPU
2078 * revision.
2079 *
2080 * Returns:
2081 * The number of PAGE_SIZE pages on the specified CSROW number it
2082 * encompasses
2083 *
2084 */
41d8bfab 2085static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2086{
1433eb99 2087 u32 cs_mode, nr_pages;
f92cae45 2088 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee
DT
2089
2090 /*
2091 * The math on this doesn't look right on the surface because x/2*4 can
2092 * be simplified to x*2 but this expression makes use of the fact that
2093 * it is integral math where 1/2=0. This intermediate value becomes the
2094 * number of bits to shift the DBAM register to extract the proper CSROW
2095 * field.
2096 */
0a5dfc31 2097 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2098
41d8bfab 2099 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2100
956b9ba1
JP
2101 edac_dbg(0, " (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2102 edac_dbg(0, " nr_pages/channel= %u channel-count = %d\n",
2103 nr_pages, pvt->channel_count);
0ec449ee
DT
2104
2105 return nr_pages;
2106}
2107
2108/*
2109 * Initialize the array of csrow attribute instances, based on the values
2110 * from pci config hardware registers.
2111 */
360b7f3c 2112static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2113{
2114 struct csrow_info *csrow;
de3910eb 2115 struct dimm_info *dimm;
2299ef71 2116 struct amd64_pvt *pvt = mci->pvt_info;
5e2af0c0 2117 u64 base, mask;
2299ef71 2118 u32 val;
084a4fcc
MCC
2119 int i, j, empty = 1;
2120 enum mem_type mtype;
2121 enum edac_type edac_mode;
a895bf8b 2122 int nr_pages = 0;
0ec449ee 2123
a97fa68e 2124 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2125
2299ef71 2126 pvt->nbcfg = val;
0ec449ee 2127
956b9ba1
JP
2128 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2129 pvt->mc_node_id, val,
2130 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2131
11c75ead 2132 for_each_chip_select(i, 0, pvt) {
de3910eb 2133 csrow = mci->csrows[i];
0ec449ee 2134
f92cae45 2135 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
956b9ba1
JP
2136 edac_dbg(1, "----CSROW %d VALID for MC node %d\n",
2137 i, pvt->mc_node_id);
0ec449ee
DT
2138 continue;
2139 }
2140
0ec449ee 2141 empty = 0;
f92cae45 2142 if (csrow_enabled(i, 0, pvt))
a895bf8b 2143 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
f92cae45 2144 if (csrow_enabled(i, 1, pvt))
a895bf8b 2145 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
11c75ead
BP
2146
2147 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
0ec449ee
DT
2148 /* 8 bytes of resolution */
2149
084a4fcc 2150 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2151
956b9ba1
JP
2152 edac_dbg(1, " for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2153 edac_dbg(1, " nr_pages: %u\n",
2154 nr_pages * pvt->channel_count);
0ec449ee
DT
2155
2156 /*
2157 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2158 */
a97fa68e 2159 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2160 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2161 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2162 else
084a4fcc
MCC
2163 edac_mode = EDAC_NONE;
2164
2165 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2166 dimm = csrow->channels[j]->dimm;
2167 dimm->mtype = mtype;
2168 dimm->edac_mode = edac_mode;
2169 dimm->nr_pages = nr_pages;
084a4fcc 2170 }
0ec449ee
DT
2171 }
2172
2173 return empty;
2174}
d27bf6fa 2175
f6d6ae96 2176/* get all cores on this DCT */
b487c33e 2177static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2178{
2179 int cpu;
2180
2181 for_each_online_cpu(cpu)
2182 if (amd_get_nb_id(cpu) == nid)
2183 cpumask_set_cpu(cpu, mask);
2184}
2185
2186/* check MCG_CTL on all the cpus on this node */
b487c33e 2187static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2188{
2189 cpumask_var_t mask;
50542251 2190 int cpu, nbe;
f6d6ae96
BP
2191 bool ret = false;
2192
2193 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2194 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2195 return false;
2196 }
2197
2198 get_cpus_on_this_dct_cpumask(mask, nid);
2199
f6d6ae96
BP
2200 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2201
2202 for_each_cpu(cpu, mask) {
50542251 2203 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2204 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2205
956b9ba1
JP
2206 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2207 cpu, reg->q,
2208 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2209
2210 if (!nbe)
2211 goto out;
f6d6ae96
BP
2212 }
2213 ret = true;
2214
2215out:
f6d6ae96
BP
2216 free_cpumask_var(mask);
2217 return ret;
2218}
2219
2299ef71 2220static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2221{
2222 cpumask_var_t cmask;
50542251 2223 int cpu;
f6d6ae96
BP
2224
2225 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2226 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2227 return false;
2228 }
2229
ae7bb7c6 2230 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2231
f6d6ae96
BP
2232 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2233
2234 for_each_cpu(cpu, cmask) {
2235
50542251
BP
2236 struct msr *reg = per_cpu_ptr(msrs, cpu);
2237
f6d6ae96 2238 if (on) {
5980bb9c 2239 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2240 s->flags.nb_mce_enable = 1;
f6d6ae96 2241
5980bb9c 2242 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2243 } else {
2244 /*
d95cf4de 2245 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2246 */
ae7bb7c6 2247 if (!s->flags.nb_mce_enable)
5980bb9c 2248 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2249 }
f6d6ae96
BP
2250 }
2251 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2252
f6d6ae96
BP
2253 free_cpumask_var(cmask);
2254
2255 return 0;
2256}
2257
2299ef71
BP
2258static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2259 struct pci_dev *F3)
f9431992 2260{
2299ef71 2261 bool ret = true;
c9f4f26e 2262 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2263
2299ef71
BP
2264 if (toggle_ecc_err_reporting(s, nid, ON)) {
2265 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2266 return false;
2267 }
2268
c9f4f26e 2269 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2270
ae7bb7c6
BP
2271 s->old_nbctl = value & mask;
2272 s->nbctl_valid = true;
f9431992
DT
2273
2274 value |= mask;
c9f4f26e 2275 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2276
a97fa68e 2277 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2278
956b9ba1
JP
2279 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2280 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2281
a97fa68e 2282 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2283 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2284
ae7bb7c6 2285 s->flags.nb_ecc_prev = 0;
d95cf4de 2286
f9431992 2287 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2288 value |= NBCFG_ECC_ENABLE;
2289 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2290
a97fa68e 2291 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2292
a97fa68e 2293 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2294 amd64_warn("Hardware rejected DRAM ECC enable,"
2295 "check memory DIMM configuration.\n");
2299ef71 2296 ret = false;
f9431992 2297 } else {
24f9a7fe 2298 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2299 }
d95cf4de 2300 } else {
ae7bb7c6 2301 s->flags.nb_ecc_prev = 1;
f9431992 2302 }
d95cf4de 2303
956b9ba1
JP
2304 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2305 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2306
2299ef71 2307 return ret;
f9431992
DT
2308}
2309
360b7f3c
BP
2310static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2311 struct pci_dev *F3)
f9431992 2312{
c9f4f26e
BP
2313 u32 value, mask = 0x3; /* UECC/CECC enable */
2314
f9431992 2315
ae7bb7c6 2316 if (!s->nbctl_valid)
f9431992
DT
2317 return;
2318
c9f4f26e 2319 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2320 value &= ~mask;
ae7bb7c6 2321 value |= s->old_nbctl;
f9431992 2322
c9f4f26e 2323 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2324
ae7bb7c6
BP
2325 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2326 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2327 amd64_read_pci_cfg(F3, NBCFG, &value);
2328 value &= ~NBCFG_ECC_ENABLE;
2329 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2330 }
2331
2332 /* restore the NB Enable MCGCTL bit */
2299ef71 2333 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2334 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2335}
2336
2337/*
2299ef71
BP
2338 * EDAC requires that the BIOS have ECC enabled before
2339 * taking over the processing of ECC errors. A command line
2340 * option allows to force-enable hardware ECC later in
2341 * enable_ecc_error_reporting().
f9431992 2342 */
cab4d277
BP
2343static const char *ecc_msg =
2344 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2345 " Either enable ECC checking or force module loading by setting "
2346 "'ecc_enable_override'.\n"
2347 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2348
2299ef71 2349static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2350{
2351 u32 value;
2299ef71 2352 u8 ecc_en = 0;
06724535 2353 bool nb_mce_en = false;
f9431992 2354
a97fa68e 2355 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2356
a97fa68e 2357 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2358 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2359
2299ef71 2360 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2361 if (!nb_mce_en)
2299ef71
BP
2362 amd64_notice("NB MCE bank disabled, set MSR "
2363 "0x%08x[4] on node %d to enable.\n",
2364 MSR_IA32_MCG_CTL, nid);
f9431992 2365
2299ef71
BP
2366 if (!ecc_en || !nb_mce_en) {
2367 amd64_notice("%s", ecc_msg);
2368 return false;
2369 }
2370 return true;
f9431992
DT
2371}
2372
c5608759 2373static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2374{
c5608759 2375 int rc;
7d6034d3 2376
c5608759
MCC
2377 rc = amd64_create_sysfs_dbg_files(mci);
2378 if (rc < 0)
2379 return rc;
7d6034d3 2380
c5608759
MCC
2381 if (boot_cpu_data.x86 >= 0x10) {
2382 rc = amd64_create_sysfs_inject_files(mci);
2383 if (rc < 0)
2384 return rc;
2385 }
2386
2387 return 0;
2388}
7d6034d3 2389
c5608759
MCC
2390static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2391{
2392 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2393
c5608759
MCC
2394 if (boot_cpu_data.x86 >= 0x10)
2395 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2396}
2397
df71a053
BP
2398static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2399 struct amd64_family_type *fam)
7d6034d3
DT
2400{
2401 struct amd64_pvt *pvt = mci->pvt_info;
2402
2403 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2404 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2405
5980bb9c 2406 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2407 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2408
5980bb9c 2409 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2410 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2411
2412 mci->edac_cap = amd64_determine_edac_cap(pvt);
2413 mci->mod_name = EDAC_MOD_STR;
2414 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2415 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2416 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2417 mci->ctl_page_to_phys = NULL;
2418
7d6034d3
DT
2419 /* memory scrubber interface */
2420 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2421 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2422}
2423
0092b20d
BP
2424/*
2425 * returns a pointer to the family descriptor on success, NULL otherwise.
2426 */
2427static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2428{
0092b20d
BP
2429 u8 fam = boot_cpu_data.x86;
2430 struct amd64_family_type *fam_type = NULL;
2431
2432 switch (fam) {
395ae783 2433 case 0xf:
0092b20d 2434 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2435 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2436 break;
df71a053 2437
395ae783 2438 case 0x10:
0092b20d 2439 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2440 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2441 break;
2442
2443 case 0x15:
2444 fam_type = &amd64_family_types[F15_CPUS];
2445 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2446 break;
2447
2448 default:
24f9a7fe 2449 amd64_err("Unsupported family!\n");
0092b20d 2450 return NULL;
395ae783 2451 }
0092b20d 2452
b8cfa02f
BP
2453 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2454
df71a053 2455 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2456 (fam == 0xf ?
24f9a7fe
BP
2457 (pvt->ext_model >= K8_REV_F ? "revF or later "
2458 : "revE or earlier ")
2459 : ""), pvt->mc_node_id);
0092b20d 2460 return fam_type;
395ae783
BP
2461}
2462
2299ef71 2463static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2464{
2465 struct amd64_pvt *pvt = NULL;
0092b20d 2466 struct amd64_family_type *fam_type = NULL;
360b7f3c 2467 struct mem_ctl_info *mci = NULL;
ab5a503c 2468 struct edac_mc_layer layers[2];
7d6034d3 2469 int err = 0, ret;
360b7f3c 2470 u8 nid = get_node_id(F2);
7d6034d3
DT
2471
2472 ret = -ENOMEM;
2473 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2474 if (!pvt)
360b7f3c 2475 goto err_ret;
7d6034d3 2476
360b7f3c 2477 pvt->mc_node_id = nid;
8d5b5d9c 2478 pvt->F2 = F2;
7d6034d3 2479
395ae783 2480 ret = -EINVAL;
0092b20d
BP
2481 fam_type = amd64_per_family_init(pvt);
2482 if (!fam_type)
395ae783
BP
2483 goto err_free;
2484
7d6034d3 2485 ret = -ENODEV;
360b7f3c 2486 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2487 if (err)
2488 goto err_free;
2489
360b7f3c 2490 read_mc_regs(pvt);
7d6034d3 2491
7d6034d3
DT
2492 /*
2493 * We need to determine how many memory channels there are. Then use
2494 * that information for calculating the size of the dynamic instance
360b7f3c 2495 * tables in the 'mci' structure.
7d6034d3 2496 */
360b7f3c 2497 ret = -EINVAL;
7d6034d3
DT
2498 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2499 if (pvt->channel_count < 0)
360b7f3c 2500 goto err_siblings;
7d6034d3
DT
2501
2502 ret = -ENOMEM;
ab5a503c
MCC
2503 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2504 layers[0].size = pvt->csels[0].b_cnt;
2505 layers[0].is_virt_csrow = true;
2506 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2507 layers[1].size = pvt->channel_count;
2508 layers[1].is_virt_csrow = false;
ca0907b9 2509 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2510 if (!mci)
360b7f3c 2511 goto err_siblings;
7d6034d3
DT
2512
2513 mci->pvt_info = pvt;
fd687502 2514 mci->pdev = &pvt->F2->dev;
7d6034d3 2515
df71a053 2516 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2517
2518 if (init_csrows(mci))
7d6034d3
DT
2519 mci->edac_cap = EDAC_FLAG_NONE;
2520
7d6034d3
DT
2521 ret = -ENODEV;
2522 if (edac_mc_add_mc(mci)) {
956b9ba1 2523 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2524 goto err_add_mc;
2525 }
c5608759 2526 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2527 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2528 goto err_add_sysfs;
2529 }
7d6034d3 2530
549d042d
BP
2531 /* register stuff with EDAC MCE */
2532 if (report_gart_errors)
2533 amd_report_gart_errors(true);
2534
2535 amd_register_ecc_decoder(amd64_decode_bus_error);
2536
360b7f3c
BP
2537 mcis[nid] = mci;
2538
2539 atomic_inc(&drv_instances);
2540
7d6034d3
DT
2541 return 0;
2542
c5608759
MCC
2543err_add_sysfs:
2544 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2545err_add_mc:
2546 edac_mc_free(mci);
2547
360b7f3c
BP
2548err_siblings:
2549 free_mc_sibling_devs(pvt);
7d6034d3 2550
360b7f3c
BP
2551err_free:
2552 kfree(pvt);
7d6034d3 2553
360b7f3c 2554err_ret:
7d6034d3
DT
2555 return ret;
2556}
2557
2299ef71 2558static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2559 const struct pci_device_id *mc_type)
7d6034d3 2560{
ae7bb7c6 2561 u8 nid = get_node_id(pdev);
2299ef71 2562 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2563 struct ecc_settings *s;
2299ef71 2564 int ret = 0;
7d6034d3 2565
7d6034d3 2566 ret = pci_enable_device(pdev);
b8cfa02f 2567 if (ret < 0) {
956b9ba1 2568 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2569 return -EIO;
2570 }
7d6034d3 2571
ae7bb7c6
BP
2572 ret = -ENOMEM;
2573 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2574 if (!s)
2299ef71 2575 goto err_out;
ae7bb7c6
BP
2576
2577 ecc_stngs[nid] = s;
2578
2299ef71
BP
2579 if (!ecc_enabled(F3, nid)) {
2580 ret = -ENODEV;
2581
2582 if (!ecc_enable_override)
2583 goto err_enable;
2584
2585 amd64_warn("Forcing ECC on!\n");
2586
2587 if (!enable_ecc_error_reporting(s, nid, F3))
2588 goto err_enable;
2589 }
2590
2591 ret = amd64_init_one_instance(pdev);
360b7f3c 2592 if (ret < 0) {
ae7bb7c6 2593 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2594 restore_ecc_error_reporting(s, nid, F3);
2595 }
7d6034d3
DT
2596
2597 return ret;
2299ef71
BP
2598
2599err_enable:
2600 kfree(s);
2601 ecc_stngs[nid] = NULL;
2602
2603err_out:
2604 return ret;
7d6034d3
DT
2605}
2606
2607static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2608{
2609 struct mem_ctl_info *mci;
2610 struct amd64_pvt *pvt;
360b7f3c
BP
2611 u8 nid = get_node_id(pdev);
2612 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2613 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2614
c5608759
MCC
2615 mci = find_mci_by_dev(&pdev->dev);
2616 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2617 /* Remove from EDAC CORE tracking list */
2618 mci = edac_mc_del_mc(&pdev->dev);
2619 if (!mci)
2620 return;
2621
2622 pvt = mci->pvt_info;
2623
360b7f3c 2624 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2625
360b7f3c 2626 free_mc_sibling_devs(pvt);
7d6034d3 2627
549d042d
BP
2628 /* unregister from EDAC MCE */
2629 amd_report_gart_errors(false);
2630 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2631
360b7f3c
BP
2632 kfree(ecc_stngs[nid]);
2633 ecc_stngs[nid] = NULL;
ae7bb7c6 2634
7d6034d3 2635 /* Free the EDAC CORE resources */
8f68ed97 2636 mci->pvt_info = NULL;
360b7f3c 2637 mcis[nid] = NULL;
8f68ed97
BP
2638
2639 kfree(pvt);
7d6034d3
DT
2640 edac_mc_free(mci);
2641}
2642
2643/*
2644 * This table is part of the interface for loading drivers for PCI devices. The
2645 * PCI core identifies what devices are on a system during boot, and then
2646 * inquiry this table to see if this driver is for a given device found.
2647 */
36c46f31 2648static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2649 {
2650 .vendor = PCI_VENDOR_ID_AMD,
2651 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2652 .subvendor = PCI_ANY_ID,
2653 .subdevice = PCI_ANY_ID,
2654 .class = 0,
2655 .class_mask = 0,
7d6034d3
DT
2656 },
2657 {
2658 .vendor = PCI_VENDOR_ID_AMD,
2659 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2660 .subvendor = PCI_ANY_ID,
2661 .subdevice = PCI_ANY_ID,
2662 .class = 0,
2663 .class_mask = 0,
7d6034d3 2664 },
df71a053
BP
2665 {
2666 .vendor = PCI_VENDOR_ID_AMD,
2667 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2668 .subvendor = PCI_ANY_ID,
2669 .subdevice = PCI_ANY_ID,
2670 .class = 0,
2671 .class_mask = 0,
2672 },
2673
7d6034d3
DT
2674 {0, }
2675};
2676MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2677
2678static struct pci_driver amd64_pci_driver = {
2679 .name = EDAC_MOD_STR,
2299ef71 2680 .probe = amd64_probe_one_instance,
7d6034d3
DT
2681 .remove = __devexit_p(amd64_remove_one_instance),
2682 .id_table = amd64_pci_table,
2683};
2684
360b7f3c 2685static void setup_pci_device(void)
7d6034d3
DT
2686{
2687 struct mem_ctl_info *mci;
2688 struct amd64_pvt *pvt;
2689
2690 if (amd64_ctl_pci)
2691 return;
2692
cc4d8860 2693 mci = mcis[0];
7d6034d3
DT
2694 if (mci) {
2695
2696 pvt = mci->pvt_info;
2697 amd64_ctl_pci =
8d5b5d9c 2698 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2699
2700 if (!amd64_ctl_pci) {
2701 pr_warning("%s(): Unable to create PCI control\n",
2702 __func__);
2703
2704 pr_warning("%s(): PCI error report via EDAC not set\n",
2705 __func__);
2706 }
2707 }
2708}
2709
2710static int __init amd64_edac_init(void)
2711{
360b7f3c 2712 int err = -ENODEV;
7d6034d3 2713
df71a053 2714 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2715
2716 opstate_init();
2717
9653a5c7 2718 if (amd_cache_northbridges() < 0)
56b34b91 2719 goto err_ret;
7d6034d3 2720
cc4d8860 2721 err = -ENOMEM;
ae7bb7c6
BP
2722 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2723 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2724 if (!(mcis && ecc_stngs))
a9f0fbe2 2725 goto err_free;
cc4d8860 2726
50542251 2727 msrs = msrs_alloc();
56b34b91 2728 if (!msrs)
360b7f3c 2729 goto err_free;
50542251 2730
7d6034d3
DT
2731 err = pci_register_driver(&amd64_pci_driver);
2732 if (err)
56b34b91 2733 goto err_pci;
7d6034d3 2734
56b34b91 2735 err = -ENODEV;
360b7f3c
BP
2736 if (!atomic_read(&drv_instances))
2737 goto err_no_instances;
7d6034d3 2738
360b7f3c
BP
2739 setup_pci_device();
2740 return 0;
7d6034d3 2741
360b7f3c 2742err_no_instances:
7d6034d3 2743 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2744
56b34b91
BP
2745err_pci:
2746 msrs_free(msrs);
2747 msrs = NULL;
cc4d8860 2748
360b7f3c
BP
2749err_free:
2750 kfree(mcis);
2751 mcis = NULL;
2752
2753 kfree(ecc_stngs);
2754 ecc_stngs = NULL;
2755
56b34b91 2756err_ret:
7d6034d3
DT
2757 return err;
2758}
2759
2760static void __exit amd64_edac_exit(void)
2761{
2762 if (amd64_ctl_pci)
2763 edac_pci_release_generic_ctl(amd64_ctl_pci);
2764
2765 pci_unregister_driver(&amd64_pci_driver);
50542251 2766
ae7bb7c6
BP
2767 kfree(ecc_stngs);
2768 ecc_stngs = NULL;
2769
cc4d8860
BP
2770 kfree(mcis);
2771 mcis = NULL;
2772
50542251
BP
2773 msrs_free(msrs);
2774 msrs = NULL;
7d6034d3
DT
2775}
2776
2777module_init(amd64_edac_init);
2778module_exit(amd64_edac_exit);
2779
2780MODULE_LICENSE("GPL");
2781MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2782 "Dave Peterson, Thayne Harbaugh");
2783MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2784 EDAC_AMD64_VERSION);
2785
2786module_param(edac_op_state, int, 0444);
2787MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");