]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/edac/amd64_edac.c
amd64_edac: Fix PCI config addressing types
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
39094443
BP
34struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
b2b0c605
BP
63static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104{
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109}
110
111static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113{
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115}
116
117static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119{
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134}
135
2bc65418
DT
136/*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150/*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
395ae783 154static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
155{
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
395ae783 170 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
2bc65418 184
5980bb9c 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 186
39094443
BP
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
2bc65418
DT
190 return 0;
191}
192
395ae783 193static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
194{
195 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 196 u32 min_scrubrate = 0x5;
2bc65418 197
87b3e0e6
BP
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
202}
203
39094443 204static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
205{
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
39094443 208 int i, retval = -EINVAL;
2bc65418 209
5980bb9c 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
211
212 scrubval = scrubval & 0x001F;
213
24f9a7fe 214 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
2bc65418 215
926311fd 216 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 217 if (scrubrates[i].scrubval == scrubval) {
39094443 218 retval = scrubrates[i].bandwidth;
2bc65418
DT
219 break;
220 }
221 }
39094443 222 return retval;
2bc65418
DT
223}
224
6775763a 225/*
7f19bf75
BP
226 * returns true if the SysAddr given by sys_addr matches the
227 * DRAM base/limit associated with node_id
6775763a 228 */
b487c33e
BP
229static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
230 unsigned nid)
6775763a 231{
7f19bf75 232 u64 addr;
6775763a
DT
233
234 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
235 * all ones if the most significant implemented address bit is 1.
236 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
237 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
238 * Application Programming.
239 */
240 addr = sys_addr & 0x000000ffffffffffull;
241
7f19bf75
BP
242 return ((addr >= get_dram_base(pvt, nid)) &&
243 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
244}
245
246/*
247 * Attempt to map a SysAddr to a node. On success, return a pointer to the
248 * mem_ctl_info structure for the node that the SysAddr maps to.
249 *
250 * On failure, return NULL.
251 */
252static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
253 u64 sys_addr)
254{
255 struct amd64_pvt *pvt;
b487c33e 256 unsigned node_id;
6775763a
DT
257 u32 intlv_en, bits;
258
259 /*
260 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
261 * 3.4.4.2) registers to map the SysAddr to a node ID.
262 */
263 pvt = mci->pvt_info;
264
265 /*
266 * The value of this field should be the same for all DRAM Base
267 * registers. Therefore we arbitrarily choose to read it from the
268 * register for node 0.
269 */
7f19bf75 270 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
271
272 if (intlv_en == 0) {
7f19bf75 273 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 274 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 275 goto found;
6775763a 276 }
8edc5445 277 goto err_no_match;
6775763a
DT
278 }
279
72f158fe
BP
280 if (unlikely((intlv_en != 0x01) &&
281 (intlv_en != 0x03) &&
282 (intlv_en != 0x07))) {
24f9a7fe 283 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
284 return NULL;
285 }
286
287 bits = (((u32) sys_addr) >> 12) & intlv_en;
288
289 for (node_id = 0; ; ) {
7f19bf75 290 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
291 break; /* intlv_sel field matches */
292
7f19bf75 293 if (++node_id >= DRAM_RANGES)
6775763a
DT
294 goto err_no_match;
295 }
296
297 /* sanity test for sys_addr */
298 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
299 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
300 "range for node %d with node interleaving enabled.\n",
301 __func__, sys_addr, node_id);
6775763a
DT
302 return NULL;
303 }
304
305found:
b487c33e 306 return edac_mc_find((int)node_id);
6775763a
DT
307
308err_no_match:
309 debugf2("sys_addr 0x%lx doesn't match any node\n",
310 (unsigned long)sys_addr);
311
312 return NULL;
313}
e2ce7255
DT
314
315/*
11c75ead
BP
316 * compute the CS base address of the @csrow on the DRAM controller @dct.
317 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 318 */
11c75ead
BP
319static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
320 u64 *base, u64 *mask)
e2ce7255 321{
11c75ead
BP
322 u64 csbase, csmask, base_bits, mask_bits;
323 u8 addr_shift;
e2ce7255 324
11c75ead
BP
325 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
326 csbase = pvt->csels[dct].csbases[csrow];
327 csmask = pvt->csels[dct].csmasks[csrow];
328 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
329 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
330 addr_shift = 4;
331 } else {
332 csbase = pvt->csels[dct].csbases[csrow];
333 csmask = pvt->csels[dct].csmasks[csrow >> 1];
334 addr_shift = 8;
e2ce7255 335
11c75ead
BP
336 if (boot_cpu_data.x86 == 0x15)
337 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
338 else
339 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
340 }
e2ce7255 341
11c75ead 342 *base = (csbase & base_bits) << addr_shift;
e2ce7255 343
11c75ead
BP
344 *mask = ~0ULL;
345 /* poke holes for the csmask */
346 *mask &= ~(mask_bits << addr_shift);
347 /* OR them in */
348 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
349}
350
11c75ead
BP
351#define for_each_chip_select(i, dct, pvt) \
352 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
353
614ec9d8
BP
354#define chip_select_base(i, dct, pvt) \
355 pvt->csels[dct].csbases[i]
356
11c75ead
BP
357#define for_each_chip_select_mask(i, dct, pvt) \
358 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
359
e2ce7255
DT
360/*
361 * @input_addr is an InputAddr associated with the node given by mci. Return the
362 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
363 */
364static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
365{
366 struct amd64_pvt *pvt;
367 int csrow;
368 u64 base, mask;
369
370 pvt = mci->pvt_info;
371
11c75ead
BP
372 for_each_chip_select(csrow, 0, pvt) {
373 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
374 continue;
375
11c75ead
BP
376 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
377
378 mask = ~mask;
e2ce7255
DT
379
380 if ((input_addr & mask) == (base & mask)) {
381 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
382 (unsigned long)input_addr, csrow,
383 pvt->mc_node_id);
384
385 return csrow;
386 }
387 }
e2ce7255
DT
388 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
389 (unsigned long)input_addr, pvt->mc_node_id);
390
391 return -1;
392}
393
e2ce7255
DT
394/*
395 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
396 * for the node represented by mci. Info is passed back in *hole_base,
397 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
398 * info is invalid. Info may be invalid for either of the following reasons:
399 *
400 * - The revision of the node is not E or greater. In this case, the DRAM Hole
401 * Address Register does not exist.
402 *
403 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
404 * indicating that its contents are not valid.
405 *
406 * The values passed back in *hole_base, *hole_offset, and *hole_size are
407 * complete 32-bit values despite the fact that the bitfields in the DHAR
408 * only represent bits 31-24 of the base and offset values.
409 */
410int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
411 u64 *hole_offset, u64 *hole_size)
412{
413 struct amd64_pvt *pvt = mci->pvt_info;
414 u64 base;
415
416 /* only revE and later have the DRAM Hole Address Register */
1433eb99 417 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
418 debugf1(" revision %d for node %d does not support DHAR\n",
419 pvt->ext_model, pvt->mc_node_id);
420 return 1;
421 }
422
bc21fa57 423 /* valid for Fam10h and above */
c8e518d5 424 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
e2ce7255
DT
425 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
426 return 1;
427 }
428
c8e518d5 429 if (!dhar_valid(pvt)) {
e2ce7255
DT
430 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
431 pvt->mc_node_id);
432 return 1;
433 }
434
435 /* This node has Memory Hoisting */
436
437 /* +------------------+--------------------+--------------------+-----
438 * | memory | DRAM hole | relocated |
439 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
440 * | | | DRAM hole |
441 * | | | [0x100000000, |
442 * | | | (0x100000000+ |
443 * | | | (0xffffffff-x))] |
444 * +------------------+--------------------+--------------------+-----
445 *
446 * Above is a diagram of physical memory showing the DRAM hole and the
447 * relocated addresses from the DRAM hole. As shown, the DRAM hole
448 * starts at address x (the base address) and extends through address
449 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
450 * addresses in the hole so that they start at 0x100000000.
451 */
452
bc21fa57 453 base = dhar_base(pvt);
e2ce7255
DT
454
455 *hole_base = base;
456 *hole_size = (0x1ull << 32) - base;
457
458 if (boot_cpu_data.x86 > 0xf)
bc21fa57 459 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 460 else
bc21fa57 461 *hole_offset = k8_dhar_offset(pvt);
e2ce7255
DT
462
463 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
464 pvt->mc_node_id, (unsigned long)*hole_base,
465 (unsigned long)*hole_offset, (unsigned long)*hole_size);
466
467 return 0;
468}
469EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
470
93c2df58
DT
471/*
472 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
473 * assumed that sys_addr maps to the node given by mci.
474 *
475 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
476 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
477 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
478 * then it is also involved in translating a SysAddr to a DramAddr. Sections
479 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
480 * These parts of the documentation are unclear. I interpret them as follows:
481 *
482 * When node n receives a SysAddr, it processes the SysAddr as follows:
483 *
484 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
485 * Limit registers for node n. If the SysAddr is not within the range
486 * specified by the base and limit values, then node n ignores the Sysaddr
487 * (since it does not map to node n). Otherwise continue to step 2 below.
488 *
489 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
490 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
491 * the range of relocated addresses (starting at 0x100000000) from the DRAM
492 * hole. If not, skip to step 3 below. Else get the value of the
493 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
494 * offset defined by this value from the SysAddr.
495 *
496 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
497 * Base register for node n. To obtain the DramAddr, subtract the base
498 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
499 */
500static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
501{
7f19bf75 502 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58
DT
503 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
504 int ret = 0;
505
7f19bf75 506 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
507
508 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
509 &hole_size);
510 if (!ret) {
511 if ((sys_addr >= (1ull << 32)) &&
512 (sys_addr < ((1ull << 32) + hole_size))) {
513 /* use DHAR to translate SysAddr to DramAddr */
514 dram_addr = sys_addr - hole_offset;
515
516 debugf2("using DHAR to translate SysAddr 0x%lx to "
517 "DramAddr 0x%lx\n",
518 (unsigned long)sys_addr,
519 (unsigned long)dram_addr);
520
521 return dram_addr;
522 }
523 }
524
525 /*
526 * Translate the SysAddr to a DramAddr as shown near the start of
527 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
528 * only deals with 40-bit values. Therefore we discard bits 63-40 of
529 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
530 * discard are all 1s. Otherwise the bits we discard are all 0s. See
531 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
532 * Programmer's Manual Volume 1 Application Programming.
533 */
f678b8cc 534 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58
DT
535
536 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
537 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
538 (unsigned long)dram_addr);
539 return dram_addr;
540}
541
542/*
543 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
544 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
545 * for node interleaving.
546 */
547static int num_node_interleave_bits(unsigned intlv_en)
548{
549 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
550 int n;
551
552 BUG_ON(intlv_en > 7);
553 n = intlv_shift_table[intlv_en];
554 return n;
555}
556
557/* Translate the DramAddr given by @dram_addr to an InputAddr. */
558static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
559{
560 struct amd64_pvt *pvt;
561 int intlv_shift;
562 u64 input_addr;
563
564 pvt = mci->pvt_info;
565
566 /*
567 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
568 * concerning translating a DramAddr to an InputAddr.
569 */
7f19bf75 570 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
571 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
572 (dram_addr & 0xfff);
93c2df58
DT
573
574 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
575 intlv_shift, (unsigned long)dram_addr,
576 (unsigned long)input_addr);
577
578 return input_addr;
579}
580
581/*
582 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
583 * assumed that @sys_addr maps to the node given by mci.
584 */
585static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
586{
587 u64 input_addr;
588
589 input_addr =
590 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
591
592 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
593 (unsigned long)sys_addr, (unsigned long)input_addr);
594
595 return input_addr;
596}
597
598
599/*
600 * @input_addr is an InputAddr associated with the node represented by mci.
601 * Translate @input_addr to a DramAddr and return the result.
602 */
603static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
604{
605 struct amd64_pvt *pvt;
b487c33e 606 unsigned node_id, intlv_shift;
93c2df58
DT
607 u64 bits, dram_addr;
608 u32 intlv_sel;
609
610 /*
611 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
612 * shows how to translate a DramAddr to an InputAddr. Here we reverse
613 * this procedure. When translating from a DramAddr to an InputAddr, the
614 * bits used for node interleaving are discarded. Here we recover these
615 * bits from the IntlvSel field of the DRAM Limit register (section
616 * 3.4.4.2) for the node that input_addr is associated with.
617 */
618 pvt = mci->pvt_info;
619 node_id = pvt->mc_node_id;
b487c33e
BP
620
621 BUG_ON(node_id > 7);
93c2df58 622
7f19bf75 623 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
93c2df58
DT
624 if (intlv_shift == 0) {
625 debugf1(" InputAddr 0x%lx translates to DramAddr of "
626 "same value\n", (unsigned long)input_addr);
627
628 return input_addr;
629 }
630
f678b8cc
BP
631 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
632 (input_addr & 0xfff);
93c2df58 633
7f19bf75 634 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
93c2df58
DT
635 dram_addr = bits + (intlv_sel << 12);
636
637 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
638 "(%d node interleave bits)\n", (unsigned long)input_addr,
639 (unsigned long)dram_addr, intlv_shift);
640
641 return dram_addr;
642}
643
644/*
645 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
646 * @dram_addr to a SysAddr.
647 */
648static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
649{
650 struct amd64_pvt *pvt = mci->pvt_info;
7f19bf75 651 u64 hole_base, hole_offset, hole_size, base, sys_addr;
93c2df58
DT
652 int ret = 0;
653
654 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
655 &hole_size);
656 if (!ret) {
657 if ((dram_addr >= hole_base) &&
658 (dram_addr < (hole_base + hole_size))) {
659 sys_addr = dram_addr + hole_offset;
660
661 debugf1("using DHAR to translate DramAddr 0x%lx to "
662 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
663 (unsigned long)sys_addr);
664
665 return sys_addr;
666 }
667 }
668
7f19bf75 669 base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
670 sys_addr = dram_addr + base;
671
672 /*
673 * The sys_addr we have computed up to this point is a 40-bit value
674 * because the k8 deals with 40-bit values. However, the value we are
675 * supposed to return is a full 64-bit physical address. The AMD
676 * x86-64 architecture specifies that the most significant implemented
677 * address bit through bit 63 of a physical address must be either all
678 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
679 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
680 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
681 * Programming.
682 */
683 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
684
685 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
686 pvt->mc_node_id, (unsigned long)dram_addr,
687 (unsigned long)sys_addr);
688
689 return sys_addr;
690}
691
692/*
693 * @input_addr is an InputAddr associated with the node given by mci. Translate
694 * @input_addr to a SysAddr.
695 */
696static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
697 u64 input_addr)
698{
699 return dram_addr_to_sys_addr(mci,
700 input_addr_to_dram_addr(mci, input_addr));
701}
702
703/*
704 * Find the minimum and maximum InputAddr values that map to the given @csrow.
705 * Pass back these values in *input_addr_min and *input_addr_max.
706 */
707static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
708 u64 *input_addr_min, u64 *input_addr_max)
709{
710 struct amd64_pvt *pvt;
711 u64 base, mask;
712
713 pvt = mci->pvt_info;
11c75ead 714 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
93c2df58 715
11c75ead 716 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
93c2df58
DT
717
718 *input_addr_min = base & ~mask;
11c75ead 719 *input_addr_max = base | mask;
93c2df58
DT
720}
721
93c2df58
DT
722/* Map the Error address to a PAGE and PAGE OFFSET. */
723static inline void error_address_to_page_and_offset(u64 error_address,
724 u32 *page, u32 *offset)
725{
726 *page = (u32) (error_address >> PAGE_SHIFT);
727 *offset = ((u32) error_address) & ~PAGE_MASK;
728}
729
730/*
731 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
732 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
733 * of a node that detected an ECC memory error. mci represents the node that
734 * the error address maps to (possibly different from the node that detected
735 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
736 * error.
737 */
738static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
739{
740 int csrow;
741
742 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
743
744 if (csrow == -1)
24f9a7fe
BP
745 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
746 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
747 return csrow;
748}
e2ce7255 749
bfc04aec 750static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 751
2da11654
DT
752/*
753 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
754 * are ECC capable.
755 */
756static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
757{
cb328507 758 u8 bit;
584fcff4 759 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 760
1433eb99 761 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
762 ? 19
763 : 17;
764
584fcff4 765 if (pvt->dclr0 & BIT(bit))
2da11654
DT
766 edac_cap = EDAC_FLAG_SECDED;
767
768 return edac_cap;
769}
770
771
8566c4df 772static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 773
68798e17
BP
774static void amd64_dump_dramcfg_low(u32 dclr, int chan)
775{
776 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
777
778 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
779 (dclr & BIT(16)) ? "un" : "",
780 (dclr & BIT(19)) ? "yes" : "no");
781
782 debugf1(" PAR/ERR parity: %s\n",
783 (dclr & BIT(8)) ? "enabled" : "disabled");
784
cb328507
BP
785 if (boot_cpu_data.x86 == 0x10)
786 debugf1(" DCT 128bit mode width: %s\n",
787 (dclr & BIT(11)) ? "128b" : "64b");
68798e17
BP
788
789 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
790 (dclr & BIT(12)) ? "yes" : "no",
791 (dclr & BIT(13)) ? "yes" : "no",
792 (dclr & BIT(14)) ? "yes" : "no",
793 (dclr & BIT(15)) ? "yes" : "no");
794}
795
2da11654 796/* Display and decode various NB registers for debug purposes. */
b2b0c605 797static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 798{
68798e17
BP
799 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
800
801 debugf1(" NB two channel DRAM capable: %s\n",
5980bb9c 802 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 803
68798e17 804 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
5980bb9c
BP
805 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
806 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
807
808 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 809
8de1d91e 810 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 811
8de1d91e
BP
812 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
813 "offset: 0x%08x\n",
bc21fa57
BP
814 pvt->dhar, dhar_base(pvt),
815 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
816 : f10_dhar_offset(pvt));
2da11654 817
c8e518d5 818 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 819
4d796364
BP
820 amd64_debug_display_dimm_sizes(0, pvt);
821
8de1d91e 822 /* everything below this point is Fam10h and above */
4d796364 823 if (boot_cpu_data.x86 == 0xf)
2da11654 824 return;
4d796364
BP
825
826 amd64_debug_display_dimm_sizes(1, pvt);
2da11654 827
a3b7db09 828 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 829
8de1d91e 830 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
831 if (!dct_ganging_enabled(pvt))
832 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
833}
834
94be4bff 835/*
11c75ead 836 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 837 */
11c75ead 838static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 839{
1433eb99 840 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 843 } else {
11c75ead
BP
844 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
845 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
846 }
847}
848
849/*
11c75ead 850 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 851 */
b2b0c605 852static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 853{
11c75ead 854 int cs;
94be4bff 855
11c75ead 856 prep_chip_selects(pvt);
94be4bff 857
11c75ead 858 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
859 int reg0 = DCSB0 + (cs * 4);
860 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
861 u32 *base0 = &pvt->csels[0].csbases[cs];
862 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 863
11c75ead 864 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
94be4bff 865 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
11c75ead 866 cs, *base0, reg0);
94be4bff 867
11c75ead
BP
868 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
869 continue;
b2b0c605 870
11c75ead
BP
871 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
872 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
873 cs, *base1, reg1);
94be4bff
DT
874 }
875
11c75ead 876 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
877 int reg0 = DCSM0 + (cs * 4);
878 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
879 u32 *mask0 = &pvt->csels[0].csmasks[cs];
880 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 881
11c75ead 882 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
94be4bff 883 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
11c75ead 884 cs, *mask0, reg0);
94be4bff 885
11c75ead
BP
886 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
887 continue;
b2b0c605 888
11c75ead
BP
889 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
890 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
891 cs, *mask1, reg1);
94be4bff
DT
892 }
893}
894
24f9a7fe 895static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
896{
897 enum mem_type type;
898
cb328507
BP
899 /* F15h supports only DDR3 */
900 if (boot_cpu_data.x86 >= 0x15)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
903 if (pvt->dchr0 & DDR3_MODE)
904 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
905 else
906 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 907 } else {
94be4bff
DT
908 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
909 }
910
24f9a7fe 911 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
912
913 return type;
914}
915
cb328507 916/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
917static int k8_early_channel_count(struct amd64_pvt *pvt)
918{
cb328507 919 int flag;
ddff876d 920
9f56da0e 921 if (pvt->ext_model >= K8_REV_F)
ddff876d 922 /* RevF (NPT) and later */
41d8bfab 923 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 924 else
ddff876d
DT
925 /* RevE and earlier */
926 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
927
928 /* not used */
929 pvt->dclr1 = 0;
930
931 return (flag) ? 2 : 1;
932}
933
70046624
BP
934/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
935static u64 get_error_address(struct mce *m)
ddff876d 936{
70046624
BP
937 u8 start_bit = 1;
938 u8 end_bit = 47;
939
940 if (boot_cpu_data.x86 == 0xf) {
941 start_bit = 3;
942 end_bit = 39;
943 }
944
945 return m->addr & GENMASK(start_bit, end_bit);
ddff876d
DT
946}
947
7f19bf75 948static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 949{
71d2a32e 950 int off = range << 3;
ddff876d 951
7f19bf75
BP
952 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
953 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 954
7f19bf75
BP
955 if (boot_cpu_data.x86 == 0xf)
956 return;
ddff876d 957
7f19bf75
BP
958 if (!dram_rw(pvt, range))
959 return;
ddff876d 960
7f19bf75
BP
961 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
962 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
ddff876d
DT
963}
964
f192c7b1
BP
965static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
966 u16 syndrome)
ddff876d
DT
967{
968 struct mem_ctl_info *src_mci;
f192c7b1 969 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d
DT
970 int channel, csrow;
971 u32 page, offset;
ddff876d
DT
972
973 /* CHIPKILL enabled */
f192c7b1 974 if (pvt->nbcfg & NBCFG_CHIPKILL) {
bfc04aec 975 channel = get_channel_from_ecc_syndrome(mci, syndrome);
ddff876d
DT
976 if (channel < 0) {
977 /*
978 * Syndrome didn't map, so we don't know which of the
979 * 2 DIMMs is in error. So we need to ID 'both' of them
980 * as suspect.
981 */
24f9a7fe
BP
982 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
983 "error reporting race\n", syndrome);
ddff876d
DT
984 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
985 return;
986 }
987 } else {
988 /*
989 * non-chipkill ecc mode
990 *
991 * The k8 documentation is unclear about how to determine the
992 * channel number when using non-chipkill memory. This method
993 * was obtained from email communication with someone at AMD.
994 * (Wish the email was placed in this comment - norsk)
995 */
44e9e2ee 996 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
997 }
998
999 /*
1000 * Find out which node the error address belongs to. This may be
1001 * different from the node that detected the error.
1002 */
44e9e2ee 1003 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1004 if (!src_mci) {
24f9a7fe 1005 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
44e9e2ee 1006 (unsigned long)sys_addr);
ddff876d
DT
1007 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1008 return;
1009 }
1010
44e9e2ee
BP
1011 /* Now map the sys_addr to a CSROW */
1012 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1013 if (csrow < 0) {
1014 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1015 } else {
44e9e2ee 1016 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1017
1018 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1019 channel, EDAC_MOD_STR);
1020 }
1021}
1022
41d8bfab 1023static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1024{
41d8bfab 1025 unsigned shift = 0;
ddff876d 1026
41d8bfab
BP
1027 if (i <= 2)
1028 shift = i;
1029 else if (!(i & 0x1))
1030 shift = i >> 1;
1433eb99 1031 else
41d8bfab 1032 shift = (i + 1) >> 1;
ddff876d 1033
41d8bfab
BP
1034 return 128 << (shift + !!dct_width);
1035}
1036
1037static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1038 unsigned cs_mode)
1039{
1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041
1042 if (pvt->ext_model >= K8_REV_F) {
1043 WARN_ON(cs_mode > 11);
1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 }
1046 else if (pvt->ext_model >= K8_REV_D) {
1047 WARN_ON(cs_mode > 10);
1048
1049 if (cs_mode == 3 || cs_mode == 8)
1050 return 32 << (cs_mode - 1);
1051 else
1052 return 32 << cs_mode;
1053 }
1054 else {
1055 WARN_ON(cs_mode > 6);
1056 return 32 << cs_mode;
1057 }
ddff876d
DT
1058}
1059
1afd3c98
DT
1060/*
1061 * Get the number of DCT channels in use.
1062 *
1063 * Return:
1064 * number of Memory Channels in operation
1065 * Pass back:
1066 * contents of the DCL0_LOW register
1067 */
7d20d14d 1068static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1069{
6ba5dcdc 1070 int i, j, channels = 0;
1afd3c98 1071
7d20d14d 1072 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1073 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1074 return 2;
1afd3c98
DT
1075
1076 /*
d16149e8
BP
1077 * Need to check if in unganged mode: In such, there are 2 channels,
1078 * but they are not in 128 bit mode and thus the above 'dclr0' status
1079 * bit will be OFF.
1afd3c98
DT
1080 *
1081 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1082 * their CSEnable bit on. If so, then SINGLE DIMM case.
1083 */
d16149e8 1084 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1085
1afd3c98
DT
1086 /*
1087 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1088 * is more than just one DIMM present in unganged mode. Need to check
1089 * both controllers since DIMMs can be placed in either one.
1090 */
525a1b20
BP
1091 for (i = 0; i < 2; i++) {
1092 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1093
57a30854
WW
1094 for (j = 0; j < 4; j++) {
1095 if (DBAM_DIMM(j, dbam) > 0) {
1096 channels++;
1097 break;
1098 }
1099 }
1afd3c98
DT
1100 }
1101
d16149e8
BP
1102 if (channels > 2)
1103 channels = 2;
1104
24f9a7fe 1105 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1106
1107 return channels;
1afd3c98
DT
1108}
1109
41d8bfab 1110static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1111{
41d8bfab
BP
1112 unsigned shift = 0;
1113 int cs_size = 0;
1114
1115 if (i == 0 || i == 3 || i == 4)
1116 cs_size = -1;
1117 else if (i <= 2)
1118 shift = i;
1119 else if (i == 12)
1120 shift = 7;
1121 else if (!(i & 0x1))
1122 shift = i >> 1;
1123 else
1124 shift = (i + 1) >> 1;
1125
1126 if (cs_size != -1)
1127 cs_size = (128 * (1 << !!dct_width)) << shift;
1128
1129 return cs_size;
1130}
1131
1132static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1133 unsigned cs_mode)
1134{
1135 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1136
1137 WARN_ON(cs_mode > 11);
1433eb99
BP
1138
1139 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1140 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1141 else
41d8bfab
BP
1142 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1143}
1144
1145/*
1146 * F15h supports only 64bit DCT interfaces
1147 */
1148static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1149 unsigned cs_mode)
1150{
1151 WARN_ON(cs_mode > 12);
1433eb99 1152
41d8bfab 1153 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1154}
1155
5a5d2371 1156static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1157{
6163b5d4 1158
5a5d2371
BP
1159 if (boot_cpu_data.x86 == 0xf)
1160 return;
1161
78da121e
BP
1162 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1163 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1164 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1165
5a5d2371
BP
1166 debugf0(" DCTs operate in %s mode.\n",
1167 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1168
1169 if (!dct_ganging_enabled(pvt))
1170 debugf0(" Address range split per DCT: %s\n",
1171 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1172
78da121e 1173 debugf0(" data interleave for ECC: %s, "
72381bd5
BP
1174 "DRAM cleared since last warm reset: %s\n",
1175 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1176 (dct_memory_cleared(pvt) ? "yes" : "no"));
1177
78da121e
BP
1178 debugf0(" channel interleave: %s, "
1179 "interleave bits selector: 0x%x\n",
72381bd5 1180 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1181 dct_sel_interleave_addr(pvt));
1182 }
1183
78da121e 1184 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1185}
1186
f71d0a05 1187/*
229a7a11 1188 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1189 * Interleaving Modes.
1190 */
b15f0fca 1191static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1192 bool hi_range_sel, u8 intlv_en)
6163b5d4 1193{
151fa71c 1194 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1195
1196 if (dct_ganging_enabled(pvt))
229a7a11 1197 return 0;
6163b5d4 1198
229a7a11
BP
1199 if (hi_range_sel)
1200 return dct_sel_high;
6163b5d4 1201
229a7a11
BP
1202 /*
1203 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1204 */
1205 if (dct_interleave_enabled(pvt)) {
1206 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1207
1208 /* return DCT select function: 0=DCT0, 1=DCT1 */
1209 if (!intlv_addr)
1210 return sys_addr >> 6 & 1;
1211
1212 if (intlv_addr & 0x2) {
1213 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1214 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1215
1216 return ((sys_addr >> shift) & 1) ^ temp;
1217 }
1218
1219 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1220 }
1221
1222 if (dct_high_range_enabled(pvt))
1223 return ~dct_sel_high & 1;
6163b5d4
DT
1224
1225 return 0;
1226}
1227
c8e518d5 1228/* Convert the sys_addr to the normalized DCT address */
b15f0fca 1229static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
c8e518d5
BP
1230 u64 sys_addr, bool hi_rng,
1231 u32 dct_sel_base_addr)
6163b5d4
DT
1232{
1233 u64 chan_off;
c8e518d5
BP
1234 u64 dram_base = get_dram_base(pvt, range);
1235 u64 hole_off = f10_dhar_offset(pvt);
1236 u32 hole_valid = dhar_valid(pvt);
1237 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1238
c8e518d5
BP
1239 if (hi_rng) {
1240 /*
1241 * if
1242 * base address of high range is below 4Gb
1243 * (bits [47:27] at [31:11])
1244 * DRAM address space on this DCT is hoisted above 4Gb &&
1245 * sys_addr > 4Gb
1246 *
1247 * remove hole offset from sys_addr
1248 * else
1249 * remove high range offset from sys_addr
1250 */
1251 if ((!(dct_sel_base_addr >> 16) ||
1252 dct_sel_base_addr < dhar_base(pvt)) &&
1253 hole_valid &&
1254 (sys_addr >= BIT_64(32)))
bc21fa57 1255 chan_off = hole_off;
6163b5d4
DT
1256 else
1257 chan_off = dct_sel_base_off;
1258 } else {
c8e518d5
BP
1259 /*
1260 * if
1261 * we have a valid hole &&
1262 * sys_addr > 4Gb
1263 *
1264 * remove hole
1265 * else
1266 * remove dram base to normalize to DCT address
1267 */
1268 if (hole_valid && (sys_addr >= BIT_64(32)))
bc21fa57 1269 chan_off = hole_off;
6163b5d4 1270 else
c8e518d5 1271 chan_off = dram_base;
6163b5d4
DT
1272 }
1273
c8e518d5 1274 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1275}
1276
6163b5d4
DT
1277/*
1278 * checks if the csrow passed in is marked as SPARED, if so returns the new
1279 * spare row
1280 */
11c75ead 1281static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1282{
614ec9d8
BP
1283 int tmp_cs;
1284
1285 if (online_spare_swap_done(pvt, dct) &&
1286 csrow == online_spare_bad_dramcs(pvt, dct)) {
1287
1288 for_each_chip_select(tmp_cs, dct, pvt) {
1289 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1290 csrow = tmp_cs;
1291 break;
1292 }
1293 }
6163b5d4
DT
1294 }
1295 return csrow;
1296}
1297
1298/*
1299 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1300 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1301 *
1302 * Return:
1303 * -EINVAL: NOT FOUND
1304 * 0..csrow = Chip-Select Row
1305 */
b15f0fca 1306static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
6163b5d4
DT
1307{
1308 struct mem_ctl_info *mci;
1309 struct amd64_pvt *pvt;
11c75ead 1310 u64 cs_base, cs_mask;
6163b5d4
DT
1311 int cs_found = -EINVAL;
1312 int csrow;
1313
cc4d8860 1314 mci = mcis[nid];
6163b5d4
DT
1315 if (!mci)
1316 return cs_found;
1317
1318 pvt = mci->pvt_info;
1319
11c75ead 1320 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1321
11c75ead
BP
1322 for_each_chip_select(csrow, dct, pvt) {
1323 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1324 continue;
1325
11c75ead 1326 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1327
11c75ead
BP
1328 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1329 csrow, cs_base, cs_mask);
6163b5d4 1330
11c75ead 1331 cs_mask = ~cs_mask;
6163b5d4 1332
11c75ead
BP
1333 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1334 "(CSBase & ~CSMask)=0x%llx\n",
1335 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1336
11c75ead
BP
1337 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1338 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4
DT
1339
1340 debugf1(" MATCH csrow=%d\n", cs_found);
1341 break;
1342 }
1343 }
1344 return cs_found;
1345}
1346
95b0ef55
BP
1347/*
1348 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1349 * swapped with a region located at the bottom of memory so that the GPU can use
1350 * the interleaved region and thus two channels.
1351 */
b15f0fca 1352static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1353{
1354 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1355
1356 if (boot_cpu_data.x86 == 0x10) {
1357 /* only revC3 and revE have that feature */
1358 if (boot_cpu_data.x86_model < 4 ||
1359 (boot_cpu_data.x86_model < 0xa &&
1360 boot_cpu_data.x86_mask < 3))
1361 return sys_addr;
1362 }
1363
1364 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1365
1366 if (!(swap_reg & 0x1))
1367 return sys_addr;
1368
1369 swap_base = (swap_reg >> 3) & 0x7f;
1370 swap_limit = (swap_reg >> 11) & 0x7f;
1371 rgn_size = (swap_reg >> 20) & 0x7f;
1372 tmp_addr = sys_addr >> 27;
1373
1374 if (!(sys_addr >> 34) &&
1375 (((tmp_addr >= swap_base) &&
1376 (tmp_addr <= swap_limit)) ||
1377 (tmp_addr < rgn_size)))
1378 return sys_addr ^ (u64)swap_base << 27;
1379
1380 return sys_addr;
1381}
1382
f71d0a05 1383/* For a given @dram_range, check if @sys_addr falls within it. */
b15f0fca 1384static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
f71d0a05
DT
1385 u64 sys_addr, int *nid, int *chan_sel)
1386{
229a7a11 1387 int cs_found = -EINVAL;
c8e518d5 1388 u64 chan_addr;
5d4b58e8 1389 u32 dct_sel_base;
11c75ead 1390 u8 channel;
229a7a11 1391 bool high_range = false;
f71d0a05 1392
7f19bf75 1393 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1394 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1395 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1396
c8e518d5
BP
1397 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1398 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1399
355fba60
BP
1400 if (dhar_valid(pvt) &&
1401 dhar_base(pvt) <= sys_addr &&
1402 sys_addr < BIT_64(32)) {
1403 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1404 sys_addr);
1405 return -EINVAL;
1406 }
1407
e726f3c3 1408 if (intlv_en &&
355fba60
BP
1409 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1410 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1411 intlv_en, intlv_sel);
f71d0a05 1412 return -EINVAL;
355fba60 1413 }
f71d0a05 1414
b15f0fca 1415 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1416
f71d0a05
DT
1417 dct_sel_base = dct_sel_baseaddr(pvt);
1418
1419 /*
1420 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1421 * select between DCT0 and DCT1.
1422 */
1423 if (dct_high_range_enabled(pvt) &&
1424 !dct_ganging_enabled(pvt) &&
1425 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1426 high_range = true;
f71d0a05 1427
b15f0fca 1428 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1429
b15f0fca 1430 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1431 high_range, dct_sel_base);
f71d0a05 1432
e2f79dbd
BP
1433 /* Remove node interleaving, see F1x120 */
1434 if (intlv_en)
1435 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1436 (chan_addr & 0xfff);
f71d0a05 1437
5d4b58e8 1438 /* remove channel interleave */
f71d0a05
DT
1439 if (dct_interleave_enabled(pvt) &&
1440 !dct_high_range_enabled(pvt) &&
1441 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1442
1443 if (dct_sel_interleave_addr(pvt) != 1) {
1444 if (dct_sel_interleave_addr(pvt) == 0x3)
1445 /* hash 9 */
1446 chan_addr = ((chan_addr >> 10) << 9) |
1447 (chan_addr & 0x1ff);
1448 else
1449 /* A[6] or hash 6 */
1450 chan_addr = ((chan_addr >> 7) << 6) |
1451 (chan_addr & 0x3f);
1452 } else
1453 /* A[12] */
1454 chan_addr = ((chan_addr >> 13) << 12) |
1455 (chan_addr & 0xfff);
f71d0a05
DT
1456 }
1457
5d4b58e8 1458 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1459
b15f0fca 1460 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05
DT
1461
1462 if (cs_found >= 0) {
1463 *nid = node_id;
1464 *chan_sel = channel;
1465 }
1466 return cs_found;
1467}
1468
b15f0fca 1469static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
f71d0a05
DT
1470 int *node, int *chan_sel)
1471{
7f19bf75 1472 int range, cs_found = -EINVAL;
f71d0a05 1473
7f19bf75 1474 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1475
7f19bf75 1476 if (!dram_rw(pvt, range))
f71d0a05
DT
1477 continue;
1478
7f19bf75
BP
1479 if ((get_dram_base(pvt, range) <= sys_addr) &&
1480 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1481
b15f0fca 1482 cs_found = f1x_match_to_this_node(pvt, range,
f71d0a05
DT
1483 sys_addr, node,
1484 chan_sel);
1485 if (cs_found >= 0)
1486 break;
1487 }
1488 }
1489 return cs_found;
1490}
1491
1492/*
bdc30a0c
BP
1493 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1494 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1495 *
bdc30a0c
BP
1496 * The @sys_addr is usually an error address received from the hardware
1497 * (MCX_ADDR).
f71d0a05 1498 */
b15f0fca 1499static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
f192c7b1 1500 u16 syndrome)
f71d0a05
DT
1501{
1502 struct amd64_pvt *pvt = mci->pvt_info;
1503 u32 page, offset;
f71d0a05
DT
1504 int nid, csrow, chan = 0;
1505
b15f0fca 1506 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
f71d0a05 1507
bdc30a0c
BP
1508 if (csrow < 0) {
1509 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1510 return;
1511 }
1512
1513 error_address_to_page_and_offset(sys_addr, &page, &offset);
f71d0a05 1514
bdc30a0c
BP
1515 /*
1516 * We need the syndromes for channel detection only when we're
1517 * ganged. Otherwise @chan should already contain the channel at
1518 * this point.
1519 */
a97fa68e 1520 if (dct_ganging_enabled(pvt))
bdc30a0c 1521 chan = get_channel_from_ecc_syndrome(mci, syndrome);
f71d0a05 1522
bdc30a0c
BP
1523 if (chan >= 0)
1524 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1525 EDAC_MOD_STR);
1526 else
f71d0a05 1527 /*
bdc30a0c 1528 * Channel unknown, report all channels on this CSROW as failed.
f71d0a05 1529 */
bdc30a0c 1530 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
f71d0a05 1531 edac_mc_handle_ce(mci, page, offset, syndrome,
bdc30a0c 1532 csrow, chan, EDAC_MOD_STR);
f71d0a05
DT
1533}
1534
f71d0a05 1535/*
8566c4df 1536 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1537 * CSROWs
f71d0a05 1538 */
8566c4df 1539static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05 1540{
603adaf6 1541 int dimm, size0, size1, factor = 0;
525a1b20
BP
1542 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1543 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1544
8566c4df 1545 if (boot_cpu_data.x86 == 0xf) {
41d8bfab 1546 if (pvt->dclr0 & WIDTH_128)
603adaf6
BP
1547 factor = 1;
1548
8566c4df 1549 /* K8 families < revF not supported yet */
1433eb99 1550 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1551 return;
1552 else
1553 WARN_ON(ctrl != 0);
1554 }
1555
4d796364 1556 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1557 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1558 : pvt->csels[0].csbases;
f71d0a05 1559
4d796364 1560 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
f71d0a05 1561
8566c4df
BP
1562 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1563
f71d0a05
DT
1564 /* Dump memory sizes for DIMM and its CSROWs */
1565 for (dimm = 0; dimm < 4; dimm++) {
1566
1567 size0 = 0;
11c75ead 1568 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1569 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1570 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1571
1572 size1 = 0;
11c75ead 1573 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1574 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1575 DBAM_DIMM(dimm, dbam));
f71d0a05 1576
24f9a7fe
BP
1577 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1578 dimm * 2, size0 << factor,
1579 dimm * 2 + 1, size1 << factor);
f71d0a05
DT
1580 }
1581}
1582
4d37607a
DT
1583static struct amd64_family_type amd64_family_types[] = {
1584 [K8_CPUS] = {
0092b20d 1585 .ctl_name = "K8",
8d5b5d9c
BP
1586 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1587 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1588 .ops = {
1433eb99 1589 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1590 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1591 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1592 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1593 }
1594 },
1595 [F10_CPUS] = {
0092b20d 1596 .ctl_name = "F10h",
8d5b5d9c
BP
1597 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1598 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1599 .ops = {
7d20d14d 1600 .early_channel_count = f1x_early_channel_count,
b15f0fca 1601 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1602 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1603 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1604 }
1605 },
1606 [F15_CPUS] = {
1607 .ctl_name = "F15h",
df71a053
BP
1608 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1609 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1610 .ops = {
7d20d14d 1611 .early_channel_count = f1x_early_channel_count,
b15f0fca 1612 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1613 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1614 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1615 }
1616 },
4d37607a
DT
1617};
1618
1619static struct pci_dev *pci_get_related_function(unsigned int vendor,
1620 unsigned int device,
1621 struct pci_dev *related)
1622{
1623 struct pci_dev *dev = NULL;
1624
1625 dev = pci_get_device(vendor, device, dev);
1626 while (dev) {
1627 if ((dev->bus->number == related->bus->number) &&
1628 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1629 break;
1630 dev = pci_get_device(vendor, device, dev);
1631 }
1632
1633 return dev;
1634}
1635
b1289d6f 1636/*
bfc04aec
BP
1637 * These are tables of eigenvectors (one per line) which can be used for the
1638 * construction of the syndrome tables. The modified syndrome search algorithm
1639 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1640 *
bfc04aec 1641 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1642 */
bfc04aec
BP
1643static u16 x4_vectors[] = {
1644 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1645 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1646 0x0001, 0x0002, 0x0004, 0x0008,
1647 0x1013, 0x3032, 0x4044, 0x8088,
1648 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1649 0x4857, 0xc4fe, 0x13cc, 0x3288,
1650 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1651 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1652 0x15c1, 0x2a42, 0x89ac, 0x4758,
1653 0x2b03, 0x1602, 0x4f0c, 0xca08,
1654 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1655 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1656 0x2b87, 0x164e, 0x642c, 0xdc18,
1657 0x40b9, 0x80de, 0x1094, 0x20e8,
1658 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1659 0x11c1, 0x2242, 0x84ac, 0x4c58,
1660 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1661 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1662 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1663 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1664 0x16b3, 0x3d62, 0x4f34, 0x8518,
1665 0x1e2f, 0x391a, 0x5cac, 0xf858,
1666 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1667 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1668 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1669 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1670 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1671 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1672 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1673 0x185d, 0x2ca6, 0x7914, 0x9e28,
1674 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1675 0x4199, 0x82ee, 0x19f4, 0x2e58,
1676 0x4807, 0xc40e, 0x130c, 0x3208,
1677 0x1905, 0x2e0a, 0x5804, 0xac08,
1678 0x213f, 0x132a, 0xadfc, 0x5ba8,
1679 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1680};
1681
bfc04aec
BP
1682static u16 x8_vectors[] = {
1683 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1684 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1685 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1686 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1687 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1688 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1689 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1690 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1691 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1692 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1693 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1694 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1695 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1696 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1697 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1698 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1699 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1700 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1701 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1702};
1703
1704static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
ad6a32e9 1705 int v_dim)
b1289d6f 1706{
bfc04aec
BP
1707 unsigned int i, err_sym;
1708
1709 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1710 u16 s = syndrome;
1711 int v_idx = err_sym * v_dim;
1712 int v_end = (err_sym + 1) * v_dim;
1713
1714 /* walk over all 16 bits of the syndrome */
1715 for (i = 1; i < (1U << 16); i <<= 1) {
1716
1717 /* if bit is set in that eigenvector... */
1718 if (v_idx < v_end && vectors[v_idx] & i) {
1719 u16 ev_comp = vectors[v_idx++];
1720
1721 /* ... and bit set in the modified syndrome, */
1722 if (s & i) {
1723 /* remove it. */
1724 s ^= ev_comp;
4d37607a 1725
bfc04aec
BP
1726 if (!s)
1727 return err_sym;
1728 }
b1289d6f 1729
bfc04aec
BP
1730 } else if (s & i)
1731 /* can't get to zero, move to next symbol */
1732 break;
1733 }
b1289d6f
DT
1734 }
1735
1736 debugf0("syndrome(%x) not found\n", syndrome);
1737 return -1;
1738}
d27bf6fa 1739
bfc04aec
BP
1740static int map_err_sym_to_channel(int err_sym, int sym_size)
1741{
1742 if (sym_size == 4)
1743 switch (err_sym) {
1744 case 0x20:
1745 case 0x21:
1746 return 0;
1747 break;
1748 case 0x22:
1749 case 0x23:
1750 return 1;
1751 break;
1752 default:
1753 return err_sym >> 4;
1754 break;
1755 }
1756 /* x8 symbols */
1757 else
1758 switch (err_sym) {
1759 /* imaginary bits not in a DIMM */
1760 case 0x10:
1761 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1762 err_sym);
1763 return -1;
1764 break;
1765
1766 case 0x11:
1767 return 0;
1768 break;
1769 case 0x12:
1770 return 1;
1771 break;
1772 default:
1773 return err_sym >> 3;
1774 break;
1775 }
1776 return -1;
1777}
1778
1779static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1780{
1781 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1782 int err_sym = -1;
1783
a3b7db09 1784 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1785 err_sym = decode_syndrome(syndrome, x8_vectors,
1786 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1787 pvt->ecc_sym_sz);
1788 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1789 err_sym = decode_syndrome(syndrome, x4_vectors,
1790 ARRAY_SIZE(x4_vectors),
a3b7db09 1791 pvt->ecc_sym_sz);
ad6a32e9 1792 else {
a3b7db09 1793 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1794 return err_sym;
bfc04aec 1795 }
ad6a32e9 1796
a3b7db09 1797 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1798}
1799
d27bf6fa
DT
1800/*
1801 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1802 * ADDRESS and process.
1803 */
f192c7b1 1804static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa
DT
1805{
1806 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 1807 u64 sys_addr;
f192c7b1 1808 u16 syndrome;
d27bf6fa
DT
1809
1810 /* Ensure that the Error Address is VALID */
f192c7b1 1811 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1812 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1813 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1814 return;
1815 }
1816
70046624 1817 sys_addr = get_error_address(m);
f192c7b1 1818 syndrome = extract_syndrome(m->status);
d27bf6fa 1819
24f9a7fe 1820 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 1821
f192c7b1 1822 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
d27bf6fa
DT
1823}
1824
1825/* Handle any Un-correctable Errors (UEs) */
f192c7b1 1826static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
d27bf6fa 1827{
1f6bcee7 1828 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 1829 int csrow;
44e9e2ee 1830 u64 sys_addr;
d27bf6fa 1831 u32 page, offset;
d27bf6fa
DT
1832
1833 log_mci = mci;
1834
f192c7b1 1835 if (!(m->status & MCI_STATUS_ADDRV)) {
24f9a7fe 1836 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
d27bf6fa
DT
1837 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1838 return;
1839 }
1840
70046624 1841 sys_addr = get_error_address(m);
d27bf6fa
DT
1842
1843 /*
1844 * Find out which node the error address belongs to. This may be
1845 * different from the node that detected the error.
1846 */
44e9e2ee 1847 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa 1848 if (!src_mci) {
24f9a7fe
BP
1849 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1850 (unsigned long)sys_addr);
d27bf6fa
DT
1851 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1852 return;
1853 }
1854
1855 log_mci = src_mci;
1856
44e9e2ee 1857 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa 1858 if (csrow < 0) {
24f9a7fe
BP
1859 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1860 (unsigned long)sys_addr);
d27bf6fa
DT
1861 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1862 } else {
44e9e2ee 1863 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
1864 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1865 }
1866}
1867
549d042d 1868static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1869 struct mce *m)
d27bf6fa 1870{
f192c7b1
BP
1871 u16 ec = EC(m->status);
1872 u8 xec = XEC(m->status, 0x1f);
1873 u8 ecc_type = (m->status >> 45) & 0x3;
d27bf6fa 1874
b70ef010 1875 /* Bail early out if this was an 'observed' error */
5980bb9c 1876 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1877 return;
d27bf6fa 1878
ecaf5606
BP
1879 /* Do only ECC errors */
1880 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1881 return;
d27bf6fa 1882
ecaf5606 1883 if (ecc_type == 2)
f192c7b1 1884 amd64_handle_ce(mci, m);
ecaf5606 1885 else if (ecc_type == 1)
f192c7b1 1886 amd64_handle_ue(mci, m);
d27bf6fa
DT
1887}
1888
7cfd4a87 1889void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
d27bf6fa 1890{
cc4d8860 1891 struct mem_ctl_info *mci = mcis[node_id];
7cfd4a87 1892
f192c7b1 1893 __amd64_decode_bus_error(mci, m);
d27bf6fa 1894}
d27bf6fa 1895
0ec449ee 1896/*
8d5b5d9c 1897 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1898 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1899 */
360b7f3c 1900static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1901{
0ec449ee 1902 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1903 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1904 if (!pvt->F1) {
24f9a7fe
BP
1905 amd64_err("error address map device not found: "
1906 "vendor %x device 0x%x (broken BIOS?)\n",
1907 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1908 return -ENODEV;
0ec449ee
DT
1909 }
1910
1911 /* Reserve the MISC Device */
8d5b5d9c
BP
1912 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1913 if (!pvt->F3) {
1914 pci_dev_put(pvt->F1);
1915 pvt->F1 = NULL;
0ec449ee 1916
24f9a7fe
BP
1917 amd64_err("error F3 device not found: "
1918 "vendor %x device 0x%x (broken BIOS?)\n",
1919 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1920
bbd0c1f6 1921 return -ENODEV;
0ec449ee 1922 }
8d5b5d9c
BP
1923 debugf1("F1: %s\n", pci_name(pvt->F1));
1924 debugf1("F2: %s\n", pci_name(pvt->F2));
1925 debugf1("F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1926
1927 return 0;
1928}
1929
360b7f3c 1930static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1931{
8d5b5d9c
BP
1932 pci_dev_put(pvt->F1);
1933 pci_dev_put(pvt->F3);
0ec449ee
DT
1934}
1935
1936/*
1937 * Retrieve the hardware registers of the memory controller (this includes the
1938 * 'Address Map' and 'Misc' device regs)
1939 */
360b7f3c 1940static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1941{
a3b7db09 1942 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1943 u64 msr_val;
ad6a32e9 1944 u32 tmp;
7f19bf75 1945 int range;
0ec449ee
DT
1946
1947 /*
1948 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1949 * those are Read-As-Zero
1950 */
e97f8bb8
BP
1951 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1952 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1953
1954 /* check first whether TOP_MEM2 is enabled */
1955 rdmsrl(MSR_K8_SYSCFG, msr_val);
1956 if (msr_val & (1U << 21)) {
e97f8bb8
BP
1957 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1958 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
1959 } else
1960 debugf0(" TOP_MEM2 disabled.\n");
1961
5980bb9c 1962 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1963
5a5d2371 1964 read_dram_ctl_register(pvt);
0ec449ee 1965
7f19bf75
BP
1966 for (range = 0; range < DRAM_RANGES; range++) {
1967 u8 rw;
0ec449ee 1968
7f19bf75
BP
1969 /* read settings for this DRAM range */
1970 read_dram_base_limit_regs(pvt, range);
1971
1972 rw = dram_rw(pvt, range);
1973 if (!rw)
1974 continue;
1975
1976 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1977 range,
1978 get_dram_base(pvt, range),
1979 get_dram_limit(pvt, range));
1980
1981 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1982 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1983 (rw & 0x1) ? "R" : "-",
1984 (rw & 0x2) ? "W" : "-",
1985 dram_intlv_sel(pvt, range),
1986 dram_dst_node(pvt, range));
0ec449ee
DT
1987 }
1988
b2b0c605 1989 read_dct_base_mask(pvt);
0ec449ee 1990
bc21fa57 1991 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1992 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1993
8d5b5d9c 1994 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1995
cb328507
BP
1996 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1997 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1998
78da121e 1999 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
2000 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2001 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 2002 }
ad6a32e9 2003
a3b7db09
BP
2004 pvt->ecc_sym_sz = 4;
2005
2006 if (c->x86 >= 0x10) {
b2b0c605 2007 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
525a1b20 2008 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 2009
a3b7db09
BP
2010 /* F10h, revD and later can do x8 ECC too */
2011 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2012 pvt->ecc_sym_sz = 8;
2013 }
b2b0c605 2014 dump_misc_regs(pvt);
0ec449ee
DT
2015}
2016
2017/*
2018 * NOTE: CPU Revision Dependent code
2019 *
2020 * Input:
11c75ead 2021 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2022 * k8 private pointer to -->
2023 * DRAM Bank Address mapping register
2024 * node_id
2025 * DCL register where dual_channel_active is
2026 *
2027 * The DBAM register consists of 4 sets of 4 bits each definitions:
2028 *
2029 * Bits: CSROWs
2030 * 0-3 CSROWs 0 and 1
2031 * 4-7 CSROWs 2 and 3
2032 * 8-11 CSROWs 4 and 5
2033 * 12-15 CSROWs 6 and 7
2034 *
2035 * Values range from: 0 to 15
2036 * The meaning of the values depends on CPU revision and dual-channel state,
2037 * see relevant BKDG more info.
2038 *
2039 * The memory controller provides for total of only 8 CSROWs in its current
2040 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2041 * single channel or two (2) DIMMs in dual channel mode.
2042 *
2043 * The following code logic collapses the various tables for CSROW based on CPU
2044 * revision.
2045 *
2046 * Returns:
2047 * The number of PAGE_SIZE pages on the specified CSROW number it
2048 * encompasses
2049 *
2050 */
41d8bfab 2051static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2052{
1433eb99 2053 u32 cs_mode, nr_pages;
0ec449ee
DT
2054
2055 /*
2056 * The math on this doesn't look right on the surface because x/2*4 can
2057 * be simplified to x*2 but this expression makes use of the fact that
2058 * it is integral math where 1/2=0. This intermediate value becomes the
2059 * number of bits to shift the DBAM register to extract the proper CSROW
2060 * field.
2061 */
1433eb99 2062 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2063
41d8bfab 2064 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2065
2066 /*
2067 * If dual channel then double the memory size of single channel.
2068 * Channel count is 1 or 2
2069 */
2070 nr_pages <<= (pvt->channel_count - 1);
2071
1433eb99 2072 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2073 debugf0(" nr_pages= %u channel-count = %d\n",
2074 nr_pages, pvt->channel_count);
2075
2076 return nr_pages;
2077}
2078
2079/*
2080 * Initialize the array of csrow attribute instances, based on the values
2081 * from pci config hardware registers.
2082 */
360b7f3c 2083static int init_csrows(struct mem_ctl_info *mci)
0ec449ee
DT
2084{
2085 struct csrow_info *csrow;
2299ef71 2086 struct amd64_pvt *pvt = mci->pvt_info;
11c75ead 2087 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2299ef71 2088 u32 val;
6ba5dcdc 2089 int i, empty = 1;
0ec449ee 2090
a97fa68e 2091 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2092
2299ef71 2093 pvt->nbcfg = val;
0ec449ee 2094
2299ef71
BP
2095 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2096 pvt->mc_node_id, val,
a97fa68e 2097 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2098
11c75ead 2099 for_each_chip_select(i, 0, pvt) {
0ec449ee
DT
2100 csrow = &mci->csrows[i];
2101
11c75ead 2102 if (!csrow_enabled(i, 0, pvt)) {
0ec449ee
DT
2103 debugf1("----CSROW %d EMPTY for node %d\n", i,
2104 pvt->mc_node_id);
2105 continue;
2106 }
2107
2108 debugf1("----CSROW %d VALID for MC node %d\n",
2109 i, pvt->mc_node_id);
2110
2111 empty = 0;
41d8bfab 2112 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
0ec449ee
DT
2113 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2114 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2115 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2116 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2117 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
11c75ead
BP
2118
2119 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2120 csrow->page_mask = ~mask;
0ec449ee
DT
2121 /* 8 bytes of resolution */
2122
24f9a7fe 2123 csrow->mtype = amd64_determine_memory_type(pvt, i);
0ec449ee
DT
2124
2125 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2126 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2127 (unsigned long)input_addr_min,
2128 (unsigned long)input_addr_max);
2129 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2130 (unsigned long)sys_addr, csrow->page_mask);
2131 debugf1(" nr_pages: %u first_page: 0x%lx "
2132 "last_page: 0x%lx\n",
2133 (unsigned)csrow->nr_pages,
2134 csrow->first_page, csrow->last_page);
2135
2136 /*
2137 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2138 */
a97fa68e 2139 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
0ec449ee 2140 csrow->edac_mode =
a97fa68e 2141 (pvt->nbcfg & NBCFG_CHIPKILL) ?
0ec449ee
DT
2142 EDAC_S4ECD4ED : EDAC_SECDED;
2143 else
2144 csrow->edac_mode = EDAC_NONE;
2145 }
2146
2147 return empty;
2148}
d27bf6fa 2149
f6d6ae96 2150/* get all cores on this DCT */
b487c33e 2151static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
f6d6ae96
BP
2152{
2153 int cpu;
2154
2155 for_each_online_cpu(cpu)
2156 if (amd_get_nb_id(cpu) == nid)
2157 cpumask_set_cpu(cpu, mask);
2158}
2159
2160/* check MCG_CTL on all the cpus on this node */
b487c33e 2161static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
f6d6ae96
BP
2162{
2163 cpumask_var_t mask;
50542251 2164 int cpu, nbe;
f6d6ae96
BP
2165 bool ret = false;
2166
2167 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2168 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2169 return false;
2170 }
2171
2172 get_cpus_on_this_dct_cpumask(mask, nid);
2173
f6d6ae96
BP
2174 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2175
2176 for_each_cpu(cpu, mask) {
50542251 2177 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2178 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96
BP
2179
2180 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
50542251 2181 cpu, reg->q,
f6d6ae96
BP
2182 (nbe ? "enabled" : "disabled"));
2183
2184 if (!nbe)
2185 goto out;
f6d6ae96
BP
2186 }
2187 ret = true;
2188
2189out:
f6d6ae96
BP
2190 free_cpumask_var(mask);
2191 return ret;
2192}
2193
2299ef71 2194static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
f6d6ae96
BP
2195{
2196 cpumask_var_t cmask;
50542251 2197 int cpu;
f6d6ae96
BP
2198
2199 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2200 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2201 return false;
2202 }
2203
ae7bb7c6 2204 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2205
f6d6ae96
BP
2206 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2207
2208 for_each_cpu(cpu, cmask) {
2209
50542251
BP
2210 struct msr *reg = per_cpu_ptr(msrs, cpu);
2211
f6d6ae96 2212 if (on) {
5980bb9c 2213 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2214 s->flags.nb_mce_enable = 1;
f6d6ae96 2215
5980bb9c 2216 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2217 } else {
2218 /*
d95cf4de 2219 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2220 */
ae7bb7c6 2221 if (!s->flags.nb_mce_enable)
5980bb9c 2222 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2223 }
f6d6ae96
BP
2224 }
2225 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2226
f6d6ae96
BP
2227 free_cpumask_var(cmask);
2228
2229 return 0;
2230}
2231
2299ef71
BP
2232static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2233 struct pci_dev *F3)
f9431992 2234{
2299ef71 2235 bool ret = true;
c9f4f26e 2236 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2237
2299ef71
BP
2238 if (toggle_ecc_err_reporting(s, nid, ON)) {
2239 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2240 return false;
2241 }
2242
c9f4f26e 2243 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2244
ae7bb7c6
BP
2245 s->old_nbctl = value & mask;
2246 s->nbctl_valid = true;
f9431992
DT
2247
2248 value |= mask;
c9f4f26e 2249 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2250
a97fa68e 2251 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2252
a97fa68e
BP
2253 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2254 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2255
a97fa68e 2256 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2257 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2258
ae7bb7c6 2259 s->flags.nb_ecc_prev = 0;
d95cf4de 2260
f9431992 2261 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2262 value |= NBCFG_ECC_ENABLE;
2263 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2264
a97fa68e 2265 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2266
a97fa68e 2267 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2268 amd64_warn("Hardware rejected DRAM ECC enable,"
2269 "check memory DIMM configuration.\n");
2299ef71 2270 ret = false;
f9431992 2271 } else {
24f9a7fe 2272 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2273 }
d95cf4de 2274 } else {
ae7bb7c6 2275 s->flags.nb_ecc_prev = 1;
f9431992 2276 }
d95cf4de 2277
a97fa68e
BP
2278 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2279 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2280
2299ef71 2281 return ret;
f9431992
DT
2282}
2283
360b7f3c
BP
2284static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2285 struct pci_dev *F3)
f9431992 2286{
c9f4f26e
BP
2287 u32 value, mask = 0x3; /* UECC/CECC enable */
2288
f9431992 2289
ae7bb7c6 2290 if (!s->nbctl_valid)
f9431992
DT
2291 return;
2292
c9f4f26e 2293 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2294 value &= ~mask;
ae7bb7c6 2295 value |= s->old_nbctl;
f9431992 2296
c9f4f26e 2297 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2298
ae7bb7c6
BP
2299 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2300 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2301 amd64_read_pci_cfg(F3, NBCFG, &value);
2302 value &= ~NBCFG_ECC_ENABLE;
2303 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2304 }
2305
2306 /* restore the NB Enable MCGCTL bit */
2299ef71 2307 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2308 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2309}
2310
2311/*
2299ef71
BP
2312 * EDAC requires that the BIOS have ECC enabled before
2313 * taking over the processing of ECC errors. A command line
2314 * option allows to force-enable hardware ECC later in
2315 * enable_ecc_error_reporting().
f9431992 2316 */
cab4d277
BP
2317static const char *ecc_msg =
2318 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2319 " Either enable ECC checking or force module loading by setting "
2320 "'ecc_enable_override'.\n"
2321 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2322
2299ef71 2323static bool ecc_enabled(struct pci_dev *F3, u8 nid)
f9431992
DT
2324{
2325 u32 value;
2299ef71 2326 u8 ecc_en = 0;
06724535 2327 bool nb_mce_en = false;
f9431992 2328
a97fa68e 2329 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2330
a97fa68e 2331 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2332 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2333
2299ef71 2334 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2335 if (!nb_mce_en)
2299ef71
BP
2336 amd64_notice("NB MCE bank disabled, set MSR "
2337 "0x%08x[4] on node %d to enable.\n",
2338 MSR_IA32_MCG_CTL, nid);
f9431992 2339
2299ef71
BP
2340 if (!ecc_en || !nb_mce_en) {
2341 amd64_notice("%s", ecc_msg);
2342 return false;
2343 }
2344 return true;
f9431992
DT
2345}
2346
7d6034d3
DT
2347struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2348 ARRAY_SIZE(amd64_inj_attrs) +
2349 1];
2350
2351struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2352
360b7f3c 2353static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3
DT
2354{
2355 unsigned int i = 0, j = 0;
2356
2357 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2358 sysfs_attrs[i] = amd64_dbg_attrs[i];
2359
a135cef7
BP
2360 if (boot_cpu_data.x86 >= 0x10)
2361 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2362 sysfs_attrs[i] = amd64_inj_attrs[j];
7d6034d3
DT
2363
2364 sysfs_attrs[i] = terminator;
2365
2366 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2367}
2368
df71a053
BP
2369static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2370 struct amd64_family_type *fam)
7d6034d3
DT
2371{
2372 struct amd64_pvt *pvt = mci->pvt_info;
2373
2374 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2375 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2376
5980bb9c 2377 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2378 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2379
5980bb9c 2380 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2381 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2382
2383 mci->edac_cap = amd64_determine_edac_cap(pvt);
2384 mci->mod_name = EDAC_MOD_STR;
2385 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2386 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2387 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2388 mci->ctl_page_to_phys = NULL;
2389
7d6034d3
DT
2390 /* memory scrubber interface */
2391 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2392 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2393}
2394
0092b20d
BP
2395/*
2396 * returns a pointer to the family descriptor on success, NULL otherwise.
2397 */
2398static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2399{
0092b20d
BP
2400 u8 fam = boot_cpu_data.x86;
2401 struct amd64_family_type *fam_type = NULL;
2402
2403 switch (fam) {
395ae783 2404 case 0xf:
0092b20d 2405 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2406 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2407 break;
df71a053 2408
395ae783 2409 case 0x10:
0092b20d 2410 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2411 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2412 break;
2413
2414 case 0x15:
2415 fam_type = &amd64_family_types[F15_CPUS];
2416 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2417 break;
2418
2419 default:
24f9a7fe 2420 amd64_err("Unsupported family!\n");
0092b20d 2421 return NULL;
395ae783 2422 }
0092b20d 2423
b8cfa02f
BP
2424 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2425
df71a053 2426 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2427 (fam == 0xf ?
24f9a7fe
BP
2428 (pvt->ext_model >= K8_REV_F ? "revF or later "
2429 : "revE or earlier ")
2430 : ""), pvt->mc_node_id);
0092b20d 2431 return fam_type;
395ae783
BP
2432}
2433
2299ef71 2434static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2435{
2436 struct amd64_pvt *pvt = NULL;
0092b20d 2437 struct amd64_family_type *fam_type = NULL;
360b7f3c 2438 struct mem_ctl_info *mci = NULL;
7d6034d3 2439 int err = 0, ret;
360b7f3c 2440 u8 nid = get_node_id(F2);
7d6034d3
DT
2441
2442 ret = -ENOMEM;
2443 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2444 if (!pvt)
360b7f3c 2445 goto err_ret;
7d6034d3 2446
360b7f3c 2447 pvt->mc_node_id = nid;
8d5b5d9c 2448 pvt->F2 = F2;
7d6034d3 2449
395ae783 2450 ret = -EINVAL;
0092b20d
BP
2451 fam_type = amd64_per_family_init(pvt);
2452 if (!fam_type)
395ae783
BP
2453 goto err_free;
2454
7d6034d3 2455 ret = -ENODEV;
360b7f3c 2456 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2457 if (err)
2458 goto err_free;
2459
360b7f3c 2460 read_mc_regs(pvt);
7d6034d3 2461
7d6034d3
DT
2462 /*
2463 * We need to determine how many memory channels there are. Then use
2464 * that information for calculating the size of the dynamic instance
360b7f3c 2465 * tables in the 'mci' structure.
7d6034d3 2466 */
360b7f3c 2467 ret = -EINVAL;
7d6034d3
DT
2468 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2469 if (pvt->channel_count < 0)
360b7f3c 2470 goto err_siblings;
7d6034d3
DT
2471
2472 ret = -ENOMEM;
11c75ead 2473 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
7d6034d3 2474 if (!mci)
360b7f3c 2475 goto err_siblings;
7d6034d3
DT
2476
2477 mci->pvt_info = pvt;
8d5b5d9c 2478 mci->dev = &pvt->F2->dev;
7d6034d3 2479
df71a053 2480 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2481
2482 if (init_csrows(mci))
7d6034d3
DT
2483 mci->edac_cap = EDAC_FLAG_NONE;
2484
360b7f3c 2485 set_mc_sysfs_attrs(mci);
7d6034d3
DT
2486
2487 ret = -ENODEV;
2488 if (edac_mc_add_mc(mci)) {
2489 debugf1("failed edac_mc_add_mc()\n");
2490 goto err_add_mc;
2491 }
2492
549d042d
BP
2493 /* register stuff with EDAC MCE */
2494 if (report_gart_errors)
2495 amd_report_gart_errors(true);
2496
2497 amd_register_ecc_decoder(amd64_decode_bus_error);
2498
360b7f3c
BP
2499 mcis[nid] = mci;
2500
2501 atomic_inc(&drv_instances);
2502
7d6034d3
DT
2503 return 0;
2504
2505err_add_mc:
2506 edac_mc_free(mci);
2507
360b7f3c
BP
2508err_siblings:
2509 free_mc_sibling_devs(pvt);
7d6034d3 2510
360b7f3c
BP
2511err_free:
2512 kfree(pvt);
7d6034d3 2513
360b7f3c 2514err_ret:
7d6034d3
DT
2515 return ret;
2516}
2517
2299ef71 2518static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
b8cfa02f 2519 const struct pci_device_id *mc_type)
7d6034d3 2520{
ae7bb7c6 2521 u8 nid = get_node_id(pdev);
2299ef71 2522 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2523 struct ecc_settings *s;
2299ef71 2524 int ret = 0;
7d6034d3 2525
7d6034d3 2526 ret = pci_enable_device(pdev);
b8cfa02f
BP
2527 if (ret < 0) {
2528 debugf0("ret=%d\n", ret);
2529 return -EIO;
2530 }
7d6034d3 2531
ae7bb7c6
BP
2532 ret = -ENOMEM;
2533 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2534 if (!s)
2299ef71 2535 goto err_out;
ae7bb7c6
BP
2536
2537 ecc_stngs[nid] = s;
2538
2299ef71
BP
2539 if (!ecc_enabled(F3, nid)) {
2540 ret = -ENODEV;
2541
2542 if (!ecc_enable_override)
2543 goto err_enable;
2544
2545 amd64_warn("Forcing ECC on!\n");
2546
2547 if (!enable_ecc_error_reporting(s, nid, F3))
2548 goto err_enable;
2549 }
2550
2551 ret = amd64_init_one_instance(pdev);
360b7f3c 2552 if (ret < 0) {
ae7bb7c6 2553 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2554 restore_ecc_error_reporting(s, nid, F3);
2555 }
7d6034d3
DT
2556
2557 return ret;
2299ef71
BP
2558
2559err_enable:
2560 kfree(s);
2561 ecc_stngs[nid] = NULL;
2562
2563err_out:
2564 return ret;
7d6034d3
DT
2565}
2566
2567static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2568{
2569 struct mem_ctl_info *mci;
2570 struct amd64_pvt *pvt;
360b7f3c
BP
2571 u8 nid = get_node_id(pdev);
2572 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2573 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3
DT
2574
2575 /* Remove from EDAC CORE tracking list */
2576 mci = edac_mc_del_mc(&pdev->dev);
2577 if (!mci)
2578 return;
2579
2580 pvt = mci->pvt_info;
2581
360b7f3c 2582 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2583
360b7f3c 2584 free_mc_sibling_devs(pvt);
7d6034d3 2585
549d042d
BP
2586 /* unregister from EDAC MCE */
2587 amd_report_gart_errors(false);
2588 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2589
360b7f3c
BP
2590 kfree(ecc_stngs[nid]);
2591 ecc_stngs[nid] = NULL;
ae7bb7c6 2592
7d6034d3 2593 /* Free the EDAC CORE resources */
8f68ed97 2594 mci->pvt_info = NULL;
360b7f3c 2595 mcis[nid] = NULL;
8f68ed97
BP
2596
2597 kfree(pvt);
7d6034d3
DT
2598 edac_mc_free(mci);
2599}
2600
2601/*
2602 * This table is part of the interface for loading drivers for PCI devices. The
2603 * PCI core identifies what devices are on a system during boot, and then
2604 * inquiry this table to see if this driver is for a given device found.
2605 */
2606static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2607 {
2608 .vendor = PCI_VENDOR_ID_AMD,
2609 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2610 .subvendor = PCI_ANY_ID,
2611 .subdevice = PCI_ANY_ID,
2612 .class = 0,
2613 .class_mask = 0,
7d6034d3
DT
2614 },
2615 {
2616 .vendor = PCI_VENDOR_ID_AMD,
2617 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2618 .subvendor = PCI_ANY_ID,
2619 .subdevice = PCI_ANY_ID,
2620 .class = 0,
2621 .class_mask = 0,
7d6034d3 2622 },
df71a053
BP
2623 {
2624 .vendor = PCI_VENDOR_ID_AMD,
2625 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2626 .subvendor = PCI_ANY_ID,
2627 .subdevice = PCI_ANY_ID,
2628 .class = 0,
2629 .class_mask = 0,
2630 },
2631
7d6034d3
DT
2632 {0, }
2633};
2634MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2635
2636static struct pci_driver amd64_pci_driver = {
2637 .name = EDAC_MOD_STR,
2299ef71 2638 .probe = amd64_probe_one_instance,
7d6034d3
DT
2639 .remove = __devexit_p(amd64_remove_one_instance),
2640 .id_table = amd64_pci_table,
2641};
2642
360b7f3c 2643static void setup_pci_device(void)
7d6034d3
DT
2644{
2645 struct mem_ctl_info *mci;
2646 struct amd64_pvt *pvt;
2647
2648 if (amd64_ctl_pci)
2649 return;
2650
cc4d8860 2651 mci = mcis[0];
7d6034d3
DT
2652 if (mci) {
2653
2654 pvt = mci->pvt_info;
2655 amd64_ctl_pci =
8d5b5d9c 2656 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2657
2658 if (!amd64_ctl_pci) {
2659 pr_warning("%s(): Unable to create PCI control\n",
2660 __func__);
2661
2662 pr_warning("%s(): PCI error report via EDAC not set\n",
2663 __func__);
2664 }
2665 }
2666}
2667
2668static int __init amd64_edac_init(void)
2669{
360b7f3c 2670 int err = -ENODEV;
7d6034d3 2671
df71a053 2672 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2673
2674 opstate_init();
2675
9653a5c7 2676 if (amd_cache_northbridges() < 0)
56b34b91 2677 goto err_ret;
7d6034d3 2678
cc4d8860 2679 err = -ENOMEM;
ae7bb7c6
BP
2680 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2681 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2682 if (!(mcis && ecc_stngs))
cc4d8860
BP
2683 goto err_ret;
2684
50542251 2685 msrs = msrs_alloc();
56b34b91 2686 if (!msrs)
360b7f3c 2687 goto err_free;
50542251 2688
7d6034d3
DT
2689 err = pci_register_driver(&amd64_pci_driver);
2690 if (err)
56b34b91 2691 goto err_pci;
7d6034d3 2692
56b34b91 2693 err = -ENODEV;
360b7f3c
BP
2694 if (!atomic_read(&drv_instances))
2695 goto err_no_instances;
7d6034d3 2696
360b7f3c
BP
2697 setup_pci_device();
2698 return 0;
7d6034d3 2699
360b7f3c 2700err_no_instances:
7d6034d3 2701 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2702
56b34b91
BP
2703err_pci:
2704 msrs_free(msrs);
2705 msrs = NULL;
cc4d8860 2706
360b7f3c
BP
2707err_free:
2708 kfree(mcis);
2709 mcis = NULL;
2710
2711 kfree(ecc_stngs);
2712 ecc_stngs = NULL;
2713
56b34b91 2714err_ret:
7d6034d3
DT
2715 return err;
2716}
2717
2718static void __exit amd64_edac_exit(void)
2719{
2720 if (amd64_ctl_pci)
2721 edac_pci_release_generic_ctl(amd64_ctl_pci);
2722
2723 pci_unregister_driver(&amd64_pci_driver);
50542251 2724
ae7bb7c6
BP
2725 kfree(ecc_stngs);
2726 ecc_stngs = NULL;
2727
cc4d8860
BP
2728 kfree(mcis);
2729 mcis = NULL;
2730
50542251
BP
2731 msrs_free(msrs);
2732 msrs = NULL;
7d6034d3
DT
2733}
2734
2735module_init(amd64_edac_init);
2736module_exit(amd64_edac_exit);
2737
2738MODULE_LICENSE("GPL");
2739MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2740 "Dave Peterson, Thayne Harbaugh");
2741MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2742 EDAC_AMD64_VERSION);
2743
2744module_param(edac_op_state, int, 0444);
2745MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");