]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/edac/amd64_edac.c
Linux 3.9-rc7
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
73ba8593
BP
117/*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121{
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128}
129
b2b0c605
BP
130static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132{
b2b0c605
BP
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
73ba8593 140 f15h_select_dct(pvt, dct);
b2b0c605
BP
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143}
144
2bc65418
DT
145/*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159/*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
395ae783 163static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
164{
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
2bc65418 176 */
168bfeef 177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
395ae783 182 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
2bc65418
DT
187 }
188
189 scrubval = scrubrates[i].scrubval;
2bc65418 190
5980bb9c 191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 192
39094443
BP
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
2bc65418
DT
196 return 0;
197}
198
395ae783 199static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
200{
201 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 202 u32 min_scrubrate = 0x5;
2bc65418 203
87b3e0e6
BP
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
73ba8593
BP
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
87b3e0e6 211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
212}
213
39094443 214static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
39094443 218 int i, retval = -EINVAL;
2bc65418 219
73ba8593
BP
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
5980bb9c 224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
225
226 scrubval = scrubval & 0x001F;
227
926311fd 228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 229 if (scrubrates[i].scrubval == scrubval) {
39094443 230 retval = scrubrates[i].bandwidth;
2bc65418
DT
231 break;
232 }
233 }
39094443 234 return retval;
2bc65418
DT
235}
236
6775763a 237/*
7f19bf75
BP
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
6775763a 240 */
b487c33e 241static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
c7e5301a 242 u8 nid)
6775763a 243{
7f19bf75 244 u64 addr;
6775763a
DT
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
7f19bf75
BP
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
256}
257
258/*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266{
267 struct amd64_pvt *pvt;
c7e5301a 268 u8 node_id;
6775763a
DT
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
7f19bf75 282 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
283
284 if (intlv_en == 0) {
7f19bf75 285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 287 goto found;
6775763a 288 }
8edc5445 289 goto err_no_match;
6775763a
DT
290 }
291
72f158fe
BP
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
24f9a7fe 295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
7f19bf75 302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
303 break; /* intlv_sel field matches */
304
7f19bf75 305 if (++node_id >= DRAM_RANGES)
6775763a
DT
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
6775763a
DT
314 return NULL;
315 }
316
317found:
b487c33e 318 return edac_mc_find((int)node_id);
6775763a
DT
319
320err_no_match:
956b9ba1
JP
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
6775763a
DT
323
324 return NULL;
325}
e2ce7255
DT
326
327/*
11c75ead
BP
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 330 */
11c75ead
BP
331static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
e2ce7255 333{
11c75ead
BP
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
e2ce7255 336
11c75ead
BP
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
e2ce7255 347
11c75ead
BP
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
e2ce7255 353
11c75ead 354 *base = (csbase & base_bits) << addr_shift;
e2ce7255 355
11c75ead
BP
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
361}
362
11c75ead
BP
363#define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
614ec9d8
BP
366#define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
11c75ead
BP
369#define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
e2ce7255
DT
372/*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377{
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
11c75ead
BP
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
386 continue;
387
11c75ead
BP
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
e2ce7255
DT
391
392 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
e2ce7255
DT
396
397 return csrow;
398 }
399 }
956b9ba1
JP
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
402
403 return -1;
404}
405
e2ce7255
DT
406/*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424{
425 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
426
427 /* only revE and later have the DRAM Hole Address Register */
1433eb99 428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
431 return 1;
432 }
433
bc21fa57 434 /* valid for Fam10h and above */
c8e518d5 435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
437 return 1;
438 }
439
c8e518d5 440 if (!dhar_valid(pvt)) {
956b9ba1
JP
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
e2ce7255
DT
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
1f31677e
BP
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255
DT
466
467 if (boot_cpu_data.x86 > 0xf)
bc21fa57 468 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 469 else
bc21fa57 470 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 471
956b9ba1
JP
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
475
476 return 0;
477}
478EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
93c2df58
DT
480/*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510{
7f19bf75 511 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 513 int ret;
93c2df58 514
7f19bf75 515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
1f31677e
BP
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
956b9ba1
JP
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
93c2df58
DT
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
f678b8cc 542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 543
956b9ba1
JP
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
546 return dram_addr;
547}
548
549/*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554static int num_node_interleave_bits(unsigned intlv_en)
555{
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562}
563
564/* Translate the DramAddr given by @dram_addr to an InputAddr. */
565static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566{
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
7f19bf75 577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
93c2df58 580
956b9ba1
JP
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
93c2df58
DT
584
585 return input_addr;
586}
587
588/*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593{
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
956b9ba1
JP
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
601
602 return input_addr;
603}
604
93c2df58
DT
605/* Map the Error address to a PAGE and PAGE OFFSET. */
606static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 607 struct err_info *err)
93c2df58 608{
33ca0643
BP
609 err->page = (u32) (error_address >> PAGE_SHIFT);
610 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
611}
612
613/*
614 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
615 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
616 * of a node that detected an ECC memory error. mci represents the node that
617 * the error address maps to (possibly different from the node that detected
618 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
619 * error.
620 */
621static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
622{
623 int csrow;
624
625 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
626
627 if (csrow == -1)
24f9a7fe
BP
628 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
629 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
630 return csrow;
631}
e2ce7255 632
bfc04aec 633static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 634
2da11654
DT
635/*
636 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
637 * are ECC capable.
638 */
1f6189ed 639static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 640{
cb328507 641 u8 bit;
1f6189ed 642 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 643
1433eb99 644 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
645 ? 19
646 : 17;
647
584fcff4 648 if (pvt->dclr0 & BIT(bit))
2da11654
DT
649 edac_cap = EDAC_FLAG_SECDED;
650
651 return edac_cap;
652}
653
8c671751 654static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 655
68798e17
BP
656static void amd64_dump_dramcfg_low(u32 dclr, int chan)
657{
956b9ba1 658 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 659
956b9ba1
JP
660 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
661 (dclr & BIT(16)) ? "un" : "",
662 (dclr & BIT(19)) ? "yes" : "no");
68798e17 663
956b9ba1
JP
664 edac_dbg(1, " PAR/ERR parity: %s\n",
665 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 666
cb328507 667 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
668 edac_dbg(1, " DCT 128bit mode width: %s\n",
669 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 670
956b9ba1
JP
671 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
672 (dclr & BIT(12)) ? "yes" : "no",
673 (dclr & BIT(13)) ? "yes" : "no",
674 (dclr & BIT(14)) ? "yes" : "no",
675 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
676}
677
2da11654 678/* Display and decode various NB registers for debug purposes. */
b2b0c605 679static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 680{
956b9ba1 681 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 682
956b9ba1
JP
683 edac_dbg(1, " NB two channel DRAM capable: %s\n",
684 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 685
956b9ba1
JP
686 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
687 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
688 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
689
690 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 691
956b9ba1 692 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 693
956b9ba1
JP
694 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
695 pvt->dhar, dhar_base(pvt),
696 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
697 : f10_dhar_offset(pvt));
2da11654 698
956b9ba1 699 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 700
8c671751 701 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 702
8de1d91e 703 /* everything below this point is Fam10h and above */
4d796364 704 if (boot_cpu_data.x86 == 0xf)
2da11654 705 return;
4d796364 706
8c671751 707 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 708
a3b7db09 709 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 710
8de1d91e 711 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
712 if (!dct_ganging_enabled(pvt))
713 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
714}
715
94be4bff 716/*
11c75ead 717 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 718 */
11c75ead 719static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 720{
1433eb99 721 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
722 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
723 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 724 } else {
11c75ead
BP
725 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
726 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
727 }
728}
729
730/*
11c75ead 731 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 732 */
b2b0c605 733static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 734{
11c75ead 735 int cs;
94be4bff 736
11c75ead 737 prep_chip_selects(pvt);
94be4bff 738
11c75ead 739 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
740 int reg0 = DCSB0 + (cs * 4);
741 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
742 u32 *base0 = &pvt->csels[0].csbases[cs];
743 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 744
11c75ead 745 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
746 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
747 cs, *base0, reg0);
94be4bff 748
11c75ead
BP
749 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
750 continue;
b2b0c605 751
11c75ead 752 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
753 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
754 cs, *base1, reg1);
94be4bff
DT
755 }
756
11c75ead 757 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
758 int reg0 = DCSM0 + (cs * 4);
759 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
760 u32 *mask0 = &pvt->csels[0].csmasks[cs];
761 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 762
11c75ead 763 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
764 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
765 cs, *mask0, reg0);
94be4bff 766
11c75ead
BP
767 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
768 continue;
b2b0c605 769
11c75ead 770 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
771 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
772 cs, *mask1, reg1);
94be4bff
DT
773 }
774}
775
24f9a7fe 776static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
777{
778 enum mem_type type;
779
cb328507
BP
780 /* F15h supports only DDR3 */
781 if (boot_cpu_data.x86 >= 0x15)
782 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
783 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
784 if (pvt->dchr0 & DDR3_MODE)
785 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
786 else
787 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 788 } else {
94be4bff
DT
789 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
790 }
791
24f9a7fe 792 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
793
794 return type;
795}
796
cb328507 797/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
798static int k8_early_channel_count(struct amd64_pvt *pvt)
799{
cb328507 800 int flag;
ddff876d 801
9f56da0e 802 if (pvt->ext_model >= K8_REV_F)
ddff876d 803 /* RevF (NPT) and later */
41d8bfab 804 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 805 else
ddff876d
DT
806 /* RevE and earlier */
807 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
808
809 /* not used */
810 pvt->dclr1 = 0;
811
812 return (flag) ? 2 : 1;
813}
814
70046624
BP
815/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
816static u64 get_error_address(struct mce *m)
ddff876d 817{
c1ae6830
BP
818 struct cpuinfo_x86 *c = &boot_cpu_data;
819 u64 addr;
70046624
BP
820 u8 start_bit = 1;
821 u8 end_bit = 47;
822
c1ae6830 823 if (c->x86 == 0xf) {
70046624
BP
824 start_bit = 3;
825 end_bit = 39;
826 }
827
c1ae6830
BP
828 addr = m->addr & GENMASK(start_bit, end_bit);
829
830 /*
831 * Erratum 637 workaround
832 */
833 if (c->x86 == 0x15) {
834 struct amd64_pvt *pvt;
835 u64 cc6_base, tmp_addr;
836 u32 tmp;
8b84c8df
DB
837 u16 mce_nid;
838 u8 intlv_en;
c1ae6830
BP
839
840 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
841 return addr;
842
843 mce_nid = amd_get_nb_id(m->extcpu);
844 pvt = mcis[mce_nid]->pvt_info;
845
846 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
847 intlv_en = tmp >> 21 & 0x7;
848
849 /* add [47:27] + 3 trailing bits */
850 cc6_base = (tmp & GENMASK(0, 20)) << 3;
851
852 /* reverse and add DramIntlvEn */
853 cc6_base |= intlv_en ^ 0x7;
854
855 /* pin at [47:24] */
856 cc6_base <<= 24;
857
858 if (!intlv_en)
859 return cc6_base | (addr & GENMASK(0, 23));
860
861 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
862
863 /* faster log2 */
864 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
865
866 /* OR DramIntlvSel into bits [14:12] */
867 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
868
869 /* add remaining [11:0] bits from original MC4_ADDR */
870 tmp_addr |= addr & GENMASK(0, 11);
871
872 return cc6_base | tmp_addr;
873 }
874
875 return addr;
ddff876d
DT
876}
877
e2c0bffe
DB
878static struct pci_dev *pci_get_related_function(unsigned int vendor,
879 unsigned int device,
880 struct pci_dev *related)
881{
882 struct pci_dev *dev = NULL;
883
884 while ((dev = pci_get_device(vendor, device, dev))) {
885 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
886 (dev->bus->number == related->bus->number) &&
887 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
888 break;
889 }
890
891 return dev;
892}
893
7f19bf75 894static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 895{
e2c0bffe
DB
896 struct amd_northbridge *nb;
897 struct pci_dev *misc, *f1 = NULL;
f08e457c 898 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 899 int off = range << 3;
e2c0bffe 900 u32 llim;
ddff876d 901
7f19bf75
BP
902 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
903 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 904
f08e457c 905 if (c->x86 == 0xf)
7f19bf75 906 return;
ddff876d 907
7f19bf75
BP
908 if (!dram_rw(pvt, range))
909 return;
ddff876d 910
7f19bf75
BP
911 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
912 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 913
e2c0bffe
DB
914 /* F15h: factor in CC6 save area by reading dst node's limit reg */
915 if (c->x86 != 0x15)
916 return;
f08e457c 917
e2c0bffe
DB
918 nb = node_to_amd_nb(dram_dst_node(pvt, range));
919 if (WARN_ON(!nb))
920 return;
f08e457c 921
e2c0bffe
DB
922 misc = nb->misc;
923 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
924 if (WARN_ON(!f1))
925 return;
f08e457c 926
e2c0bffe 927 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 928
e2c0bffe 929 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
f08e457c 930
e2c0bffe
DB
931 /* {[39:27],111b} */
932 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 933
e2c0bffe 934 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
f08e457c 935
e2c0bffe
DB
936 /* [47:40] */
937 pvt->ranges[range].lim.hi |= llim >> 13;
938
939 pci_dev_put(f1);
ddff876d
DT
940}
941
f192c7b1 942static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 943 struct err_info *err)
ddff876d 944{
f192c7b1 945 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 946
33ca0643 947 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
948
949 /*
950 * Find out which node the error address belongs to. This may be
951 * different from the node that detected the error.
952 */
33ca0643
BP
953 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
954 if (!err->src_mci) {
ab5a503c
MCC
955 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
956 (unsigned long)sys_addr);
33ca0643 957 err->err_code = ERR_NODE;
ab5a503c
MCC
958 return;
959 }
960
961 /* Now map the sys_addr to a CSROW */
33ca0643
BP
962 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
963 if (err->csrow < 0) {
964 err->err_code = ERR_CSROW;
ab5a503c
MCC
965 return;
966 }
967
ddff876d 968 /* CHIPKILL enabled */
f192c7b1 969 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
970 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
971 if (err->channel < 0) {
ddff876d
DT
972 /*
973 * Syndrome didn't map, so we don't know which of the
974 * 2 DIMMs is in error. So we need to ID 'both' of them
975 * as suspect.
976 */
33ca0643 977 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 978 "possible error reporting race\n",
33ca0643
BP
979 err->syndrome);
980 err->err_code = ERR_CHANNEL;
ddff876d
DT
981 return;
982 }
983 } else {
984 /*
985 * non-chipkill ecc mode
986 *
987 * The k8 documentation is unclear about how to determine the
988 * channel number when using non-chipkill memory. This method
989 * was obtained from email communication with someone at AMD.
990 * (Wish the email was placed in this comment - norsk)
991 */
33ca0643 992 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 993 }
ddff876d
DT
994}
995
41d8bfab 996static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 997{
41d8bfab 998 unsigned shift = 0;
ddff876d 999
41d8bfab
BP
1000 if (i <= 2)
1001 shift = i;
1002 else if (!(i & 0x1))
1003 shift = i >> 1;
1433eb99 1004 else
41d8bfab 1005 shift = (i + 1) >> 1;
ddff876d 1006
41d8bfab
BP
1007 return 128 << (shift + !!dct_width);
1008}
1009
1010static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1011 unsigned cs_mode)
1012{
1013 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1014
1015 if (pvt->ext_model >= K8_REV_F) {
1016 WARN_ON(cs_mode > 11);
1017 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1018 }
1019 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1020 unsigned diff;
41d8bfab
BP
1021 WARN_ON(cs_mode > 10);
1022
11b0a314
BP
1023 /*
1024 * the below calculation, besides trying to win an obfuscated C
1025 * contest, maps cs_mode values to DIMM chip select sizes. The
1026 * mappings are:
1027 *
1028 * cs_mode CS size (mb)
1029 * ======= ============
1030 * 0 32
1031 * 1 64
1032 * 2 128
1033 * 3 128
1034 * 4 256
1035 * 5 512
1036 * 6 256
1037 * 7 512
1038 * 8 1024
1039 * 9 1024
1040 * 10 2048
1041 *
1042 * Basically, it calculates a value with which to shift the
1043 * smallest CS size of 32MB.
1044 *
1045 * ddr[23]_cs_size have a similar purpose.
1046 */
1047 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1048
1049 return 32 << (cs_mode - diff);
41d8bfab
BP
1050 }
1051 else {
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1054 }
ddff876d
DT
1055}
1056
1afd3c98
DT
1057/*
1058 * Get the number of DCT channels in use.
1059 *
1060 * Return:
1061 * number of Memory Channels in operation
1062 * Pass back:
1063 * contents of the DCL0_LOW register
1064 */
7d20d14d 1065static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1066{
6ba5dcdc 1067 int i, j, channels = 0;
1afd3c98 1068
7d20d14d 1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1071 return 2;
1afd3c98
DT
1072
1073 /*
d16149e8
BP
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1076 * bit will be OFF.
1afd3c98
DT
1077 *
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1080 */
956b9ba1 1081 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1082
1afd3c98
DT
1083 /*
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1087 */
525a1b20
BP
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1090
57a30854
WW
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1093 channels++;
1094 break;
1095 }
1096 }
1afd3c98
DT
1097 }
1098
d16149e8
BP
1099 if (channels > 2)
1100 channels = 2;
1101
24f9a7fe 1102 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1103
1104 return channels;
1afd3c98
DT
1105}
1106
41d8bfab 1107static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1108{
41d8bfab
BP
1109 unsigned shift = 0;
1110 int cs_size = 0;
1111
1112 if (i == 0 || i == 3 || i == 4)
1113 cs_size = -1;
1114 else if (i <= 2)
1115 shift = i;
1116 else if (i == 12)
1117 shift = 7;
1118 else if (!(i & 0x1))
1119 shift = i >> 1;
1120 else
1121 shift = (i + 1) >> 1;
1122
1123 if (cs_size != -1)
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1125
1126 return cs_size;
1127}
1128
1129static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1130 unsigned cs_mode)
1131{
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1133
1134 WARN_ON(cs_mode > 11);
1433eb99
BP
1135
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1138 else
41d8bfab
BP
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1140}
1141
1142/*
1143 * F15h supports only 64bit DCT interfaces
1144 */
1145static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1146 unsigned cs_mode)
1147{
1148 WARN_ON(cs_mode > 12);
1433eb99 1149
41d8bfab 1150 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1151}
1152
5a5d2371 1153static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1154{
6163b5d4 1155
5a5d2371
BP
1156 if (boot_cpu_data.x86 == 0xf)
1157 return;
1158
78da121e 1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1160 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1162
956b9ba1
JP
1163 edac_dbg(0, " DCTs operate in %s mode\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1165
1166 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1167 edac_dbg(0, " Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1169
956b9ba1
JP
1170 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1171 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1172 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1173
956b9ba1
JP
1174 edac_dbg(0, " channel interleave: %s, "
1175 "interleave bits selector: 0x%x\n",
1176 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1177 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1178 }
1179
78da121e 1180 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1181}
1182
f71d0a05 1183/*
229a7a11 1184 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1185 * Interleaving Modes.
1186 */
b15f0fca 1187static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1188 bool hi_range_sel, u8 intlv_en)
6163b5d4 1189{
151fa71c 1190 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1191
1192 if (dct_ganging_enabled(pvt))
229a7a11 1193 return 0;
6163b5d4 1194
229a7a11
BP
1195 if (hi_range_sel)
1196 return dct_sel_high;
6163b5d4 1197
229a7a11
BP
1198 /*
1199 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1200 */
1201 if (dct_interleave_enabled(pvt)) {
1202 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1203
1204 /* return DCT select function: 0=DCT0, 1=DCT1 */
1205 if (!intlv_addr)
1206 return sys_addr >> 6 & 1;
1207
1208 if (intlv_addr & 0x2) {
1209 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1210 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1211
1212 return ((sys_addr >> shift) & 1) ^ temp;
1213 }
1214
1215 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1216 }
1217
1218 if (dct_high_range_enabled(pvt))
1219 return ~dct_sel_high & 1;
6163b5d4
DT
1220
1221 return 0;
1222}
1223
c8e518d5 1224/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1225static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1226 u64 sys_addr, bool hi_rng,
1227 u32 dct_sel_base_addr)
6163b5d4
DT
1228{
1229 u64 chan_off;
c8e518d5
BP
1230 u64 dram_base = get_dram_base(pvt, range);
1231 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1232 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1233
c8e518d5
BP
1234 if (hi_rng) {
1235 /*
1236 * if
1237 * base address of high range is below 4Gb
1238 * (bits [47:27] at [31:11])
1239 * DRAM address space on this DCT is hoisted above 4Gb &&
1240 * sys_addr > 4Gb
1241 *
1242 * remove hole offset from sys_addr
1243 * else
1244 * remove high range offset from sys_addr
1245 */
1246 if ((!(dct_sel_base_addr >> 16) ||
1247 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1248 dhar_valid(pvt) &&
c8e518d5 1249 (sys_addr >= BIT_64(32)))
bc21fa57 1250 chan_off = hole_off;
6163b5d4
DT
1251 else
1252 chan_off = dct_sel_base_off;
1253 } else {
c8e518d5
BP
1254 /*
1255 * if
1256 * we have a valid hole &&
1257 * sys_addr > 4Gb
1258 *
1259 * remove hole
1260 * else
1261 * remove dram base to normalize to DCT address
1262 */
972ea17a 1263 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1264 chan_off = hole_off;
6163b5d4 1265 else
c8e518d5 1266 chan_off = dram_base;
6163b5d4
DT
1267 }
1268
c8e518d5 1269 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1270}
1271
6163b5d4
DT
1272/*
1273 * checks if the csrow passed in is marked as SPARED, if so returns the new
1274 * spare row
1275 */
11c75ead 1276static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1277{
614ec9d8
BP
1278 int tmp_cs;
1279
1280 if (online_spare_swap_done(pvt, dct) &&
1281 csrow == online_spare_bad_dramcs(pvt, dct)) {
1282
1283 for_each_chip_select(tmp_cs, dct, pvt) {
1284 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1285 csrow = tmp_cs;
1286 break;
1287 }
1288 }
6163b5d4
DT
1289 }
1290 return csrow;
1291}
1292
1293/*
1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1296 *
1297 * Return:
1298 * -EINVAL: NOT FOUND
1299 * 0..csrow = Chip-Select Row
1300 */
c7e5301a 1301static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1302{
1303 struct mem_ctl_info *mci;
1304 struct amd64_pvt *pvt;
11c75ead 1305 u64 cs_base, cs_mask;
6163b5d4
DT
1306 int cs_found = -EINVAL;
1307 int csrow;
1308
cc4d8860 1309 mci = mcis[nid];
6163b5d4
DT
1310 if (!mci)
1311 return cs_found;
1312
1313 pvt = mci->pvt_info;
1314
956b9ba1 1315 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1316
11c75ead
BP
1317 for_each_chip_select(csrow, dct, pvt) {
1318 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1319 continue;
1320
11c75ead 1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1322
956b9ba1
JP
1323 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1324 csrow, cs_base, cs_mask);
6163b5d4 1325
11c75ead 1326 cs_mask = ~cs_mask;
6163b5d4 1327
956b9ba1
JP
1328 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1329 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1330
11c75ead
BP
1331 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1332 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1333
956b9ba1 1334 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1335 break;
1336 }
1337 }
1338 return cs_found;
1339}
1340
95b0ef55
BP
1341/*
1342 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1343 * swapped with a region located at the bottom of memory so that the GPU can use
1344 * the interleaved region and thus two channels.
1345 */
b15f0fca 1346static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1347{
1348 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1349
1350 if (boot_cpu_data.x86 == 0x10) {
1351 /* only revC3 and revE have that feature */
1352 if (boot_cpu_data.x86_model < 4 ||
1353 (boot_cpu_data.x86_model < 0xa &&
1354 boot_cpu_data.x86_mask < 3))
1355 return sys_addr;
1356 }
1357
1358 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1359
1360 if (!(swap_reg & 0x1))
1361 return sys_addr;
1362
1363 swap_base = (swap_reg >> 3) & 0x7f;
1364 swap_limit = (swap_reg >> 11) & 0x7f;
1365 rgn_size = (swap_reg >> 20) & 0x7f;
1366 tmp_addr = sys_addr >> 27;
1367
1368 if (!(sys_addr >> 34) &&
1369 (((tmp_addr >= swap_base) &&
1370 (tmp_addr <= swap_limit)) ||
1371 (tmp_addr < rgn_size)))
1372 return sys_addr ^ (u64)swap_base << 27;
1373
1374 return sys_addr;
1375}
1376
f71d0a05 1377/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1378static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1379 u64 sys_addr, int *chan_sel)
f71d0a05 1380{
229a7a11 1381 int cs_found = -EINVAL;
c8e518d5 1382 u64 chan_addr;
5d4b58e8 1383 u32 dct_sel_base;
11c75ead 1384 u8 channel;
229a7a11 1385 bool high_range = false;
f71d0a05 1386
7f19bf75 1387 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1388 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1389 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1390
956b9ba1
JP
1391 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1392 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1393
355fba60
BP
1394 if (dhar_valid(pvt) &&
1395 dhar_base(pvt) <= sys_addr &&
1396 sys_addr < BIT_64(32)) {
1397 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1398 sys_addr);
1399 return -EINVAL;
1400 }
1401
f030ddfb 1402 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1403 return -EINVAL;
1404
b15f0fca 1405 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1406
f71d0a05
DT
1407 dct_sel_base = dct_sel_baseaddr(pvt);
1408
1409 /*
1410 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1411 * select between DCT0 and DCT1.
1412 */
1413 if (dct_high_range_enabled(pvt) &&
1414 !dct_ganging_enabled(pvt) &&
1415 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1416 high_range = true;
f71d0a05 1417
b15f0fca 1418 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1419
b15f0fca 1420 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1421 high_range, dct_sel_base);
f71d0a05 1422
e2f79dbd
BP
1423 /* Remove node interleaving, see F1x120 */
1424 if (intlv_en)
1425 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1426 (chan_addr & 0xfff);
f71d0a05 1427
5d4b58e8 1428 /* remove channel interleave */
f71d0a05
DT
1429 if (dct_interleave_enabled(pvt) &&
1430 !dct_high_range_enabled(pvt) &&
1431 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1432
1433 if (dct_sel_interleave_addr(pvt) != 1) {
1434 if (dct_sel_interleave_addr(pvt) == 0x3)
1435 /* hash 9 */
1436 chan_addr = ((chan_addr >> 10) << 9) |
1437 (chan_addr & 0x1ff);
1438 else
1439 /* A[6] or hash 6 */
1440 chan_addr = ((chan_addr >> 7) << 6) |
1441 (chan_addr & 0x3f);
1442 } else
1443 /* A[12] */
1444 chan_addr = ((chan_addr >> 13) << 12) |
1445 (chan_addr & 0xfff);
f71d0a05
DT
1446 }
1447
956b9ba1 1448 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1449
b15f0fca 1450 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1451
33ca0643 1452 if (cs_found >= 0)
f71d0a05 1453 *chan_sel = channel;
33ca0643 1454
f71d0a05
DT
1455 return cs_found;
1456}
1457
b15f0fca 1458static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
33ca0643 1459 int *chan_sel)
f71d0a05 1460{
e761359a
BP
1461 int cs_found = -EINVAL;
1462 unsigned range;
f71d0a05 1463
7f19bf75 1464 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1465
7f19bf75 1466 if (!dram_rw(pvt, range))
f71d0a05
DT
1467 continue;
1468
7f19bf75
BP
1469 if ((get_dram_base(pvt, range) <= sys_addr) &&
1470 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1471
b15f0fca 1472 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1473 sys_addr, chan_sel);
f71d0a05
DT
1474 if (cs_found >= 0)
1475 break;
1476 }
1477 }
1478 return cs_found;
1479}
1480
1481/*
bdc30a0c
BP
1482 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1483 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1484 *
bdc30a0c
BP
1485 * The @sys_addr is usually an error address received from the hardware
1486 * (MCX_ADDR).
f71d0a05 1487 */
b15f0fca 1488static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1489 struct err_info *err)
f71d0a05
DT
1490{
1491 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1492
33ca0643 1493 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1494
33ca0643
BP
1495 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1496 if (err->csrow < 0) {
1497 err->err_code = ERR_CSROW;
bdc30a0c
BP
1498 return;
1499 }
1500
bdc30a0c
BP
1501 /*
1502 * We need the syndromes for channel detection only when we're
1503 * ganged. Otherwise @chan should already contain the channel at
1504 * this point.
1505 */
a97fa68e 1506 if (dct_ganging_enabled(pvt))
33ca0643 1507 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1508}
1509
f71d0a05 1510/*
8566c4df 1511 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1512 * CSROWs
f71d0a05 1513 */
8c671751 1514static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1515{
bb89f5a0 1516 int dimm, size0, size1;
525a1b20
BP
1517 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1518 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1519
8566c4df
BP
1520 if (boot_cpu_data.x86 == 0xf) {
1521 /* K8 families < revF not supported yet */
1433eb99 1522 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1523 return;
1524 else
1525 WARN_ON(ctrl != 0);
1526 }
1527
4d796364 1528 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1529 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1530 : pvt->csels[0].csbases;
f71d0a05 1531
956b9ba1
JP
1532 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1533 ctrl, dbam);
f71d0a05 1534
8566c4df
BP
1535 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1536
f71d0a05
DT
1537 /* Dump memory sizes for DIMM and its CSROWs */
1538 for (dimm = 0; dimm < 4; dimm++) {
1539
1540 size0 = 0;
11c75ead 1541 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1542 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1543 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1544
1545 size1 = 0;
11c75ead 1546 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1547 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1548 DBAM_DIMM(dimm, dbam));
f71d0a05 1549
24f9a7fe 1550 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1551 dimm * 2, size0,
1552 dimm * 2 + 1, size1);
f71d0a05
DT
1553 }
1554}
1555
4d37607a
DT
1556static struct amd64_family_type amd64_family_types[] = {
1557 [K8_CPUS] = {
0092b20d 1558 .ctl_name = "K8",
8d5b5d9c
BP
1559 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1560 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1561 .ops = {
1433eb99 1562 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1563 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1564 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1565 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1566 }
1567 },
1568 [F10_CPUS] = {
0092b20d 1569 .ctl_name = "F10h",
8d5b5d9c
BP
1570 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1571 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1572 .ops = {
7d20d14d 1573 .early_channel_count = f1x_early_channel_count,
b15f0fca 1574 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1575 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1576 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1577 }
1578 },
1579 [F15_CPUS] = {
1580 .ctl_name = "F15h",
df71a053
BP
1581 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1582 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1583 .ops = {
7d20d14d 1584 .early_channel_count = f1x_early_channel_count,
b15f0fca 1585 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1586 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1587 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1588 }
1589 },
4d37607a
DT
1590};
1591
b1289d6f 1592/*
bfc04aec
BP
1593 * These are tables of eigenvectors (one per line) which can be used for the
1594 * construction of the syndrome tables. The modified syndrome search algorithm
1595 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1596 *
bfc04aec 1597 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1598 */
c7e5301a 1599static const u16 x4_vectors[] = {
bfc04aec
BP
1600 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1601 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1602 0x0001, 0x0002, 0x0004, 0x0008,
1603 0x1013, 0x3032, 0x4044, 0x8088,
1604 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1605 0x4857, 0xc4fe, 0x13cc, 0x3288,
1606 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1607 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1608 0x15c1, 0x2a42, 0x89ac, 0x4758,
1609 0x2b03, 0x1602, 0x4f0c, 0xca08,
1610 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1611 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1612 0x2b87, 0x164e, 0x642c, 0xdc18,
1613 0x40b9, 0x80de, 0x1094, 0x20e8,
1614 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1615 0x11c1, 0x2242, 0x84ac, 0x4c58,
1616 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1617 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1618 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1619 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1620 0x16b3, 0x3d62, 0x4f34, 0x8518,
1621 0x1e2f, 0x391a, 0x5cac, 0xf858,
1622 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1623 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1624 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1625 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1626 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1627 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1628 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1629 0x185d, 0x2ca6, 0x7914, 0x9e28,
1630 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1631 0x4199, 0x82ee, 0x19f4, 0x2e58,
1632 0x4807, 0xc40e, 0x130c, 0x3208,
1633 0x1905, 0x2e0a, 0x5804, 0xac08,
1634 0x213f, 0x132a, 0xadfc, 0x5ba8,
1635 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1636};
1637
c7e5301a 1638static const u16 x8_vectors[] = {
bfc04aec
BP
1639 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1640 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1641 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1642 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1643 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1644 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1645 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1646 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1647 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1648 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1649 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1650 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1651 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1652 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1653 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1654 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1655 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1656 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1657 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1658};
1659
c7e5301a 1660static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 1661 unsigned v_dim)
b1289d6f 1662{
bfc04aec
BP
1663 unsigned int i, err_sym;
1664
1665 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1666 u16 s = syndrome;
d34a6ecd
BP
1667 unsigned v_idx = err_sym * v_dim;
1668 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1669
1670 /* walk over all 16 bits of the syndrome */
1671 for (i = 1; i < (1U << 16); i <<= 1) {
1672
1673 /* if bit is set in that eigenvector... */
1674 if (v_idx < v_end && vectors[v_idx] & i) {
1675 u16 ev_comp = vectors[v_idx++];
1676
1677 /* ... and bit set in the modified syndrome, */
1678 if (s & i) {
1679 /* remove it. */
1680 s ^= ev_comp;
4d37607a 1681
bfc04aec
BP
1682 if (!s)
1683 return err_sym;
1684 }
b1289d6f 1685
bfc04aec
BP
1686 } else if (s & i)
1687 /* can't get to zero, move to next symbol */
1688 break;
1689 }
b1289d6f
DT
1690 }
1691
956b9ba1 1692 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1693 return -1;
1694}
d27bf6fa 1695
bfc04aec
BP
1696static int map_err_sym_to_channel(int err_sym, int sym_size)
1697{
1698 if (sym_size == 4)
1699 switch (err_sym) {
1700 case 0x20:
1701 case 0x21:
1702 return 0;
1703 break;
1704 case 0x22:
1705 case 0x23:
1706 return 1;
1707 break;
1708 default:
1709 return err_sym >> 4;
1710 break;
1711 }
1712 /* x8 symbols */
1713 else
1714 switch (err_sym) {
1715 /* imaginary bits not in a DIMM */
1716 case 0x10:
1717 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1718 err_sym);
1719 return -1;
1720 break;
1721
1722 case 0x11:
1723 return 0;
1724 break;
1725 case 0x12:
1726 return 1;
1727 break;
1728 default:
1729 return err_sym >> 3;
1730 break;
1731 }
1732 return -1;
1733}
1734
1735static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1736{
1737 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1738 int err_sym = -1;
1739
a3b7db09 1740 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1741 err_sym = decode_syndrome(syndrome, x8_vectors,
1742 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1743 pvt->ecc_sym_sz);
1744 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1745 err_sym = decode_syndrome(syndrome, x4_vectors,
1746 ARRAY_SIZE(x4_vectors),
a3b7db09 1747 pvt->ecc_sym_sz);
ad6a32e9 1748 else {
a3b7db09 1749 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1750 return err_sym;
bfc04aec 1751 }
ad6a32e9 1752
a3b7db09 1753 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1754}
1755
33ca0643
BP
1756static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1757 u8 ecc_type)
d27bf6fa 1758{
33ca0643
BP
1759 enum hw_event_mc_err_type err_type;
1760 const char *string;
d27bf6fa 1761
33ca0643
BP
1762 if (ecc_type == 2)
1763 err_type = HW_EVENT_ERR_CORRECTED;
1764 else if (ecc_type == 1)
1765 err_type = HW_EVENT_ERR_UNCORRECTED;
1766 else {
1767 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1768 return;
1769 }
1770
33ca0643
BP
1771 switch (err->err_code) {
1772 case DECODE_OK:
1773 string = "";
1774 break;
1775 case ERR_NODE:
1776 string = "Failed to map error addr to a node";
1777 break;
1778 case ERR_CSROW:
1779 string = "Failed to map error addr to a csrow";
1780 break;
1781 case ERR_CHANNEL:
1782 string = "unknown syndrome - possible error reporting race";
1783 break;
1784 default:
1785 string = "WTF error";
1786 break;
d27bf6fa 1787 }
33ca0643
BP
1788
1789 edac_mc_handle_error(err_type, mci, 1,
1790 err->page, err->offset, err->syndrome,
1791 err->csrow, err->channel, -1,
1792 string, "");
d27bf6fa
DT
1793}
1794
549d042d 1795static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1796 struct mce *m)
d27bf6fa 1797{
33ca0643 1798 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 1799 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
1800 u8 xec = XEC(m->status, 0x1f);
1801 u16 ec = EC(m->status);
33ca0643
BP
1802 u64 sys_addr;
1803 struct err_info err;
d27bf6fa 1804
66fed2d4 1805 /* Bail out early if this was an 'observed' error */
5980bb9c 1806 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1807 return;
d27bf6fa 1808
ecaf5606
BP
1809 /* Do only ECC errors */
1810 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1811 return;
d27bf6fa 1812
33ca0643
BP
1813 memset(&err, 0, sizeof(err));
1814
1815 sys_addr = get_error_address(m);
1816
ecaf5606 1817 if (ecc_type == 2)
33ca0643
BP
1818 err.syndrome = extract_syndrome(m->status);
1819
1820 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1821
1822 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
1823}
1824
b0b07a2b 1825void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1826{
b0b07a2b 1827 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1828}
d27bf6fa 1829
0ec449ee 1830/*
8d5b5d9c 1831 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1832 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1833 */
360b7f3c 1834static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1835{
0ec449ee 1836 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1837 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1838 if (!pvt->F1) {
24f9a7fe
BP
1839 amd64_err("error address map device not found: "
1840 "vendor %x device 0x%x (broken BIOS?)\n",
1841 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1842 return -ENODEV;
0ec449ee
DT
1843 }
1844
1845 /* Reserve the MISC Device */
8d5b5d9c
BP
1846 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1847 if (!pvt->F3) {
1848 pci_dev_put(pvt->F1);
1849 pvt->F1 = NULL;
0ec449ee 1850
24f9a7fe
BP
1851 amd64_err("error F3 device not found: "
1852 "vendor %x device 0x%x (broken BIOS?)\n",
1853 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1854
bbd0c1f6 1855 return -ENODEV;
0ec449ee 1856 }
956b9ba1
JP
1857 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1858 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1859 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1860
1861 return 0;
1862}
1863
360b7f3c 1864static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1865{
8d5b5d9c
BP
1866 pci_dev_put(pvt->F1);
1867 pci_dev_put(pvt->F3);
0ec449ee
DT
1868}
1869
1870/*
1871 * Retrieve the hardware registers of the memory controller (this includes the
1872 * 'Address Map' and 'Misc' device regs)
1873 */
360b7f3c 1874static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1875{
a3b7db09 1876 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1877 u64 msr_val;
ad6a32e9 1878 u32 tmp;
e761359a 1879 unsigned range;
0ec449ee
DT
1880
1881 /*
1882 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1883 * those are Read-As-Zero
1884 */
e97f8bb8 1885 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 1886 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1887
1888 /* check first whether TOP_MEM2 is enabled */
1889 rdmsrl(MSR_K8_SYSCFG, msr_val);
1890 if (msr_val & (1U << 21)) {
e97f8bb8 1891 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 1892 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 1893 } else
956b9ba1 1894 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 1895
5980bb9c 1896 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1897
5a5d2371 1898 read_dram_ctl_register(pvt);
0ec449ee 1899
7f19bf75
BP
1900 for (range = 0; range < DRAM_RANGES; range++) {
1901 u8 rw;
0ec449ee 1902
7f19bf75
BP
1903 /* read settings for this DRAM range */
1904 read_dram_base_limit_regs(pvt, range);
1905
1906 rw = dram_rw(pvt, range);
1907 if (!rw)
1908 continue;
1909
956b9ba1
JP
1910 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1911 range,
1912 get_dram_base(pvt, range),
1913 get_dram_limit(pvt, range));
7f19bf75 1914
956b9ba1
JP
1915 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1916 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1917 (rw & 0x1) ? "R" : "-",
1918 (rw & 0x2) ? "W" : "-",
1919 dram_intlv_sel(pvt, range),
1920 dram_dst_node(pvt, range));
0ec449ee
DT
1921 }
1922
b2b0c605 1923 read_dct_base_mask(pvt);
0ec449ee 1924
bc21fa57 1925 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1926 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1927
8d5b5d9c 1928 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1929
cb328507
BP
1930 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1931 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1932
78da121e 1933 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1934 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1935 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1936 }
ad6a32e9 1937
a3b7db09
BP
1938 pvt->ecc_sym_sz = 4;
1939
1940 if (c->x86 >= 0x10) {
b2b0c605 1941 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 1942 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 1943
a3b7db09
BP
1944 /* F10h, revD and later can do x8 ECC too */
1945 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
1946 pvt->ecc_sym_sz = 8;
1947 }
b2b0c605 1948 dump_misc_regs(pvt);
0ec449ee
DT
1949}
1950
1951/*
1952 * NOTE: CPU Revision Dependent code
1953 *
1954 * Input:
11c75ead 1955 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
1956 * k8 private pointer to -->
1957 * DRAM Bank Address mapping register
1958 * node_id
1959 * DCL register where dual_channel_active is
1960 *
1961 * The DBAM register consists of 4 sets of 4 bits each definitions:
1962 *
1963 * Bits: CSROWs
1964 * 0-3 CSROWs 0 and 1
1965 * 4-7 CSROWs 2 and 3
1966 * 8-11 CSROWs 4 and 5
1967 * 12-15 CSROWs 6 and 7
1968 *
1969 * Values range from: 0 to 15
1970 * The meaning of the values depends on CPU revision and dual-channel state,
1971 * see relevant BKDG more info.
1972 *
1973 * The memory controller provides for total of only 8 CSROWs in its current
1974 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1975 * single channel or two (2) DIMMs in dual channel mode.
1976 *
1977 * The following code logic collapses the various tables for CSROW based on CPU
1978 * revision.
1979 *
1980 * Returns:
1981 * The number of PAGE_SIZE pages on the specified CSROW number it
1982 * encompasses
1983 *
1984 */
41d8bfab 1985static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 1986{
1433eb99 1987 u32 cs_mode, nr_pages;
f92cae45 1988 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 1989
10de6497 1990
0ec449ee
DT
1991 /*
1992 * The math on this doesn't look right on the surface because x/2*4 can
1993 * be simplified to x*2 but this expression makes use of the fact that
1994 * it is integral math where 1/2=0. This intermediate value becomes the
1995 * number of bits to shift the DBAM register to extract the proper CSROW
1996 * field.
1997 */
0a5dfc31 1998 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 1999
41d8bfab 2000 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2001
10de6497
BP
2002 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2003 csrow_nr, dct, cs_mode);
2004 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2005
2006 return nr_pages;
2007}
2008
2009/*
2010 * Initialize the array of csrow attribute instances, based on the values
2011 * from pci config hardware registers.
2012 */
360b7f3c 2013static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2014{
10de6497 2015 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2016 struct csrow_info *csrow;
de3910eb 2017 struct dimm_info *dimm;
084a4fcc 2018 enum edac_type edac_mode;
10de6497
BP
2019 enum mem_type mtype;
2020 int i, j, empty = 1;
a895bf8b 2021 int nr_pages = 0;
10de6497 2022 u32 val;
0ec449ee 2023
a97fa68e 2024 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2025
2299ef71 2026 pvt->nbcfg = val;
0ec449ee 2027
956b9ba1
JP
2028 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2029 pvt->mc_node_id, val,
2030 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2031
10de6497
BP
2032 /*
2033 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2034 */
11c75ead 2035 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2036 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2037 bool row_dct1 = false;
0ec449ee 2038
10de6497
BP
2039 if (boot_cpu_data.x86 != 0xf)
2040 row_dct1 = !!csrow_enabled(i, 1, pvt);
2041
2042 if (!row_dct0 && !row_dct1)
0ec449ee 2043 continue;
0ec449ee 2044
10de6497 2045 csrow = mci->csrows[i];
0ec449ee 2046 empty = 0;
10de6497
BP
2047
2048 edac_dbg(1, "MC node: %d, csrow: %d\n",
2049 pvt->mc_node_id, i);
2050
1eef1282 2051 if (row_dct0) {
a895bf8b 2052 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2053 csrow->channels[0]->dimm->nr_pages = nr_pages;
2054 }
11c75ead 2055
10de6497 2056 /* K8 has only one DCT */
1eef1282
MCC
2057 if (boot_cpu_data.x86 != 0xf && row_dct1) {
2058 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2059
2060 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2061 nr_pages += row_dct1_pages;
2062 }
0ec449ee 2063
084a4fcc 2064 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2065
10de6497 2066 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2067
2068 /*
2069 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2070 */
a97fa68e 2071 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2072 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2073 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2074 else
084a4fcc
MCC
2075 edac_mode = EDAC_NONE;
2076
2077 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2078 dimm = csrow->channels[j]->dimm;
2079 dimm->mtype = mtype;
2080 dimm->edac_mode = edac_mode;
084a4fcc 2081 }
0ec449ee
DT
2082 }
2083
2084 return empty;
2085}
d27bf6fa 2086
f6d6ae96 2087/* get all cores on this DCT */
8b84c8df 2088static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2089{
2090 int cpu;
2091
2092 for_each_online_cpu(cpu)
2093 if (amd_get_nb_id(cpu) == nid)
2094 cpumask_set_cpu(cpu, mask);
2095}
2096
2097/* check MCG_CTL on all the cpus on this node */
c7e5301a 2098static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2099{
2100 cpumask_var_t mask;
50542251 2101 int cpu, nbe;
f6d6ae96
BP
2102 bool ret = false;
2103
2104 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2105 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2106 return false;
2107 }
2108
2109 get_cpus_on_this_dct_cpumask(mask, nid);
2110
f6d6ae96
BP
2111 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2112
2113 for_each_cpu(cpu, mask) {
50542251 2114 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2115 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2116
956b9ba1
JP
2117 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2118 cpu, reg->q,
2119 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2120
2121 if (!nbe)
2122 goto out;
f6d6ae96
BP
2123 }
2124 ret = true;
2125
2126out:
f6d6ae96
BP
2127 free_cpumask_var(mask);
2128 return ret;
2129}
2130
c7e5301a 2131static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2132{
2133 cpumask_var_t cmask;
50542251 2134 int cpu;
f6d6ae96
BP
2135
2136 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2137 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2138 return false;
2139 }
2140
ae7bb7c6 2141 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2142
f6d6ae96
BP
2143 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2144
2145 for_each_cpu(cpu, cmask) {
2146
50542251
BP
2147 struct msr *reg = per_cpu_ptr(msrs, cpu);
2148
f6d6ae96 2149 if (on) {
5980bb9c 2150 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2151 s->flags.nb_mce_enable = 1;
f6d6ae96 2152
5980bb9c 2153 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2154 } else {
2155 /*
d95cf4de 2156 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2157 */
ae7bb7c6 2158 if (!s->flags.nb_mce_enable)
5980bb9c 2159 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2160 }
f6d6ae96
BP
2161 }
2162 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2163
f6d6ae96
BP
2164 free_cpumask_var(cmask);
2165
2166 return 0;
2167}
2168
c7e5301a 2169static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2170 struct pci_dev *F3)
f9431992 2171{
2299ef71 2172 bool ret = true;
c9f4f26e 2173 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2174
2299ef71
BP
2175 if (toggle_ecc_err_reporting(s, nid, ON)) {
2176 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2177 return false;
2178 }
2179
c9f4f26e 2180 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2181
ae7bb7c6
BP
2182 s->old_nbctl = value & mask;
2183 s->nbctl_valid = true;
f9431992
DT
2184
2185 value |= mask;
c9f4f26e 2186 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2187
a97fa68e 2188 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2189
956b9ba1
JP
2190 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2191 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2192
a97fa68e 2193 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2194 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2195
ae7bb7c6 2196 s->flags.nb_ecc_prev = 0;
d95cf4de 2197
f9431992 2198 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2199 value |= NBCFG_ECC_ENABLE;
2200 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2201
a97fa68e 2202 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2203
a97fa68e 2204 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2205 amd64_warn("Hardware rejected DRAM ECC enable,"
2206 "check memory DIMM configuration.\n");
2299ef71 2207 ret = false;
f9431992 2208 } else {
24f9a7fe 2209 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2210 }
d95cf4de 2211 } else {
ae7bb7c6 2212 s->flags.nb_ecc_prev = 1;
f9431992 2213 }
d95cf4de 2214
956b9ba1
JP
2215 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2216 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2217
2299ef71 2218 return ret;
f9431992
DT
2219}
2220
c7e5301a 2221static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2222 struct pci_dev *F3)
f9431992 2223{
c9f4f26e
BP
2224 u32 value, mask = 0x3; /* UECC/CECC enable */
2225
f9431992 2226
ae7bb7c6 2227 if (!s->nbctl_valid)
f9431992
DT
2228 return;
2229
c9f4f26e 2230 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2231 value &= ~mask;
ae7bb7c6 2232 value |= s->old_nbctl;
f9431992 2233
c9f4f26e 2234 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2235
ae7bb7c6
BP
2236 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2237 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2238 amd64_read_pci_cfg(F3, NBCFG, &value);
2239 value &= ~NBCFG_ECC_ENABLE;
2240 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2241 }
2242
2243 /* restore the NB Enable MCGCTL bit */
2299ef71 2244 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2245 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2246}
2247
2248/*
2299ef71
BP
2249 * EDAC requires that the BIOS have ECC enabled before
2250 * taking over the processing of ECC errors. A command line
2251 * option allows to force-enable hardware ECC later in
2252 * enable_ecc_error_reporting().
f9431992 2253 */
cab4d277
BP
2254static const char *ecc_msg =
2255 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2256 " Either enable ECC checking or force module loading by setting "
2257 "'ecc_enable_override'.\n"
2258 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2259
c7e5301a 2260static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2261{
2262 u32 value;
2299ef71 2263 u8 ecc_en = 0;
06724535 2264 bool nb_mce_en = false;
f9431992 2265
a97fa68e 2266 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2267
a97fa68e 2268 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2269 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2270
2299ef71 2271 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2272 if (!nb_mce_en)
2299ef71
BP
2273 amd64_notice("NB MCE bank disabled, set MSR "
2274 "0x%08x[4] on node %d to enable.\n",
2275 MSR_IA32_MCG_CTL, nid);
f9431992 2276
2299ef71
BP
2277 if (!ecc_en || !nb_mce_en) {
2278 amd64_notice("%s", ecc_msg);
2279 return false;
2280 }
2281 return true;
f9431992
DT
2282}
2283
c5608759 2284static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2285{
c5608759 2286 int rc;
7d6034d3 2287
c5608759
MCC
2288 rc = amd64_create_sysfs_dbg_files(mci);
2289 if (rc < 0)
2290 return rc;
7d6034d3 2291
c5608759
MCC
2292 if (boot_cpu_data.x86 >= 0x10) {
2293 rc = amd64_create_sysfs_inject_files(mci);
2294 if (rc < 0)
2295 return rc;
2296 }
2297
2298 return 0;
2299}
7d6034d3 2300
c5608759
MCC
2301static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2302{
2303 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2304
c5608759
MCC
2305 if (boot_cpu_data.x86 >= 0x10)
2306 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2307}
2308
df71a053
BP
2309static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2310 struct amd64_family_type *fam)
7d6034d3
DT
2311{
2312 struct amd64_pvt *pvt = mci->pvt_info;
2313
2314 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2315 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2316
5980bb9c 2317 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2318 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2319
5980bb9c 2320 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2321 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2322
2323 mci->edac_cap = amd64_determine_edac_cap(pvt);
2324 mci->mod_name = EDAC_MOD_STR;
2325 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2326 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2327 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2328 mci->ctl_page_to_phys = NULL;
2329
7d6034d3
DT
2330 /* memory scrubber interface */
2331 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2332 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2333}
2334
0092b20d
BP
2335/*
2336 * returns a pointer to the family descriptor on success, NULL otherwise.
2337 */
2338static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2339{
0092b20d
BP
2340 u8 fam = boot_cpu_data.x86;
2341 struct amd64_family_type *fam_type = NULL;
2342
2343 switch (fam) {
395ae783 2344 case 0xf:
0092b20d 2345 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2346 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2347 break;
df71a053 2348
395ae783 2349 case 0x10:
0092b20d 2350 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2351 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2352 break;
2353
2354 case 0x15:
2355 fam_type = &amd64_family_types[F15_CPUS];
2356 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2357 break;
2358
2359 default:
24f9a7fe 2360 amd64_err("Unsupported family!\n");
0092b20d 2361 return NULL;
395ae783 2362 }
0092b20d 2363
b8cfa02f
BP
2364 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2365
df71a053 2366 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2367 (fam == 0xf ?
24f9a7fe
BP
2368 (pvt->ext_model >= K8_REV_F ? "revF or later "
2369 : "revE or earlier ")
2370 : ""), pvt->mc_node_id);
0092b20d 2371 return fam_type;
395ae783
BP
2372}
2373
2299ef71 2374static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2375{
2376 struct amd64_pvt *pvt = NULL;
0092b20d 2377 struct amd64_family_type *fam_type = NULL;
360b7f3c 2378 struct mem_ctl_info *mci = NULL;
ab5a503c 2379 struct edac_mc_layer layers[2];
7d6034d3 2380 int err = 0, ret;
772c3ff3 2381 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2382
2383 ret = -ENOMEM;
2384 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2385 if (!pvt)
360b7f3c 2386 goto err_ret;
7d6034d3 2387
360b7f3c 2388 pvt->mc_node_id = nid;
8d5b5d9c 2389 pvt->F2 = F2;
7d6034d3 2390
395ae783 2391 ret = -EINVAL;
0092b20d
BP
2392 fam_type = amd64_per_family_init(pvt);
2393 if (!fam_type)
395ae783
BP
2394 goto err_free;
2395
7d6034d3 2396 ret = -ENODEV;
360b7f3c 2397 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2398 if (err)
2399 goto err_free;
2400
360b7f3c 2401 read_mc_regs(pvt);
7d6034d3 2402
7d6034d3
DT
2403 /*
2404 * We need to determine how many memory channels there are. Then use
2405 * that information for calculating the size of the dynamic instance
360b7f3c 2406 * tables in the 'mci' structure.
7d6034d3 2407 */
360b7f3c 2408 ret = -EINVAL;
7d6034d3
DT
2409 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2410 if (pvt->channel_count < 0)
360b7f3c 2411 goto err_siblings;
7d6034d3
DT
2412
2413 ret = -ENOMEM;
ab5a503c
MCC
2414 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2415 layers[0].size = pvt->csels[0].b_cnt;
2416 layers[0].is_virt_csrow = true;
2417 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2418 layers[1].size = pvt->channel_count;
2419 layers[1].is_virt_csrow = false;
ca0907b9 2420 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2421 if (!mci)
360b7f3c 2422 goto err_siblings;
7d6034d3
DT
2423
2424 mci->pvt_info = pvt;
fd687502 2425 mci->pdev = &pvt->F2->dev;
7d6034d3 2426
df71a053 2427 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2428
2429 if (init_csrows(mci))
7d6034d3
DT
2430 mci->edac_cap = EDAC_FLAG_NONE;
2431
7d6034d3
DT
2432 ret = -ENODEV;
2433 if (edac_mc_add_mc(mci)) {
956b9ba1 2434 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2435 goto err_add_mc;
2436 }
c5608759 2437 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2438 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2439 goto err_add_sysfs;
2440 }
7d6034d3 2441
549d042d
BP
2442 /* register stuff with EDAC MCE */
2443 if (report_gart_errors)
2444 amd_report_gart_errors(true);
2445
2446 amd_register_ecc_decoder(amd64_decode_bus_error);
2447
360b7f3c
BP
2448 mcis[nid] = mci;
2449
2450 atomic_inc(&drv_instances);
2451
7d6034d3
DT
2452 return 0;
2453
c5608759
MCC
2454err_add_sysfs:
2455 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2456err_add_mc:
2457 edac_mc_free(mci);
2458
360b7f3c
BP
2459err_siblings:
2460 free_mc_sibling_devs(pvt);
7d6034d3 2461
360b7f3c
BP
2462err_free:
2463 kfree(pvt);
7d6034d3 2464
360b7f3c 2465err_ret:
7d6034d3
DT
2466 return ret;
2467}
2468
9b3c6e85
GKH
2469static int amd64_probe_one_instance(struct pci_dev *pdev,
2470 const struct pci_device_id *mc_type)
7d6034d3 2471{
772c3ff3 2472 u16 nid = amd_get_node_id(pdev);
2299ef71 2473 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2474 struct ecc_settings *s;
2299ef71 2475 int ret = 0;
7d6034d3 2476
7d6034d3 2477 ret = pci_enable_device(pdev);
b8cfa02f 2478 if (ret < 0) {
956b9ba1 2479 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2480 return -EIO;
2481 }
7d6034d3 2482
ae7bb7c6
BP
2483 ret = -ENOMEM;
2484 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2485 if (!s)
2299ef71 2486 goto err_out;
ae7bb7c6
BP
2487
2488 ecc_stngs[nid] = s;
2489
2299ef71
BP
2490 if (!ecc_enabled(F3, nid)) {
2491 ret = -ENODEV;
2492
2493 if (!ecc_enable_override)
2494 goto err_enable;
2495
2496 amd64_warn("Forcing ECC on!\n");
2497
2498 if (!enable_ecc_error_reporting(s, nid, F3))
2499 goto err_enable;
2500 }
2501
2502 ret = amd64_init_one_instance(pdev);
360b7f3c 2503 if (ret < 0) {
ae7bb7c6 2504 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2505 restore_ecc_error_reporting(s, nid, F3);
2506 }
7d6034d3
DT
2507
2508 return ret;
2299ef71
BP
2509
2510err_enable:
2511 kfree(s);
2512 ecc_stngs[nid] = NULL;
2513
2514err_out:
2515 return ret;
7d6034d3
DT
2516}
2517
9b3c6e85 2518static void amd64_remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2519{
2520 struct mem_ctl_info *mci;
2521 struct amd64_pvt *pvt;
772c3ff3 2522 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2523 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2524 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2525
c5608759
MCC
2526 mci = find_mci_by_dev(&pdev->dev);
2527 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2528 /* Remove from EDAC CORE tracking list */
2529 mci = edac_mc_del_mc(&pdev->dev);
2530 if (!mci)
2531 return;
2532
2533 pvt = mci->pvt_info;
2534
360b7f3c 2535 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2536
360b7f3c 2537 free_mc_sibling_devs(pvt);
7d6034d3 2538
549d042d
BP
2539 /* unregister from EDAC MCE */
2540 amd_report_gart_errors(false);
2541 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2542
360b7f3c
BP
2543 kfree(ecc_stngs[nid]);
2544 ecc_stngs[nid] = NULL;
ae7bb7c6 2545
7d6034d3 2546 /* Free the EDAC CORE resources */
8f68ed97 2547 mci->pvt_info = NULL;
360b7f3c 2548 mcis[nid] = NULL;
8f68ed97
BP
2549
2550 kfree(pvt);
7d6034d3
DT
2551 edac_mc_free(mci);
2552}
2553
2554/*
2555 * This table is part of the interface for loading drivers for PCI devices. The
2556 * PCI core identifies what devices are on a system during boot, and then
2557 * inquiry this table to see if this driver is for a given device found.
2558 */
36c46f31 2559static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2560 {
2561 .vendor = PCI_VENDOR_ID_AMD,
2562 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2563 .subvendor = PCI_ANY_ID,
2564 .subdevice = PCI_ANY_ID,
2565 .class = 0,
2566 .class_mask = 0,
7d6034d3
DT
2567 },
2568 {
2569 .vendor = PCI_VENDOR_ID_AMD,
2570 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2571 .subvendor = PCI_ANY_ID,
2572 .subdevice = PCI_ANY_ID,
2573 .class = 0,
2574 .class_mask = 0,
7d6034d3 2575 },
df71a053
BP
2576 {
2577 .vendor = PCI_VENDOR_ID_AMD,
2578 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2579 .subvendor = PCI_ANY_ID,
2580 .subdevice = PCI_ANY_ID,
2581 .class = 0,
2582 .class_mask = 0,
2583 },
2584
7d6034d3
DT
2585 {0, }
2586};
2587MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2588
2589static struct pci_driver amd64_pci_driver = {
2590 .name = EDAC_MOD_STR,
2299ef71 2591 .probe = amd64_probe_one_instance,
9b3c6e85 2592 .remove = amd64_remove_one_instance,
7d6034d3
DT
2593 .id_table = amd64_pci_table,
2594};
2595
360b7f3c 2596static void setup_pci_device(void)
7d6034d3
DT
2597{
2598 struct mem_ctl_info *mci;
2599 struct amd64_pvt *pvt;
2600
2601 if (amd64_ctl_pci)
2602 return;
2603
cc4d8860 2604 mci = mcis[0];
7d6034d3
DT
2605 if (mci) {
2606
2607 pvt = mci->pvt_info;
2608 amd64_ctl_pci =
8d5b5d9c 2609 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2610
2611 if (!amd64_ctl_pci) {
2612 pr_warning("%s(): Unable to create PCI control\n",
2613 __func__);
2614
2615 pr_warning("%s(): PCI error report via EDAC not set\n",
2616 __func__);
2617 }
2618 }
2619}
2620
2621static int __init amd64_edac_init(void)
2622{
360b7f3c 2623 int err = -ENODEV;
7d6034d3 2624
df71a053 2625 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2626
2627 opstate_init();
2628
9653a5c7 2629 if (amd_cache_northbridges() < 0)
56b34b91 2630 goto err_ret;
7d6034d3 2631
cc4d8860 2632 err = -ENOMEM;
ae7bb7c6
BP
2633 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2634 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2635 if (!(mcis && ecc_stngs))
a9f0fbe2 2636 goto err_free;
cc4d8860 2637
50542251 2638 msrs = msrs_alloc();
56b34b91 2639 if (!msrs)
360b7f3c 2640 goto err_free;
50542251 2641
7d6034d3
DT
2642 err = pci_register_driver(&amd64_pci_driver);
2643 if (err)
56b34b91 2644 goto err_pci;
7d6034d3 2645
56b34b91 2646 err = -ENODEV;
360b7f3c
BP
2647 if (!atomic_read(&drv_instances))
2648 goto err_no_instances;
7d6034d3 2649
360b7f3c
BP
2650 setup_pci_device();
2651 return 0;
7d6034d3 2652
360b7f3c 2653err_no_instances:
7d6034d3 2654 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2655
56b34b91
BP
2656err_pci:
2657 msrs_free(msrs);
2658 msrs = NULL;
cc4d8860 2659
360b7f3c
BP
2660err_free:
2661 kfree(mcis);
2662 mcis = NULL;
2663
2664 kfree(ecc_stngs);
2665 ecc_stngs = NULL;
2666
56b34b91 2667err_ret:
7d6034d3
DT
2668 return err;
2669}
2670
2671static void __exit amd64_edac_exit(void)
2672{
2673 if (amd64_ctl_pci)
2674 edac_pci_release_generic_ctl(amd64_ctl_pci);
2675
2676 pci_unregister_driver(&amd64_pci_driver);
50542251 2677
ae7bb7c6
BP
2678 kfree(ecc_stngs);
2679 ecc_stngs = NULL;
2680
cc4d8860
BP
2681 kfree(mcis);
2682 mcis = NULL;
2683
50542251
BP
2684 msrs_free(msrs);
2685 msrs = NULL;
7d6034d3
DT
2686}
2687
2688module_init(amd64_edac_init);
2689module_exit(amd64_edac_exit);
2690
2691MODULE_LICENSE("GPL");
2692MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2693 "Dave Peterson, Thayne Harbaugh");
2694MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2695 EDAC_AMD64_VERSION);
2696
2697module_param(edac_op_state, int, 0444);
2698MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");