]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Check ECC capabilities initially
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
cc4d8860
BP
18/* Per-node driver instances */
19static struct mem_ctl_info **mcis;
20static struct amd64_pvt **pvts;
ae7bb7c6 21static struct ecc_settings **ecc_stngs;
2bc65418 22
b70ef010 23/*
1433eb99
BP
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
b70ef010 26 */
1433eb99
BP
27static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
24f9a7fe 65 [11] = 8192,
b70ef010
BP
66};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
2bc65418
DT
102/*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
395ae783 120static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
121{
122 u32 scrubval;
123 int i;
124
125 /*
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
130 */
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 /*
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
135 */
395ae783 136 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
137 continue;
138
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
141
142 /*
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
146 */
147 }
148
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
24f9a7fe
BP
151 amd64_info("Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
2bc65418 153 else
24f9a7fe 154 amd64_info("Turning scrubbing off.\n");
2bc65418
DT
155
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157
158 return 0;
159}
160
395ae783 161static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
162{
163 struct amd64_pvt *pvt = mci->pvt_info;
2bc65418 164
8d5b5d9c 165 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
2bc65418
DT
166}
167
168static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
169{
170 struct amd64_pvt *pvt = mci->pvt_info;
171 u32 scrubval = 0;
6ba5dcdc 172 int status = -1, i;
2bc65418 173
8d5b5d9c 174 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
2bc65418
DT
175
176 scrubval = scrubval & 0x001F;
177
24f9a7fe 178 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 179
926311fd 180 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418
DT
181 if (scrubrates[i].scrubval == scrubval) {
182 *bw = scrubrates[i].bandwidth;
183 status = 0;
184 break;
185 }
186 }
187
188 return status;
189}
190
6775763a
DT
191/* Map from a CSROW entry to the mask entry that operates on it */
192static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
193{
1433eb99 194 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
195 return csrow;
196 else
197 return csrow >> 1;
6775763a
DT
198}
199
200/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
201static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
202{
203 if (dct == 0)
204 return pvt->dcsb0[csrow];
205 else
206 return pvt->dcsb1[csrow];
207}
208
209/*
210 * Return the 'mask' address the i'th CS entry. This function is needed because
211 * there number of DCSM registers on Rev E and prior vs Rev F and later is
212 * different.
213 */
214static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
215{
216 if (dct == 0)
217 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
218 else
219 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
220}
221
222
223/*
224 * In *base and *limit, pass back the full 40-bit base and limit physical
225 * addresses for the node given by node_id. This information is obtained from
226 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
227 * base and limit addresses are of type SysAddr, as defined at the start of
228 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
229 * in the address range they represent.
230 */
231static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
232 u64 *base, u64 *limit)
233{
234 *base = pvt->dram_base[node_id];
235 *limit = pvt->dram_limit[node_id];
236}
237
238/*
239 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
240 * with node_id
241 */
242static int amd64_base_limit_match(struct amd64_pvt *pvt,
243 u64 sys_addr, int node_id)
244{
245 u64 base, limit, addr;
246
247 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
257 return (addr >= base) && (addr <= limit);
258}
259
260/*
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
263 *
264 * On failure, return NULL.
265 */
266static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
268{
269 struct amd64_pvt *pvt;
270 int node_id;
271 u32 intlv_en, bits;
272
273 /*
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
276 */
277 pvt = mci->pvt_info;
278
279 /*
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
283 */
284 intlv_en = pvt->dram_IntlvEn[0];
285
286 if (intlv_en == 0) {
8edc5445 287 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 289 goto found;
6775763a 290 }
8edc5445 291 goto err_no_match;
6775763a
DT
292 }
293
72f158fe
BP
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
24f9a7fe 297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
298 return NULL;
299 }
300
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
302
303 for (node_id = 0; ; ) {
8edc5445 304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
305 break; /* intlv_sel field matches */
306
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
309 }
310
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
6775763a
DT
316 return NULL;
317 }
318
319found:
320 return edac_mc_find(node_id);
321
322err_no_match:
323 debugf2("sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
325
326 return NULL;
327}
e2ce7255
DT
328
329/*
330 * Extract the DRAM CS base address from selected csrow register.
331 */
332static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
333{
334 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
335 pvt->dcs_shift;
336}
337
338/*
339 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
340 */
341static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
342{
343 u64 dcsm_bits, other_bits;
344 u64 mask;
345
346 /* Extract bits from DRAM CS Mask. */
347 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
348
349 other_bits = pvt->dcsm_mask;
350 other_bits = ~(other_bits << pvt->dcs_shift);
351
352 /*
353 * The extracted bits from DCSM belong in the spaces represented by
354 * the cleared bits in other_bits.
355 */
356 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
357
358 return mask;
359}
360
361/*
362 * @input_addr is an InputAddr associated with the node given by mci. Return the
363 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
364 */
365static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
366{
367 struct amd64_pvt *pvt;
368 int csrow;
369 u64 base, mask;
370
371 pvt = mci->pvt_info;
372
373 /*
374 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
375 * base/mask register pair, test the condition shown near the start of
376 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
377 */
9d858bb1 378 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
379
380 /* This DRAM chip select is disabled on this node */
381 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
382 continue;
383
384 base = base_from_dct_base(pvt, csrow);
385 mask = ~mask_from_dct_mask(pvt, csrow);
386
387 if ((input_addr & mask) == (base & mask)) {
388 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
389 (unsigned long)input_addr, csrow,
390 pvt->mc_node_id);
391
392 return csrow;
393 }
394 }
395
396 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
397 (unsigned long)input_addr, pvt->mc_node_id);
398
399 return -1;
400}
401
402/*
403 * Return the base value defined by the DRAM Base register for the node
404 * represented by mci. This function returns the full 40-bit value despite the
405 * fact that the register only stores bits 39-24 of the value. See section
406 * 3.4.4.1 (BKDG #26094, K8, revA-E)
407 */
408static inline u64 get_dram_base(struct mem_ctl_info *mci)
409{
410 struct amd64_pvt *pvt = mci->pvt_info;
411
412 return pvt->dram_base[pvt->mc_node_id];
413}
414
415/*
416 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
417 * for the node represented by mci. Info is passed back in *hole_base,
418 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
419 * info is invalid. Info may be invalid for either of the following reasons:
420 *
421 * - The revision of the node is not E or greater. In this case, the DRAM Hole
422 * Address Register does not exist.
423 *
424 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
425 * indicating that its contents are not valid.
426 *
427 * The values passed back in *hole_base, *hole_offset, and *hole_size are
428 * complete 32-bit values despite the fact that the bitfields in the DHAR
429 * only represent bits 31-24 of the base and offset values.
430 */
431int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
432 u64 *hole_offset, u64 *hole_size)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435 u64 base;
436
437 /* only revE and later have the DRAM Hole Address Register */
1433eb99 438 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
439 debugf1(" revision %d for node %d does not support DHAR\n",
440 pvt->ext_model, pvt->mc_node_id);
441 return 1;
442 }
443
444 /* only valid for Fam10h */
445 if (boot_cpu_data.x86 == 0x10 &&
446 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
447 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
448 return 1;
449 }
450
451 if ((pvt->dhar & DHAR_VALID) == 0) {
452 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
453 pvt->mc_node_id);
454 return 1;
455 }
456
457 /* This node has Memory Hoisting */
458
459 /* +------------------+--------------------+--------------------+-----
460 * | memory | DRAM hole | relocated |
461 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
462 * | | | DRAM hole |
463 * | | | [0x100000000, |
464 * | | | (0x100000000+ |
465 * | | | (0xffffffff-x))] |
466 * +------------------+--------------------+--------------------+-----
467 *
468 * Above is a diagram of physical memory showing the DRAM hole and the
469 * relocated addresses from the DRAM hole. As shown, the DRAM hole
470 * starts at address x (the base address) and extends through address
471 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
472 * addresses in the hole so that they start at 0x100000000.
473 */
474
475 base = dhar_base(pvt->dhar);
476
477 *hole_base = base;
478 *hole_size = (0x1ull << 32) - base;
479
480 if (boot_cpu_data.x86 > 0xf)
481 *hole_offset = f10_dhar_offset(pvt->dhar);
482 else
483 *hole_offset = k8_dhar_offset(pvt->dhar);
484
485 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
486 pvt->mc_node_id, (unsigned long)*hole_base,
487 (unsigned long)*hole_offset, (unsigned long)*hole_size);
488
489 return 0;
490}
491EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
492
93c2df58
DT
493/*
494 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
495 * assumed that sys_addr maps to the node given by mci.
496 *
497 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
498 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
499 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
500 * then it is also involved in translating a SysAddr to a DramAddr. Sections
501 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
502 * These parts of the documentation are unclear. I interpret them as follows:
503 *
504 * When node n receives a SysAddr, it processes the SysAddr as follows:
505 *
506 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
507 * Limit registers for node n. If the SysAddr is not within the range
508 * specified by the base and limit values, then node n ignores the Sysaddr
509 * (since it does not map to node n). Otherwise continue to step 2 below.
510 *
511 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
512 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
513 * the range of relocated addresses (starting at 0x100000000) from the DRAM
514 * hole. If not, skip to step 3 below. Else get the value of the
515 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
516 * offset defined by this value from the SysAddr.
517 *
518 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
519 * Base register for node n. To obtain the DramAddr, subtract the base
520 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
521 */
522static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
523{
524 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
525 int ret = 0;
526
527 dram_base = get_dram_base(mci);
528
529 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
530 &hole_size);
531 if (!ret) {
532 if ((sys_addr >= (1ull << 32)) &&
533 (sys_addr < ((1ull << 32) + hole_size))) {
534 /* use DHAR to translate SysAddr to DramAddr */
535 dram_addr = sys_addr - hole_offset;
536
537 debugf2("using DHAR to translate SysAddr 0x%lx to "
538 "DramAddr 0x%lx\n",
539 (unsigned long)sys_addr,
540 (unsigned long)dram_addr);
541
542 return dram_addr;
543 }
544 }
545
546 /*
547 * Translate the SysAddr to a DramAddr as shown near the start of
548 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
549 * only deals with 40-bit values. Therefore we discard bits 63-40 of
550 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
551 * discard are all 1s. Otherwise the bits we discard are all 0s. See
552 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
553 * Programmer's Manual Volume 1 Application Programming.
554 */
555 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
556
557 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
558 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560 return dram_addr;
561}
562
563/*
564 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
565 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
566 * for node interleaving.
567 */
568static int num_node_interleave_bits(unsigned intlv_en)
569{
570 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
571 int n;
572
573 BUG_ON(intlv_en > 7);
574 n = intlv_shift_table[intlv_en];
575 return n;
576}
577
578/* Translate the DramAddr given by @dram_addr to an InputAddr. */
579static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
580{
581 struct amd64_pvt *pvt;
582 int intlv_shift;
583 u64 input_addr;
584
585 pvt = mci->pvt_info;
586
587 /*
588 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
589 * concerning translating a DramAddr to an InputAddr.
590 */
591 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
592 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
593 (dram_addr & 0xfff);
594
595 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
596 intlv_shift, (unsigned long)dram_addr,
597 (unsigned long)input_addr);
598
599 return input_addr;
600}
601
602/*
603 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
604 * assumed that @sys_addr maps to the node given by mci.
605 */
606static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
607{
608 u64 input_addr;
609
610 input_addr =
611 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
612
613 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
614 (unsigned long)sys_addr, (unsigned long)input_addr);
615
616 return input_addr;
617}
618
619
620/*
621 * @input_addr is an InputAddr associated with the node represented by mci.
622 * Translate @input_addr to a DramAddr and return the result.
623 */
624static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
625{
626 struct amd64_pvt *pvt;
627 int node_id, intlv_shift;
628 u64 bits, dram_addr;
629 u32 intlv_sel;
630
631 /*
632 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
633 * shows how to translate a DramAddr to an InputAddr. Here we reverse
634 * this procedure. When translating from a DramAddr to an InputAddr, the
635 * bits used for node interleaving are discarded. Here we recover these
636 * bits from the IntlvSel field of the DRAM Limit register (section
637 * 3.4.4.2) for the node that input_addr is associated with.
638 */
639 pvt = mci->pvt_info;
640 node_id = pvt->mc_node_id;
641 BUG_ON((node_id < 0) || (node_id > 7));
642
643 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
644
645 if (intlv_shift == 0) {
646 debugf1(" InputAddr 0x%lx translates to DramAddr of "
647 "same value\n", (unsigned long)input_addr);
648
649 return input_addr;
650 }
651
652 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
653 (input_addr & 0xfff);
654
655 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
656 dram_addr = bits + (intlv_sel << 12);
657
658 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
659 "(%d node interleave bits)\n", (unsigned long)input_addr,
660 (unsigned long)dram_addr, intlv_shift);
661
662 return dram_addr;
663}
664
665/*
666 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
667 * @dram_addr to a SysAddr.
668 */
669static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
670{
671 struct amd64_pvt *pvt = mci->pvt_info;
672 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
673 int ret = 0;
674
675 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
676 &hole_size);
677 if (!ret) {
678 if ((dram_addr >= hole_base) &&
679 (dram_addr < (hole_base + hole_size))) {
680 sys_addr = dram_addr + hole_offset;
681
682 debugf1("using DHAR to translate DramAddr 0x%lx to "
683 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
684 (unsigned long)sys_addr);
685
686 return sys_addr;
687 }
688 }
689
690 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
691 sys_addr = dram_addr + base;
692
693 /*
694 * The sys_addr we have computed up to this point is a 40-bit value
695 * because the k8 deals with 40-bit values. However, the value we are
696 * supposed to return is a full 64-bit physical address. The AMD
697 * x86-64 architecture specifies that the most significant implemented
698 * address bit through bit 63 of a physical address must be either all
699 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
700 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
701 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
702 * Programming.
703 */
704 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
705
706 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
707 pvt->mc_node_id, (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711}
712
713/*
714 * @input_addr is an InputAddr associated with the node given by mci. Translate
715 * @input_addr to a SysAddr.
716 */
717static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
718 u64 input_addr)
719{
720 return dram_addr_to_sys_addr(mci,
721 input_addr_to_dram_addr(mci, input_addr));
722}
723
724/*
725 * Find the minimum and maximum InputAddr values that map to the given @csrow.
726 * Pass back these values in *input_addr_min and *input_addr_max.
727 */
728static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
729 u64 *input_addr_min, u64 *input_addr_max)
730{
731 struct amd64_pvt *pvt;
732 u64 base, mask;
733
734 pvt = mci->pvt_info;
9d858bb1 735 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
736
737 base = base_from_dct_base(pvt, csrow);
738 mask = mask_from_dct_mask(pvt, csrow);
739
740 *input_addr_min = base & ~mask;
741 *input_addr_max = base | mask | pvt->dcs_mask_notused;
742}
743
93c2df58
DT
744/* Map the Error address to a PAGE and PAGE OFFSET. */
745static inline void error_address_to_page_and_offset(u64 error_address,
746 u32 *page, u32 *offset)
747{
748 *page = (u32) (error_address >> PAGE_SHIFT);
749 *offset = ((u32) error_address) & ~PAGE_MASK;
750}
751
752/*
753 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
754 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
755 * of a node that detected an ECC memory error. mci represents the node that
756 * the error address maps to (possibly different from the node that detected
757 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
758 * error.
759 */
760static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
761{
762 int csrow;
763
764 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
765
766 if (csrow == -1)
24f9a7fe
BP
767 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
768 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
769 return csrow;
770}
e2ce7255 771
bfc04aec 772static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 773
ad6a32e9
BP
774static u16 extract_syndrome(struct err_regs *err)
775{
776 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
777}
778
2da11654
DT
779/*
780 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
781 * are ECC capable.
782 */
783static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
784{
785 int bit;
584fcff4 786 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 787
1433eb99 788 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
789 ? 19
790 : 17;
791
584fcff4 792 if (pvt->dclr0 & BIT(bit))
2da11654
DT
793 edac_cap = EDAC_FLAG_SECDED;
794
795 return edac_cap;
796}
797
798
8566c4df 799static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 800
68798e17
BP
801static void amd64_dump_dramcfg_low(u32 dclr, int chan)
802{
803 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
804
805 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
806 (dclr & BIT(16)) ? "un" : "",
807 (dclr & BIT(19)) ? "yes" : "no");
808
809 debugf1(" PAR/ERR parity: %s\n",
810 (dclr & BIT(8)) ? "enabled" : "disabled");
811
812 debugf1(" DCT 128bit mode width: %s\n",
813 (dclr & BIT(11)) ? "128b" : "64b");
814
815 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
816 (dclr & BIT(12)) ? "yes" : "no",
817 (dclr & BIT(13)) ? "yes" : "no",
818 (dclr & BIT(14)) ? "yes" : "no",
819 (dclr & BIT(15)) ? "yes" : "no");
820}
821
2da11654
DT
822/* Display and decode various NB registers for debug purposes. */
823static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
824{
825 int ganged;
826
68798e17
BP
827 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
828
829 debugf1(" NB two channel DRAM capable: %s\n",
830 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 831
68798e17
BP
832 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
833 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
834 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
835
836 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 837
8de1d91e 838 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 839
8de1d91e
BP
840 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
841 "offset: 0x%08x\n",
842 pvt->dhar,
843 dhar_base(pvt->dhar),
844 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
845 : f10_dhar_offset(pvt->dhar));
2da11654 846
8de1d91e
BP
847 debugf1(" DramHoleValid: %s\n",
848 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 849
8de1d91e 850 /* everything below this point is Fam10h and above */
8566c4df
BP
851 if (boot_cpu_data.x86 == 0xf) {
852 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 853 return;
8566c4df 854 }
2da11654 855
24f9a7fe 856 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
ad6a32e9 857
8de1d91e 858 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
859 if (!dct_ganging_enabled(pvt))
860 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
861
862 /*
863 * Determine if ganged and then dump memory sizes for first controller,
864 * and if NOT ganged dump info for 2nd controller.
865 */
866 ganged = dct_ganging_enabled(pvt);
867
8566c4df 868 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
869
870 if (!ganged)
8566c4df 871 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
872}
873
874/* Read in both of DBAM registers */
875static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
876{
8d5b5d9c 877 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
2da11654 878
6ba5dcdc 879 if (boot_cpu_data.x86 >= 0x10)
8d5b5d9c 880 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
2da11654
DT
881}
882
94be4bff
DT
883/*
884 * NOTE: CPU Revision Dependent code: Rev E and Rev F
885 *
886 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
887 * set the shift factor for the DCSB and DCSM values.
888 *
889 * ->dcs_mask_notused, RevE:
890 *
891 * To find the max InputAddr for the csrow, start with the base address and set
892 * all bits that are "don't care" bits in the test at the start of section
893 * 3.5.4 (p. 84).
894 *
895 * The "don't care" bits are all set bits in the mask and all bits in the gaps
896 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
897 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
898 * gaps.
899 *
900 * ->dcs_mask_notused, RevF and later:
901 *
902 * To find the max InputAddr for the csrow, start with the base address and set
903 * all bits that are "don't care" bits in the test at the start of NPT section
904 * 4.5.4 (p. 87).
905 *
906 * The "don't care" bits are all set bits in the mask and all bits in the gaps
907 * between bit ranges [36:27] and [21:13].
908 *
909 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
910 * which are all bits in the above-mentioned gaps.
911 */
912static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
913{
9d858bb1 914
1433eb99 915 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
916 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
917 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
918 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
919 pvt->dcs_shift = REV_E_DCS_SHIFT;
920 pvt->cs_count = 8;
921 pvt->num_dcsm = 8;
922 } else {
94be4bff
DT
923 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
924 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
925 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
926 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
3ab0e7dc
BP
927 pvt->cs_count = 8;
928 pvt->num_dcsm = 4;
94be4bff
DT
929 }
930}
931
932/*
933 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
934 */
935static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
936{
6ba5dcdc 937 int cs, reg;
94be4bff
DT
938
939 amd64_set_dct_base_and_mask(pvt);
940
9d858bb1 941 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 942 reg = K8_DCSB0 + (cs * 4);
8d5b5d9c 943 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
94be4bff
DT
944 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
945 cs, pvt->dcsb0[cs], reg);
946
947 /* If DCT are NOT ganged, then read in DCT1's base */
948 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
949 reg = F10_DCSB1 + (cs * 4);
8d5b5d9c 950 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 951 &pvt->dcsb1[cs]))
94be4bff
DT
952 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
953 cs, pvt->dcsb1[cs], reg);
954 } else {
955 pvt->dcsb1[cs] = 0;
956 }
957 }
958
959 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 960 reg = K8_DCSM0 + (cs * 4);
8d5b5d9c 961 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
94be4bff
DT
962 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
963 cs, pvt->dcsm0[cs], reg);
964
965 /* If DCT are NOT ganged, then read in DCT1's mask */
966 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
967 reg = F10_DCSM1 + (cs * 4);
8d5b5d9c 968 if (!amd64_read_pci_cfg(pvt->F2, reg,
6ba5dcdc 969 &pvt->dcsm1[cs]))
94be4bff
DT
970 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
971 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 972 } else {
94be4bff 973 pvt->dcsm1[cs] = 0;
6ba5dcdc 974 }
94be4bff
DT
975 }
976}
977
24f9a7fe 978static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
979{
980 enum mem_type type;
981
1433eb99 982 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
983 if (pvt->dchr0 & DDR3_MODE)
984 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
985 else
986 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 987 } else {
94be4bff
DT
988 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
989 }
990
24f9a7fe 991 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
992
993 return type;
994}
995
ddff876d
DT
996/*
997 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
998 * and the later RevF memory controllers (DDR vs DDR2)
999 *
1000 * Return:
1001 * number of memory channels in operation
1002 * Pass back:
1003 * contents of the DCL0_LOW register
1004 */
1005static int k8_early_channel_count(struct amd64_pvt *pvt)
1006{
1007 int flag, err = 0;
1008
8d5b5d9c 1009 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1010 if (err)
1011 return err;
1012
9f56da0e 1013 if (pvt->ext_model >= K8_REV_F)
ddff876d
DT
1014 /* RevF (NPT) and later */
1015 flag = pvt->dclr0 & F10_WIDTH_128;
9f56da0e 1016 else
ddff876d
DT
1017 /* RevE and earlier */
1018 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1019
1020 /* not used */
1021 pvt->dclr1 = 0;
1022
1023 return (flag) ? 2 : 1;
1024}
1025
1026/* extract the ERROR ADDRESS for the K8 CPUs */
1027static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1028 struct err_regs *info)
ddff876d
DT
1029{
1030 return (((u64) (info->nbeah & 0xff)) << 32) +
1031 (info->nbeal & ~0x03);
1032}
1033
1034/*
1035 * Read the Base and Limit registers for K8 based Memory controllers; extract
1036 * fields from the 'raw' reg into separate data fields
1037 *
1038 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1039 */
1040static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1041{
1042 u32 low;
1043 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1044
8d5b5d9c 1045 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1046
1047 /* Extract parts into separate data entries */
4997811e 1048 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1049 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1050 pvt->dram_rw_en[dram] = (low & 0x3);
1051
8d5b5d9c 1052 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1053
1054 /*
1055 * Extract parts into separate data entries. Limit is the HIGHEST memory
1056 * location of the region, so lower 24 bits need to be all ones
1057 */
4997811e 1058 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1059 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1060 pvt->dram_DstNode[dram] = (low & 0x7);
1061}
1062
1063static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1064 struct err_regs *err_info, u64 sys_addr)
ddff876d
DT
1065{
1066 struct mem_ctl_info *src_mci;
ddff876d
DT
1067 int channel, csrow;
1068 u32 page, offset;
ad6a32e9 1069 u16 syndrome;
ddff876d 1070
ad6a32e9 1071 syndrome = extract_syndrome(err_info);
ddff876d
DT
1072
1073 /* CHIPKILL enabled */
ad6a32e9 1074 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
bfc04aec 1075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
1076 if (channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
24f9a7fe
BP
1082 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1083 "error reporting race\n", syndrome);
ddff876d
DT
1084 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1085 return;
1086 }
1087 } else {
1088 /*
1089 * non-chipkill ecc mode
1090 *
1091 * The k8 documentation is unclear about how to determine the
1092 * channel number when using non-chipkill memory. This method
1093 * was obtained from email communication with someone at AMD.
1094 * (Wish the email was placed in this comment - norsk)
1095 */
44e9e2ee 1096 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1097 }
1098
1099 /*
1100 * Find out which node the error address belongs to. This may be
1101 * different from the node that detected the error.
1102 */
44e9e2ee 1103 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1104 if (!src_mci) {
24f9a7fe 1105 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1106 (unsigned long)sys_addr);
ddff876d
DT
1107 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1108 return;
1109 }
1110
44e9e2ee
BP
1111 /* Now map the sys_addr to a CSROW */
1112 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1113 if (csrow < 0) {
1114 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1115 } else {
44e9e2ee 1116 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1117
1118 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1119 channel, EDAC_MOD_STR);
1120 }
1121}
1122
1433eb99 1123static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1124{
1433eb99 1125 int *dbam_map;
ddff876d 1126
1433eb99
BP
1127 if (pvt->ext_model >= K8_REV_F)
1128 dbam_map = ddr2_dbam;
1129 else if (pvt->ext_model >= K8_REV_D)
1130 dbam_map = ddr2_dbam_revD;
1131 else
1132 dbam_map = ddr2_dbam_revCG;
ddff876d 1133
1433eb99 1134 return dbam_map[cs_mode];
ddff876d
DT
1135}
1136
1afd3c98
DT
1137/*
1138 * Get the number of DCT channels in use.
1139 *
1140 * Return:
1141 * number of Memory Channels in operation
1142 * Pass back:
1143 * contents of the DCL0_LOW register
1144 */
1145static int f10_early_channel_count(struct amd64_pvt *pvt)
1146{
57a30854 1147 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1148 int i, j, channels = 0;
1afd3c98
DT
1149 u32 dbam;
1150
1afd3c98
DT
1151 /* If we are in 128 bit mode, then we are using 2 channels */
1152 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1153 channels = 2;
1154 return channels;
1155 }
1156
1157 /*
d16149e8
BP
1158 * Need to check if in unganged mode: In such, there are 2 channels,
1159 * but they are not in 128 bit mode and thus the above 'dclr0' status
1160 * bit will be OFF.
1afd3c98
DT
1161 *
1162 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1163 * their CSEnable bit on. If so, then SINGLE DIMM case.
1164 */
d16149e8 1165 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1166
1afd3c98
DT
1167 /*
1168 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1169 * is more than just one DIMM present in unganged mode. Need to check
1170 * both controllers since DIMMs can be placed in either one.
1171 */
57a30854 1172 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
8d5b5d9c 1173 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1afd3c98
DT
1174 goto err_reg;
1175
57a30854
WW
1176 for (j = 0; j < 4; j++) {
1177 if (DBAM_DIMM(j, dbam) > 0) {
1178 channels++;
1179 break;
1180 }
1181 }
1afd3c98
DT
1182 }
1183
d16149e8
BP
1184 if (channels > 2)
1185 channels = 2;
1186
24f9a7fe 1187 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1188
1189 return channels;
1190
1191err_reg:
1192 return -1;
1193
1194}
1195
1433eb99 1196static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1197{
1433eb99
BP
1198 int *dbam_map;
1199
1200 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1201 dbam_map = ddr3_dbam;
1202 else
1203 dbam_map = ddr2_dbam;
1204
1205 return dbam_map[cs_mode];
1afd3c98
DT
1206}
1207
1afd3c98 1208static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1209 struct err_regs *info)
1afd3c98
DT
1210{
1211 return (((u64) (info->nbeah & 0xffff)) << 32) +
1212 (info->nbeal & ~0x01);
1213}
1214
1215/*
1216 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1217 * fields from the 'raw' reg into separate data fields.
1218 *
1219 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1220 */
1221static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1222{
1223 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1224
1225 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1226 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1227
1228 /* read the 'raw' DRAM BASE Address register */
8d5b5d9c 1229 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
8d5b5d9c 1230 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1afd3c98
DT
1231
1232 /* Extract parts into separate data entries */
1233 pvt->dram_rw_en[dram] = (low_base & 0x3);
1234
1235 if (pvt->dram_rw_en[dram] == 0)
1236 return;
1237
1238 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1239
66216a7a 1240 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1241 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1242
1243 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1244 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1245
1246 /* read the 'raw' LIMIT registers */
8d5b5d9c 1247 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
8d5b5d9c 1248 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1afd3c98 1249
1afd3c98
DT
1250 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1251 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1252
1253 /*
1254 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1255 * memory location of the region, so low 24 bits need to be all ones.
1256 */
66216a7a 1257 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1258 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1259 0x00FFFFFF;
1afd3c98 1260}
6163b5d4
DT
1261
1262static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1263{
6163b5d4 1264
8d5b5d9c 1265 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
6ba5dcdc 1266 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1267 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1268 "High range addresses at: 0x%x\n",
1269 pvt->dram_ctl_select_low,
1270 dct_sel_baseaddr(pvt));
1271
1272 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1273 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1274 (dct_dram_enabled(pvt) ? "yes" : "no"));
1275
1276 if (!dct_ganging_enabled(pvt))
1277 debugf0(" Address range split per DCT: %s\n",
1278 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1279
1280 debugf0(" DCT data interleave for ECC: %s, "
1281 "DRAM cleared since last warm reset: %s\n",
1282 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1283 (dct_memory_cleared(pvt) ? "yes" : "no"));
1284
1285 debugf0(" DCT channel interleave: %s, "
1286 "DCT interleave bits selector: 0x%x\n",
1287 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1288 dct_sel_interleave_addr(pvt));
1289 }
1290
8d5b5d9c 1291 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
6ba5dcdc 1292 &pvt->dram_ctl_select_high);
6163b5d4
DT
1293}
1294
f71d0a05
DT
1295/*
1296 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1297 * Interleaving Modes.
1298 */
6163b5d4
DT
1299static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1300 int hi_range_sel, u32 intlv_en)
1301{
1302 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1303
1304 if (dct_ganging_enabled(pvt))
1305 cs = 0;
1306 else if (hi_range_sel)
1307 cs = dct_sel_high;
1308 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1309 /*
1310 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1311 */
6163b5d4
DT
1312 if (dct_sel_interleave_addr(pvt) == 0)
1313 cs = sys_addr >> 6 & 1;
1314 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1315 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1316
1317 if (dct_sel_interleave_addr(pvt) & 1)
1318 cs = (sys_addr >> 9 & 1) ^ temp;
1319 else
1320 cs = (sys_addr >> 6 & 1) ^ temp;
1321 } else if (intlv_en & 4)
1322 cs = sys_addr >> 15 & 1;
1323 else if (intlv_en & 2)
1324 cs = sys_addr >> 14 & 1;
1325 else if (intlv_en & 1)
1326 cs = sys_addr >> 13 & 1;
1327 else
1328 cs = sys_addr >> 12 & 1;
1329 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1330 cs = ~dct_sel_high & 1;
1331 else
1332 cs = 0;
1333
1334 return cs;
1335}
1336
1337static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1338{
1339 if (intlv_en == 1)
1340 return 1;
1341 else if (intlv_en == 3)
1342 return 2;
1343 else if (intlv_en == 7)
1344 return 3;
1345
1346 return 0;
1347}
1348
f71d0a05
DT
1349/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1350static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1351 u32 dct_sel_base_addr,
1352 u64 dct_sel_base_off,
f71d0a05 1353 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1354 u64 dram_base)
1355{
1356 u64 chan_off;
1357
1358 if (hi_range_sel) {
9975a5f2 1359 if (!(dct_sel_base_addr & 0xFFFF0000) &&
f71d0a05 1360 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1361 chan_off = hole_off << 16;
1362 else
1363 chan_off = dct_sel_base_off;
1364 } else {
f71d0a05 1365 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1366 chan_off = hole_off << 16;
1367 else
1368 chan_off = dram_base & 0xFFFFF8000000ULL;
1369 }
1370
1371 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1372 (chan_off & 0x0000FFFFFF800000ULL);
1373}
1374
1375/* Hack for the time being - Can we get this from BIOS?? */
1376#define CH0SPARE_RANK 0
1377#define CH1SPARE_RANK 1
1378
1379/*
1380 * checks if the csrow passed in is marked as SPARED, if so returns the new
1381 * spare row
1382 */
1383static inline int f10_process_possible_spare(int csrow,
1384 u32 cs, struct amd64_pvt *pvt)
1385{
1386 u32 swap_done;
1387 u32 bad_dram_cs;
1388
1389 /* Depending on channel, isolate respective SPARING info */
1390 if (cs) {
1391 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1392 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1393 if (swap_done && (csrow == bad_dram_cs))
1394 csrow = CH1SPARE_RANK;
1395 } else {
1396 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1397 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1398 if (swap_done && (csrow == bad_dram_cs))
1399 csrow = CH0SPARE_RANK;
1400 }
1401 return csrow;
1402}
1403
1404/*
1405 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1406 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1407 *
1408 * Return:
1409 * -EINVAL: NOT FOUND
1410 * 0..csrow = Chip-Select Row
1411 */
1412static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1413{
1414 struct mem_ctl_info *mci;
1415 struct amd64_pvt *pvt;
1416 u32 cs_base, cs_mask;
1417 int cs_found = -EINVAL;
1418 int csrow;
1419
cc4d8860 1420 mci = mcis[nid];
6163b5d4
DT
1421 if (!mci)
1422 return cs_found;
1423
1424 pvt = mci->pvt_info;
1425
1426 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1427
9d858bb1 1428 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1429
1430 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1431 if (!(cs_base & K8_DCSB_CS_ENABLE))
1432 continue;
1433
1434 /*
1435 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1436 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1437 * of the actual address.
1438 */
1439 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1440
1441 /*
1442 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1443 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1444 */
1445 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1446
1447 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1448 csrow, cs_base, cs_mask);
1449
1450 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1451
1452 debugf1(" Final CSMask=0x%x\n", cs_mask);
1453 debugf1(" (InputAddr & ~CSMask)=0x%x "
1454 "(CSBase & ~CSMask)=0x%x\n",
1455 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1456
1457 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1458 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1459
1460 debugf1(" MATCH csrow=%d\n", cs_found);
1461 break;
1462 }
1463 }
1464 return cs_found;
1465}
1466
f71d0a05
DT
1467/* For a given @dram_range, check if @sys_addr falls within it. */
1468static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1469 u64 sys_addr, int *nid, int *chan_sel)
1470{
1471 int node_id, cs_found = -EINVAL, high_range = 0;
1472 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1473 u32 hole_valid, tmp, dct_sel_base, channel;
1474 u64 dram_base, chan_addr, dct_sel_base_off;
1475
1476 dram_base = pvt->dram_base[dram_range];
1477 intlv_en = pvt->dram_IntlvEn[dram_range];
1478
1479 node_id = pvt->dram_DstNode[dram_range];
1480 intlv_sel = pvt->dram_IntlvSel[dram_range];
1481
1482 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1483 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1484
1485 /*
1486 * This assumes that one node's DHAR is the same as all the other
1487 * nodes' DHAR.
1488 */
1489 hole_off = (pvt->dhar & 0x0000FF80);
1490 hole_valid = (pvt->dhar & 0x1);
1491 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1492
1493 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1494 hole_off, hole_valid, intlv_sel);
1495
e726f3c3 1496 if (intlv_en &&
f71d0a05
DT
1497 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1498 return -EINVAL;
1499
1500 dct_sel_base = dct_sel_baseaddr(pvt);
1501
1502 /*
1503 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1504 * select between DCT0 and DCT1.
1505 */
1506 if (dct_high_range_enabled(pvt) &&
1507 !dct_ganging_enabled(pvt) &&
1508 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1509 high_range = 1;
1510
1511 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1512
1513 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1514 dct_sel_base_off, hole_valid,
1515 hole_off, dram_base);
1516
1517 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1518
1519 /* remove Node ID (in case of memory interleaving) */
1520 tmp = chan_addr & 0xFC0;
1521
1522 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1523
1524 /* remove channel interleave and hash */
1525 if (dct_interleave_enabled(pvt) &&
1526 !dct_high_range_enabled(pvt) &&
1527 !dct_ganging_enabled(pvt)) {
1528 if (dct_sel_interleave_addr(pvt) != 1)
1529 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1530 else {
1531 tmp = chan_addr & 0xFC0;
1532 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1533 | tmp;
1534 }
1535 }
1536
1537 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1538 chan_addr, (u32)(chan_addr >> 8));
1539
1540 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1541
1542 if (cs_found >= 0) {
1543 *nid = node_id;
1544 *chan_sel = channel;
1545 }
1546 return cs_found;
1547}
1548
1549static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1550 int *node, int *chan_sel)
1551{
1552 int dram_range, cs_found = -EINVAL;
1553 u64 dram_base, dram_limit;
1554
1555 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1556
1557 if (!pvt->dram_rw_en[dram_range])
1558 continue;
1559
1560 dram_base = pvt->dram_base[dram_range];
1561 dram_limit = pvt->dram_limit[dram_range];
1562
1563 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1564
1565 cs_found = f10_match_to_this_node(pvt, dram_range,
1566 sys_addr, node,
1567 chan_sel);
1568 if (cs_found >= 0)
1569 break;
1570 }
1571 }
1572 return cs_found;
1573}
1574
1575/*
bdc30a0c
BP
1576 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1577 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1578 *
bdc30a0c
BP
1579 * The @sys_addr is usually an error address received from the hardware
1580 * (MCX_ADDR).
f71d0a05
DT
1581 */
1582static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ad6a32e9 1583 struct err_regs *err_info,
f71d0a05
DT
1584 u64 sys_addr)
1585{
1586 struct amd64_pvt *pvt = mci->pvt_info;
1587 u32 page, offset;
f71d0a05 1588 int nid, csrow, chan = 0;
ad6a32e9 1589 u16 syndrome;
f71d0a05
DT
1590
1591 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1592
bdc30a0c
BP
1593 if (csrow < 0) {
1594 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1595 return;
1596 }
1597
1598 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1599
ad6a32e9 1600 syndrome = extract_syndrome(err_info);
bdc30a0c
BP
1601
1602 /*
1603 * We need the syndromes for channel detection only when we're
1604 * ganged. Otherwise @chan should already contain the channel at
1605 * this point.
1606 */
962b70a1 1607 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
bdc30a0c 1608 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1609
bdc30a0c
BP
1610 if (chan >= 0)
1611 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1612 EDAC_MOD_STR);
1613 else
f71d0a05 1614 /*
bdc30a0c 1615 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1616 */
bdc30a0c 1617 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1618 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1619 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1620}
1621
f71d0a05 1622/*
8566c4df 1623 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1624 * CSROWs as well
1625 */
8566c4df 1626static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1627{
603adaf6 1628 int dimm, size0, size1, factor = 0;
f71d0a05
DT
1629 u32 dbam;
1630 u32 *dcsb;
1631
8566c4df 1632 if (boot_cpu_data.x86 == 0xf) {
603adaf6
BP
1633 if (pvt->dclr0 & F10_WIDTH_128)
1634 factor = 1;
1635
8566c4df 1636 /* K8 families < revF not supported yet */
1433eb99 1637 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1638 return;
1639 else
1640 WARN_ON(ctrl != 0);
1641 }
1642
1643 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1644 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1645
1646 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1647 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1648
8566c4df
BP
1649 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1650
f71d0a05
DT
1651 /* Dump memory sizes for DIMM and its CSROWs */
1652 for (dimm = 0; dimm < 4; dimm++) {
1653
1654 size0 = 0;
1655 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1656 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1657
1658 size1 = 0;
1659 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1660 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1661
24f9a7fe
BP
1662 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1663 dimm * 2, size0 << factor,
1664 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1665 }
1666}
1667
4d37607a
DT
1668static struct amd64_family_type amd64_family_types[] = {
1669 [K8_CPUS] = {
0092b20d 1670 .ctl_name = "K8",
8d5b5d9c
BP
1671 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1672 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1673 .ops = {
1433eb99
BP
1674 .early_channel_count = k8_early_channel_count,
1675 .get_error_address = k8_get_error_address,
1676 .read_dram_base_limit = k8_read_dram_base_limit,
1677 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1678 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1679 }
1680 },
1681 [F10_CPUS] = {
0092b20d 1682 .ctl_name = "F10h",
8d5b5d9c
BP
1683 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1684 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1685 .ops = {
1433eb99
BP
1686 .early_channel_count = f10_early_channel_count,
1687 .get_error_address = f10_get_error_address,
1688 .read_dram_base_limit = f10_read_dram_base_limit,
1689 .read_dram_ctl_register = f10_read_dram_ctl_register,
1690 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1691 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1692 }
1693 },
4d37607a
DT
1694};
1695
1696static struct pci_dev *pci_get_related_function(unsigned int vendor,
1697 unsigned int device,
1698 struct pci_dev *related)
1699{
1700 struct pci_dev *dev = NULL;
1701
1702 dev = pci_get_device(vendor, device, dev);
1703 while (dev) {
1704 if ((dev->bus->number == related->bus->number) &&
1705 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1706 break;
1707 dev = pci_get_device(vendor, device, dev);
1708 }
1709
1710 return dev;
1711}
1712
b1289d6f 1713/*
bfc04aec
BP
1714 * These are tables of eigenvectors (one per line) which can be used for the
1715 * construction of the syndrome tables. The modified syndrome search algorithm
1716 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1717 *
bfc04aec 1718 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1719 */
bfc04aec
BP
1720static u16 x4_vectors[] = {
1721 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1722 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1723 0x0001, 0x0002, 0x0004, 0x0008,
1724 0x1013, 0x3032, 0x4044, 0x8088,
1725 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1726 0x4857, 0xc4fe, 0x13cc, 0x3288,
1727 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1728 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1729 0x15c1, 0x2a42, 0x89ac, 0x4758,
1730 0x2b03, 0x1602, 0x4f0c, 0xca08,
1731 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1732 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1733 0x2b87, 0x164e, 0x642c, 0xdc18,
1734 0x40b9, 0x80de, 0x1094, 0x20e8,
1735 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1736 0x11c1, 0x2242, 0x84ac, 0x4c58,
1737 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1738 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1739 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1740 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1741 0x16b3, 0x3d62, 0x4f34, 0x8518,
1742 0x1e2f, 0x391a, 0x5cac, 0xf858,
1743 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1744 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1745 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1746 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1747 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1748 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1749 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1750 0x185d, 0x2ca6, 0x7914, 0x9e28,
1751 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1752 0x4199, 0x82ee, 0x19f4, 0x2e58,
1753 0x4807, 0xc40e, 0x130c, 0x3208,
1754 0x1905, 0x2e0a, 0x5804, 0xac08,
1755 0x213f, 0x132a, 0xadfc, 0x5ba8,
1756 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1757};
1758
bfc04aec
BP
1759static u16 x8_vectors[] = {
1760 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1761 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1762 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1763 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1764 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1765 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1766 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1767 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1768 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1769 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1770 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1771 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1772 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1773 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1774 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1775 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1776 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1777 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1778 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1779};
1780
1781static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1782 int v_dim)
b1289d6f 1783{
bfc04aec
BP
1784 unsigned int i, err_sym;
1785
1786 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1787 u16 s = syndrome;
1788 int v_idx = err_sym * v_dim;
1789 int v_end = (err_sym + 1) * v_dim;
1790
1791 /* walk over all 16 bits of the syndrome */
1792 for (i = 1; i < (1U << 16); i <<= 1) {
1793
1794 /* if bit is set in that eigenvector... */
1795 if (v_idx < v_end && vectors[v_idx] & i) {
1796 u16 ev_comp = vectors[v_idx++];
1797
1798 /* ... and bit set in the modified syndrome, */
1799 if (s & i) {
1800 /* remove it. */
1801 s ^= ev_comp;
4d37607a 1802
bfc04aec
BP
1803 if (!s)
1804 return err_sym;
1805 }
b1289d6f 1806
bfc04aec
BP
1807 } else if (s & i)
1808 /* can't get to zero, move to next symbol */
1809 break;
1810 }
b1289d6f
DT
1811 }
1812
1813 debugf0("syndrome(%x) not found\n", syndrome);
1814 return -1;
1815}
d27bf6fa 1816
bfc04aec
BP
1817static int map_err_sym_to_channel(int err_sym, int sym_size)
1818{
1819 if (sym_size == 4)
1820 switch (err_sym) {
1821 case 0x20:
1822 case 0x21:
1823 return 0;
1824 break;
1825 case 0x22:
1826 case 0x23:
1827 return 1;
1828 break;
1829 default:
1830 return err_sym >> 4;
1831 break;
1832 }
1833 /* x8 symbols */
1834 else
1835 switch (err_sym) {
1836 /* imaginary bits not in a DIMM */
1837 case 0x10:
1838 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1839 err_sym);
1840 return -1;
1841 break;
1842
1843 case 0x11:
1844 return 0;
1845 break;
1846 case 0x12:
1847 return 1;
1848 break;
1849 default:
1850 return err_sym >> 3;
1851 break;
1852 }
1853 return -1;
1854}
1855
1856static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1857{
1858 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1859 int err_sym = -1;
1860
1861 if (pvt->syn_type == 8)
1862 err_sym = decode_syndrome(syndrome, x8_vectors,
1863 ARRAY_SIZE(x8_vectors),
1864 pvt->syn_type);
1865 else if (pvt->syn_type == 4)
1866 err_sym = decode_syndrome(syndrome, x4_vectors,
1867 ARRAY_SIZE(x4_vectors),
1868 pvt->syn_type);
1869 else {
24f9a7fe 1870 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
ad6a32e9 1871 return err_sym;
bfc04aec 1872 }
ad6a32e9
BP
1873
1874 return map_err_sym_to_channel(err_sym, pvt->syn_type);
bfc04aec
BP
1875}
1876
d27bf6fa
DT
1877/*
1878 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1879 * ADDRESS and process.
1880 */
1881static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 1882 struct err_regs *info)
d27bf6fa
DT
1883{
1884 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1885 u64 sys_addr;
d27bf6fa
DT
1886
1887 /* Ensure that the Error Address is VALID */
24f9a7fe
BP
1888 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1889 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1890 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1891 return;
1892 }
1893
1f6bcee7 1894 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa 1895
24f9a7fe 1896 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1897
44e9e2ee 1898 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
1899}
1900
1901/* Handle any Un-correctable Errors (UEs) */
1902static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 1903 struct err_regs *info)
d27bf6fa 1904{
1f6bcee7
BP
1905 struct amd64_pvt *pvt = mci->pvt_info;
1906 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1907 int csrow;
44e9e2ee 1908 u64 sys_addr;
d27bf6fa 1909 u32 page, offset;
d27bf6fa
DT
1910
1911 log_mci = mci;
1912
24f9a7fe
BP
1913 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1914 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1915 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1916 return;
1917 }
1918
1f6bcee7 1919 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
1920
1921 /*
1922 * Find out which node the error address belongs to. This may be
1923 * different from the node that detected the error.
1924 */
44e9e2ee 1925 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1926 if (!src_mci) {
24f9a7fe
BP
1927 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1928 (unsigned long)sys_addr);
d27bf6fa
DT
1929 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1930 return;
1931 }
1932
1933 log_mci = src_mci;
1934
44e9e2ee 1935 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1936 if (csrow < 0) {
24f9a7fe
BP
1937 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1938 (unsigned long)sys_addr);
d27bf6fa
DT
1939 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1940 } else {
44e9e2ee 1941 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1942 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1943 }
1944}
1945
549d042d 1946static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 1947 struct err_regs *info)
d27bf6fa 1948{
b70ef010
BP
1949 u32 ec = ERROR_CODE(info->nbsl);
1950 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 1951 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 1952
b70ef010
BP
1953 /* Bail early out if this was an 'observed' error */
1954 if (PP(ec) == K8_NBSL_PP_OBS)
1955 return;
d27bf6fa 1956
ecaf5606
BP
1957 /* Do only ECC errors */
1958 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1959 return;
d27bf6fa 1960
ecaf5606 1961 if (ecc_type == 2)
d27bf6fa 1962 amd64_handle_ce(mci, info);
ecaf5606 1963 else if (ecc_type == 1)
d27bf6fa 1964 amd64_handle_ue(mci, info);
d27bf6fa
DT
1965}
1966
7cfd4a87 1967void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1968{
cc4d8860 1969 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1970 struct err_regs regs;
d27bf6fa 1971
7cfd4a87
BP
1972 regs.nbsl = (u32) m->status;
1973 regs.nbsh = (u32)(m->status >> 32);
1974 regs.nbeal = (u32) m->addr;
1975 regs.nbeah = (u32)(m->addr >> 32);
1976 regs.nbcfg = nbcfg;
1977
1978 __amd64_decode_bus_error(mci, &regs);
d27bf6fa 1979
d27bf6fa
DT
1980 /*
1981 * Check the UE bit of the NB status high register, if set generate some
1982 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1983 * If it was a GART error, skip that process.
549d042d
BP
1984 *
1985 * FIXME: this should go somewhere else, if at all.
d27bf6fa 1986 */
7cfd4a87 1987 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
5110dbde 1988 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 1989
d27bf6fa 1990}
d27bf6fa 1991
0ec449ee 1992/*
8d5b5d9c 1993 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1994 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1995 */
bbd0c1f6
BP
1996static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
1997 u16 f3_id)
0ec449ee 1998{
0ec449ee 1999 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
2000 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2001 if (!pvt->F1) {
24f9a7fe
BP
2002 amd64_err("error address map device not found: "
2003 "vendor %x device 0x%x (broken BIOS?)\n",
2004 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2005 return -ENODEV;
0ec449ee
DT
2006 }
2007
2008 /* Reserve the MISC Device */
8d5b5d9c
BP
2009 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2010 if (!pvt->F3) {
2011 pci_dev_put(pvt->F1);
2012 pvt->F1 = NULL;
0ec449ee 2013
24f9a7fe
BP
2014 amd64_err("error F3 device not found: "
2015 "vendor %x device 0x%x (broken BIOS?)\n",
2016 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 2017
bbd0c1f6 2018 return -ENODEV;
0ec449ee 2019 }
8d5b5d9c
BP
2020 debugf1("F1: %s\n", pci_name(pvt->F1));
2021 debugf1("F2: %s\n", pci_name(pvt->F2));
2022 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2023
2024 return 0;
2025}
2026
2027static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2028{
8d5b5d9c
BP
2029 pci_dev_put(pvt->F1);
2030 pci_dev_put(pvt->F3);
0ec449ee
DT
2031}
2032
2033/*
2034 * Retrieve the hardware registers of the memory controller (this includes the
2035 * 'Address Map' and 'Misc' device regs)
2036 */
2037static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2038{
2039 u64 msr_val;
ad6a32e9 2040 u32 tmp;
6ba5dcdc 2041 int dram;
0ec449ee
DT
2042
2043 /*
2044 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2045 * those are Read-As-Zero
2046 */
e97f8bb8
BP
2047 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2048 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2049
2050 /* check first whether TOP_MEM2 is enabled */
2051 rdmsrl(MSR_K8_SYSCFG, msr_val);
2052 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2053 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2054 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2055 } else
2056 debugf0(" TOP_MEM2 disabled.\n");
2057
8d5b5d9c 2058 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2059
2060 if (pvt->ops->read_dram_ctl_register)
2061 pvt->ops->read_dram_ctl_register(pvt);
2062
2063 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2064 /*
2065 * Call CPU specific READ function to get the DRAM Base and
2066 * Limit values from the DCT.
2067 */
2068 pvt->ops->read_dram_base_limit(pvt, dram);
2069
2070 /*
2071 * Only print out debug info on rows with both R and W Enabled.
2072 * Normal processing, compiler should optimize this whole 'if'
2073 * debug output block away.
2074 */
2075 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2076 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2077 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2078 dram,
e97f8bb8
BP
2079 pvt->dram_base[dram],
2080 pvt->dram_limit[dram]);
2081
0ec449ee
DT
2082 debugf1(" IntlvEn=%s %s %s "
2083 "IntlvSel=%d DstNode=%d\n",
2084 pvt->dram_IntlvEn[dram] ?
2085 "Enabled" : "Disabled",
2086 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2087 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2088 pvt->dram_IntlvSel[dram],
2089 pvt->dram_DstNode[dram]);
2090 }
2091 }
2092
2093 amd64_read_dct_base_mask(pvt);
2094
8d5b5d9c 2095 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2096 amd64_read_dbam_reg(pvt);
2097
8d5b5d9c 2098 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2099
8d5b5d9c
BP
2100 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2101 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
0ec449ee 2102
ad6a32e9
BP
2103 if (boot_cpu_data.x86 >= 0x10) {
2104 if (!dct_ganging_enabled(pvt)) {
8d5b5d9c
BP
2105 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2106 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
ad6a32e9 2107 }
8d5b5d9c 2108 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
0ec449ee 2109 }
ad6a32e9
BP
2110
2111 if (boot_cpu_data.x86 == 0x10 &&
2112 boot_cpu_data.x86_model > 7 &&
2113 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2114 tmp & BIT(25))
2115 pvt->syn_type = 8;
2116 else
2117 pvt->syn_type = 4;
2118
0ec449ee 2119 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2120}
2121
2122/*
2123 * NOTE: CPU Revision Dependent code
2124 *
2125 * Input:
9d858bb1 2126 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2127 * k8 private pointer to -->
2128 * DRAM Bank Address mapping register
2129 * node_id
2130 * DCL register where dual_channel_active is
2131 *
2132 * The DBAM register consists of 4 sets of 4 bits each definitions:
2133 *
2134 * Bits: CSROWs
2135 * 0-3 CSROWs 0 and 1
2136 * 4-7 CSROWs 2 and 3
2137 * 8-11 CSROWs 4 and 5
2138 * 12-15 CSROWs 6 and 7
2139 *
2140 * Values range from: 0 to 15
2141 * The meaning of the values depends on CPU revision and dual-channel state,
2142 * see relevant BKDG more info.
2143 *
2144 * The memory controller provides for total of only 8 CSROWs in its current
2145 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2146 * single channel or two (2) DIMMs in dual channel mode.
2147 *
2148 * The following code logic collapses the various tables for CSROW based on CPU
2149 * revision.
2150 *
2151 * Returns:
2152 * The number of PAGE_SIZE pages on the specified CSROW number it
2153 * encompasses
2154 *
2155 */
2156static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2157{
1433eb99 2158 u32 cs_mode, nr_pages;
0ec449ee
DT
2159
2160 /*
2161 * The math on this doesn't look right on the surface because x/2*4 can
2162 * be simplified to x*2 but this expression makes use of the fact that
2163 * it is integral math where 1/2=0. This intermediate value becomes the
2164 * number of bits to shift the DBAM register to extract the proper CSROW
2165 * field.
2166 */
1433eb99 2167 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2168
1433eb99 2169 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2170
2171 /*
2172 * If dual channel then double the memory size of single channel.
2173 * Channel count is 1 or 2
2174 */
2175 nr_pages <<= (pvt->channel_count - 1);
2176
1433eb99 2177 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2178 debugf0(" nr_pages= %u channel-count = %d\n",
2179 nr_pages, pvt->channel_count);
2180
2181 return nr_pages;
2182}
2183
2184/*
2185 * Initialize the array of csrow attribute instances, based on the values
2186 * from pci config hardware registers.
2187 */
2188static int amd64_init_csrows(struct mem_ctl_info *mci)
2189{
2190 struct csrow_info *csrow;
2299ef71 2191 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2192 u64 input_addr_min, input_addr_max, sys_addr;
2299ef71 2193 u32 val;
6ba5dcdc 2194 int i, empty = 1;
0ec449ee 2195
2299ef71 2196 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
0ec449ee 2197
2299ef71
BP
2198 pvt->nbcfg = val;
2199 pvt->ctl_error_info.nbcfg = val;
0ec449ee 2200
2299ef71
BP
2201 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2202 pvt->mc_node_id, val,
2203 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
0ec449ee 2204
9d858bb1 2205 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2206 csrow = &mci->csrows[i];
2207
2208 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2209 debugf1("----CSROW %d EMPTY for node %d\n", i,
2210 pvt->mc_node_id);
2211 continue;
2212 }
2213
2214 debugf1("----CSROW %d VALID for MC node %d\n",
2215 i, pvt->mc_node_id);
2216
2217 empty = 0;
2218 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2219 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2220 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2221 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2222 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2223 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2224 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2225 /* 8 bytes of resolution */
2226
24f9a7fe 2227 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2228
2229 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2230 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2231 (unsigned long)input_addr_min,
2232 (unsigned long)input_addr_max);
2233 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2234 (unsigned long)sys_addr, csrow->page_mask);
2235 debugf1(" nr_pages: %u first_page: 0x%lx "
2236 "last_page: 0x%lx\n",
2237 (unsigned)csrow->nr_pages,
2238 csrow->first_page, csrow->last_page);
2239
2240 /*
2241 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2242 */
2243 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2244 csrow->edac_mode =
2245 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2246 EDAC_S4ECD4ED : EDAC_SECDED;
2247 else
2248 csrow->edac_mode = EDAC_NONE;
2249 }
2250
2251 return empty;
2252}
d27bf6fa 2253
f6d6ae96
BP
2254/* get all cores on this DCT */
2255static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2256{
2257 int cpu;
2258
2259 for_each_online_cpu(cpu)
2260 if (amd_get_nb_id(cpu) == nid)
2261 cpumask_set_cpu(cpu, mask);
2262}
2263
2264/* check MCG_CTL on all the cpus on this node */
2265static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2266{
2267 cpumask_var_t mask;
50542251 2268 int cpu, nbe;
f6d6ae96
BP
2269 bool ret = false;
2270
2271 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2272 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2273 return false;
2274 }
2275
2276 get_cpus_on_this_dct_cpumask(mask, nid);
2277
f6d6ae96
BP
2278 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2279
2280 for_each_cpu(cpu, mask) {
50542251
BP
2281 struct msr *reg = per_cpu_ptr(msrs, cpu);
2282 nbe = reg->l & K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2283
2284 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2285 cpu, reg->q,
f6d6ae96
BP
2286 (nbe ? "enabled" : "disabled"));
2287
2288 if (!nbe)
2289 goto out;
f6d6ae96
BP
2290 }
2291 ret = true;
2292
2293out:
f6d6ae96
BP
2294 free_cpumask_var(mask);
2295 return ret;
2296}
2297
2299ef71 2298static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2299{
2300 cpumask_var_t cmask;
50542251 2301 int cpu;
f6d6ae96
BP
2302
2303 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2304 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2305 return false;
2306 }
2307
ae7bb7c6 2308 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2309
f6d6ae96
BP
2310 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2311
2312 for_each_cpu(cpu, cmask) {
2313
50542251
BP
2314 struct msr *reg = per_cpu_ptr(msrs, cpu);
2315
f6d6ae96 2316 if (on) {
50542251 2317 if (reg->l & K8_MSR_MCGCTL_NBE)
ae7bb7c6 2318 s->flags.nb_mce_enable = 1;
f6d6ae96 2319
50542251 2320 reg->l |= K8_MSR_MCGCTL_NBE;
f6d6ae96
BP
2321 } else {
2322 /*
d95cf4de 2323 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2324 */
ae7bb7c6 2325 if (!s->flags.nb_mce_enable)
50542251 2326 reg->l &= ~K8_MSR_MCGCTL_NBE;
f6d6ae96 2327 }
f6d6ae96
BP
2328 }
2329 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2330
f6d6ae96
BP
2331 free_cpumask_var(cmask);
2332
2333 return 0;
2334}
2335
2299ef71
BP
2336static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2337 struct pci_dev *F3)
f9431992 2338{
2299ef71 2339 bool ret = true;
f6d6ae96 2340 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2341
2299ef71
BP
2342 if (toggle_ecc_err_reporting(s, nid, ON)) {
2343 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2344 return false;
2345 }
2346
2347 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
f9431992 2348
ae7bb7c6
BP
2349 /* turn on UECCEn and CECCEn bits */
2350 s->old_nbctl = value & mask;
2351 s->nbctl_valid = true;
f9431992
DT
2352
2353 value |= mask;
2299ef71 2354 pci_write_config_dword(F3, K8_NBCTL, value);
f9431992 2355
2299ef71 2356 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2357
2299ef71
BP
2358 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2359 nid, value,
2360 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992
DT
2361
2362 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe 2363 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2364
ae7bb7c6 2365 s->flags.nb_ecc_prev = 0;
d95cf4de 2366
f9431992
DT
2367 /* Attempt to turn on DRAM ECC Enable */
2368 value |= K8_NBCFG_ECC_ENABLE;
2299ef71 2369 pci_write_config_dword(F3, K8_NBCFG, value);
f9431992 2370
2299ef71 2371 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992
DT
2372
2373 if (!(value & K8_NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2374 amd64_warn("Hardware rejected DRAM ECC enable,"
2375 "check memory DIMM configuration.\n");
2299ef71 2376 ret = false;
f9431992 2377 } else {
24f9a7fe 2378 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2379 }
d95cf4de 2380 } else {
ae7bb7c6 2381 s->flags.nb_ecc_prev = 1;
f9431992 2382 }
d95cf4de 2383
2299ef71
BP
2384 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2385 nid, value,
2386 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
f9431992 2387
2299ef71 2388 return ret;
f9431992
DT
2389}
2390
2391static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2392{
ae7bb7c6
BP
2393 u8 nid = pvt->mc_node_id;
2394 struct ecc_settings *s = ecc_stngs[nid];
f6d6ae96 2395 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992 2396
ae7bb7c6 2397 if (!s->nbctl_valid)
f9431992
DT
2398 return;
2399
8d5b5d9c 2400 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
f9431992 2401 value &= ~mask;
ae7bb7c6 2402 value |= s->old_nbctl;
f9431992 2403
8d5b5d9c 2404 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
f9431992 2405
ae7bb7c6
BP
2406 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2407 if (!s->flags.nb_ecc_prev) {
8d5b5d9c 2408 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
d95cf4de 2409 value &= ~K8_NBCFG_ECC_ENABLE;
8d5b5d9c 2410 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
d95cf4de
BP
2411 }
2412
2413 /* restore the NB Enable MCGCTL bit */
2299ef71 2414 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2415 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2416}
2417
2418/*
2299ef71
BP
2419 * EDAC requires that the BIOS have ECC enabled before
2420 * taking over the processing of ECC errors. A command line
2421 * option allows to force-enable hardware ECC later in
2422 * enable_ecc_error_reporting().
f9431992 2423 */
cab4d277
BP
2424static const char *ecc_msg =
2425 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2426 " Either enable ECC checking or force module loading by setting "
2427 "'ecc_enable_override'.\n"
2428 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2429
2299ef71 2430static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2431{
2432 u32 value;
2299ef71 2433 u8 ecc_en = 0;
06724535 2434 bool nb_mce_en = false;
f9431992 2435
2299ef71 2436 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
f9431992 2437
2299ef71
BP
2438 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2439 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2440
2299ef71 2441 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2442 if (!nb_mce_en)
2299ef71
BP
2443 amd64_notice("NB MCE bank disabled, set MSR "
2444 "0x%08x[4] on node %d to enable.\n",
2445 MSR_IA32_MCG_CTL, nid);
f9431992 2446
2299ef71
BP
2447 if (!ecc_en || !nb_mce_en) {
2448 amd64_notice("%s", ecc_msg);
2449 return false;
2450 }
2451 return true;
f9431992
DT
2452}
2453
7d6034d3
DT
2454struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2455 ARRAY_SIZE(amd64_inj_attrs) +
2456 1];
2457
2458struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2459
2460static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2461{
2462 unsigned int i = 0, j = 0;
2463
2464 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2465 sysfs_attrs[i] = amd64_dbg_attrs[i];
2466
2467 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2468 sysfs_attrs[i] = amd64_inj_attrs[j];
2469
2470 sysfs_attrs[i] = terminator;
2471
2472 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2473}
2474
2475static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2476{
2477 struct amd64_pvt *pvt = mci->pvt_info;
2478
2479 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2480 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2481
2482 if (pvt->nbcap & K8_NBCAP_SECDED)
2483 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2484
2485 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2486 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2487
2488 mci->edac_cap = amd64_determine_edac_cap(pvt);
2489 mci->mod_name = EDAC_MOD_STR;
2490 mci->mod_ver = EDAC_AMD64_VERSION;
0092b20d 2491 mci->ctl_name = pvt->ctl_name;
8d5b5d9c 2492 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2493 mci->ctl_page_to_phys = NULL;
2494
7d6034d3
DT
2495 /* memory scrubber interface */
2496 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2497 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2498}
2499
0092b20d
BP
2500/*
2501 * returns a pointer to the family descriptor on success, NULL otherwise.
2502 */
2503static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2504{
0092b20d
BP
2505 u8 fam = boot_cpu_data.x86;
2506 struct amd64_family_type *fam_type = NULL;
2507
2508 switch (fam) {
395ae783 2509 case 0xf:
0092b20d 2510 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2511 pvt->ops = &amd64_family_types[K8_CPUS].ops;
0092b20d
BP
2512 pvt->ctl_name = fam_type->ctl_name;
2513 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
395ae783
BP
2514 break;
2515 case 0x10:
0092b20d 2516 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2517 pvt->ops = &amd64_family_types[F10_CPUS].ops;
0092b20d
BP
2518 pvt->ctl_name = fam_type->ctl_name;
2519 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
395ae783
BP
2520 break;
2521
2522 default:
24f9a7fe 2523 amd64_err("Unsupported family!\n");
0092b20d 2524 return NULL;
395ae783 2525 }
0092b20d 2526
b8cfa02f
BP
2527 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2528
24f9a7fe 2529 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
0092b20d 2530 (fam == 0xf ?
24f9a7fe
BP
2531 (pvt->ext_model >= K8_REV_F ? "revF or later "
2532 : "revE or earlier ")
2533 : ""), pvt->mc_node_id);
0092b20d 2534 return fam_type;
395ae783
BP
2535}
2536
2299ef71 2537static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2538{
2539 struct amd64_pvt *pvt = NULL;
0092b20d 2540 struct amd64_family_type *fam_type = NULL;
7d6034d3
DT
2541 int err = 0, ret;
2542
2543 ret = -ENOMEM;
2544 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2545 if (!pvt)
2546 goto err_exit;
2547
8d5b5d9c
BP
2548 pvt->mc_node_id = get_node_id(F2);
2549 pvt->F2 = F2;
7d6034d3 2550
395ae783 2551 ret = -EINVAL;
0092b20d
BP
2552 fam_type = amd64_per_family_init(pvt);
2553 if (!fam_type)
395ae783
BP
2554 goto err_free;
2555
7d6034d3 2556 ret = -ENODEV;
8d5b5d9c
BP
2557 err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
2558 fam_type->f3_id);
7d6034d3
DT
2559 if (err)
2560 goto err_free;
2561
7d6034d3
DT
2562 /*
2563 * Save the pointer to the private data for use in 2nd initialization
2564 * stage
2565 */
cc4d8860 2566 pvts[pvt->mc_node_id] = pvt;
7d6034d3
DT
2567
2568 return 0;
2569
7d6034d3
DT
2570err_free:
2571 kfree(pvt);
2572
2573err_exit:
2574 return ret;
2575}
2576
2577/*
2578 * This is the finishing stage of the init code. Needs to be performed after all
2579 * MCs' hardware have been prepped for accessing extended config space.
2580 */
2581static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2582{
2583 int node_id = pvt->mc_node_id;
2584 struct mem_ctl_info *mci;
18ba54ac 2585 int ret = -ENODEV;
7d6034d3
DT
2586
2587 amd64_read_mc_registers(pvt);
2588
7d6034d3
DT
2589 /*
2590 * We need to determine how many memory channels there are. Then use
2591 * that information for calculating the size of the dynamic instance
2592 * tables in the 'mci' structure
2593 */
2594 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2595 if (pvt->channel_count < 0)
2596 goto err_exit;
2597
2598 ret = -ENOMEM;
9d858bb1 2599 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2600 if (!mci)
2601 goto err_exit;
2602
2603 mci->pvt_info = pvt;
2604
8d5b5d9c 2605 mci->dev = &pvt->F2->dev;
7d6034d3
DT
2606 amd64_setup_mci_misc_attributes(mci);
2607
2608 if (amd64_init_csrows(mci))
2609 mci->edac_cap = EDAC_FLAG_NONE;
2610
7d6034d3
DT
2611 amd64_set_mc_sysfs_attributes(mci);
2612
2613 ret = -ENODEV;
2614 if (edac_mc_add_mc(mci)) {
2615 debugf1("failed edac_mc_add_mc()\n");
2616 goto err_add_mc;
2617 }
2618
cc4d8860
BP
2619 mcis[node_id] = mci;
2620 pvts[node_id] = NULL;
549d042d
BP
2621
2622 /* register stuff with EDAC MCE */
2623 if (report_gart_errors)
2624 amd_report_gart_errors(true);
2625
2626 amd_register_ecc_decoder(amd64_decode_bus_error);
2627
7d6034d3
DT
2628 return 0;
2629
2630err_add_mc:
2631 edac_mc_free(mci);
2632
2633err_exit:
2634 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2635
2636 amd64_restore_ecc_error_reporting(pvt);
2637
7d6034d3
DT
2638 amd64_free_mc_sibling_devices(pvt);
2639
cc4d8860
BP
2640 kfree(pvts[pvt->mc_node_id]);
2641 pvts[node_id] = NULL;
7d6034d3
DT
2642
2643 return ret;
2644}
2645
2646
2299ef71 2647static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2648 const struct pci_device_id *mc_type)
7d6034d3 2649{
ae7bb7c6 2650 u8 nid = get_node_id(pdev);
2299ef71 2651 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2652 struct ecc_settings *s;
2299ef71 2653 int ret = 0;
7d6034d3 2654
7d6034d3 2655 ret = pci_enable_device(pdev);
b8cfa02f
BP
2656 if (ret < 0) {
2657 debugf0("ret=%d\n", ret);
2658 return -EIO;
2659 }
7d6034d3 2660
ae7bb7c6
BP
2661 ret = -ENOMEM;
2662 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2663 if (!s)
2299ef71 2664 goto err_out;
ae7bb7c6
BP
2665
2666 ecc_stngs[nid] = s;
2667
2299ef71
BP
2668 if (!ecc_enabled(F3, nid)) {
2669 ret = -ENODEV;
2670
2671 if (!ecc_enable_override)
2672 goto err_enable;
2673
2674 amd64_warn("Forcing ECC on!\n");
2675
2676 if (!enable_ecc_error_reporting(s, nid, F3))
2677 goto err_enable;
2678 }
2679
2680 ret = amd64_init_one_instance(pdev);
7d6034d3 2681 if (ret < 0)
ae7bb7c6 2682 amd64_err("Error probing instance: %d\n", nid);
7d6034d3
DT
2683
2684 return ret;
2299ef71
BP
2685
2686err_enable:
2687 kfree(s);
2688 ecc_stngs[nid] = NULL;
2689
2690err_out:
2691 return ret;
7d6034d3
DT
2692}
2693
2694static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2695{
2696 struct mem_ctl_info *mci;
2697 struct amd64_pvt *pvt;
2698
2699 /* Remove from EDAC CORE tracking list */
2700 mci = edac_mc_del_mc(&pdev->dev);
2701 if (!mci)
2702 return;
2703
2704 pvt = mci->pvt_info;
2705
2706 amd64_restore_ecc_error_reporting(pvt);
2707
7d6034d3
DT
2708 amd64_free_mc_sibling_devices(pvt);
2709
549d042d
BP
2710 /* unregister from EDAC MCE */
2711 amd_report_gart_errors(false);
2712 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2713
ae7bb7c6
BP
2714 kfree(ecc_stngs[pvt->mc_node_id]);
2715 ecc_stngs[pvt->mc_node_id] = NULL;
2716
7d6034d3 2717 /* Free the EDAC CORE resources */
8f68ed97 2718 mci->pvt_info = NULL;
cc4d8860 2719 mcis[pvt->mc_node_id] = NULL;
8f68ed97
BP
2720
2721 kfree(pvt);
7d6034d3
DT
2722 edac_mc_free(mci);
2723}
2724
2725/*
2726 * This table is part of the interface for loading drivers for PCI devices. The
2727 * PCI core identifies what devices are on a system during boot, and then
2728 * inquiry this table to see if this driver is for a given device found.
2729 */
2730static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2731 {
2732 .vendor = PCI_VENDOR_ID_AMD,
2733 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2734 .subvendor = PCI_ANY_ID,
2735 .subdevice = PCI_ANY_ID,
2736 .class = 0,
2737 .class_mask = 0,
7d6034d3
DT
2738 },
2739 {
2740 .vendor = PCI_VENDOR_ID_AMD,
2741 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2742 .subvendor = PCI_ANY_ID,
2743 .subdevice = PCI_ANY_ID,
2744 .class = 0,
2745 .class_mask = 0,
7d6034d3 2746 },
7d6034d3
DT
2747 {0, }
2748};
2749MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2750
2751static struct pci_driver amd64_pci_driver = {
2752 .name = EDAC_MOD_STR,
2299ef71 2753 .probe = amd64_probe_one_instance,
7d6034d3
DT
2754 .remove = __devexit_p(amd64_remove_one_instance),
2755 .id_table = amd64_pci_table,
2756};
2757
2758static void amd64_setup_pci_device(void)
2759{
2760 struct mem_ctl_info *mci;
2761 struct amd64_pvt *pvt;
2762
2763 if (amd64_ctl_pci)
2764 return;
2765
cc4d8860 2766 mci = mcis[0];
7d6034d3
DT
2767 if (mci) {
2768
2769 pvt = mci->pvt_info;
2770 amd64_ctl_pci =
8d5b5d9c 2771 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2772
2773 if (!amd64_ctl_pci) {
2774 pr_warning("%s(): Unable to create PCI control\n",
2775 __func__);
2776
2777 pr_warning("%s(): PCI error report via EDAC not set\n",
2778 __func__);
2779 }
2780 }
2781}
2782
2783static int __init amd64_edac_init(void)
2784{
2785 int nb, err = -ENODEV;
56b34b91 2786 bool load_ok = false;
7d6034d3
DT
2787
2788 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2789
2790 opstate_init();
2791
9653a5c7 2792 if (amd_cache_northbridges() < 0)
56b34b91 2793 goto err_ret;
7d6034d3 2794
cc4d8860 2795 err = -ENOMEM;
ae7bb7c6
BP
2796 pvts = kzalloc(amd_nb_num() * sizeof(pvts[0]), GFP_KERNEL);
2797 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2798 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2799 if (!(pvts && mcis && ecc_stngs))
cc4d8860
BP
2800 goto err_ret;
2801
50542251 2802 msrs = msrs_alloc();
56b34b91
BP
2803 if (!msrs)
2804 goto err_ret;
50542251 2805
7d6034d3
DT
2806 err = pci_register_driver(&amd64_pci_driver);
2807 if (err)
56b34b91 2808 goto err_pci;
7d6034d3
DT
2809
2810 /*
cc4d8860 2811 * At this point, the array 'pvts[]' contains pointers to alloc'd
7d6034d3
DT
2812 * amd64_pvt structs. These will be used in the 2nd stage init function
2813 * to finish initialization of the MC instances.
2814 */
56b34b91 2815 err = -ENODEV;
9653a5c7 2816 for (nb = 0; nb < amd_nb_num(); nb++) {
cc4d8860 2817 if (!pvts[nb])
7d6034d3
DT
2818 continue;
2819
cc4d8860 2820 err = amd64_init_2nd_stage(pvts[nb]);
7d6034d3 2821 if (err)
37da0450 2822 goto err_2nd_stage;
7d6034d3 2823
56b34b91
BP
2824 load_ok = true;
2825 }
7d6034d3 2826
56b34b91
BP
2827 if (load_ok) {
2828 amd64_setup_pci_device();
2829 return 0;
2830 }
7d6034d3 2831
37da0450 2832err_2nd_stage:
7d6034d3 2833 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2834
56b34b91
BP
2835err_pci:
2836 msrs_free(msrs);
2837 msrs = NULL;
cc4d8860 2838
56b34b91 2839err_ret:
7d6034d3
DT
2840 return err;
2841}
2842
2843static void __exit amd64_edac_exit(void)
2844{
2845 if (amd64_ctl_pci)
2846 edac_pci_release_generic_ctl(amd64_ctl_pci);
2847
2848 pci_unregister_driver(&amd64_pci_driver);
50542251 2849
ae7bb7c6
BP
2850 kfree(ecc_stngs);
2851 ecc_stngs = NULL;
2852
cc4d8860
BP
2853 kfree(mcis);
2854 mcis = NULL;
2855
2856 kfree(pvts);
2857 pvts = NULL;
2858
50542251
BP
2859 msrs_free(msrs);
2860 msrs = NULL;
7d6034d3
DT
2861}
2862
2863module_init(amd64_edac_init);
2864module_exit(amd64_edac_exit);
2865
2866MODULE_LICENSE("GPL");
2867MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2868 "Dave Peterson, Thayne Harbaugh");
2869MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2870 EDAC_AMD64_VERSION);
2871
2872module_param(edac_op_state, int, 0444);
2873MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");