]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/edac/amd64_edac.c
EDAC: Remove debugging output in scrub rate handling
[mirror_ubuntu-zesty-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
926311fd 214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 215 if (scrubrates[i].scrubval == scrubval) {
39094443 216 retval = scrubrates[i].bandwidth;
2bc65418
DT
217 break;
218 }
219 }
39094443 220 return retval;
2bc65418
DT
221}
222
6775763a 223/*
7f19bf75
BP
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
6775763a 226 */
b487c33e
BP
227static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
6775763a 229{
7f19bf75 230 u64 addr;
6775763a
DT
231
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
237 */
238 addr = sys_addr & 0x000000ffffffffffull;
239
7f19bf75
BP
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
242}
243
244/*
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
247 *
248 * On failure, return NULL.
249 */
250static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
252{
253 struct amd64_pvt *pvt;
b487c33e 254 unsigned node_id;
6775763a
DT
255 u32 intlv_en, bits;
256
257 /*
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 */
261 pvt = mci->pvt_info;
262
263 /*
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
267 */
7f19bf75 268 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
269
270 if (intlv_en == 0) {
7f19bf75 271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 273 goto found;
6775763a 274 }
8edc5445 275 goto err_no_match;
6775763a
DT
276 }
277
72f158fe
BP
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
24f9a7fe 281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
282 return NULL;
283 }
284
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287 for (node_id = 0; ; ) {
7f19bf75 288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
289 break; /* intlv_sel field matches */
290
7f19bf75 291 if (++node_id >= DRAM_RANGES)
6775763a
DT
292 goto err_no_match;
293 }
294
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
6775763a
DT
300 return NULL;
301 }
302
303found:
b487c33e 304 return edac_mc_find((int)node_id);
6775763a
DT
305
306err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
309
310 return NULL;
311}
e2ce7255
DT
312
313/*
11c75ead
BP
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 316 */
11c75ead
BP
317static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
e2ce7255 319{
11c75ead
BP
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
e2ce7255 322
11c75ead
BP
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
e2ce7255 333
11c75ead
BP
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 }
e2ce7255 339
11c75ead 340 *base = (csbase & base_bits) << addr_shift;
e2ce7255 341
11c75ead
BP
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
347}
348
11c75ead
BP
349#define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
614ec9d8
BP
352#define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
354
11c75ead
BP
355#define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
e2ce7255
DT
358/*
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361 */
362static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363{
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
367
368 pvt = mci->pvt_info;
369
11c75ead
BP
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
372 continue;
373
11c75ead
BP
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376 mask = ~mask;
e2ce7255
DT
377
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
382
383 return csrow;
384 }
385 }
e2ce7255
DT
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
388
389 return -1;
390}
391
e2ce7255
DT
392/*
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
397 *
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
400 *
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
403 *
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
407 */
408int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
410{
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
413
414 /* only revE and later have the DRAM Hole Address Register */
1433eb99 415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
419 }
420
bc21fa57 421 /* valid for Fam10h and above */
c8e518d5 422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
425 }
426
c8e518d5 427 if (!dhar_valid(pvt)) {
e2ce7255
DT
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
431 }
432
433 /* This node has Memory Hoisting */
434
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
443 *
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
449 */
450
bc21fa57 451 base = dhar_base(pvt);
e2ce7255
DT
452
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
455
456 if (boot_cpu_data.x86 > 0xf)
bc21fa57 457 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 458 else
bc21fa57 459 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
460
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465 return 0;
466}
467EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
93c2df58
DT
469/*
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
472 *
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
479 *
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
481 *
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
486 *
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
493 *
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497 */
498static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499{
7f19bf75 500 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
503
7f19bf75 504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
505
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
513
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
518
519 return dram_addr;
520 }
521 }
522
523 /*
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
531 */
f678b8cc 532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
533
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
538}
539
540/*
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
544 */
545static int num_node_interleave_bits(unsigned intlv_en)
546{
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
549
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
553}
554
555/* Translate the DramAddr given by @dram_addr to an InputAddr. */
556static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557{
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
561
562 pvt = mci->pvt_info;
563
564 /*
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
567 */
7f19bf75 568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
93c2df58
DT
571
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
575
576 return input_addr;
577}
578
579/*
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
582 */
583static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584{
585 u64 input_addr;
586
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
592
593 return input_addr;
594}
595
596
597/*
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
600 */
601static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602{
603 struct amd64_pvt *pvt;
b487c33e 604 unsigned node_id, intlv_shift;
93c2df58
DT
605 u64 bits, dram_addr;
606 u32 intlv_sel;
607
608 /*
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
615 */
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
b487c33e
BP
618
619 BUG_ON(node_id > 7);
93c2df58 620
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
625
626 return input_addr;
627 }
628
f678b8cc
BP
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
93c2df58 631
7f19bf75 632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
633 dram_addr = bits + (intlv_sel << 12);
634
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
638
639 return dram_addr;
640}
641
642/*
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
645 */
646static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647{
648 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
650 int ret = 0;
651
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
658
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
662
663 return sys_addr;
664 }
665 }
666
7f19bf75 667 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
668 sys_addr = dram_addr + base;
669
670 /*
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
680 */
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
686
687 return sys_addr;
688}
689
690/*
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
693 */
694static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
696{
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
699}
700
701/*
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
704 */
705static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
707{
708 struct amd64_pvt *pvt;
709 u64 base, mask;
710
711 pvt = mci->pvt_info;
11c75ead 712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 713
11c75ead 714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
715
716 *input_addr_min = base & ~mask;
11c75ead 717 *input_addr_max = base | mask;
93c2df58
DT
718}
719
93c2df58
DT
720/* Map the Error address to a PAGE and PAGE OFFSET. */
721static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
723{
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
726}
727
728/*
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
735 */
736static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737{
738 int csrow;
739
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742 if (csrow == -1)
24f9a7fe
BP
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
745 return csrow;
746}
e2ce7255 747
bfc04aec 748static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 749
2da11654
DT
750/*
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
753 */
754static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755{
cb328507 756 u8 bit;
584fcff4 757 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 758
1433eb99 759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
760 ? 19
761 : 17;
762
584fcff4 763 if (pvt->dclr0 & BIT(bit))
2da11654
DT
764 edac_cap = EDAC_FLAG_SECDED;
765
766 return edac_cap;
767}
768
8c671751 769static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 770
68798e17
BP
771static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772{
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
778
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
781
cb328507
BP
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
785
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
791}
792
2da11654 793/* Display and decode various NB registers for debug purposes. */
b2b0c605 794static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 795{
68798e17
BP
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 800
68798e17 801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
804
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 806
8de1d91e 807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 808
8de1d91e
BP
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
bc21fa57
BP
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
2da11654 814
c8e518d5 815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 816
8c671751 817 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 818
8de1d91e 819 /* everything below this point is Fam10h and above */
4d796364 820 if (boot_cpu_data.x86 == 0xf)
2da11654 821 return;
4d796364 822
8c671751 823 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 824
a3b7db09 825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 826
8de1d91e 827 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
830}
831
94be4bff 832/*
11c75ead 833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 834 */
11c75ead 835static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 836{
1433eb99 837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 840 } else {
11c75ead
BP
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
843 }
844}
845
846/*
11c75ead 847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 848 */
b2b0c605 849static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 850{
11c75ead 851 int cs;
94be4bff 852
11c75ead 853 prep_chip_selects(pvt);
94be4bff 854
11c75ead 855 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 860
11c75ead 861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 863 cs, *base0, reg0);
94be4bff 864
11c75ead
BP
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
b2b0c605 867
11c75ead
BP
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
94be4bff
DT
871 }
872
11c75ead 873 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 878
11c75ead 879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 881 cs, *mask0, reg0);
94be4bff 882
11c75ead
BP
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
b2b0c605 885
11c75ead
BP
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
94be4bff
DT
889 }
890}
891
24f9a7fe 892static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
893{
894 enum mem_type type;
895
cb328507
BP
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 904 } else {
94be4bff
DT
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 }
907
24f9a7fe 908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
909
910 return type;
911}
912
cb328507 913/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
914static int k8_early_channel_count(struct amd64_pvt *pvt)
915{
cb328507 916 int flag;
ddff876d 917
9f56da0e 918 if (pvt->ext_model >= K8_REV_F)
ddff876d 919 /* RevF (NPT) and later */
41d8bfab 920 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 921 else
ddff876d
DT
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
924
925 /* not used */
926 pvt->dclr1 = 0;
927
928 return (flag) ? 2 : 1;
929}
930
70046624
BP
931/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932static u64 get_error_address(struct mce *m)
ddff876d 933{
70046624
BP
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
937 if (boot_cpu_data.x86 == 0xf) {
938 start_bit = 3;
939 end_bit = 39;
940 }
941
942 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
943}
944
7f19bf75 945static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 946{
71d2a32e 947 int off = range << 3;
ddff876d 948
7f19bf75
BP
949 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
950 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 951
7f19bf75
BP
952 if (boot_cpu_data.x86 == 0xf)
953 return;
ddff876d 954
7f19bf75
BP
955 if (!dram_rw(pvt, range))
956 return;
ddff876d 957
7f19bf75
BP
958 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
959 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
960}
961
f192c7b1
BP
962static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
963 u16 syndrome)
ddff876d
DT
964{
965 struct mem_ctl_info *src_mci;
f192c7b1 966 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
967 int channel, csrow;
968 u32 page, offset;
ddff876d
DT
969
970 /* CHIPKILL enabled */
f192c7b1 971 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 972 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
973 if (channel < 0) {
974 /*
975 * Syndrome didn't map, so we don't know which of the
976 * 2 DIMMs is in error. So we need to ID 'both' of them
977 * as suspect.
978 */
24f9a7fe
BP
979 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
980 "error reporting race\n", syndrome);
ddff876d
DT
981 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
982 return;
983 }
984 } else {
985 /*
986 * non-chipkill ecc mode
987 *
988 * The k8 documentation is unclear about how to determine the
989 * channel number when using non-chipkill memory. This method
990 * was obtained from email communication with someone at AMD.
991 * (Wish the email was placed in this comment - norsk)
992 */
44e9e2ee 993 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
994 }
995
996 /*
997 * Find out which node the error address belongs to. This may be
998 * different from the node that detected the error.
999 */
44e9e2ee 1000 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1001 if (!src_mci) {
24f9a7fe 1002 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1003 (unsigned long)sys_addr);
ddff876d
DT
1004 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1005 return;
1006 }
1007
44e9e2ee
BP
1008 /* Now map the sys_addr to a CSROW */
1009 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1010 if (csrow < 0) {
1011 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1012 } else {
44e9e2ee 1013 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1014
1015 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1016 channel, EDAC_MOD_STR);
1017 }
1018}
1019
41d8bfab 1020static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1021{
41d8bfab 1022 unsigned shift = 0;
ddff876d 1023
41d8bfab
BP
1024 if (i <= 2)
1025 shift = i;
1026 else if (!(i & 0x1))
1027 shift = i >> 1;
1433eb99 1028 else
41d8bfab 1029 shift = (i + 1) >> 1;
ddff876d 1030
41d8bfab
BP
1031 return 128 << (shift + !!dct_width);
1032}
1033
1034static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1035 unsigned cs_mode)
1036{
1037 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1038
1039 if (pvt->ext_model >= K8_REV_F) {
1040 WARN_ON(cs_mode > 11);
1041 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1042 }
1043 else if (pvt->ext_model >= K8_REV_D) {
1044 WARN_ON(cs_mode > 10);
1045
1046 if (cs_mode == 3 || cs_mode == 8)
1047 return 32 << (cs_mode - 1);
1048 else
1049 return 32 << cs_mode;
1050 }
1051 else {
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1054 }
ddff876d
DT
1055}
1056
1afd3c98
DT
1057/*
1058 * Get the number of DCT channels in use.
1059 *
1060 * Return:
1061 * number of Memory Channels in operation
1062 * Pass back:
1063 * contents of the DCL0_LOW register
1064 */
7d20d14d 1065static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1066{
6ba5dcdc 1067 int i, j, channels = 0;
1afd3c98 1068
7d20d14d 1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1071 return 2;
1afd3c98
DT
1072
1073 /*
d16149e8
BP
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1076 * bit will be OFF.
1afd3c98
DT
1077 *
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1080 */
d16149e8 1081 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1082
1afd3c98
DT
1083 /*
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1087 */
525a1b20
BP
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1090
57a30854
WW
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1093 channels++;
1094 break;
1095 }
1096 }
1afd3c98
DT
1097 }
1098
d16149e8
BP
1099 if (channels > 2)
1100 channels = 2;
1101
24f9a7fe 1102 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1103
1104 return channels;
1afd3c98
DT
1105}
1106
41d8bfab 1107static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1108{
41d8bfab
BP
1109 unsigned shift = 0;
1110 int cs_size = 0;
1111
1112 if (i == 0 || i == 3 || i == 4)
1113 cs_size = -1;
1114 else if (i <= 2)
1115 shift = i;
1116 else if (i == 12)
1117 shift = 7;
1118 else if (!(i & 0x1))
1119 shift = i >> 1;
1120 else
1121 shift = (i + 1) >> 1;
1122
1123 if (cs_size != -1)
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1125
1126 return cs_size;
1127}
1128
1129static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1130 unsigned cs_mode)
1131{
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1133
1134 WARN_ON(cs_mode > 11);
1433eb99
BP
1135
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1138 else
41d8bfab
BP
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1140}
1141
1142/*
1143 * F15h supports only 64bit DCT interfaces
1144 */
1145static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1146 unsigned cs_mode)
1147{
1148 WARN_ON(cs_mode > 12);
1433eb99 1149
41d8bfab 1150 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1151}
1152
5a5d2371 1153static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1154{
6163b5d4 1155
5a5d2371
BP
1156 if (boot_cpu_data.x86 == 0xf)
1157 return;
1158
78da121e
BP
1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1160 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1162
5a5d2371
BP
1163 debugf0(" DCTs operate in %s mode.\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1165
1166 if (!dct_ganging_enabled(pvt))
1167 debugf0(" Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1169
78da121e 1170 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1171 "DRAM cleared since last warm reset: %s\n",
1172 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1173 (dct_memory_cleared(pvt) ? "yes" : "no"));
1174
78da121e
BP
1175 debugf0(" channel interleave: %s, "
1176 "interleave bits selector: 0x%x\n",
72381bd5 1177 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1178 dct_sel_interleave_addr(pvt));
1179 }
1180
78da121e 1181 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1182}
1183
f71d0a05 1184/*
229a7a11 1185 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1186 * Interleaving Modes.
1187 */
b15f0fca 1188static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1189 bool hi_range_sel, u8 intlv_en)
6163b5d4 1190{
151fa71c 1191 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1192
1193 if (dct_ganging_enabled(pvt))
229a7a11 1194 return 0;
6163b5d4 1195
229a7a11
BP
1196 if (hi_range_sel)
1197 return dct_sel_high;
6163b5d4 1198
229a7a11
BP
1199 /*
1200 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1201 */
1202 if (dct_interleave_enabled(pvt)) {
1203 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1204
1205 /* return DCT select function: 0=DCT0, 1=DCT1 */
1206 if (!intlv_addr)
1207 return sys_addr >> 6 & 1;
1208
1209 if (intlv_addr & 0x2) {
1210 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1211 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1212
1213 return ((sys_addr >> shift) & 1) ^ temp;
1214 }
1215
1216 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1217 }
1218
1219 if (dct_high_range_enabled(pvt))
1220 return ~dct_sel_high & 1;
6163b5d4
DT
1221
1222 return 0;
1223}
1224
c8e518d5 1225/* Convert the sys_addr to the normalized DCT address */
e761359a 1226static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
c8e518d5
BP
1227 u64 sys_addr, bool hi_rng,
1228 u32 dct_sel_base_addr)
6163b5d4
DT
1229{
1230 u64 chan_off;
c8e518d5
BP
1231 u64 dram_base = get_dram_base(pvt, range);
1232 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1233 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1234
c8e518d5
BP
1235 if (hi_rng) {
1236 /*
1237 * if
1238 * base address of high range is below 4Gb
1239 * (bits [47:27] at [31:11])
1240 * DRAM address space on this DCT is hoisted above 4Gb &&
1241 * sys_addr > 4Gb
1242 *
1243 * remove hole offset from sys_addr
1244 * else
1245 * remove high range offset from sys_addr
1246 */
1247 if ((!(dct_sel_base_addr >> 16) ||
1248 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1249 dhar_valid(pvt) &&
c8e518d5 1250 (sys_addr >= BIT_64(32)))
bc21fa57 1251 chan_off = hole_off;
6163b5d4
DT
1252 else
1253 chan_off = dct_sel_base_off;
1254 } else {
c8e518d5
BP
1255 /*
1256 * if
1257 * we have a valid hole &&
1258 * sys_addr > 4Gb
1259 *
1260 * remove hole
1261 * else
1262 * remove dram base to normalize to DCT address
1263 */
972ea17a 1264 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1265 chan_off = hole_off;
6163b5d4 1266 else
c8e518d5 1267 chan_off = dram_base;
6163b5d4
DT
1268 }
1269
c8e518d5 1270 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1271}
1272
6163b5d4
DT
1273/*
1274 * checks if the csrow passed in is marked as SPARED, if so returns the new
1275 * spare row
1276 */
11c75ead 1277static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1278{
614ec9d8
BP
1279 int tmp_cs;
1280
1281 if (online_spare_swap_done(pvt, dct) &&
1282 csrow == online_spare_bad_dramcs(pvt, dct)) {
1283
1284 for_each_chip_select(tmp_cs, dct, pvt) {
1285 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1286 csrow = tmp_cs;
1287 break;
1288 }
1289 }
6163b5d4
DT
1290 }
1291 return csrow;
1292}
1293
1294/*
1295 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1296 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1297 *
1298 * Return:
1299 * -EINVAL: NOT FOUND
1300 * 0..csrow = Chip-Select Row
1301 */
b15f0fca 1302static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1303{
1304 struct mem_ctl_info *mci;
1305 struct amd64_pvt *pvt;
11c75ead 1306 u64 cs_base, cs_mask;
6163b5d4
DT
1307 int cs_found = -EINVAL;
1308 int csrow;
1309
cc4d8860 1310 mci = mcis[nid];
6163b5d4
DT
1311 if (!mci)
1312 return cs_found;
1313
1314 pvt = mci->pvt_info;
1315
11c75ead 1316 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1317
11c75ead
BP
1318 for_each_chip_select(csrow, dct, pvt) {
1319 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1320 continue;
1321
11c75ead 1322 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1323
11c75ead
BP
1324 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1325 csrow, cs_base, cs_mask);
6163b5d4 1326
11c75ead 1327 cs_mask = ~cs_mask;
6163b5d4 1328
11c75ead
BP
1329 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1330 "(CSBase & ~CSMask)=0x%llx\n",
1331 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1332
11c75ead
BP
1333 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1334 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1335
1336 debugf1(" MATCH csrow=%d\n", cs_found);
1337 break;
1338 }
1339 }
1340 return cs_found;
1341}
1342
95b0ef55
BP
1343/*
1344 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1345 * swapped with a region located at the bottom of memory so that the GPU can use
1346 * the interleaved region and thus two channels.
1347 */
b15f0fca 1348static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1349{
1350 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1351
1352 if (boot_cpu_data.x86 == 0x10) {
1353 /* only revC3 and revE have that feature */
1354 if (boot_cpu_data.x86_model < 4 ||
1355 (boot_cpu_data.x86_model < 0xa &&
1356 boot_cpu_data.x86_mask < 3))
1357 return sys_addr;
1358 }
1359
1360 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1361
1362 if (!(swap_reg & 0x1))
1363 return sys_addr;
1364
1365 swap_base = (swap_reg >> 3) & 0x7f;
1366 swap_limit = (swap_reg >> 11) & 0x7f;
1367 rgn_size = (swap_reg >> 20) & 0x7f;
1368 tmp_addr = sys_addr >> 27;
1369
1370 if (!(sys_addr >> 34) &&
1371 (((tmp_addr >= swap_base) &&
1372 (tmp_addr <= swap_limit)) ||
1373 (tmp_addr < rgn_size)))
1374 return sys_addr ^ (u64)swap_base << 27;
1375
1376 return sys_addr;
1377}
1378
f71d0a05 1379/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1380static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
f71d0a05
DT
1381 u64 sys_addr, int *nid, int *chan_sel)
1382{
229a7a11 1383 int cs_found = -EINVAL;
c8e518d5 1384 u64 chan_addr;
5d4b58e8 1385 u32 dct_sel_base;
11c75ead 1386 u8 channel;
229a7a11 1387 bool high_range = false;
f71d0a05 1388
7f19bf75 1389 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1390 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1391 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1392
c8e518d5
BP
1393 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1394 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1395
355fba60
BP
1396 if (dhar_valid(pvt) &&
1397 dhar_base(pvt) <= sys_addr &&
1398 sys_addr < BIT_64(32)) {
1399 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1400 sys_addr);
1401 return -EINVAL;
1402 }
1403
e726f3c3 1404 if (intlv_en &&
355fba60
BP
1405 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1406 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1407 intlv_en, intlv_sel);
f71d0a05 1408 return -EINVAL;
355fba60 1409 }
f71d0a05 1410
b15f0fca 1411 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1412
f71d0a05
DT
1413 dct_sel_base = dct_sel_baseaddr(pvt);
1414
1415 /*
1416 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1417 * select between DCT0 and DCT1.
1418 */
1419 if (dct_high_range_enabled(pvt) &&
1420 !dct_ganging_enabled(pvt) &&
1421 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1422 high_range = true;
f71d0a05 1423
b15f0fca 1424 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1425
b15f0fca 1426 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1427 high_range, dct_sel_base);
f71d0a05 1428
e2f79dbd
BP
1429 /* Remove node interleaving, see F1x120 */
1430 if (intlv_en)
1431 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1432 (chan_addr & 0xfff);
f71d0a05 1433
5d4b58e8 1434 /* remove channel interleave */
f71d0a05
DT
1435 if (dct_interleave_enabled(pvt) &&
1436 !dct_high_range_enabled(pvt) &&
1437 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1438
1439 if (dct_sel_interleave_addr(pvt) != 1) {
1440 if (dct_sel_interleave_addr(pvt) == 0x3)
1441 /* hash 9 */
1442 chan_addr = ((chan_addr >> 10) << 9) |
1443 (chan_addr & 0x1ff);
1444 else
1445 /* A[6] or hash 6 */
1446 chan_addr = ((chan_addr >> 7) << 6) |
1447 (chan_addr & 0x3f);
1448 } else
1449 /* A[12] */
1450 chan_addr = ((chan_addr >> 13) << 12) |
1451 (chan_addr & 0xfff);
f71d0a05
DT
1452 }
1453
5d4b58e8 1454 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1455
b15f0fca 1456 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1457
1458 if (cs_found >= 0) {
1459 *nid = node_id;
1460 *chan_sel = channel;
1461 }
1462 return cs_found;
1463}
1464
b15f0fca 1465static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1466 int *node, int *chan_sel)
1467{
e761359a
BP
1468 int cs_found = -EINVAL;
1469 unsigned range;
f71d0a05 1470
7f19bf75 1471 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1472
7f19bf75 1473 if (!dram_rw(pvt, range))
f71d0a05
DT
1474 continue;
1475
7f19bf75
BP
1476 if ((get_dram_base(pvt, range) <= sys_addr) &&
1477 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1478
b15f0fca 1479 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1480 sys_addr, node,
1481 chan_sel);
1482 if (cs_found >= 0)
1483 break;
1484 }
1485 }
1486 return cs_found;
1487}
1488
1489/*
bdc30a0c
BP
1490 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1491 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1492 *
bdc30a0c
BP
1493 * The @sys_addr is usually an error address received from the hardware
1494 * (MCX_ADDR).
f71d0a05 1495 */
b15f0fca 1496static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1497 u16 syndrome)
f71d0a05
DT
1498{
1499 struct amd64_pvt *pvt = mci->pvt_info;
1500 u32 page, offset;
f71d0a05
DT
1501 int nid, csrow, chan = 0;
1502
b15f0fca 1503 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1504
bdc30a0c
BP
1505 if (csrow < 0) {
1506 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1507 return;
1508 }
1509
1510 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1511
bdc30a0c
BP
1512 /*
1513 * We need the syndromes for channel detection only when we're
1514 * ganged. Otherwise @chan should already contain the channel at
1515 * this point.
1516 */
a97fa68e 1517 if (dct_ganging_enabled(pvt))
bdc30a0c 1518 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1519
bdc30a0c
BP
1520 if (chan >= 0)
1521 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1522 EDAC_MOD_STR);
1523 else
f71d0a05 1524 /*
bdc30a0c 1525 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1526 */
bdc30a0c 1527 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1528 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1529 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1530}
1531
f71d0a05 1532/*
8566c4df 1533 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1534 * CSROWs
f71d0a05 1535 */
8c671751 1536static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1537{
603adaf6 1538 int dimm, size0, size1, factor = 0;
525a1b20
BP
1539 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1540 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1541
8566c4df 1542 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1543 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1544 factor = 1;
1545
8566c4df 1546 /* K8 families < revF not supported yet */
1433eb99 1547 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1548 return;
1549 else
1550 WARN_ON(ctrl != 0);
1551 }
1552
4d796364 1553 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1554 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1555 : pvt->csels[0].csbases;
f71d0a05 1556
4d796364 1557 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1558
8566c4df
BP
1559 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1560
f71d0a05
DT
1561 /* Dump memory sizes for DIMM and its CSROWs */
1562 for (dimm = 0; dimm < 4; dimm++) {
1563
1564 size0 = 0;
11c75ead 1565 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1566 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1567 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1568
1569 size1 = 0;
11c75ead 1570 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1571 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1572 DBAM_DIMM(dimm, dbam));
f71d0a05 1573
24f9a7fe
BP
1574 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1575 dimm * 2, size0 << factor,
1576 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1577 }
1578}
1579
4d37607a
DT
1580static struct amd64_family_type amd64_family_types[] = {
1581 [K8_CPUS] = {
0092b20d 1582 .ctl_name = "K8",
8d5b5d9c
BP
1583 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1584 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1585 .ops = {
1433eb99 1586 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1587 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1588 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1589 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1590 }
1591 },
1592 [F10_CPUS] = {
0092b20d 1593 .ctl_name = "F10h",
8d5b5d9c
BP
1594 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1595 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1596 .ops = {
7d20d14d 1597 .early_channel_count = f1x_early_channel_count,
b15f0fca 1598 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1599 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1600 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1601 }
1602 },
1603 [F15_CPUS] = {
1604 .ctl_name = "F15h",
df71a053
BP
1605 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1606 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1607 .ops = {
7d20d14d 1608 .early_channel_count = f1x_early_channel_count,
b15f0fca 1609 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1610 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1611 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1612 }
1613 },
4d37607a
DT
1614};
1615
1616static struct pci_dev *pci_get_related_function(unsigned int vendor,
1617 unsigned int device,
1618 struct pci_dev *related)
1619{
1620 struct pci_dev *dev = NULL;
1621
1622 dev = pci_get_device(vendor, device, dev);
1623 while (dev) {
1624 if ((dev->bus->number == related->bus->number) &&
1625 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1626 break;
1627 dev = pci_get_device(vendor, device, dev);
1628 }
1629
1630 return dev;
1631}
1632
b1289d6f 1633/*
bfc04aec
BP
1634 * These are tables of eigenvectors (one per line) which can be used for the
1635 * construction of the syndrome tables. The modified syndrome search algorithm
1636 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1637 *
bfc04aec 1638 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1639 */
bfc04aec
BP
1640static u16 x4_vectors[] = {
1641 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1642 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1643 0x0001, 0x0002, 0x0004, 0x0008,
1644 0x1013, 0x3032, 0x4044, 0x8088,
1645 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1646 0x4857, 0xc4fe, 0x13cc, 0x3288,
1647 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1648 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1649 0x15c1, 0x2a42, 0x89ac, 0x4758,
1650 0x2b03, 0x1602, 0x4f0c, 0xca08,
1651 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1652 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1653 0x2b87, 0x164e, 0x642c, 0xdc18,
1654 0x40b9, 0x80de, 0x1094, 0x20e8,
1655 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1656 0x11c1, 0x2242, 0x84ac, 0x4c58,
1657 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1658 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1659 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1660 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1661 0x16b3, 0x3d62, 0x4f34, 0x8518,
1662 0x1e2f, 0x391a, 0x5cac, 0xf858,
1663 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1664 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1665 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1666 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1667 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1668 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1669 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1670 0x185d, 0x2ca6, 0x7914, 0x9e28,
1671 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1672 0x4199, 0x82ee, 0x19f4, 0x2e58,
1673 0x4807, 0xc40e, 0x130c, 0x3208,
1674 0x1905, 0x2e0a, 0x5804, 0xac08,
1675 0x213f, 0x132a, 0xadfc, 0x5ba8,
1676 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1677};
1678
bfc04aec
BP
1679static u16 x8_vectors[] = {
1680 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1681 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1682 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1683 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1684 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1685 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1686 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1687 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1688 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1689 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1690 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1691 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1692 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1693 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1694 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1695 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1696 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1697 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1698 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1699};
1700
d34a6ecd
BP
1701static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1702 unsigned v_dim)
b1289d6f 1703{
bfc04aec
BP
1704 unsigned int i, err_sym;
1705
1706 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1707 u16 s = syndrome;
d34a6ecd
BP
1708 unsigned v_idx = err_sym * v_dim;
1709 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1710
1711 /* walk over all 16 bits of the syndrome */
1712 for (i = 1; i < (1U << 16); i <<= 1) {
1713
1714 /* if bit is set in that eigenvector... */
1715 if (v_idx < v_end && vectors[v_idx] & i) {
1716 u16 ev_comp = vectors[v_idx++];
1717
1718 /* ... and bit set in the modified syndrome, */
1719 if (s & i) {
1720 /* remove it. */
1721 s ^= ev_comp;
4d37607a 1722
bfc04aec
BP
1723 if (!s)
1724 return err_sym;
1725 }
b1289d6f 1726
bfc04aec
BP
1727 } else if (s & i)
1728 /* can't get to zero, move to next symbol */
1729 break;
1730 }
b1289d6f
DT
1731 }
1732
1733 debugf0("syndrome(%x) not found\n", syndrome);
1734 return -1;
1735}
d27bf6fa 1736
bfc04aec
BP
1737static int map_err_sym_to_channel(int err_sym, int sym_size)
1738{
1739 if (sym_size == 4)
1740 switch (err_sym) {
1741 case 0x20:
1742 case 0x21:
1743 return 0;
1744 break;
1745 case 0x22:
1746 case 0x23:
1747 return 1;
1748 break;
1749 default:
1750 return err_sym >> 4;
1751 break;
1752 }
1753 /* x8 symbols */
1754 else
1755 switch (err_sym) {
1756 /* imaginary bits not in a DIMM */
1757 case 0x10:
1758 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1759 err_sym);
1760 return -1;
1761 break;
1762
1763 case 0x11:
1764 return 0;
1765 break;
1766 case 0x12:
1767 return 1;
1768 break;
1769 default:
1770 return err_sym >> 3;
1771 break;
1772 }
1773 return -1;
1774}
1775
1776static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1777{
1778 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1779 int err_sym = -1;
1780
a3b7db09 1781 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1782 err_sym = decode_syndrome(syndrome, x8_vectors,
1783 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1784 pvt->ecc_sym_sz);
1785 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1786 err_sym = decode_syndrome(syndrome, x4_vectors,
1787 ARRAY_SIZE(x4_vectors),
a3b7db09 1788 pvt->ecc_sym_sz);
ad6a32e9 1789 else {
a3b7db09 1790 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1791 return err_sym;
bfc04aec 1792 }
ad6a32e9 1793
a3b7db09 1794 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1795}
1796
d27bf6fa
DT
1797/*
1798 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1799 * ADDRESS and process.
1800 */
f192c7b1 1801static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1802{
1803 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1804 u64 sys_addr;
f192c7b1 1805 u16 syndrome;
d27bf6fa
DT
1806
1807 /* Ensure that the Error Address is VALID */
f192c7b1 1808 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1809 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1810 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1811 return;
1812 }
1813
70046624 1814 sys_addr = get_error_address(m);
f192c7b1 1815 syndrome = extract_syndrome(m->status);
d27bf6fa 1816
24f9a7fe 1817 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1818
f192c7b1 1819 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1820}
1821
1822/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1823static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1824{
1f6bcee7 1825 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1826 int csrow;
44e9e2ee 1827 u64 sys_addr;
d27bf6fa 1828 u32 page, offset;
d27bf6fa
DT
1829
1830 log_mci = mci;
1831
f192c7b1 1832 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1833 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1834 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1835 return;
1836 }
1837
70046624 1838 sys_addr = get_error_address(m);
d27bf6fa
DT
1839
1840 /*
1841 * Find out which node the error address belongs to. This may be
1842 * different from the node that detected the error.
1843 */
44e9e2ee 1844 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1845 if (!src_mci) {
24f9a7fe
BP
1846 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1847 (unsigned long)sys_addr);
d27bf6fa
DT
1848 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1849 return;
1850 }
1851
1852 log_mci = src_mci;
1853
44e9e2ee 1854 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1855 if (csrow < 0) {
24f9a7fe
BP
1856 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1857 (unsigned long)sys_addr);
d27bf6fa
DT
1858 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1859 } else {
44e9e2ee 1860 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1861 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1862 }
1863}
1864
549d042d 1865static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1866 struct mce *m)
d27bf6fa 1867{
f192c7b1
BP
1868 u16 ec = EC(m->status);
1869 u8 xec = XEC(m->status, 0x1f);
1870 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1871
b70ef010 1872 /* Bail early out if this was an 'observed' error */
5980bb9c 1873 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1874 return;
d27bf6fa 1875
ecaf5606
BP
1876 /* Do only ECC errors */
1877 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1878 return;
d27bf6fa 1879
ecaf5606 1880 if (ecc_type == 2)
f192c7b1 1881 amd64_handle_ce(mci, m);
ecaf5606 1882 else if (ecc_type == 1)
f192c7b1 1883 amd64_handle_ue(mci, m);
d27bf6fa
DT
1884}
1885
7cfd4a87 1886void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1887{
cc4d8860 1888 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1889
f192c7b1 1890 __amd64_decode_bus_error(mci, m);
d27bf6fa 1891}
d27bf6fa 1892
0ec449ee 1893/*
8d5b5d9c 1894 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1895 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1896 */
360b7f3c 1897static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1898{
0ec449ee 1899 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1900 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1901 if (!pvt->F1) {
24f9a7fe
BP
1902 amd64_err("error address map device not found: "
1903 "vendor %x device 0x%x (broken BIOS?)\n",
1904 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1905 return -ENODEV;
0ec449ee
DT
1906 }
1907
1908 /* Reserve the MISC Device */
8d5b5d9c
BP
1909 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1910 if (!pvt->F3) {
1911 pci_dev_put(pvt->F1);
1912 pvt->F1 = NULL;
0ec449ee 1913
24f9a7fe
BP
1914 amd64_err("error F3 device not found: "
1915 "vendor %x device 0x%x (broken BIOS?)\n",
1916 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1917
bbd0c1f6 1918 return -ENODEV;
0ec449ee 1919 }
8d5b5d9c
BP
1920 debugf1("F1: %s\n", pci_name(pvt->F1));
1921 debugf1("F2: %s\n", pci_name(pvt->F2));
1922 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1923
1924 return 0;
1925}
1926
360b7f3c 1927static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1928{
8d5b5d9c
BP
1929 pci_dev_put(pvt->F1);
1930 pci_dev_put(pvt->F3);
0ec449ee
DT
1931}
1932
1933/*
1934 * Retrieve the hardware registers of the memory controller (this includes the
1935 * 'Address Map' and 'Misc' device regs)
1936 */
360b7f3c 1937static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1938{
a3b7db09 1939 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1940 u64 msr_val;
ad6a32e9 1941 u32 tmp;
e761359a 1942 unsigned range;
0ec449ee
DT
1943
1944 /*
1945 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1946 * those are Read-As-Zero
1947 */
e97f8bb8
BP
1948 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1949 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1950
1951 /* check first whether TOP_MEM2 is enabled */
1952 rdmsrl(MSR_K8_SYSCFG, msr_val);
1953 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1954 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1955 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1956 } else
1957 debugf0(" TOP_MEM2 disabled.\n");
1958
5980bb9c 1959 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1960
5a5d2371 1961 read_dram_ctl_register(pvt);
0ec449ee 1962
7f19bf75
BP
1963 for (range = 0; range < DRAM_RANGES; range++) {
1964 u8 rw;
0ec449ee 1965
7f19bf75
BP
1966 /* read settings for this DRAM range */
1967 read_dram_base_limit_regs(pvt, range);
1968
1969 rw = dram_rw(pvt, range);
1970 if (!rw)
1971 continue;
1972
1973 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1974 range,
1975 get_dram_base(pvt, range),
1976 get_dram_limit(pvt, range));
1977
1978 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1979 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1980 (rw & 0x1) ? "R" : "-",
1981 (rw & 0x2) ? "W" : "-",
1982 dram_intlv_sel(pvt, range),
1983 dram_dst_node(pvt, range));
0ec449ee
DT
1984 }
1985
b2b0c605 1986 read_dct_base_mask(pvt);
0ec449ee 1987
bc21fa57 1988 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1989 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1990
8d5b5d9c 1991 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1992
cb328507
BP
1993 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1994 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1995
78da121e 1996 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1997 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1998 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1999 }
ad6a32e9 2000
a3b7db09
BP
2001 pvt->ecc_sym_sz = 4;
2002
2003 if (c->x86 >= 0x10) {
b2b0c605 2004 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2005 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2006
a3b7db09
BP
2007 /* F10h, revD and later can do x8 ECC too */
2008 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2009 pvt->ecc_sym_sz = 8;
2010 }
b2b0c605 2011 dump_misc_regs(pvt);
0ec449ee
DT
2012}
2013
2014/*
2015 * NOTE: CPU Revision Dependent code
2016 *
2017 * Input:
11c75ead 2018 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2019 * k8 private pointer to -->
2020 * DRAM Bank Address mapping register
2021 * node_id
2022 * DCL register where dual_channel_active is
2023 *
2024 * The DBAM register consists of 4 sets of 4 bits each definitions:
2025 *
2026 * Bits: CSROWs
2027 * 0-3 CSROWs 0 and 1
2028 * 4-7 CSROWs 2 and 3
2029 * 8-11 CSROWs 4 and 5
2030 * 12-15 CSROWs 6 and 7
2031 *
2032 * Values range from: 0 to 15
2033 * The meaning of the values depends on CPU revision and dual-channel state,
2034 * see relevant BKDG more info.
2035 *
2036 * The memory controller provides for total of only 8 CSROWs in its current
2037 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2038 * single channel or two (2) DIMMs in dual channel mode.
2039 *
2040 * The following code logic collapses the various tables for CSROW based on CPU
2041 * revision.
2042 *
2043 * Returns:
2044 * The number of PAGE_SIZE pages on the specified CSROW number it
2045 * encompasses
2046 *
2047 */
41d8bfab 2048static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2049{
1433eb99 2050 u32 cs_mode, nr_pages;
0ec449ee
DT
2051
2052 /*
2053 * The math on this doesn't look right on the surface because x/2*4 can
2054 * be simplified to x*2 but this expression makes use of the fact that
2055 * it is integral math where 1/2=0. This intermediate value becomes the
2056 * number of bits to shift the DBAM register to extract the proper CSROW
2057 * field.
2058 */
1433eb99 2059 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2060
41d8bfab 2061 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2062
2063 /*
2064 * If dual channel then double the memory size of single channel.
2065 * Channel count is 1 or 2
2066 */
2067 nr_pages <<= (pvt->channel_count - 1);
2068
1433eb99 2069 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2070 debugf0(" nr_pages= %u channel-count = %d\n",
2071 nr_pages, pvt->channel_count);
2072
2073 return nr_pages;
2074}
2075
2076/*
2077 * Initialize the array of csrow attribute instances, based on the values
2078 * from pci config hardware registers.
2079 */
360b7f3c 2080static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2081{
2082 struct csrow_info *csrow;
2299ef71 2083 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2084 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2085 u32 val;
6ba5dcdc 2086 int i, empty = 1;
0ec449ee 2087
a97fa68e 2088 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2089
2299ef71 2090 pvt->nbcfg = val;
0ec449ee 2091
2299ef71
BP
2092 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2093 pvt->mc_node_id, val,
a97fa68e 2094 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2095
11c75ead 2096 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2097 csrow = &mci->csrows[i];
2098
11c75ead 2099 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2100 debugf1("----CSROW %d EMPTY for node %d\n", i,
2101 pvt->mc_node_id);
2102 continue;
2103 }
2104
2105 debugf1("----CSROW %d VALID for MC node %d\n",
2106 i, pvt->mc_node_id);
2107
2108 empty = 0;
41d8bfab 2109 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2110 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2111 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2112 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2113 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2114 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2115
2116 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2117 csrow->page_mask = ~mask;
0ec449ee
DT
2118 /* 8 bytes of resolution */
2119
24f9a7fe 2120 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2121
2122 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2123 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2124 (unsigned long)input_addr_min,
2125 (unsigned long)input_addr_max);
2126 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2127 (unsigned long)sys_addr, csrow->page_mask);
2128 debugf1(" nr_pages: %u first_page: 0x%lx "
2129 "last_page: 0x%lx\n",
2130 (unsigned)csrow->nr_pages,
2131 csrow->first_page, csrow->last_page);
2132
2133 /*
2134 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2135 */
a97fa68e 2136 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2137 csrow->edac_mode =
a97fa68e 2138 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2139 EDAC_S4ECD4ED : EDAC_SECDED;
2140 else
2141 csrow->edac_mode = EDAC_NONE;
2142 }
2143
2144 return empty;
2145}
d27bf6fa 2146
f6d6ae96 2147/* get all cores on this DCT */
b487c33e 2148static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2149{
2150 int cpu;
2151
2152 for_each_online_cpu(cpu)
2153 if (amd_get_nb_id(cpu) == nid)
2154 cpumask_set_cpu(cpu, mask);
2155}
2156
2157/* check MCG_CTL on all the cpus on this node */
b487c33e 2158static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2159{
2160 cpumask_var_t mask;
50542251 2161 int cpu, nbe;
f6d6ae96
BP
2162 bool ret = false;
2163
2164 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2165 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2166 return false;
2167 }
2168
2169 get_cpus_on_this_dct_cpumask(mask, nid);
2170
f6d6ae96
BP
2171 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2172
2173 for_each_cpu(cpu, mask) {
50542251 2174 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2175 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2176
2177 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2178 cpu, reg->q,
f6d6ae96
BP
2179 (nbe ? "enabled" : "disabled"));
2180
2181 if (!nbe)
2182 goto out;
f6d6ae96
BP
2183 }
2184 ret = true;
2185
2186out:
f6d6ae96
BP
2187 free_cpumask_var(mask);
2188 return ret;
2189}
2190
2299ef71 2191static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2192{
2193 cpumask_var_t cmask;
50542251 2194 int cpu;
f6d6ae96
BP
2195
2196 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2197 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2198 return false;
2199 }
2200
ae7bb7c6 2201 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2202
f6d6ae96
BP
2203 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2204
2205 for_each_cpu(cpu, cmask) {
2206
50542251
BP
2207 struct msr *reg = per_cpu_ptr(msrs, cpu);
2208
f6d6ae96 2209 if (on) {
5980bb9c 2210 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2211 s->flags.nb_mce_enable = 1;
f6d6ae96 2212
5980bb9c 2213 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2214 } else {
2215 /*
d95cf4de 2216 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2217 */
ae7bb7c6 2218 if (!s->flags.nb_mce_enable)
5980bb9c 2219 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2220 }
f6d6ae96
BP
2221 }
2222 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2223
f6d6ae96
BP
2224 free_cpumask_var(cmask);
2225
2226 return 0;
2227}
2228
2299ef71
BP
2229static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2230 struct pci_dev *F3)
f9431992 2231{
2299ef71 2232 bool ret = true;
c9f4f26e 2233 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2234
2299ef71
BP
2235 if (toggle_ecc_err_reporting(s, nid, ON)) {
2236 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2237 return false;
2238 }
2239
c9f4f26e 2240 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2241
ae7bb7c6
BP
2242 s->old_nbctl = value & mask;
2243 s->nbctl_valid = true;
f9431992
DT
2244
2245 value |= mask;
c9f4f26e 2246 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2247
a97fa68e 2248 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2249
a97fa68e
BP
2250 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2251 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2252
a97fa68e 2253 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2254 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2255
ae7bb7c6 2256 s->flags.nb_ecc_prev = 0;
d95cf4de 2257
f9431992 2258 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2259 value |= NBCFG_ECC_ENABLE;
2260 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2261
a97fa68e 2262 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2263
a97fa68e 2264 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2265 amd64_warn("Hardware rejected DRAM ECC enable,"
2266 "check memory DIMM configuration.\n");
2299ef71 2267 ret = false;
f9431992 2268 } else {
24f9a7fe 2269 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2270 }
d95cf4de 2271 } else {
ae7bb7c6 2272 s->flags.nb_ecc_prev = 1;
f9431992 2273 }
d95cf4de 2274
a97fa68e
BP
2275 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2276 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2277
2299ef71 2278 return ret;
f9431992
DT
2279}
2280
360b7f3c
BP
2281static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2282 struct pci_dev *F3)
f9431992 2283{
c9f4f26e
BP
2284 u32 value, mask = 0x3; /* UECC/CECC enable */
2285
f9431992 2286
ae7bb7c6 2287 if (!s->nbctl_valid)
f9431992
DT
2288 return;
2289
c9f4f26e 2290 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2291 value &= ~mask;
ae7bb7c6 2292 value |= s->old_nbctl;
f9431992 2293
c9f4f26e 2294 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2295
ae7bb7c6
BP
2296 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2297 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2298 amd64_read_pci_cfg(F3, NBCFG, &value);
2299 value &= ~NBCFG_ECC_ENABLE;
2300 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2301 }
2302
2303 /* restore the NB Enable MCGCTL bit */
2299ef71 2304 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2305 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2306}
2307
2308/*
2299ef71
BP
2309 * EDAC requires that the BIOS have ECC enabled before
2310 * taking over the processing of ECC errors. A command line
2311 * option allows to force-enable hardware ECC later in
2312 * enable_ecc_error_reporting().
f9431992 2313 */
cab4d277
BP
2314static const char *ecc_msg =
2315 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2316 " Either enable ECC checking or force module loading by setting "
2317 "'ecc_enable_override'.\n"
2318 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2319
2299ef71 2320static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2321{
2322 u32 value;
2299ef71 2323 u8 ecc_en = 0;
06724535 2324 bool nb_mce_en = false;
f9431992 2325
a97fa68e 2326 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2327
a97fa68e 2328 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2329 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2330
2299ef71 2331 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2332 if (!nb_mce_en)
2299ef71
BP
2333 amd64_notice("NB MCE bank disabled, set MSR "
2334 "0x%08x[4] on node %d to enable.\n",
2335 MSR_IA32_MCG_CTL, nid);
f9431992 2336
2299ef71
BP
2337 if (!ecc_en || !nb_mce_en) {
2338 amd64_notice("%s", ecc_msg);
2339 return false;
2340 }
2341 return true;
f9431992
DT
2342}
2343
7d6034d3
DT
2344struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2345 ARRAY_SIZE(amd64_inj_attrs) +
2346 1];
2347
2348struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2349
360b7f3c 2350static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2351{
2352 unsigned int i = 0, j = 0;
2353
2354 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2355 sysfs_attrs[i] = amd64_dbg_attrs[i];
2356
a135cef7
BP
2357 if (boot_cpu_data.x86 >= 0x10)
2358 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2359 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2360
2361 sysfs_attrs[i] = terminator;
2362
2363 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2364}
2365
df71a053
BP
2366static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2367 struct amd64_family_type *fam)
7d6034d3
DT
2368{
2369 struct amd64_pvt *pvt = mci->pvt_info;
2370
2371 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2372 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2373
5980bb9c 2374 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2375 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2376
5980bb9c 2377 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2378 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2379
2380 mci->edac_cap = amd64_determine_edac_cap(pvt);
2381 mci->mod_name = EDAC_MOD_STR;
2382 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2383 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2384 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2385 mci->ctl_page_to_phys = NULL;
2386
7d6034d3
DT
2387 /* memory scrubber interface */
2388 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2389 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2390}
2391
0092b20d
BP
2392/*
2393 * returns a pointer to the family descriptor on success, NULL otherwise.
2394 */
2395static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2396{
0092b20d
BP
2397 u8 fam = boot_cpu_data.x86;
2398 struct amd64_family_type *fam_type = NULL;
2399
2400 switch (fam) {
395ae783 2401 case 0xf:
0092b20d 2402 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2403 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2404 break;
df71a053 2405
395ae783 2406 case 0x10:
0092b20d 2407 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2408 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2409 break;
2410
2411 case 0x15:
2412 fam_type = &amd64_family_types[F15_CPUS];
2413 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2414 break;
2415
2416 default:
24f9a7fe 2417 amd64_err("Unsupported family!\n");
0092b20d 2418 return NULL;
395ae783 2419 }
0092b20d 2420
b8cfa02f
BP
2421 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2422
df71a053 2423 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2424 (fam == 0xf ?
24f9a7fe
BP
2425 (pvt->ext_model >= K8_REV_F ? "revF or later "
2426 : "revE or earlier ")
2427 : ""), pvt->mc_node_id);
0092b20d 2428 return fam_type;
395ae783
BP
2429}
2430
2299ef71 2431static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2432{
2433 struct amd64_pvt *pvt = NULL;
0092b20d 2434 struct amd64_family_type *fam_type = NULL;
360b7f3c 2435 struct mem_ctl_info *mci = NULL;
7d6034d3 2436 int err = 0, ret;
360b7f3c 2437 u8 nid = get_node_id(F2);
7d6034d3
DT
2438
2439 ret = -ENOMEM;
2440 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2441 if (!pvt)
360b7f3c 2442 goto err_ret;
7d6034d3 2443
360b7f3c 2444 pvt->mc_node_id = nid;
8d5b5d9c 2445 pvt->F2 = F2;
7d6034d3 2446
395ae783 2447 ret = -EINVAL;
0092b20d
BP
2448 fam_type = amd64_per_family_init(pvt);
2449 if (!fam_type)
395ae783
BP
2450 goto err_free;
2451
7d6034d3 2452 ret = -ENODEV;
360b7f3c 2453 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2454 if (err)
2455 goto err_free;
2456
360b7f3c 2457 read_mc_regs(pvt);
7d6034d3 2458
7d6034d3
DT
2459 /*
2460 * We need to determine how many memory channels there are. Then use
2461 * that information for calculating the size of the dynamic instance
360b7f3c 2462 * tables in the 'mci' structure.
7d6034d3 2463 */
360b7f3c 2464 ret = -EINVAL;
7d6034d3
DT
2465 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2466 if (pvt->channel_count < 0)
360b7f3c 2467 goto err_siblings;
7d6034d3
DT
2468
2469 ret = -ENOMEM;
11c75ead 2470 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2471 if (!mci)
360b7f3c 2472 goto err_siblings;
7d6034d3
DT
2473
2474 mci->pvt_info = pvt;
8d5b5d9c 2475 mci->dev = &pvt->F2->dev;
7d6034d3 2476
df71a053 2477 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2478
2479 if (init_csrows(mci))
7d6034d3
DT
2480 mci->edac_cap = EDAC_FLAG_NONE;
2481
360b7f3c 2482 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2483
2484 ret = -ENODEV;
2485 if (edac_mc_add_mc(mci)) {
2486 debugf1("failed edac_mc_add_mc()\n");
2487 goto err_add_mc;
2488 }
2489
549d042d
BP
2490 /* register stuff with EDAC MCE */
2491 if (report_gart_errors)
2492 amd_report_gart_errors(true);
2493
2494 amd_register_ecc_decoder(amd64_decode_bus_error);
2495
360b7f3c
BP
2496 mcis[nid] = mci;
2497
2498 atomic_inc(&drv_instances);
2499
7d6034d3
DT
2500 return 0;
2501
2502err_add_mc:
2503 edac_mc_free(mci);
2504
360b7f3c
BP
2505err_siblings:
2506 free_mc_sibling_devs(pvt);
7d6034d3 2507
360b7f3c
BP
2508err_free:
2509 kfree(pvt);
7d6034d3 2510
360b7f3c 2511err_ret:
7d6034d3
DT
2512 return ret;
2513}
2514
2299ef71 2515static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2516 const struct pci_device_id *mc_type)
7d6034d3 2517{
ae7bb7c6 2518 u8 nid = get_node_id(pdev);
2299ef71 2519 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2520 struct ecc_settings *s;
2299ef71 2521 int ret = 0;
7d6034d3 2522
7d6034d3 2523 ret = pci_enable_device(pdev);
b8cfa02f
BP
2524 if (ret < 0) {
2525 debugf0("ret=%d\n", ret);
2526 return -EIO;
2527 }
7d6034d3 2528
ae7bb7c6
BP
2529 ret = -ENOMEM;
2530 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2531 if (!s)
2299ef71 2532 goto err_out;
ae7bb7c6
BP
2533
2534 ecc_stngs[nid] = s;
2535
2299ef71
BP
2536 if (!ecc_enabled(F3, nid)) {
2537 ret = -ENODEV;
2538
2539 if (!ecc_enable_override)
2540 goto err_enable;
2541
2542 amd64_warn("Forcing ECC on!\n");
2543
2544 if (!enable_ecc_error_reporting(s, nid, F3))
2545 goto err_enable;
2546 }
2547
2548 ret = amd64_init_one_instance(pdev);
360b7f3c 2549 if (ret < 0) {
ae7bb7c6 2550 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2551 restore_ecc_error_reporting(s, nid, F3);
2552 }
7d6034d3
DT
2553
2554 return ret;
2299ef71
BP
2555
2556err_enable:
2557 kfree(s);
2558 ecc_stngs[nid] = NULL;
2559
2560err_out:
2561 return ret;
7d6034d3
DT
2562}
2563
2564static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2565{
2566 struct mem_ctl_info *mci;
2567 struct amd64_pvt *pvt;
360b7f3c
BP
2568 u8 nid = get_node_id(pdev);
2569 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2570 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2571
2572 /* Remove from EDAC CORE tracking list */
2573 mci = edac_mc_del_mc(&pdev->dev);
2574 if (!mci)
2575 return;
2576
2577 pvt = mci->pvt_info;
2578
360b7f3c 2579 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2580
360b7f3c 2581 free_mc_sibling_devs(pvt);
7d6034d3 2582
549d042d
BP
2583 /* unregister from EDAC MCE */
2584 amd_report_gart_errors(false);
2585 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2586
360b7f3c
BP
2587 kfree(ecc_stngs[nid]);
2588 ecc_stngs[nid] = NULL;
ae7bb7c6 2589
7d6034d3 2590 /* Free the EDAC CORE resources */
8f68ed97 2591 mci->pvt_info = NULL;
360b7f3c 2592 mcis[nid] = NULL;
8f68ed97
BP
2593
2594 kfree(pvt);
7d6034d3
DT
2595 edac_mc_free(mci);
2596}
2597
2598/*
2599 * This table is part of the interface for loading drivers for PCI devices. The
2600 * PCI core identifies what devices are on a system during boot, and then
2601 * inquiry this table to see if this driver is for a given device found.
2602 */
2603static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2604 {
2605 .vendor = PCI_VENDOR_ID_AMD,
2606 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2607 .subvendor = PCI_ANY_ID,
2608 .subdevice = PCI_ANY_ID,
2609 .class = 0,
2610 .class_mask = 0,
7d6034d3
DT
2611 },
2612 {
2613 .vendor = PCI_VENDOR_ID_AMD,
2614 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2615 .subvendor = PCI_ANY_ID,
2616 .subdevice = PCI_ANY_ID,
2617 .class = 0,
2618 .class_mask = 0,
7d6034d3 2619 },
df71a053
BP
2620 {
2621 .vendor = PCI_VENDOR_ID_AMD,
2622 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2623 .subvendor = PCI_ANY_ID,
2624 .subdevice = PCI_ANY_ID,
2625 .class = 0,
2626 .class_mask = 0,
2627 },
2628
7d6034d3
DT
2629 {0, }
2630};
2631MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2632
2633static struct pci_driver amd64_pci_driver = {
2634 .name = EDAC_MOD_STR,
2299ef71 2635 .probe = amd64_probe_one_instance,
7d6034d3
DT
2636 .remove = __devexit_p(amd64_remove_one_instance),
2637 .id_table = amd64_pci_table,
2638};
2639
360b7f3c 2640static void setup_pci_device(void)
7d6034d3
DT
2641{
2642 struct mem_ctl_info *mci;
2643 struct amd64_pvt *pvt;
2644
2645 if (amd64_ctl_pci)
2646 return;
2647
cc4d8860 2648 mci = mcis[0];
7d6034d3
DT
2649 if (mci) {
2650
2651 pvt = mci->pvt_info;
2652 amd64_ctl_pci =
8d5b5d9c 2653 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2654
2655 if (!amd64_ctl_pci) {
2656 pr_warning("%s(): Unable to create PCI control\n",
2657 __func__);
2658
2659 pr_warning("%s(): PCI error report via EDAC not set\n",
2660 __func__);
2661 }
2662 }
2663}
2664
2665static int __init amd64_edac_init(void)
2666{
360b7f3c 2667 int err = -ENODEV;
7d6034d3 2668
df71a053 2669 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2670
2671 opstate_init();
2672
9653a5c7 2673 if (amd_cache_northbridges() < 0)
56b34b91 2674 goto err_ret;
7d6034d3 2675
cc4d8860 2676 err = -ENOMEM;
ae7bb7c6
BP
2677 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2678 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2679 if (!(mcis && ecc_stngs))
a9f0fbe2 2680 goto err_free;
cc4d8860 2681
50542251 2682 msrs = msrs_alloc();
56b34b91 2683 if (!msrs)
360b7f3c 2684 goto err_free;
50542251 2685
7d6034d3
DT
2686 err = pci_register_driver(&amd64_pci_driver);
2687 if (err)
56b34b91 2688 goto err_pci;
7d6034d3 2689
56b34b91 2690 err = -ENODEV;
360b7f3c
BP
2691 if (!atomic_read(&drv_instances))
2692 goto err_no_instances;
7d6034d3 2693
360b7f3c
BP
2694 setup_pci_device();
2695 return 0;
7d6034d3 2696
360b7f3c 2697err_no_instances:
7d6034d3 2698 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2699
56b34b91
BP
2700err_pci:
2701 msrs_free(msrs);
2702 msrs = NULL;
cc4d8860 2703
360b7f3c
BP
2704err_free:
2705 kfree(mcis);
2706 mcis = NULL;
2707
2708 kfree(ecc_stngs);
2709 ecc_stngs = NULL;
2710
56b34b91 2711err_ret:
7d6034d3
DT
2712 return err;
2713}
2714
2715static void __exit amd64_edac_exit(void)
2716{
2717 if (amd64_ctl_pci)
2718 edac_pci_release_generic_ctl(amd64_ctl_pci);
2719
2720 pci_unregister_driver(&amd64_pci_driver);
50542251 2721
ae7bb7c6
BP
2722 kfree(ecc_stngs);
2723 ecc_stngs = NULL;
2724
cc4d8860
BP
2725 kfree(mcis);
2726 mcis = NULL;
2727
50542251
BP
2728 msrs_free(msrs);
2729 msrs = NULL;
7d6034d3
DT
2730}
2731
2732module_init(amd64_edac_init);
2733module_exit(amd64_edac_exit);
2734
2735MODULE_LICENSE("GPL");
2736MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2737 "Dave Peterson, Thayne Harbaugh");
2738MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2739 EDAC_AMD64_VERSION);
2740
2741module_param(edac_op_state, int, 0444);
2742MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");